1
|
Cilloni D, Maffeo B, Savi A, Danzero AC, Bonuomo V, Fava C. Detection of KIT Mutations in Systemic Mastocytosis: How, When, and Why. Int J Mol Sci 2024; 25:10885. [PMID: 39456668 PMCID: PMC11507058 DOI: 10.3390/ijms252010885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
More than 90% of patients affected by mastocytosis are characterized by a somatic point mutation of KIT, which induces ligand-independent activation of the receptor and downstream signal triggering, ultimately leading to mast cell accumulation and survival. The most frequent mutation is KIT p.D816V, but other rarer mutations can also be found. These mutations often have a very low variant allele frequency (VAF), well below the sensitivity of common next-generation sequencing (NGS) methods used in routine diagnostic panels. Highly sensitive methods are developing for detecting mutations. This review summarizes the current indications on the recommended methods and on how to manage and interpret molecular data for the diagnosis and follow-up of patients with mastocytosis.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Mauriziano Hospital, 10128 Turin, Italy; (B.M.); (A.S.); (A.C.D.); (V.B.); (C.F.)
| | | | | | | | | | | |
Collapse
|
2
|
Mohammadzadeh M, Athari SZ, Ghiasi F, Keyhanmanesh R, Ghaffari-Nasab A, Roshangar L, Korjan ES, Delkhosh A, Bavil FM. Bone Marrow-Derived C-Kit + Cells Improved Inflammatory IL-33/ST-2/ILC2 Axis in the Lung Tissue of Type 2 Diabetic Rats. Appl Biochem Biotechnol 2024; 196:7074-7088. [PMID: 38478319 DOI: 10.1007/s12010-024-04870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 11/21/2024]
Abstract
Inflammation is an essential factor in pulmonary complications of diabetes. Bone marrow (BM)-derived C-kit+ cells have immunomodulatory properties and their transplantation is suggested as a promising strategy for ameliorating diabetes complications. This study evaluated the effect of BM-derived C-kit+ cells on the inflammation signaling pathway in lung tissue of type 2 diabetic male rats. Ten rats were used to extract C-kit cells, and 48 male Wistar rats weighing 180 ± 20 g were randomly divided into four equal groups: (1) Control (Cont), (2) Diabetic (D), (3) Diabetic + C-kit+ cells (D + C-kit pos) intravenously injected 50-µl phosphate buffer saline (PBS) containing 300,000 C-kit+ cells, and (4) Diabetic + C-kit- cells (D + C-kit neg), intravenously injected C-kit- cells. Diabetes induction increased IL-33, ST-2, CD127, and IL-2 levels and decreased IL-10. C-kit+ cell therapy significantly decreased IL-33 and CD127 and increased IL-10. In addition, lung histopathological changes significantly improved in the C-kit+ group compared to the diabetic group. These findings suggest that C-kit+ cells may have a potential therapeutic role in mitigating diabetes-induced respiratory complications via ameliorating the inflammation and histopathological changes in lung tissue.
Collapse
Affiliation(s)
- Milad Mohammadzadeh
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Seyed Zanyar Athari
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Ghiasi
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Rana Keyhanmanesh
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Arshad Ghaffari-Nasab
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Leila Roshangar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani Korjan
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aref Delkhosh
- Stem Cell Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666-14766, Iran
| | - Fariba Mirzaei Bavil
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
3
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
4
|
Laky K, Frischmeyer-Guerrerio PA. Development and dysfunction of structural cells in eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:1485-1499. [PMID: 38849184 PMCID: PMC11626564 DOI: 10.1016/j.jaci.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Eosinophilic esophagitis (EoE) is a disorder characterized by dysfunction and chronic local inflammation of the esophagus. The incidence and prevalence of EoE are increasing worldwide. The mechanisms responsible are poorly understood, and effective treatment options are limited. From the lumen outward, the esophagus comprises stratified squamous epithelium, lamina propria, and muscle. The tissue-specific nature of EoE strongly suggests that structural cells in the esophagus are involved in the EoE diathesis. Epithelial basal cell hyperplasia and dilated intercellular spaces are cardinal features of EoE. Some patients with EoE develop lamina propria fibrosis, strictures, or esophageal muscle dysmotility. Clinical symptoms of EoE are only weakly correlated with peak eosinophil count, implying that other cell types contribute to EoE pathogenesis. Epithelial, endothelial, muscle, and fibroblast cells can each initiate inflammation and repair, regulate tissue resident immune cells, recruit peripheral leukocytes, and tailor adaptive immune cell responses. A better understanding of how structural cells maintain tissue homeostasis, respond to cell-intrinsic and cell-extrinsic stressors, and exacerbate and/or resolve inflammatory responses in the esophagus is needed. This knowledge will facilitate the development of more efficacious treatment strategies for EoE that can restore homeostasis of both hematopoietic and structural elements in the esophagus.
