1
|
Amanollahi A, Babeveynezhad T, Sedighi M, Shadnia S, Akbari S, Taheri M, Besharatpour M, Jorjani G, Salehian E, Etemad K, Mehrabi Y. Incidence of rhabdomyolysis occurrence in psychoactive substances intoxication: a systematic review and meta-analysis. Sci Rep 2023; 13:17693. [PMID: 37848606 PMCID: PMC10582156 DOI: 10.1038/s41598-023-45031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Rhabdomyolysis is a potentially life-threatening condition induced by diverse mechanisms including drugs and toxins. We aimed to investigate the incidence of rhabdomyolysis occurrence in intoxicated patients with psychoactive substances. In this review, three databases (PubMed, Scopus, Web of Science) and search engine (Google Scholar) were searched by various keywords. After the screening of retrieved documents, related data of included studies were extracted and analyzed with weighted mean difference (WMD) in random effect model. The highest incidence of rhabdomyolysis was observed in intoxication with heroin (57.2 [95% CI 22.6-91.8]), amphetamines (30.5 [95% CI 22.6-38.5]), and cocaine (26.6 [95% CI 11.1-42.1]). The pooled effect size for blood urea nitrogen (WMD = 8.78, p = 0.002), creatinine (WMD = 0.44, p < 0.001), and creatinine phosphokinase (WMD = 2590.9, p < 0.001) was high in patients with rhabdomyolysis compared to patients without rhabdomyolysis. Our results showed a high incidence of rhabdomyolysis induced by psychoactive substance intoxication in ICU patients when compared to total wards. Also, the incidence of rhabdomyolysis occurrence was high in ICU patients with heroin and amphetamine intoxication. Therefore, clinicians should anticipate this complication, monitor for rhabdomyolysis, and institute appropriate treatment protocols early in the patient's clinical course.
Collapse
Affiliation(s)
- Alireza Amanollahi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Sedighi
- Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Shadnia
- Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadaf Akbari
- Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mahbobeh Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Besharatpour
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Goljamal Jorjani
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Salehian
- Resources Development Deputy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koorosh Etemad
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yadollah Mehrabi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Carezzato F, Falcão de Arruda I, Petrus Monteiro Figueiredo C, Castaldelli-Maia JM. Women and MDMA: particularities of gender and sex. Int Rev Psychiatry 2023; 35:461-467. [PMID: 38299658 DOI: 10.1080/09540261.2023.2250867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 02/02/2024]
Abstract
This comprehensive review delves into the intricate interplay between gender/sex and MDMA use, drawing upon recent evidence. It explores how girls, as a means of coping with negative emotions, often resort to drug use, while boys primarily initiate drug use due to peer pressure or sensation-seeking tendencies. Women, frequently having endured traumatic life events, may turn to MDMA as a form of self-medication. Notably, women face an elevated risk of contracting sexually transmitted infections due to their altered mental states and diminished condom use during MDMA consumption. Additionally, females exhibit heightened sensitivity to the subjective effects of MDMA, consistently reporting heightened anxiety, adverse effects, and negative side effects. While women may have a higher susceptibility to hyponatremia, intriguingly, they appear to be less vulnerable to MDMA-induced hyperthermia. Although limited, available data suggest that prenatal MDMA exposure could lead to motor delays in infants, necessitating further research to unravel the potential cognitive effects. Furthermore, MDMA-assisted psychotherapy holds immense promise for addressing post-traumatic stress disorder (PTSD) among female subgroups. These pronounced gender and sex disparities in MDMA use and its effects underscore the pressing need for additional research to develop tailored, effective, and safe treatment approaches that account for these fundamental factors.
Collapse
Affiliation(s)
- Fabio Carezzato
- Perdizes Institute (IPer), Clinics Hospital (HCFMUSP), Medical School, University of São Paulo, São Paulo, Brazil
| | - Ilana Falcão de Arruda
- Department of Psychiatry, Medical School, Medical School, University of São Paulo, São Paulo, Brazil
| | | | - João Mauricio Castaldelli-Maia
- Department of Psychiatry, Medical School, Medical School, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience, Medical School, FMABC University Center, Santo André - SP, Brazil
| |
Collapse
|
3
|
van Amsterdam J, Brunt TM, Pierce M, van den Brink W. Hard Boiled: Alcohol Use as a Risk Factor for MDMA-Induced Hyperthermia: a Systematic Review. Neurotox Res 2021; 39:2120-2133. [PMID: 34554408 PMCID: PMC8639540 DOI: 10.1007/s12640-021-00416-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022]
Abstract
Although MDMA (ecstasy) is a relatively safe recreational drug and is currently considered for therapeutic use for the treatment of posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD), recreational MDMA use occasionally elicits hyperthermia and hyponatremia, sometimes with a fatal outcome. Specific risk factors for both adverse effects are profuse sweating while vigorously dancing under unfavorable conditions such as high ambient temperatures and insufficient fluid suppletion which result in dehydration. Concomitant use of MDMA and alcohol is highly prevalent, but adds to the existing risk, because alcohol facilitates the emergence of MDMA-induced adverse events, like hyperthermia, dehydration, and hyponatremia. Because of potential health-related consequences of concomitant use of MDMA and alcohol, it is important to identify the mechanisms of the interactions between alcohol and MDMA. This review summarizes the main drivers of MDMA-induced hyperthermia, dehydration, and hyponatremia and the role of concomitant alcohol use. It is shown that alcohol use has a profound negative impact by its interaction with most of these drivers, including poikilothermia, exposure to high ambient temperatures, heavy exercise (vigorous dancing), vasoconstriction, dehydration, and delayed initiation of sweating and diuresis. It is concluded that recreational and clinical MDMA-users should refrain from concomitant drinking of alcoholic beverages to reduce the risk for adverse health incidents when using MDMA.
Collapse
Affiliation(s)
- Jan van Amsterdam
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands.
| | - Tibor M Brunt
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Mimi Pierce
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| | - Wim van den Brink
- Department of Psychiatry, Amsterdam University Medical Center, University of Amsterdam, P.O. Box 22660, 1100 DD, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Roxburgh A, Sam B, Kriikku P, Mounteney J, Castanera A, Dias M, Giraudon I. Trends in MDMA-related mortality across four countries. Addiction 2021; 116:3094-3103. [PMID: 33739562 DOI: 10.1111/add.15493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 11/27/2022]
Abstract
AIMS To determine trends in 3,4 methylenedioxymethamphetamine (MDMA)-related death rates across Australia, Finland, Portugal and Turkey and to analyse the toxicology and causes of death across countries. DESIGN Analysis of MDMA-related deaths extracted from a national coronial database in Australia (2001-19) and national forensic toxicology databases in Finland (2001-17), Portugal (2008-19) and Turkey (2007-17). Presentation of MDMA use and seizure data (market indicators). SETTING Australia, Finland, Portugal and Turkey. CASES All deaths in which MDMA was considered by the forensic pathologist to be contributory to death. MEASUREMENTS Information collected on cause and circumstances of death, demographics and toxicology. FINDINGS A total of 1400 MDMA-related deaths were identified in Turkey, 507 in Australia, 100 in Finland and 45 in Portugal. The median age ranged from 24 to 27.5 years, and males represented between 81 and 94% of the deaths across countries. Standardized mortality rates significantly increased across all four countries from 2011 to 2017 during a period of increased purity and availability of MDMA. The underlying cause of death was predominantly due to drug toxicity in Australia (n = 309, 61%), Finland (n = 70, 70%) and Turkey (n = 840, 60%) and other causes in Portugal (n = 25, 56%). Minorities of all deaths across the countries were due to MDMA toxicity alone (13-25%). These deaths had a significantly higher blood MDMA concentration than multiple drug toxicity deaths in Australia, Finland and Turkey. Drugs other than MDMA commonly detected were stimulants (including cocaine, amphetamine and methamphetamine) (Australia 52% and Finland 61%) and alcohol (Australia 46% and Portugal 49%). In addition to MDMA toxicity, benzodiazepines (81%) and opioids (64%) were commonly identified in these deaths in Finland. In comparison, synthetic cannabinoids (15%) and cannabis (33%) were present in a minority of deaths in Turkey. CONCLUSIONS Deaths related to 3,4 methylenedioxymethamphetamine (MDMA) increased in Australia, Finland, Portugal and Turkey between 2011 and 2017. Findings show MDMA toxicity alone can be fatal, but multiple drug toxicity remains more prevalent.