Collapse
Affiliation(s)
- Karen Laky
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
5
|
Zhang M, Yang J, Yuan Y, Zhou Y, Wang Y, Cui R, Maliu Y, Xu F, Wu X. Recruitment or activation of mast cells in the liver aggravates the accumulation of fibrosis in carbon tetrachloride-induced liver injury. Mol Immunol 2024; 170:60-75. [PMID: 38626622 DOI: 10.1016/j.molimm.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-β1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Mingkang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Jinru Yang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yufan Yuan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yan Zhou
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yazhi Wang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Ruirui Cui
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Yimai Maliu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Fen Xu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
6
|
Mehrani Y, Morovati S, Tieu S, Karimi N, Javadi H, Vanderkamp S, Sarmadi S, Tajik T, Kakish JE, Bridle BW, Karimi K. Vitamin D Influences the Activity of Mast Cells in Allergic Manifestations and Potentiates Their Effector Functions against Pathogens. Cells 2023; 12:2271. [PMID: 37759494 PMCID: PMC10528041 DOI: 10.3390/cells12182271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Mast cells (MCs) are abundant at sites exposed to the external environment and pathogens. Local activation of these cells, either directly via pathogen recognition or indirectly via interaction with other activated immune cells and results in the release of pre-stored mediators in MC granules. The release of these pre-stored mediators helps to enhance pathogen clearance. While MCs are well known for their protective role against parasites, there is also significant evidence in the literature demonstrating their ability to respond to viral, bacterial, and fungal infections. Vitamin D is a fat-soluble vitamin and hormone that plays a vital role in regulating calcium and phosphorus metabolism to maintain skeletal homeostasis. Emerging evidence suggests that vitamin D also has immunomodulatory properties on both the innate and adaptive immune systems, making it a critical regulator of immune homeostasis. Vitamin D binds to its receptor, called the vitamin D receptor (VDR), which is present in almost all immune system cells. The literature suggests that a vitamin D deficiency can activate MCs, and vitamin D is necessary for MC stabilization. This manuscript explores the potential of vitamin D to regulate MC activity and combat pathogens, with a focus on its ability to fight viruses.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Sophie Tieu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Negar Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Helia Javadi
- Department of Medical Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Sierra Vanderkamp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Soroush Sarmadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 14174-66191, Iran;
| | - Tahmineh Tajik
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| |
Collapse
|
7
|
Jayaprakash Demirel K, Wu R, Neves Guimaraes A, Demirel I. The role of NLRP3 in regulating gingival epithelial cell responses evoked by Aggregatibacter actinomycetemcomitans. Cytokine 2023; 169:156316. [PMID: 37541072 DOI: 10.1016/j.cyto.2023.156316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) has myriads of virulence factors among which leukotoxin provides A. actinomycetemcomitans with the advantage to thrive in the surrounding hostile environment and evade host immune defences. The NLRP3 inflammasome has been associated with periodontal disease development. However, our understanding of the involvement of caspase-1, caspase-4, and NLRP3 in the release of IL-1β and other inflammatory mediators from gingival epithelial cells during a A. actinomycetemcomitans infection is limited. The aim of this study was to investigate how the inflammasome-associated proteins caspase-1, caspase-4 and NLRP3 regulate the immune response of gingival epithelial cells during a A. actinomycetemcomitans infection. Human gingival epithelial cells (Ca9-22) deficient in NLRP3, caspase-1 or caspase-4 were created using CRISPR/Cas9. Gingival epithelial cells were stimulated with the A. actinomycetemcomitans low-leukotoxic strain NCTC9710 or the highly leukotoxic JP2 strain HK 165 for 6, 12 and 24 h. The results showed that the JP2 strain HK1651 induced higher IL-1β and IL-1RA release and mediated more epithelial cell death compared to the NCTC9710 strain. These findings were found to be capsase-1, caspase-4 and NLRP3-dependant. A targeted protein analysis of inflammation-related proteins showed that the expression of 37 proteins were identified as being significantly altered after HK1651 infection compared to unstimulated Cas9 and NLRP3-deficient cells. Of the 37 proteins, 23 of these inflammation-related proteins released by NLRP3-deficient cells differed significantly compared to Cas9 cells after infection. This suggests that NLRP3 has a broad effect on the inflammatory response in gingival epithelial cells.
Collapse
Affiliation(s)
- Kartheyaene Jayaprakash Demirel
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Alessandra Neves Guimaraes
- Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Periodontology and Implantology, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
8
|
Tieniber AD, Rossi F, Hanna AN, Liu M, Etherington MS, Loo JK, Param N, Zeng S, Do K, Wang L, DeMatteo RP. Multiple intratumoral sources of kit ligand promote gastrointestinal stromal tumor. Oncogene 2023; 42:2578-2588. [PMID: 37468679 DOI: 10.1038/s41388-023-02777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and is typically driven by a single mutation in the Kit or PDGFRA receptor. While highly effective, tyrosine kinase inhibitors (TKIs) are not curative. The natural ligand for the Kit receptor is Kit ligand (KitL), which exists in both soluble and membrane-bound forms. While KitL is known to stimulate human GIST cell lines in vitro, we used a genetically engineered mouse model of GIST containing a common human KIT mutation to investigate the intratumoral sources of KitL, importance of KitL during GIST oncogenesis, and contribution of soluble KitL to tumor growth in vivo. We discovered that in addition to tumor cells, endothelia and smooth muscle cells produced KitL in KitV558Δ/+ tumors, even after imatinib therapy. Genetic reduction of total KitL in tumor cells of KitV558Δ/+ mice impaired tumor growth in vivo. Similarly, genetic reduction of tumor cell soluble KitL in KitV558Δ/+ mice decreased tumor size. By RNA sequencing, quantitative PCR, and immunohistochemistry, KitL expression was heterogeneous in human GIST specimens. In particular, PDGFRA-mutant tumors had much higher KitL expression than Kit-mutant tumors, suggesting the benefit of Kit activation in the absence of mutant KIT. Serum KitL was higher in GIST patients with tumors resistant to imatinib and in those with tumors expressing more KitL RNA. Overall, KitL supports the growth of GIST at baseline and after imatinib therapy and remains a potential biomarker and therapeutic target.
Collapse
Affiliation(s)
- Andrew D Tieniber
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ferdinando Rossi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew N Hanna
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Marion Liu
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark S Etherington
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer K Loo
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nesteene Param
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Shan Zeng
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Do
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Wang
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald P DeMatteo
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Wedi B. Inhibition of KIT for chronic urticaria: a status update on drugs in early clinical development. Expert Opin Investig Drugs 2023; 32:1043-1054. [PMID: 37897679 DOI: 10.1080/13543784.2023.2277385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Chronic urticaria (CU), including chronic spontaneous urticaria (CSU) and chronic inducible urticaria (CIndU), is a prevalent, enduring, mast-cell driven condition that presents challenges in its management. There is a clear need for additional approved treatment options beyond H1 receptor antagonists and the anti-IgE monoclonal antibody (mAb), omalizumab. One of the latest therapeutic strategies targets KIT, which is considered the primary master regulator for mast cell-related disorders. AREAS COVERED This review provides a status update on KIT inhibiting drugs in early clinical development for CU. EXPERT OPINION Whereas multi-targeted tyrosine kinase KIT inhibitors carry the risk of off-target toxicities, initial data from anti-KIT mAbs indicate significant potential in CSU and CIndU. The prolonged depletion of mast cells over several weeks by barzolvolimab could effectively control urticarial symptoms. Regarding safety, based on theoretical considerations and the available preliminary results, it is already evident that there may be more side effects compared to omalizumab. However, long-term safety data beyond 12 weeks are still lacking. The outcome of ongoing or planned clinical trials with several anti-KIT mAbs will need to demonstrate benefits compared to anti-IgE in CU or whether one approach is better suited for specific urticaria endotypes.