Collapse
Affiliation(s)
- Amanda Roxburgh
- Behaviours and Health Risks Program, Burnet Institute, Melbourne, Australia.,Discipline of Addiction Medicine, the Central Clinical School, Sydney Medical School, the Faculty of Medicine and Health, University of Sydney, Sydney, Australia.,National Drug and Alcohol Research Centre, UNSW, Sydney, Australia
| | - Bulent Sam
- Member of the Council of Mortality Related Cases, the Council of Forensic Medicine of Ministry of Justice, Turkey
| | - Pirkko Kriikku
- Forensic Toxicology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.,Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Jane Mounteney
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), Lisbon, Portugal
| | - Antonio Castanera
- Serviço de Quimica e Toxicologia Forenses do Instituto Nacional de Medicina Legal e Ciências Forenses, Lisboa, Portugal
| | - Mario Dias
- Serviço de Quimica e Toxicologia Forenses do Instituto Nacional de Medicina Legal e Ciências Forenses, Lisboa, Portugal.,Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Almada, Portugal
| | - Isabelle Giraudon
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), Lisbon, Portugal.,University NOVA and National School of Public Health, Lisbon, Portugal
| |
Collapse
|
5
|
Costa G, Caputi FF, Serra M, Simola N, Rullo L, Stamatakos S, Sanna F, Germain M, Martinoli MG, Candeletti S, Morelli M, Romualdi P. Activation of Antioxidant and Proteolytic Pathways in the Nigrostriatal Dopaminergic System After 3,4-Methylenedioxymethamphetamine Administration: Sex-Related Differences. Front Pharmacol 2021; 12:713486. [PMID: 34512343 PMCID: PMC8430399 DOI: 10.3389/fphar.2021.713486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is an amphetamine-related drug that may damage the dopaminergic nigrostriatal system. To investigate the mechanisms that sustain this toxic effect and ascertain their sex-dependence, we evaluated in the nigrostriatal system of MDMA-treated (4 × 20 mg/kg, 2 h apart) male and female mice the activity of superoxide dismutase (SOD), the gene expression of SOD type 1 and 2, together with SOD1/2 co-localization with tyrosine hydroxylase (TH)-positive neurons. In the same mice and brain areas, activity of glutathione peroxidase (GPx) and of β2/β5 subunits of the ubiquitin-proteasome system (UPS) were also evaluated. After MDMA, SOD1 increased in striatal TH-positive terminals, but not nigral neurons, of males and females, while SOD2 increased in striatal TH-positive terminals and nigral neurons of males only. Moreover, after MDMA, SOD1 gene expression increased in the midbrain of males and females, whereas SOD2 increased only in males. Finally, MDMA increased the SOD activity in the midbrain of females, without affecting GPx activity, decreased the β2/β5 activities in the striatum of males and the β2 activity in the midbrain of females. These results suggest that the mechanisms of MDMA-induced neurotoxic effects are sex-dependent and dopaminergic neurons of males could be more sensitive to SOD2- and UPS-mediated toxic effects.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Serena Stamatakos
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy
| | - Marc Germain
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CERMO-FC UQAM, Québec, QC, Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval and CHU Research Center, Québec, QC, Canada
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, Cagliari, Italy.,National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Drinking to death: Hyponatraemia induced by synthetic phenethylamines. Drug Alcohol Depend 2020; 212:108045. [PMID: 32460203 DOI: 10.1016/j.drugalcdep.2020.108045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/21/2022]
Abstract
Synthetic phenethylamines are widely abused drugs, comprising new psychoactive substances such as synthetic cathinones, but also well-known amphetamines such as methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy). Cathinones and amphetamines share many toxicodynamic mechanisms. One of their potentially life-threatening consequences, particularly of MDMA, is serotonin-mediated hyponatraemia. Herein, we review the state of the art on phenethylamine-induced hyponatremia; discuss the mechanisms involved; and present the preventive and therapeutic measures. Hyponatraemia mediated by phenethylamines results from increased secretion of antidiuretic hormone (ADH) and consequent kidney water reabsorption, additionally involving diaphoresis and polydipsia. Data for MDMA suggest that acute hyponatraemia elicited by cathinones may also be a consequence of metabolic activation. The literature often reveals hyponatraemia-associated complications such as cerebral oedema, cerebellar tonsillar herniation and coma that may evolve to a fatal outcome, particularly in women. Ready availability of fluids and the recommendation to drink copiously at the rave scene to counteract hyperthermia, often precipitate water intoxication. Users should be advised about the importance of controlling fluid intake while using phenethylamines. At early signs of adverse effects, medical assistance should be promptly sought. Severe hyponatraemia (<130 mmol sodium/L plasma) may be corrected with hypertonic saline or suppression of fluid intake. Also, clinicians should be made aware of the hyponatraemic potential of these drugs and encouraged to report future cases of toxicity to increase knowledge on this potentially lethal outcome.
Collapse
|
7
|
Roxburgh A, Lappin J. MDMA-related deaths in Australia 2000 to 2018. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2020; 76:102630. [DOI: 10.1016/j.drugpo.2019.102630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 01/11/2023]
|
8
|
Musolino ST, Schartner EP, Hutchinson MR, Salem A. Minocycline attenuates 3,4-methylenedioxymethamphetamine-induced hyperthermia in the rat brain. Eur J Pharmacol 2019; 858:172495. [PMID: 31238065 DOI: 10.1016/j.ejphar.2019.172495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Hyperthermia is most dangerous clinical symptom of acute MDMA administration, and a key factor related to potentially life-threatening MDMA-induced complications. MDMA induces a consistently faster onset of brain hyperthermia when compared to a delayed and moderate hyperthermia in the body, and the most harmful effects of MDMA are related to its modulation of neural functions. The primary focus of this study was to investigate the effects of minocycline, a centrally acting tetracycline derivative on MDMA-induced brain hyperthermia at high ambient temperature. However, we also simultaneously recorded body temperature, heart rate, and locomotor activity changes, allowing us to gain a better understanding of the mechanisms underlying the MDMA-induced hyperthermic response. We also investigated the effects of MDMA at normal ambient temperature to provide further evidence as to the importance of environmental factors on the intensity of MDMA's temperature effects. At normal ambient temperature, MDMA (10 mg/kg, i.p.) induced a significant brain and body hypothermia for the first 90 min following drug administration, and significantly increased heart rate and locomotor activity compared to saline controls. At high ambient temperature however, MDMA (10 mg/kg, i.p.) induced a robust and extended brain and body hyperthermia, as well as significantly increased heart rate and locomotor activity. A 3-day minocycline (50 mg/kg, i.p.) pre-treatment significantly attenuated MDMA-induced increases in brain temperature, body temperature, heart rate, and locomotor activity. Our findings indicate that minocycline is more effective in attenuating the exacerbated MDMA-induced hyperthermic response in the brain compared to the body at high ambient temperature.
Collapse
Affiliation(s)
- Stefan T Musolino
- ARC Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Adelaide, SA, 5005, Australia; Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Erik P Schartner
- ARC Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Adelaide, SA, 5005, Australia; School of Physical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Adelaide, SA, 5005, Australia; Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Abdallah Salem
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
9
|
Willson C. Sympathomimetic amine compounds and hepatotoxicity: Not all are alike-Key distinctions noted in a short review. Toxicol Rep 2018; 6:26-33. [PMID: 30581759 PMCID: PMC6288410 DOI: 10.1016/j.toxrep.2018.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sympathomimetic amine compounds are often pooled together and incorrectly assumed to be interchangeable with respect to potential adverse effects. A brief and specific review of sympathomimetic compounds and one instance (i.e., hepatotoxicity) where these compounds have been improperly grouped together is covered. A review of the proposed mechanisms through which known hepatotoxic sympathomimetic agents (e.g., 3,4-methylenedioxymethamphetamine or MDMA, methamphetamine and amphetamine) cause liver injury, along with a corresponding review of in vitro data, interventional data, animal model studies and observational data allow for a comparison/contrast of different agents and reveals a lack of potential toxicity for some agents (e.g., pseudoephedrine, phenylephrine, ephedrine, 1,3-dimethylamylamine, phentermine) in this broad category. Data show that compounds within the broad group of sympathomimetics display divergent pharmacological and toxicological profiles and can be clearly distinguished with respect to liver injury. These data serve as a reminder to clinicians and others, that even small structural differences between molecules can lead to drastically different pharmacological/toxicological profiles and that one should not assume that all sympathomimetic agents are hepatotoxic. Such assumptions could lead to diagnostic errors and incorrect or insufficient treatment.
Collapse
|
10
|
Abstract
3,4-methylenedioxy-methamphetamine is taken recreationally by thousands of people, especially the young, across the globe. It is highly associated with electronic music and its use in the UK remains high at around 4.5% of 16-24 year olds. This review discusses both the short- and long-term effects of 3,4-methylenedioxy-methamphetamine including methods by which some of these adverse effects can be prevented or even reversed to increase the safety of the commonly used drug.
Collapse
|
11
|
Górska AM, Kamińska K, Wawrzczak-Bargieła A, Costa G, Morelli M, Przewłocki R, Kreiner G, Gołembiowska K. Neurochemical and Neurotoxic Effects of MDMA (Ecstasy) and Caffeine After Chronic Combined Administration in Mice. Neurotox Res 2018; 33:532-548. [PMID: 29134560 PMCID: PMC5871650 DOI: 10.1007/s12640-017-9831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/04/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
MDMA (3,4-methylenedioxymethamphetamine) is a psychostimulant popular as a recreational drug because of its effect on mood and social interactions. MDMA acts at dopamine (DA) transporter (DAT) and serotonin (5-HT) transporter (SERT) and is known to induce damage of dopamine and serotonin neurons. MDMA is often ingested with caffeine. Caffeine as a non-selective adenosine A1/A2A receptor antagonist affects dopaminergic and serotonergic transmissions. The aim of the present study was to determine the changes in DA and 5-HT release in the mouse striatum induced by MDMA and caffeine after their chronic administration. To find out whether caffeine aggravates MDMA neurotoxicity, the content of DA and 5-HT, density of brain DAT and SERT, and oxidative damage of nuclear DNA were determined. Furthermore, the effect of caffeine on MDMA-induced changes in striatal dynorphin and enkephalin and on behavior was assessed. The DA and 5-HT release was determined with in vivo microdialysis, and the monoamine contents were measured by HPLC with electrochemical detection. DNA damage was assayed with the alkaline comet assay. DAT and SERT densities were determined by immunohistochemistry, while prodynorphin (PDYN) and proenkephalin were determined by quantitative PCR reactions. The behavioral changes were measured by the open-field (OF) test and novel object recognition (NOR) test. Caffeine potentiated MDMA-induced DA release while inhibiting 5-HT release in the mouse striatum. Caffeine also exacerbated the oxidative damage of nuclear DNA induced by MDMA but diminished DAT decrease in the striatum and worsened a decrease in SERT density produced by MDMA in the frontal cortex. Neither the striatal PDYN expression, increased by MDMA, nor exploratory and locomotor activities of mice, decreased by MDMA, were affected by caffeine. The exploration of novel object in the NOR test was diminished by MDMA and caffeine. Our data provide evidence that long-term caffeine administration has a powerful influence on functions of dopaminergic and serotonergic neurons in the mouse brain and on neurotoxic effects evoked by MDMA.
Collapse
Affiliation(s)
- Anna Maria Górska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| | - Katarzyna Kamińska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland
| | - Agnieszka Wawrzczak-Bargieła
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy
| | - Ryszard Przewłocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Street, 31-343, Kraków, Poland.
| |
Collapse
|
12
|
Horsley RR, Lhotkova E, Hajkova K, Feriancikova B, Himl M, Kuchar M, Páleníček T. Behavioural, Pharmacokinetic, Metabolic, and Hyperthermic Profile of 3,4-Methylenedioxypyrovalerone (MDPV) in the Wistar Rat. Front Psychiatry 2018; 9:144. [PMID: 29740356 PMCID: PMC5928397 DOI: 10.3389/fpsyt.2018.00144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/03/2018] [Indexed: 01/24/2023] Open
Abstract
3,4-methylenedioxypyrovalerone (MDPV) is a potent pyrovalerone cathinone that is substituted for amphetamines by recreational users. We report a comprehensive and detailed description of the effects of subcutaneous MDPV (1-4 mg/kg) on pharmacokinetics, biodistribution and metabolism, acute effects on thermoregulation under isolated and aggregated conditions, locomotion (open field) and sensory gating (prepulse inhibition, PPI). All studies used male Wistar rats. Pharmacokinetics after single dose of 2 mg/kg MDPV was measured over 6 h in serum, brain and lungs. The biotransformation study recorded 24 h urinary levels of MDPV and its metabolites after 4 mg/kg. The effect of 2 mg/kg and 4 mg/kg on body temperature (°C) was measured over 12 h in group- vs. individually-housed rats. In the open field, locomotion (cm) and its spatial distribution were assessed. In PPI, acoustic startle response (ASR), habituation, and PPI were measured (AVG amplitudes). In behavioural experiments, 1, 2, or 4 mg/kg MDPV was administered 15 or 60 min prior to testing. Thermoregulation and behavioural data were analysed using factorial analysis of variance (ANOVA). Peak concentrations of MDPV in sera, lung and brain tissue were reached in under 30 min. While negligible levels of metabolites were detected in tissues, the major metabolites in urine were demethylenyl-MDPV and demethylenyl-methyl-MDPV at levels three-four times higher than the parent drug. We also established a MDPV brain/serum ratio ~2 lasting for ~120 min, consistent with our behavioural observations of locomotor activation and disrupted spatial distribution of behaviour as well as moderate increases in body temperature (exacerbated in group-housed animals). Finally, 4 mg/kg induced stereotypy in the open field and transiently disrupted PPI. Our findings, along with previous research suggest that MDPV is rapidly absorbed, readily crosses the blood-brain barrier and is excreted primarily as metabolites. MDPV acts as a typical stimulant with modest hyperthermic and psychomimetic properties, consistent with a primarily dopaminergic mechanism of action. Since no specific signs of acute toxicity were observed, even at the highest doses used, clinical care and harm-reduction guidance should be in line with that available for other stimulants and cathinones.
Collapse
Affiliation(s)
- Rachel R Horsley
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Eva Lhotkova
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Katerina Hajkova
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia.,Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Barbara Feriancikova
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Michal Himl
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Martin Kuchar
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
| | - Tomas Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
13
|
Mobaraki F, Seghatoleslam M, Fazel A, Ebrahimzadeh-Bideskan A. Effects of MDMA (ecstasy) on apoptosis and heat shock protein (HSP70) expression in adult rat testis. Toxicol Mech Methods 2017; 28:219-229. [DOI: 10.1080/15376516.2017.1388461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fahimeh Mobaraki
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Seghatoleslam
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Fazel
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Luethi D, Liechti ME, Krähenbühl S. Mechanisms of hepatocellular toxicity associated with new psychoactive synthetic cathinones. Toxicology 2017. [PMID: 28645576 DOI: 10.1016/j.tox.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthetic cathinones are a new class of psychostimulant substances. Rarely, they can cause liver injury but associated mechanisms are not completely elucidated. In order to increase our knowledge about mechanisms of hepatotoxicity, we investigated the effect of five frequently used cathinones on two human cell lines. Bupropion was included as structurally related drug used therapeutically. In HepG2 cells, bupropion, MDPV, mephedrone and naphyrone depleted the cellular ATP content at lower concentrations (0.2-1mM) than cytotoxicity occurred (0.5-2mM), suggesting mitochondrial toxicity. In comparison, methedrone and methylone depleted the cellular ATP pool and induced cytotoxicity at similar concentrations (≥2mM). In HepaRG cells, cytotoxicity and ATP depletion could also be demonstrated, but cytochrome P450 induction did not increase the toxicity of the compounds investigated. The mitochondrial membrane potential was decreased in HepG2 cells by bupropion, MDPV and naphyrone, confirming mitochondrial toxicity. Bupropion, but not the other compounds, uncoupled oxidative phosphorylation. Bupropion, MDPV, mephedrone and naphyrone inhibited complex I and II of the electron transport chain, naphyrone also complex III. All four mitochondrial toxicants were associated with increased mitochondrial ROS and increased lactate production, which was accompanied by a decrease in the cellular total GSH pool for naphyrone and MDPV. In conclusion, bupropion, MDPV, mephedrone and naphyrone are mitochondrial toxicants impairing the function of the electron transport chain and depleting cellular ATP stores. Since liver injury is rare in users of these drugs, affected persons must have susceptibility factors rendering them more sensitive for these drugs.
Collapse
Affiliation(s)
- Dino Luethi
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; Swiss Centre of Applied Human Toxicology, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; Swiss Centre of Applied Human Toxicology, Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland; Swiss Centre of Applied Human Toxicology, Basel, Switzerland.
| |
Collapse
|
15
|
Štefková K, Židková M, Horsley RR, Pinterová N, Šíchová K, Uttl L, Balíková M, Danda H, Kuchař M, Páleníček T. Pharmacokinetic, Ambulatory, and Hyperthermic Effects of 3,4-Methylenedioxy- N-Methylcathinone (Methylone) in Rats. Front Psychiatry 2017; 8:232. [PMID: 29204126 PMCID: PMC5698284 DOI: 10.3389/fpsyt.2017.00232] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023] Open
Abstract
Methylone (3,4-methylenedioxy-N-methylcathinone) is a synthetic cathinone analog of the recreational drug ecstasy. Although it is marketed to recreational users as relatively safe, fatalities due to hyperthermia, serotonin syndrome, and multi-organ system failure have been reported. Since psychopharmacological data remain scarce, we have focused our research on pharmacokinetics, and on a detailed evaluation of temporal effects of methylone and its metabolite nor-methylone on behavior and body temperature in rats. Methylone [5, 10, 20, and 40 mg/kg subcutaneously (s.c.)] and nor-methylone (10 mg/kg s.c.) were used in adolescent male Wistar rats across three behavioral/physiological procedures and in two temporal windows from administration (15 and 60 min) in order to test: locomotor effects in the open field, sensorimotor gating in the test of prepulse inhibition (PPI), and effects on rectal temperature in individually and group-housed rats. Serum and brain pharmacokinetics after 10 mg/kg s.c. over 8 h were analyzed using liquid chromatography mass spectrometry. Serum and brain levels of methylone and nor-methylone peaked at 30 min after administration, both drugs readily penetrated the brain with serum: brain ratio 1:7.97. Methylone dose-dependently increased overall locomotion. It also decrease the amount of time spent in the center of open field arena in dose 20 mg/kg and additionally this dose induced stereotyped circling around the arena walls. The maximum of effects corresponded to the peak of its brain concentrations. Nor-methylone had approximately the same behavioral potency. Methylone also has weak potency to disturb PPI. Behavioral testing was not performed with 40 mg/kg, because it was surprisingly lethal to some animals. Methylone 10 and 20 mg/kg s.c. induced hyperthermic reaction which was more pronounced in group-housed condition relative to individually housed rats. To conclude, methylone increased exploration and/or decreased anxiety in the open field arena and with nor-methylone had short duration of action with effects typical for mixed indirect dopamine-serotonin agonists such as 3,4-metyhlenedioxymethamphetamine (MDMA) or amphetamine. Given the fact that the toxicity was even higher than the known for MDMA and that it can cause hyperthermia it possess a threat to users with the risk for serotonin syndrome especially when used in crowded conditions.