Collapse
Affiliation(s)
- Bettina Wedi
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
Xu J, Zhang S, Li H, Bao Y, Du Y, Zhou Y, Zhao D, Liu F. LncRNA-AK007111 affects airway inflammation in asthma via the regulation of mast cell function. Int Immunopharmacol 2023; 121:110341. [PMID: 37301118 DOI: 10.1016/j.intimp.2023.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in gene transcription and pathophysiological processes of human diseases. Multiple lncRNAs have been shown to play important roles in the occurrence and development of asthma. This study aimed to explore the role of a novel lncRNA, lncRNA-AK007111, in asthma. Overexpression of lncRNA-AK007111 was induced in a mouse model of asthma via viral transfection, followed by the collection of alveolar lavage fluid and lung tissue for the detection of relevant inflammatory factors and pathological analysis of lung sections. Pulmonary resistance and respiratory dynamic compliance were measured using an animal pulmonary function analyzer. The number of mast cells sensitized by immunofluorescence was detected at the cellular level. The degree of degranulation of lncRNA-AK007111 after its knockdown was determined by detecting the level of β-hexosaminidase that was released and quantifying IL-6 and TNF-α using ELISA in a model of RBL-2H3 cells activated by immunoglobulin E plus antigen. Finally, we observed the migration ability of mast cells under a microscope. The results showed that in ovalbumin-sensitized mice, the upregulation of lncRNA-AK007111 promoted the infiltration of inflammatory cells in lung tissue, increased the number of total cells, eosinophils, and mast cells, upregulated IL-5 and IL-6 levels, and increased airway hyper-reactivity. Downregulation of lncRNA-AK007111 decreased the degranulation ability of IgE/Ag-activated mast cells and inhibited the expression of IL-6 and TNF-α; moreover, the migration ability of mast cells was significantly weakened. In conclusion, our study revealed that lncRNA-AK007111 plays an important role in asthma by modulating mast cell-related functions.
Collapse
Affiliation(s)
- Jiejing Xu
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Pediatrics, The Second People's Hospital of Changzhou, Affiliate Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Siqing Zhang
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huilin Li
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yaqing Bao
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Du
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yao Zhou
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deyu Zhao
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Feng Liu
- Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Kirchberger I, Meisinger C, Freuer D, Leone V, Ertl M, Zickler P, Naumann M, Linseisen J. Association between fatigue and cytokine profiles in patients with ischemic stroke. Front Neurol 2023; 13:1075383. [PMID: 36756348 PMCID: PMC9899860 DOI: 10.3389/fneur.2022.1075383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Background Chronic fatigue is a common symptom after a stroke. Studies suggested that chronic fatigue is caused by inflammatory or immunological processes but data are limited and contradictory. Thus, the present study aimed to identify specific biomarkers associated with fatigue in post-stroke patients and replicated the findings in a population-based study. Methods We investigated associations between 39 circulating biomarkers of inflammation and fatigue in 327 patients after an ischemic stroke included in the Stroke Cohort Augsburg (SCHANA) study and the "Metabolism, Nutrition and Immune System in Augsburg" (MEIA) study (n = 140). The Fatigue Assessment Scale (FAS) was used to assess the severity of fatigue. The serum concentrations of the biomarkers were measured using the Bio-Plex Pro™ Human Cytokine Screening Panel (Bio-Rad, USA). Multiple linear regression models adjusted for possible confounders were used to examine associations. Results In patients with stroke, SCGFb was inversely associated [-1.67, 95% confidence interval (CI) (-3.05; -0.29) p = 0.018], and in healthy subjects, G-CSF was positively associated [1.56, 95% CI (0.26; 2.87), p = 0.020] with an increasing FAS-score, while SCF was positively related in both samples [1.84, 95% CI (0.27; 3.42), p = 0.022 and 1.40, 95% CI (0.29; 2.52), p = 0.015]. However, after correction for multiple testing, all of these associations lost statistical significance. Conclusion The present findings suggested an association between the growth factor SCF and fatigue. Future research on cytokines as possible markers of fatigue should focus on a longitudinal design including a sufficiently large number of study participants to enable testing associations between certain cytokines and sub-groups of chronic fatigue.