Collapse
Affiliation(s)
- Kristýna Štefková
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Monika Židková
- First Faculty of Medicine, Institute of Forensic Medicine and Toxicology, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Rachel R Horsley
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Nikola Pinterová
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Klára Šíchová
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia
| | - Libor Uttl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Marie Balíková
- First Faculty of Medicine, Institute of Forensic Medicine and Toxicology, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Hynek Danda
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Martin Kuchař
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Prague, Czechia
| | - Tomáš Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University in Prague, Prague, Czechia
| |
Collapse
|
16
|
Tyrkkö E, Andersson M, Kronstrand R. The Toxicology of New Psychoactive Substances: Synthetic Cathinones and Phenylethylamines. Ther Drug Monit 2016; 38:190-216. [PMID: 26587869 DOI: 10.1097/ftd.0000000000000263] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND New psychoactive substances (NPSs) are substitutes for classical drugs of abuse and there are now compounds available from all groups of classical drugs of abuse. During 2014, the number of synthetic cathinones increased dramatically and, together with phenylethylamines, they dominate the NPS markets in the European Union. In total, 31 cathinones and 9 phenylethylamines were encountered in 2014. The aim of this article was to summarize the existing knowledge about the basic pharmacology, metabolism, and human toxicology of relevant synthetic cathinones and phenylethylamines. Compared with existing reviews, we have also compiled the existing case reports from both fatal and nonfatal intoxications. METHODS We performed a comprehensive literature search using bibliographic databases PubMed and Web of Science, complemented with Google Scholar. The focus of the literature search was on original articles, case reports, and previously published review articles published in 2014 or earlier. RESULTS The rapid increase of NPSs is a growing concern and sets new challenges not only for societies in drug prevention and legislation but also in clinical and forensic toxicology. In vivo and in vitro studies have demonstrated that the pharmacodynamic profile of cathinones is similar to that of other psychomotor stimulants. Metabolism studies show that cathinones and phenylethylamines are extensively metabolized; however, the parent compound is usually detectable in human urine. In vitro studies have shown that many cathinones and phenylethylamines are metabolized by CYP2D6 enzymes. This indicates that these drugs may have many possible drug-drug interactions and that genetic polymorphism may influence their toxicity. However, the clinical and toxicological relevance of CYP2D6 in adverse effects of cathinones and phenylethylamines is questionable, because these compounds are metabolized by other enzymes as well. The toxidromes commonly encountered after ingestion of cathinones and phenylethylamines are mainly of sympathomimetic and hallucinogenic character with a risk of excited delirium and life-threatening cardiovascular effects. CONCLUSIONS The acute and chronic toxicity of many NPSs is unknown or very sparsely investigated. There is a need for evidence-based-treatment recommendations for acute intoxications and a demand for new strategies to analyze these compounds in clinical and forensic cases.
Collapse
Affiliation(s)
- Elli Tyrkkö
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | | | | |
Collapse
|
17
|
Zona LC, Grecco GG, Sprague JE. Cooling down the bath salts: Carvedilol attenuation of methylone and mephedrone mediated hyperthermia. Toxicol Lett 2016; 263:11-15. [PMID: 27773724 DOI: 10.1016/j.toxlet.2016.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/26/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
The use of the synthetic cathinones ("bath salts"), methylone and mephedrone, has been associated with the development of life-threatening hyperthermia. To date, no direct pharmacological intervention to mitigate the hyperthermia induced by synthetic cathinones has been identified. Here, we investigated the effects of the non-selective α1 and β adrenergic receptor antagonist carvedilol (5mg/kg ip) on established hyperthermia mediated by methylone and mephedrone (30mg/kg sc) in Sprague-Dawley rats. Methylone and mephedrone induced a hyperthermic response that peaked 60min post treatment. The administration of carvedilol 30min after methylone or mephedrone significantly attenuated these hyperthermic responses. Analysis of the Temperature Area Under the Curve (TAUC) demonstrated carvedilol significantly reduced the TAUC associated with methylone or mephedrone alone. The present study provides the first direct pharmacological intervention for the treatment of synthetic cathinone induced hyperthermia.
Collapse
Affiliation(s)
- Luke C Zona
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Gregory G Grecco
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
18
|
Páleníček T, Lhotková E, Žídková M, Balíková M, Kuchař M, Himl M, Mikšátková P, Čegan M, Valeš K, Tylš F, Horsley RR. Emerging toxicity of 5,6-methylenedioxy-2-aminoindane (MDAI): Pharmacokinetics, behaviour, thermoregulation and LD50 in rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:49-59. [PMID: 27083855 DOI: 10.1016/j.pnpbp.2016.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/09/2016] [Accepted: 04/09/2016] [Indexed: 11/29/2022]
Abstract
MDAI (5,6-Methylenedioxy-2-aminoindane) has a reputation as a non-neurotoxic ecstasy replacement amongst recreational users, however the drug has been implicated in some severe and lethal intoxications. Due to this, and the fact that the drug is almost unexplored scientifically we investigated a broad range of effects of acute MDAI administration: pharmacokinetics (in sera, brain, liver and lung); behaviour (open field; prepulse inhibition, PPI); acute effects on thermoregulation (in group-/individually-housed rats); and systemic toxicity (median lethal dose, LD50) in Wistar rats. Pharmacokinetics of MDAI was rapid, maximum median concentration in serum and brain was attained 30min and almost returned to zero 6h after subcutaneous (sc.) administration of 10mg/kg MDAI; brain/serum ratio was ~4. MDAI particularly accumulated in lung tissue. In the open field, MDAI (5, 10, 20 and 40mg/kg sc.) increased exploratory activity, induced signs of behavioural serotonin syndrome and reduced locomotor habituation, although by 60min some effects had diminished. All doses of MDAI significantly disrupted PPI and the effect was present during the onset of its action as well as 60min after treatment. Unexpectedly, 40mg/kg MDAI killed 90% of animals in the first behavioural test, hence LD50 tests were conducted which yielded 28.33mg/kg sc. and 35mg/kg intravenous but was not established up to 40mg/kg after gastric administration. Disseminated intravascular coagulopathy (DIC) with brain oedema was concluded as a direct cause of death in sc. treated animals. Finally, MDAI (10, 20mg/kg sc.) caused hyperthermia and perspiration in group-housed rats. In conclusion, the drug had fast pharmacokinetics and accumulated in lipohilic tissues. Behavioural findings were consistent with mild, transient stimulation with anxiolysis and disruption of sensorimotor processing. Together with hyperthermia, the drug had a similar profile to related entactogens, especially 3,4-metyhlenedioxymethamphetamine (MDMA, ecstasy) and paramethoxymethamphetamine (PMMA). Surprisingly subcutaneous MDAI appears to be more lethal than previously thought and its serotonergic toxicity is likely exacerbated by group housing conditions. MDAI therefore poses greater risks to physical and mental health than recognised hitherto.
Collapse
Affiliation(s)
- Tomáš Páleníček
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; 3(rd) Medical faculty, Charles University in Prague, Ruská 87, 110 00 Prague 10, Czech Republic.
| | - Eva Lhotková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Monika Žídková
- Institute of Forensic Medicine and Toxicology, Charles University in Prague, Studničkova 4, 128 21 Prague 2, Czech Republic
| | - Marie Balíková
- Institute of Forensic Medicine and Toxicology, Charles University in Prague, Studničkova 4, 128 21 Prague 2, Czech Republic
| | - Martin Kuchař
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Faculty of Food and Biochemical Technology & Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michal Himl
- Faculty of Food and Biochemical Technology & Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Petra Mikšátková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Faculty of Food and Biochemical Technology & Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Čegan
- Masaryk hospital in Ústí nad Labem, Sociální péče 3316/12A, 401 13 Ústí nad Labem, Czech Republic
| | - Karel Valeš
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Filip Tylš
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; 3(rd) Medical faculty, Charles University in Prague, Ruská 87, 110 00 Prague 10, Czech Republic
| | - Rachel R Horsley
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
19
|
Frau L, Simola N, Porceddu PF, Morelli M. Effect of crowding, temperature and age on glia activation and dopaminergic neurotoxicity induced by MDMA in the mouse brain. Neurotoxicology 2016; 56:127-138. [PMID: 27451954 DOI: 10.1016/j.neuro.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022]
Abstract
3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature. After the last MDMA administration, immunohistochemistry was performed in the caudate-putamen for CD11b and GFAP, to mark microglia and astroglia, and in the substantia nigra pars compacta for tyrosine hydroxylase, to mark dopaminergic neurons. MDMA induced glia activation and dopaminergic neurotoxicity, compared with vehicle administration. Crowding (5 or 10 mice×cage) amplified MDMA-induced glia activation (in adult and adolescent mice) and dopaminergic neurotoxicity (in adolescent mice). Conversely, exposure to a high environmental temperature (27°C) potentiated MDMA-induced glia activation in adult and adolescent mice kept 5×cage, but not dopaminergic neurotoxicity. Crowding and exposure to a high environmental temperature amplified MDMA-induced hyperthermia, and a positive correlation between body temperature and activation of either microglia or astroglia was found in adult and adolescent mice. These results provide further evidence that the administration setting influences the noxious effects of MDMA in the mouse brain. However, while crowding amplifies both glia activation and dopaminergic neurotoxicity, a high environmental temperature exacerbates glia activation only.
Collapse
Affiliation(s)
- Lucia Frau
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy.
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy.
| | - Pier Francesca Porceddu
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy.
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy; CNR, Institute of Neuroscience, Cagliari, Italy.
| |
Collapse
|
20
|
Metformin Prevented Dopaminergic Neurotoxicity Induced by 3,4-Methylenedioxymethamphetamine Administration. Neurotox Res 2016; 30:101-9. [DOI: 10.1007/s12640-016-9633-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 01/31/2023]
|
21
|
Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol 2015; 155:149-170. [PMID: 26455459 DOI: 10.1016/j.pneurobio.2015.09.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates. This review summarizes the species-specific cellular and molecular mechanisms involved in MDMA and METH-mediated neurotoxic and neuroinflammatory effects, along with the most important behavioral changes elicited by these substances in experimental animals and humans. Emphasis is placed on the neuropsychological and neurological consequences associated with the neuronal damage. Moreover, we point out the gap in our knowledge and the need for developing appropriate therapeutic strategies to manage the neurological problems associated with amphetamine-related drug abuse.
Collapse
Affiliation(s)
- Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain.
| | - Amit Khairnar
- Applied Neuroscience Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Jose Ruben García-Montes
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain; CIBERNED, ISCIII, Madrid, Spain
| | - Pier Francesca Porceddu
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; National Research Council (CNR), Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
22
|
Coman D, Sanganahalli BG, Jiang L, Hyder F, Behar KL. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") exposure. NMR IN BIOMEDICINE 2015; 28:1257-66. [PMID: 26286889 PMCID: PMC4573923 DOI: 10.1002/nbm.3375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 06/22/2015] [Accepted: 07/19/2015] [Indexed: 05/05/2023]
Abstract
(+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is an abused psychostimulant that produces strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP-3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA(4-))). The MDMA-induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA-induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions. Considering that MDMA effects on CBF and heat dissipation (as well as potential heat generation) may vary regionally, neuroprotection may require different cooling strategies.
Collapse
Affiliation(s)
- Daniel Coman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Lihong Jiang
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Kevin L. Behar
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
23
|
Farré M, Tomillero A, Pérez-Mañá C, Yubero S, Papaseit E, Roset PN, Pujadas M, Torrens M, Camí J, de la Torre R. Human pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) after repeated doses taken 4 h apart Human pharmacology of MDMA after repeated doses taken 4 h apart. Eur Neuropsychopharmacol 2015; 25:1637-49. [PMID: 26073279 DOI: 10.1016/j.euroneuro.2015.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/24/2015] [Accepted: 05/25/2015] [Indexed: 11/19/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) is a popular psychostimulant, frequently associated with multiple administrations over a short period of time. Repeated administration of MDMA in experimental settings induces tolerance and metabolic inhibition. The aim is to determine the acute pharmacological effects and pharmacokinetics resulting from two consecutive 100mg doses of MDMA separated by 4h. Ten male volunteers participated in a randomized, double-blind, crossover, placebo-controlled trial. The four conditions were placebo plus placebo, placebo plus MDMA, MDMA plus placebo, and MDMA plus MDMA. Outcome variables included pharmacological effects and pharmacokinetic parameters. After a second dose of MDMA, most effects were similar to those after a single dose, despite a doubling of MDMA concentrations (except for systolic blood pressure and reaction time). After repeated MDMA administration, a 2-fold increase was observed in MDMA plasma concentrations. For a simple dose accumulation MDMA and MDA concentrations were higher (+23.1% Cmax and +17.1% AUC for MDMA and +14.2% Cmax and +10.3% AUC for MDA) and HMMA and HMA concentrations lower (-43.3% Cmax and -39.9% AUC for HMMA and -33.2% Cmax and -35.1% AUC for HMA) than expected, probably related to MDMA metabolic autoinhibition. Although MDMA concentrations doubled after the second dose, most pharmacological effects were similar or slightly higher in comparison to the single administration, except for systolic blood pressure and reaction time which were greater than predicted. The pharmacokinetic-effects relationship suggests that when MDMA is administered at a 4h interval there exists a phenomenon of acute tolerance to its effects.
Collapse
Affiliation(s)
- Magí Farré
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona (Parc de Salut Mar-UAB), Barcelona, Spain; Clinical Pharmacology Unit. Hospital Universitari Germans Trias i Pujol-IGTP, Badalona, Spain.
| | - Angels Tomillero
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona (Parc de Salut Mar-UAB), Barcelona, Spain
| | - Clara Pérez-Mañá
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona (Parc de Salut Mar-UAB), Barcelona, Spain
| | - Samanta Yubero
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Esther Papaseit
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona (Parc de Salut Mar-UAB), Barcelona, Spain
| | - Pere-Nolasc Roset
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain; Universitat Autònoma de Barcelona (Parc de Salut Mar-UAB), Barcelona, Spain
| | - Mitona Pujadas
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain
| | - Marta Torrens
- Universitat Autònoma de Barcelona (Parc de Salut Mar-UAB), Barcelona, Spain; Institut de Neuropsiquiatria i Adiccions. Adiction Unit and IMIM, Barcelona, Spain
| | - Jordi Camí
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Rafael de la Torre
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Parc de Salut Mar, Barcelona, Spain; Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03), CIBEROBN, Santiago de Compostela, Spain
| |
Collapse
|
24
|
Shelton CP, Rosini JM. Multisystem Organ Failure and Death Resulting From Ingestion of "Molly" (3,4-Methylenedioxymethamphetamine). J Emerg Nurs 2015; 41:447-50. [PMID: 26078261 DOI: 10.1016/j.jen.2015.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Abstract
Psychostimulants are a diverse group of substances that cause an increase in psychomotor activity at least in part through their actions on catecholaminergic systems including the dopaminergic mesolimbic pathways. Animal models used to study addiction are based on the psychomotor stimulant theory of addiction. The basics of this theory are that the reinforcing effects and the addition liabilities of the drugs can be predicted from their ability to induce psychomotor activation. This approach focuses on the ability of the drugs to directly control the animal's behavior and to induce psychomotor stimulation, and is consistent with the behavioral definition of addiction and behavioral sensitization. Animal experiments have the advantage over clinical studies of lower variation and fewer confounding effects.
Collapse
|
26
|
Tao R, Shokry IM, Callanan JJ, Adams HD, Ma Z. Mechanisms and environmental factors that underlying the intensification of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy)-induced serotonin syndrome in rats. Psychopharmacology (Berl) 2015; 232:1245-60. [PMID: 25300903 PMCID: PMC4361258 DOI: 10.1007/s00213-014-3759-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/23/2014] [Indexed: 01/08/2023]
Abstract
RATIONALE Illicit use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) may cause a mild or severe form of the serotonin syndrome. The syndrome intensity is not just influenced by drug doses but also by environmental factors. OBJECTIVES Warm environmental temperatures and physical activity are features of raves. The purpose of this study was to assess how these two factors can potentially intensify the syndrome. METHODS Rats were administered MDMA at doses of 0.3, 1, or 3 mg/kg and examined in the absence or presence of warm temperature and physical activity. The syndrome intensity was estimated by visual scoring for behavioral syndrome and also instrumentally measuring changes in symptoms of the syndrome. RESULTS Our results showed that MDMA at 3 mg/kg, but not 0.3 or 1 mg/kg, caused a mild serotonin syndrome in rats. Each environmental factor alone moderately intensified the syndrome. When the two factors were combined, the intensification became more severe than each factor alone highlighting a synergistic effect. This intensification was blocked by the 5-HT2A receptor antagonist M100907, competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist CGS19755, autonomic ganglionic blocker hexamethonium, and the benzodiazepine-GABAA receptor agonist midazolam but not by the 5-HT1A receptor antagonist WAY100635 or nicotinic receptor antagonist methyllycaconitine. CONCLUSIONS Our data suggest that, in the absence of environmental factors, the MDMA-induced syndrome is mainly mediated through the serotonergic transmission (5-hydroxytryptamine (5HT)-dependent mechanism) and therefore is relatively mild. Warm temperature and physical activity facilitate serotonergic and other neural systems such as glutamatergic and autonomic transmissions, resulting in intensification of the syndrome (non-5HT mechanisms).
Collapse
Affiliation(s)
- Rui Tao
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA,
| | - Ibrahim M. Shokry
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA, School of Veterinary Medicine, Ross University, St. Kitts, West Indies
| | - John J. Callanan
- School of Veterinary Medicine, Ross University, St. Kitts, West Indies
| | - H. Daniel Adams
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Zhiyuan Ma
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
27
|
Rouine J, Gobbo OL, Campbell M, Gigliucci V, Ogden I, McHugh Smith K, Duffy P, Behan B, Byrne D, Kelly ME, Blau CW, Kerskens CM, Harkin A. MDMA 'ecstasy' increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI. Br J Pharmacol 2015; 169:974-87. [PMID: 23517012 DOI: 10.1111/bph.12178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 12/10/2012] [Accepted: 02/18/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The purpose of this study was to assess cerebral perfusion changes following systemic administration of the recreational drug 3,4-methylendioxymethamphetamine (MDMA 'ecstasy') to rats. EXPERIMENTAL APPROACH Cerebral perfusion was quantified using bolus-tracking arterial spin labelling (btASL) MRI. Rats received MDMA (20 mg·kg(-1); i.p.) and were assessed 1, 3 or 24 h later. Rats received MDMA (5 or 20 mg·kg(-1); i.p.) and were assessed 3 h later. In addition, rats received MDMA (5 or 10 mg·kg(-1); i.p.) or saline four times daily over 2 consecutive days and were assessed 8 weeks later. Perfusion-weighted images were generated in a 7 tesla (7T) MRI scanner and experimental data was fitted to a quantitative model of cerebral perfusion to generate mean transit time (MTT), capillary transit time (CTT) and signal amplitude. KEY RESULTS MDMA reduces MTT and CTT and increases amplitude in somatosensory and motor cortex 1 and 3 h following administration, indicative of an increase in perfusion. Prior exposure to MDMA provoked a long-term reduction in cortical 5-HT concentration, but did not produce a sustained effect on cerebral cortical perfusion. The response to acute MDMA challenge (20 mg·kg(-1); i.p.) was attenuated in these animals indicating adaptation in response to prior MDMA exposure. CONCLUSIONS AND IMPLICATIONS MDMA provokes changes in cortical perfusion, which are quantifiable by btASL MRI, a neuroimaging tool with translational potential. Future studies are directed towards elucidation of the mechanisms involved and correlating changes in cerebrovascular function with potential behavioural deficits associated with drug use.
Collapse
Affiliation(s)
- J Rouine
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zaretsky DV, Zaretskaia MV, Durant PJ, Rusyniak DE. Treadmill running restores MDMA-mediated hyperthermia prevented by inhibition of the dorsomedial hypothalamus. Brain Res 2015; 1608:75-81. [PMID: 25725382 DOI: 10.1016/j.brainres.2015.02.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 02/08/2023]
Abstract
The contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pamela J Durant
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
29
|
Liechti ME. Effects of MDMA on body temperature in humans. Temperature (Austin) 2014; 1:192-200. [PMID: 27626046 PMCID: PMC5008716 DOI: 10.4161/23328940.2014.955433] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 07/12/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023] Open
Abstract
Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation.