Collapse
Affiliation(s)
- Inge Kirchberger
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU Munich, Munich, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Dennis Freuer
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Vincenza Leone
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Michael Ertl
- Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg, Augsburg, Germany
| | - Philipp Zickler
- Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg, Augsburg, Germany
| | - Markus Naumann
- Department of Neurology and Clinical Neurophysiology, University Hospital Augsburg, Augsburg, Germany
| | - Jakob Linseisen
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute for Medical Information Processing, Biometry and Epidemiology - IBE, LMU Munich, Munich, Germany
| |
Collapse
|
12
|
Gedda MR, Danaher P, Shao L, Ongkeko M, Chen L, Dinh A, Thioye Sall M, Reddy OL, Bailey C, Wahba A, Dzekunova I, Somerville R, De Giorgi V, Jin P, West K, Panch SR, Stroncek DF. Longitudinal transcriptional analysis of peripheral blood leukocytes in COVID-19 convalescent donors. J Transl Med 2022; 20:587. [PMID: 36510222 PMCID: PMC9742656 DOI: 10.1186/s12967-022-03751-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND SARS-CoV2 can induce a strong host immune response. Many studies have evaluated antibody response following SARS-CoV2 infections. This study investigated the immune response and T cell receptor diversity in people who had recovered from SARS-CoV2 infection (COVID-19). METHODS Using the nCounter platform, we compared transcriptomic profiles of 162 COVID-19 convalescent donors (CCD) and 40 healthy donors (HD). 69 of the 162 CCDs had two or more time points sampled. RESULTS After eliminating the effects of demographic factors, we found extensive differential gene expression up to 241 days into the convalescent period. The differentially expressed genes were involved in several pathways, including virus-host interaction, interleukin and JAK-STAT signaling, T-cell co-stimulation, and immune exhaustion. A subset of 21 CCD samples was found to be highly "perturbed," characterized by overexpression of PLAU, IL1B, NFKB1, PLEK, LCP2, IRF3, MTOR, IL18BP, RACK1, TGFB1, and others. In addition, one of the clusters, P1 (n = 8) CCD samples, showed enhanced TCR diversity in 7 VJ pairs (TRAV9.1_TCRVA_014.1, TRBV6.8_TCRVB_016.1, TRAV7_TCRVA_008.1, TRGV9_ENST00000444775.1, TRAV18_TCRVA_026.1, TRGV4_ENST00000390345.1, TRAV11_TCRVA_017.1). Multiplexed cytokine analysis revealed anomalies in SCF, SCGF-b, and MCP-1 expression in this subset. CONCLUSIONS Persistent alterations in inflammatory pathways and T-cell activation/exhaustion markers for months after active infection may help shed light on the pathophysiology of a prolonged post-viral syndrome observed following recovery from COVID-19 infection. Future studies may inform the ability to identify druggable targets involving these pathways to mitigate the long-term effects of COVID-19 infection. TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT04360278 Registered April 24, 2020.
Collapse
Affiliation(s)
- Mallikarjuna R. Gedda
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.280030.90000 0001 2150 6316Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Patrick Danaher
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Lipei Shao
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Martin Ongkeko
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Leonard Chen
- grid.94365.3d0000 0001 2297 5165Blood Services Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Anh Dinh
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mame Thioye Sall
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Opal L. Reddy
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Christina Bailey
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Amy Wahba
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Inna Dzekunova
- grid.510973.90000 0004 5375 2863NanoString Technologies, Seattle, WA 98109 USA
| | - Robert Somerville
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Valeria De Giorgi
- grid.94365.3d0000 0001 2297 5165Infectious Disease Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Ping Jin
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kamille West
- grid.94365.3d0000 0001 2297 5165Blood Services Section, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| | - Sandhya R. Panch
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA ,grid.34477.330000000122986657Department of Medicine (Hematology Division), University of Washington/Fred Hutchinson Cancer Center, Seattle, WA 98109 USA
| | - David F. Stroncek
- grid.94365.3d0000 0001 2297 5165Center for Cellular Engineering, Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
13
|
Fuselli A, de Los Milagros Bürgi M, Kratje R, Prieto C. Generation and functional evaluation of novel monoclonal antibodies targeting glycosylated human stem cell factor. Appl Microbiol Biotechnol 2022; 106:8121-8137. [PMID: 36401641 DOI: 10.1007/s00253-022-12282-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
Human stem cell factor (hSCF) is an early-acting growth factor that promotes proliferation, differentiation, migration, and survival in several tissues. It plays a crucial role in hematopoiesis, gametogenesis, melanogenesis, intestinal motility, and in development and recovery of nervous and cardiovascular systems. Potential therapeutic applications comprise anemia treatment, mobilization of hematopoietic stem/progenitor cells to peripheral blood, and increasing gene transduction efficiency for gene therapy. Developing new tools to characterize recombinant hSCF in most native-like form as possible is crucial to understand the complexity of its in vivo functions and for improving its biotechnological applications. The soluble domain of hSCF was expressed in HEK293 cells. Highly purified rhSCF showed great molecular mass variability due to the presence of N- and O-linked carbohydrates, and it presented a 2.5-fold increase on proliferative activity compared to bacteria-derived hSCF. Three hybridoma clones producing monoclonal antibodies (mAbs) with high specificity for the glycoprotein were obtained. 1C4 and 2D3 mAbs were able to detect bacteria-derived and glycosylated rhSCF and demonstrated to be excellent candidates to develop a sandwich ELISA assay for rhSCF quantification, with detection limits of 0.18 and 0.07 ng/ml, respectively. Interestingly, 1A10 mAb only recognized glycosylated rhSCF, suggesting that sugar moieties might be involved in epitope recognition. 1A10 mAb showed the highest binding affinity, and it constituted the best candidate for immunodetection of the entire set rhSCF glycoforms in western blot assays, and for intracellular cytokine staining. Our work shows that combining glycosylated rhSCF expression with hybridoma technology is a powerful strategy to obtain specific suitable immunochemical assays and thus improve glycoprotein-producing bioprocesses. KEY POINTS: • Soluble glycosylated human SCF exerted improved proliferative activity on UT-7 cells. • Three mAbs with high specificity targeting glycosylated human SCF were obtained. • mAbs applications comprise sandwich ELISA, western blot, and immunofluorescence assays.