Collapse
Affiliation(s)
- Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology; Department of Biomedicine and Department of Clinical Research; University Hospital and University of Basel ; Switzerland
| |
Collapse
|
30
|
Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol Ther 2014; 144:28-40. [PMID: 24836729 DOI: 10.1016/j.pharmthera.2014.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/30/2023]
Abstract
Reports of methamphetamine-related emergency room visits suggest that elevated body temperature is a universal presenting symptom, with lethal overdoses generally associated with extreme hyperthermia. This review summarizes the available information on methamphetamine toxicity as it pertains to elevations in body temperature. First, a brief overview of thermoregulatory mechanisms is presented. Next, central and peripheral targets that have been considered for potential involvement in methamphetamine hyperthermia are discussed. Finally, future areas of investigation are proposed, as further studies are needed to provide greater insight into the mechanisms that mediate the alterations in body temperature elicited by methamphetamine.
Collapse
|
31
|
Zaretsky DV, Zaretskaia MV, Durant PJ, Rusyniak DE. Inhibition of the dorsomedial hypothalamus, but not the medullary raphe pallidus, decreases hyperthermia and mortality from MDMA given in a warm environment. Pharmacol Res Perspect 2014; 2:e00031. [PMID: 24765530 PMCID: PMC3994179 DOI: 10.1002/prp2.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The central mechanisms through which MDMA mediates life-threatening hyperthermia when taken in a warm environment are not well described. It is assumed that MDMA alters normal thermoregulatory circuits resulting in increased heat production through interscapular brown adipose tissue (iBAT) and decreased heat dissipation through cutaneous vasoconstriction. We studied the role of the dorsomedial hypothalamus (DMH) and medullary raphe pallidus (mRPa) in mediating iBAT, tail blood flow, and locomotor effects produced by MDMA. Rats were instrumented with guide cannulas targeting either the DMH or the mRPa-brain regions involved in regulating iBAT and cutaneous vascular beds. In all animals, core temperature and locomotion were recorded with surgically implanted telemetric transmitters; and additionally either iBAT temperature (via telemetric transmitter) or tail artery blood flow (via tail artery Doppler cuff) were also recorded. Animals were placed in an environmental chamber at 32°C and microinjected with either control or the GABA agonist muscimol (80pmol) followed by an intravenous injection of saline or MDMA (7.5 mg kg-1). To prevent undue suffering, a core temperature of 41°C was chosen as the surrogate marker of mortality. Inhibition of the DMH, but not the mRPa, prevented mortality and attenuated hyperthermia and locomotion. Inhibition of either the DMH or the mRPa did not affect iBAT temperature increases or tail blood flow decreases. While MDMA increases iBAT thermogenesis and decreases heat dissipation through cutaneous vasoconstriction, thermoregulatory brain regions known to mediate these effects are not involved. Rather, the finding that inhibiting the DMH decreases both locomotion and body temperature suggests that locomotion may be a key central contributor to MDMA-evoked hyperthermia.
Collapse
Affiliation(s)
- Dmitry V Zaretsky
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maria V Zaretskaia
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Pamela J Durant
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel E Rusyniak
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA ; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
Hudson AL, Lalies MD, Baker GB, Wells K, Aitchison KJ. Ecstasy, legal highs and designer drug use: A Canadian perspective. ACTA ACUST UNITED AC 2014. [DOI: 10.1177/2050324513509190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recreational drug use in Canada is not uncommon, but as with most societies, illegal drug use carries harsh penalties resulting in a criminal record when an individual is successfully prosecuted. Popular drugs of use in Canada include ecstasy, cannabis (including some synthetic cannabinoids sold as ‘Spice’ and ‘Incense’) and several emerging psychoactive ‘legal highs’. Surprisingly, Canada is a major manufacturer and exporter of the popular club drug ecstasy, with criminal gangs organising the synthesis and distribution of this club drug worldwide. Over the last 18 months, there has been much interest in and use of alternatives to ecstasy due to contamination of ecstasy during synthesis. One particular contaminant, paramethoxymethamphetamine (PMMA), has resulted in several deaths. Other alternatives include piperazines and mephedrone analogues. With regard to cannabis, some is home grown within people’s properties, but there is also large-scale cultivation in British Columbia where the climate is more temperate. With the introduction of corporate drug screening, there is increasing use of synthetic cannabinoids to avoid detection of marijuana use. This article discusses the problems and trends of synthetic drug use in Canada and reflects on the limited education available to youth in this regard.
Collapse
|
33
|
Granado N, Ares-Santos S, Moratalla R. D1 but not D4 Dopamine Receptors are Critical for MDMA-Induced Neurotoxicity in Mice. Neurotox Res 2013; 25:100-9. [DOI: 10.1007/s12640-013-9438-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 10/17/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022]
|
34
|
da Silva DD, Silva E, Carmo H. Combination effects of amphetamines under hyperthermia - the role played by oxidative stress. J Appl Toxicol 2013; 34:637-50. [PMID: 23765447 DOI: 10.1002/jat.2889] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Abstract
Rise in body temperature is a life-threatening consequence of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) abuse. We evaluated the impact of hyperthermia on the cytotoxicity of combinations of MDMA and three other amphetamines, often co-ingested. For this, Hep G2 cells were exposed to MDMA, d-amphetamine, methamphetamine and 4-methylthioamphetamine, individually or combined, at 40.5 °C. The results were compared with normothermia data (37.0 °C). Mixture additivity expectations were calculated by independent action and concentration addition (CA) models. To delineate the mechanism(s) underlying the elicited effects, a range of stress endpoints was evaluated, including quantification of reactive oxygen/nitrogen species (ROS/RNS), lipid peroxidation, reduced/oxidized glutathione (GSH/GSSG), ATP and mitochondrial membrane potential (Δψm) changes. Our data show that, in hyperthermia, amphetamines acted additively and mixture effects were accurately predicted by CA. At 40.5 °C, even slight increases in the concentrations of each drug/mixture promoted significant rises in cytotoxicity, which quickly shifted from roughly undetectable to maximal mortality. Additionally, the increase of RNS/ROS production, decrease of GSH, ATP depletion and mitochondrial impairment were exacerbated under hyperthermia. Importantly, when equieffective cytotoxic concentrations of the mixture and individual amphetamines were compared for all tested stress endpoints, mixture effects did not deviate from those elicited by individual treatments, suggesting that these amphetamines have a similar mode of action, which is not altered in combination. Concluding, our data indicate that amphetamine mixtures produce deleterious effects, even when individual drugs are combined at negligible concentrations. These effects are strongly exacerbated in hyperthermia, emphasizing the potential increased risks of ecstasy intake, especially when hyperthermia occurs concurrently with polydrug abuse.
Collapse
Affiliation(s)
- Diana Dias da Silva
- Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Institute for the Environment, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK; REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313, Porto, Portugal
| | | | | |
Collapse
|
35
|
Nutt DJ, King LA, Nichols DE. Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nat Rev Neurosci 2013; 14:577-85. [PMID: 23756634 DOI: 10.1038/nrn3530] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many psychoactive drugs are used recreationally, particularly by young people. This use and its perceived dangers have led to many different classes of drugs being banned under national laws and international conventions. Indeed, the possession of cannabis, 3,4-methylenedioxy-N-methylamphetamine (MDMA; also known as ecstasy) and psychedelics is stringently regulated. An important and unfortunate outcome of the controls placed on these and other psychoactive drugs is that they make research into their mechanisms of action and potential therapeutic uses - for example, in depression and post-traumatic stress disorder - difficult and in many cases almost impossible.
Collapse
Affiliation(s)
- David J Nutt
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College, London, W12 0NN, UK.
| | | | | |
Collapse
|
36
|
Mephedrone: Public health risk, mechanisms of action, and behavioral effects. Eur J Pharmacol 2013; 714:32-40. [PMID: 23764466 DOI: 10.1016/j.ejphar.2013.05.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 11/20/2022]
Abstract
The recent shortage of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) has led to an increased demand for alternative amphetamine-like drugs such as the synthetic cathinone, 4-methylmethcathinone (mephedrone). Despite the re-classification of mephedrone as a Class B restricted substance by the United Kingdom and restrictive legislation by the United States, international policy regarding mephedrone control is still developing and interest in synthetic amphetamine-like drugs could drive the development of future mephedrone analogues. Currently, there is little literature investigating the mechanism of action and long-term effects of mephedrone. As such, we reviewed the current understanding of amphetamines, cathinones, and cocaine emphasizing the potentially translational aspects to mephedrone, as well as contrasting with the work that has been done specifically on mephedrone in order to present the current state of understanding of mephedrone in terms of its risks, mechanisms, and behavioral effects. Emerging research suggests that while there are structural and behavioral similarities of mephedrone with amphetamine-like compounds, it appears that serotonergic signaling may mediate more of mephedrone's effects unlike the more dopaminergic dependent effects observed in traditional amphetamine-like compounds. As new designer drugs are produced, current and continuing research on mephedrone and other synthetic cathinones should help inform policymakers' decisions regarding the regulation of novel 'legal highs.'
Collapse
|
37
|
Frau L, Simola N, Morelli M. Contribution of Caffeine to the Psychostimulant, Neuroinflammatory and Neurotoxic Effects of Amphetamine-Related Drugs. JOURNAL OF CAFFEINE RESEARCH 2013. [DOI: 10.1089/jcr.2013.0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Frau
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Nicola Simola
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Section of Neuropsychopharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Centre of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
- CNR, Institute of Neuroscience, Cagliari, Italy
| |
Collapse
|
38
|
Mixtures of 3,4-methylenedioxymethamphetamine (ecstasy) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations. J Appl Toxicol 2013; 34:618-27. [PMID: 23670916 DOI: 10.1002/jat.2885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/08/2013] [Accepted: 03/18/2013] [Indexed: 11/07/2022]
|
39
|
Intoxication mortelle à l’ecstasy et rigidité cadavérique précoce. ANNALES FRANCAISES DE MEDECINE D URGENCE 2013. [DOI: 10.1007/s13341-012-0239-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Abstract
Numerous medications and illicit drugs can predispose an individual to heat illness, primarily by altering thermoregulation by either increasing endogenous heat production or impairing heat dissipation. This study sought to determine if use of such drugs was associated with more severe illness in patients presenting with heatstroke. A case control study was conducted on adult patients (age, ≥14 years) admitted to an intensive care unit with an admitting diagnosis of heatstroke at two academic teaching hospitals in Phoenix, AZ, between 31 August 2005 through 31 July 2010. Subjects were classified as "users" if they admitted to taking a drug on a pre-defined list of drugs associated with abnormal thermal homeostasis, or if a urine test for drugs of abuse revealed the presence of an amphetamine or cocaine. Similarly, subjects who did not take such drugs were considered "non-users." Seventy-eight patients were identified, with complete medication histories available for 74 of 78 subjects. The overall prevalence of drug utilization was 41.9 % (31 of 74). The median length of stay was 3.0 days for the non-users compared with 9.0 days for "users." There was no difference between users and non-users with regard to mortality. Drugs that impair thermoregulation are frequently encountered in patients admitted for heatstroke. Patients taking such drugs may experience increased morbidity over those patients not taking such drugs.
Collapse
|
41
|
Peiró AM, Farré M, Roset PN, Carbó M, Pujadas M, Torrens M, Camí J, de la Torre R. Human pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) after repeated doses taken 2 h apart. Psychopharmacology (Berl) 2013; 225:883-93. [PMID: 23142957 DOI: 10.1007/s00213-012-2894-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 09/03/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is one of the most abused recreational drugs. Its usual pattern of misuse includes repeated doses taken over a short time period that could influence MDMA pharmacology and toxicity. OBJECTIVE This study aims to evaluate the pharmacokinetics and pharmacologically induced effects of two MDMA consecutive doses separated by 2 h. METHODS A randomized, double-blind, crossover, and placebo-controlled trial included ten male volunteers participating in two experimental sessions. MDMA was administered as a single 100-mg dose or as a repeated dose (50 mg followed by 100 mg, administered at 2 h apart). Outcome variables included pharmacokinetics, physiological, subjective, and psychomotor effects. RESULTS Following the repeated doses, plasma concentrations of MDMA were higher than those expected by simple dose accumulation (+16.2 % AUC; +12.8 % C (max)), but those of HMMA and HMA were significantly lower (-29.8 % AUC; -38.2 % C (max)). After the second dose, physiological effects, psychomotor performance, and subjective effects were lower than expected especially for euphoria and stimulation. MDMA-induced increases in diastolic and systolic arterial pressure and body temperature were in the range of those expected following MDMA concentrations. CONCLUSIONS MDMA pharmacokinetics and metabolic disposition following two doses separated by 2 h show that the contribution of the first dose to the MDMA-induced mechanism-based metabolic inhibition was already apparent. The concentrations of MDMA after the second dose were slightly higher than expected. The effects on blood pressure and temperature after the second administration were slightly higher than those following the first, but for heart rate and subjective variables these were lower than expected considering the MDMA concentrations achieved, suggesting a possible tolerance phenomenon.
Collapse
Affiliation(s)
- A M Peiró
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Programme, IMIM-Hospital del Mar Medical Research Institute, Doctor Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Biezonski DK, Piper BJ, Shinday NM, Kim PJ, Ali SF, Meyer JS. Effects of a short-course MDMA binge on dopamine transporter binding and on levels of dopamine and its metabolites in adult male rats. Eur J Pharmacol 2012; 701:176-80. [PMID: 23276666 DOI: 10.1016/j.ejphar.2012.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 12/05/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Although the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) is often described as a selective serotonergic neurotoxin, some research has challenged this view. The objective of this study was to determine the influence of MDMA on subsequent levels of two different markers of dopaminergic function, the dopamine transporter (DAT) as well as dopamine and its major metabolites. In experiment I, adult male Sprague-Dawley rats were administered either a low or moderate dose MDMA binge (2.5 or 5.0mg/kg×4 with an inter-dose interval of 1h) or saline, and were killed 1 week later. The moderate dose dramatically reduced [(3)H]WIN 35,428 binding to striatal DAT by 73.7% (P≤0.001). In experiment II, animals were binged with a higher dose of MDMA (10mg/kg×4) to determine the drug's effects on concentrations of serotonin (5-HT), dopamine, and their respective major metabolites 5-hydroxyindoleacetic acid (5-HIAA), dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in the striatum and frontal cortex 1 week later. As expected, MDMA significantly reduced 5-HT and 5-HIAA (≥50%) in these structures, while only a marginal decrease in dopamine was noted in the striatum. In contrast, levels of DOPAC (34.3%, P<0.01) and HVA (33.5%, P<0.001) were reduced by MDMA treatment, suggesting a decrease in dopamine turnover. Overall, these findings indicate that while serotonergic markers are particularly vulnerable to MDMA-induced depletion, significant dopaminergic deficits may also occur under some conditions. Importantly, DAT expression may be more vulnerable to perturbation by MDMA than dopamine itself.
Collapse
Affiliation(s)
- Dominik K Biezonski
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
43
|
Kermanian F, Mehdizadeh M, Soleimani M, Ebrahimzadeh Bideskan AR, Asadi-Shekaari M, Kheradmand H, Haghir H. The role of adenosine receptor agonist and antagonist on Hippocampal MDMA detrimental effects; a structural and behavioral study. Metab Brain Dis 2012; 27:459-69. [PMID: 22961480 DOI: 10.1007/s11011-012-9334-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/28/2012] [Indexed: 11/28/2022]
Abstract
There is abundant evidence showing that repeated use of MDMA (3, 4-Methylenedioxymethamphetamine, ecstasy) has been associated with depression, anxiety and deficits in learning and memory, suggesting detrimental effects on hippocampus. Adenosine is an endogenous purine nucleoside that has a neuromodulatory role in the central nervous system. In the present study, we investigated the role of A2a adenosine receptors agonist (CGS) and antagonist (SCH) on the body temperature, learning deficits, and hippocampal cell death induced by MDMA administration. In this study, 63 adult, male, Sprague - Dawley rats were subjected to MDMA (10 and 20 mg/kg) followed by intraperitoneal CGS (0.03 mg/kg) or SCH (0.03 mg/kg) injection. The animals were tested for spatial learning in the Morris water maze (MWM) task performance, accompanied by a recording of body temperature, electron microscopy and stereological study. Our results showed that MDMA treatment increased body temperature significantly, and impaired the ability of rats to locate the hidden platform(P < 0.05). The number of hippocampal dark neurons also increased especially in CA1. These impairments were aggravated by co-administration of A2a antagonist (SCH) with MDMA. Furthermore, the administration of the A2a receptor agonist (CGS) provided partial protection against MWM deficits and hippocampal cell death(P < 0.05). This study provides for the first time evidence that, in contrast to A2a antagonist (SCH) effects, co-administration of A2a agonist (CGS) with MDMA can protect against MDMA hippocampal neurotoxic effects; providing a potential value in the prevention of learning deficits observed in MDMA users. However, the exact mechanism of these interactions requires further studies.
Collapse
Affiliation(s)
- Fatemeh Kermanian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | |
Collapse
|
44
|
Leach JP, Mohanraj R, Borland W. Alcohol and drugs in epilepsy: pathophysiology, presentation, possibilities, and prevention. Epilepsia 2012; 53 Suppl 4:48-57. [PMID: 22946721 DOI: 10.1111/j.1528-1167.2012.03613.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The potentially serious outcomes from ingestion of and dependence on toxins make this an important topic for epileptologists. We must be aware of the potential for harm from compounds that may be freely available, yet patients may try to conceal their use. Problematic compounds may cause seizures either acutely or on withdrawal: Their use may reduce effectiveness of antiepileptic drugs, or may simply promote and enhance chaotic lifestyles. Any or all of these factors may worsen seizure control or even directly cause seizures. This article highlights the pathophysiology behind provoked seizures, provides clues to diagnosis, and then outlines the steps that clinicians should take to reduce the deleterious effects of toxic compounds.
Collapse
Affiliation(s)
- John Paul Leach
- Institute of Neurology, Southern General Hospital, Glasgow, United Kingdom.
| | | | | |
Collapse
|
45
|
Vanattou-Saïfoudine N, McNamara R, Harkin A. Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') and related psychostimulants: mechanisms and mediators. Br J Pharmacol 2012; 167:946-59. [PMID: 22671762 PMCID: PMC3492978 DOI: 10.1111/j.1476-5381.2012.02065.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/04/2012] [Accepted: 05/18/2012] [Indexed: 11/27/2022] Open
Abstract
Concomitant consumption of caffeine with recreational psychostimulant drugs of abuse can provoke severe acute adverse reactions in addition to longer term consequences. The mechanisms by which caffeine increases the toxicity of psychostimulants include changes in body temperature regulation, cardiotoxicity and lowering of the seizure threshold. Caffeine also influences the stimulatory, discriminative and reinforcing effects of psychostimulant drugs. In this review, we consider our current understanding of such caffeine-related drug interactions, placing a particular emphasis on an adverse interaction between caffeine and the substituted amphetamine, 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy'), which has been most recently described and characterized. Co-administration of caffeine profoundly enhances the acute toxicity of MDMA in rats, as manifested by high core body temperature, tachycardia and increased mortality. In addition, co-administration of caffeine enhances the long-term serotonergic neurotoxicity induced by MDMA. Observations to date support an interactive model of drug-induced toxicity comprising MDMA-related enhancement of dopamine release coupled to a caffeine-mediated antagonism of adenosine receptors in addition to inhibition of PDE. These experiments are reviewed together with reports of caffeine-related drug interactions with cocaine, d-amphetamine and ephedrine where similar mechanisms are implicated. Understanding the underlying mechanisms will guide appropriate intervention strategies for the management of severe reactions and potential for increased drug-related toxicity, resulting from concomitant caffeine consumption.
Collapse
Affiliation(s)
- N Vanattou-Saïfoudine
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | | | | |
Collapse
|
46
|
Abstract
Hypoxic hepatitis (HH), an acute liver injury also known as 'ischaemic hepatitis' or 'shock liver', is frequently observed in intensive care units. HH is heralded by a massive but transient rise in serum aminotransferase activities caused by anoxic necrosis of centrilobular liver cells. Cardiac failure, respiratory failure and toxic-septic shock are the main underlying conditions accounting for more than 90% of cases, but HH may also occur in other circumstances. Until recently, liver ischaemia, i.e. a drop in hepatic blood flow, was considered the leading, and even the sole, hemodynamic mechanism responsible for HH, and it was generally held that a shock state was required. In reality, other hemodynamic mechanisms of hypoxia, such as passive congestion of the liver, arterial hypoxaemia and dysoxia, play an important role while a shock state is observed in only 50% of cases. Accordingly, 'ischaemic hepatitis' and 'shock liver' are misnomers. Therapy of HH depends primarily on the nature of the underlying condition. The prognosis is poor, with more than half of patients dying during the hospital stay.
Collapse
Affiliation(s)
- Jean Henrion
- Service d'Hépato-Gastroentérologie, Hôpital de Jolimont, Haine-Saint-Paul, Belgium.
| |
Collapse
|
47
|
Liang M, Liu Y, Zheng N, Ananda S, Liu L. Distribution of methamphetamine and its metabolite amphetamine in acute and subacute ethanol-methamphetamine combination abuse model rats. J Anal Toxicol 2012; 36:30-5. [PMID: 22290750 DOI: 10.1093/jat/bkr007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of this study is to investigate the distribution of methamphetamine (MA) and its metabolite amphetamine (AP) in rat models of acute and subacute MA-ethanol combination abuse. Rats were fed with 20% ethanol for 4 weeks (chronic active-drinking group), and MA was injected intraperitoneally into chronically drinking and normal rats over 5 and 14 days, respectively. Then the rats from the acute and subacute combination abuse groups were euthanized, and ethanol, MA, and AP concentrations in samples were quantified. Except for the similar ethanol concentrations among acute and subacute groups, the MA and AP levels between groups were quite different. The concentrations of MA and AP in rats' liver, lung, kidney, and brain were much higher than other tissues, regardless of combination with ethanol. Also, MA and AP levels in subacute rats groups were higher than those in acute groups, and the levels of MA and the formation of AP in rats subjected to the combination abuse with ethanol were higher than in MA-only intoxicated rats. We conclude that ethanol has no bearing on the MA and AP distribution in body fluids and tissues, yet it can increase MA levels and markedly accelerate the formation of AP in combination-abuse rats. Comparing the acute and subacute combination-abuse rats' samples, it can be deduced that various accumulated amounts of MA and AP were unaffected by ethanol, even after multi-dose injection, regardless of acute or subacute use.
Collapse
Affiliation(s)
- Man Liang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | |
Collapse
|
48
|
Armenian P, Mamantov TM, Tsutaoka BT, Gerona RRL, Silman EF, Wu AHB, Olson KR. Multiple MDMA (Ecstasy) overdoses at a rave event: a case series. J Intensive Care Med 2012; 28:252-8. [PMID: 22640978 DOI: 10.1177/0885066612445982] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Twelve patients with 3,4-methylenedioxymethamphetamine (MDMA) toxicity from a single rave event presented to multiple San Francisco Bay area hospitals with various life-threatening complications including seizures and hyperthermia. Eight required emergent endotracheal intubation and six had hypotension. Hyperkalemia, acute kidney injury, and rhabdomyolysis were present in most of the patients. In all, 2 patients died, 4 survived with permanent neurologic, musculoskeletal, and/or renal sequelae, and 6 survived without any apparent lasting deficits. Hyperthermia was present in 10 patients and was severe (40.9-43° C) in 7. Using multiple cooling methods, the average time to achieve cooling was 2.7 hours. Serum drug analysis was performed on 3 patients, demonstrating toxic MDMA concentrations without the presence of other xenobiotics. Two capsules confiscated by police at the event contained 82% and 98% MDMA, respectively, without other pharmacologically active compounds. Capsule #2 contained 270 mg MDMA, which is more than twice the amount of MDMA usually contained in 1 dose. The MDMA-induced hyperthermia significantly contributed to the morbidity and mortality in this case series. Factors contributing to the severity of the hyperthermia include ingestion of large doses of MDMA, a warm ambient environment, and physical exertion.
Collapse
Affiliation(s)
- Patil Armenian
- Department of Emergency Medicine, University of California, San Francisco-Fresno, Fresno, CA 93701, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV. The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 2012; 37:1192-203. [PMID: 22169943 PMCID: PMC3306880 DOI: 10.1038/npp.2011.304] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nonmedical use of 'designer' cathinone analogs, such as 4-methylmethcathinone (mephedrone) and 3,4-methylenedioxymethcathinone (methylone), is increasing worldwide, yet little information is available regarding the mechanism of action for these drugs. Here, we employed in vitro and in vivo methods to compare neurobiological effects of mephedrone and methylone with those produced by the structurally related compounds, 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine. In vitro release assays using rat brain synaptosomes revealed that mephedrone and methylone are nonselective substrates for plasma membrane monoamine transporters, similar to MDMA in potency and selectivity. In vivo microdialysis in rat nucleus accumbens showed that i.v. administration of 0.3 and 1.0 mg/kg of mephedrone or methylone produces dose-related increases in extracellular dopamine and serotonin (5-HT), with the magnitude of effect on 5-HT being greater. Both methcathinone analogs were weak motor stimulants when compared with methamphetamine. Repeated administrations of mephedrone or methylone (3.0 and 10.0 mg/kg, s.c., 3 doses) caused hyperthermia but no long-term change in cortical or striatal amines, whereas similar treatment with MDMA (2.5 and 7.5 mg/kg, s.c., 3 doses) evoked robust hyperthermia and persistent depletion of cortical and striatal 5-HT. Our data demonstrate that designer methcathinone analogs are substrates for monoamine transporters, with a profile of transmitter-releasing activity comparable to MDMA. Dopaminergic effects of mephedrone and methylone may contribute to their addictive potential, but this hypothesis awaits confirmation. Given the widespread use of mephedrone and methylone, determining the consequences of repeated drug exposure warrants further study.
Collapse
Affiliation(s)
- Michael H Baumann
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Mario A Ayestas
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - John S Partilla
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Jacqueline R Sink
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | | | - Paul F Daley
- Alexander Shulgin Research Institute, Lafayette, CA, USA
| | - Simon D Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Richard B Rothman
- Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Arnold E Ruoho
- Department of Neuroscience and the UW Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nicholas V Cozzi
- Neuropharmacology Laboratory, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
50
|
Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, Carvalho F, Bastos MDL. Toxicity of amphetamines: an update. Arch Toxicol 2012; 86:1167-231. [PMID: 22392347 DOI: 10.1007/s00204-012-0815-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/02/2012] [Indexed: 01/06/2023]
Abstract
Amphetamines represent a class of psychotropic compounds, widely abused for their stimulant, euphoric, anorectic, and, in some cases, emphathogenic, entactogenic, and hallucinogenic properties. These compounds derive from the β-phenylethylamine core structure and are kinetically and dynamically characterized by easily crossing the blood-brain barrier, to resist brain biotransformation and to release monoamine neurotransmitters from nerve endings. Although amphetamines are widely acknowledged as synthetic drugs, of which amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are well-known examples, humans have used natural amphetamines for several millenniums, through the consumption of amphetamines produced in plants, namely cathinone (khat), obtained from the plant Catha edulis and ephedrine, obtained from various plants in the genus Ephedra. More recently, a wave of new amphetamines has emerged in the market, mainly constituted of cathinone derivatives, including mephedrone, methylone, methedrone, and buthylone, among others. Although intoxications by amphetamines continue to be common causes of emergency department and hospital admissions, it is frequent to find the sophism that amphetamine derivatives, namely those appearing more recently, are relatively safe. However, human intoxications by these drugs are increasingly being reported, with similar patterns compared to those previously seen with classical amphetamines. That is not surprising, considering the similar structures and mechanisms of action among the different amphetamines, conferring similar toxicokinetic and toxicological profiles to these compounds. The aim of the present review is to give an insight into the pharmacokinetics, general mechanisms of biological and toxicological actions, and the main target organs for the toxicity of amphetamines. Although there is still scarce knowledge from novel amphetamines to draw mechanistic insights, the long-studied classical amphetamines-amphetamine itself, as well as methamphetamine and MDMA, provide plenty of data that may be useful to predict toxicological outcome to improvident abusers and are for that reason the main focus of this review.
Collapse
Affiliation(s)
- Márcia Carvalho
- REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|