Collapse
Affiliation(s)
- Antonela Fuselli
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina
| | - María de Los Milagros Bürgi
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Cell Culture Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina
| | - Claudio Prieto
- UNL, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Biotechnological Development Laboratory, Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242 (S3000ZAA), Santa Fe, Argentina.
- Cellargen Biotech S.R.L., Antonia Godoy 6369 (S3000ZAA), Santa Fe, Argentina.
| |
Collapse
|
14
|
Association between Immunologic Markers and Cirrhosis in Individuals from a Prospective Chronic Hepatitis C Cohort. Cancers (Basel) 2022; 14:cancers14215280. [PMID: 36358697 PMCID: PMC9657502 DOI: 10.3390/cancers14215280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Chronic hepatitis C virus (HCV) infection can affect immune response and inflammatory pathways, leading to severe liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). Methods: In a prospective cohort of chronically HCV-infected individuals, we sampled 68 individuals who developed cirrhosis, 91 controls who did not develop cirrhosis, and 94 individuals who developed HCC. Unconditional odds ratios (ORs) from polytomous logistic regression models and canonical discriminant analyses (CDAs) were used to compare categorical (C) baseline plasma levels for 102 markers in individuals who developed cirrhosis vs. controls and those who developed HCC vs. cirrhosis. Leave-one-out cross validation was used to produce receiver operating characteristic curves to assess predictive ability of markers. Lastly, biological pathways were assessed in association with cirrhotic development compared to controls. Results: After multivariable adjustment, DEFA-1 (OR: C2v.C1 = 7.73; p < 0.0001), ITGAM (OR: C2v.C1 = 4.03; p = 0.0002), SCF (OR: C4v.C1 = 0.19; p-trend = 0.0001), and CCL11 (OR: C4v.C1 = 0.31; p-trend= 0.002) were all associated with development of cirrhosis compared to controls; these markers, together with clinical/demographics variables, improved prediction of cirrhosis from 55.7% (in clinical/demographic-only model) to 74.9% accuracy. A twelve-marker model based on CDA results further increased prediction of cirrhosis to 88.0%. While six biological pathways were found to be associated with cirrhosis, cell adhesion was the only pathway associated with cirrhosis after Bonferroni correction. In contrast to cirrhosis, DEFA-1 and ITGAM levels were inversely associated with HCC risk. Conclusions: Pending validation, these findings highlight the important role of immunological markers in predicting HCV-related cirrhosis even 11 years post-enrollment.
Collapse
|
15
|
Barroeta Seijas AB, Simonetti S, Filippi I, Naldini A, Favaretto G, Colombo T, Natalini A, Antonangeli F, Laffranchi M, Sozzani S, Santoni A, Di Rosa F. Mouse dendritic cells in the steady state: Hypoxia, autophagy, and stem cell factor. Cell Biochem Funct 2022; 40:718-728. [PMID: 36069062 PMCID: PMC9826237 DOI: 10.1002/cbf.3737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
Dendritic cells (DCs) are innate immune cells with a central role in immunity and tolerance. Under steady-state, DCs are scattered in tissues as resting cells. Upon infection or injury, DCs get activated and acquire the full capacity to prime antigen-specific CD4+ and CD8+ T cells, thus bridging innate and adaptive immunity. By secreting different sets of cytokines and chemokines, DCs orchestrate diverse types of immune responses, from a classical proinflammatory to an alternative pro-repair one. DCs are highly heterogeneous, and physiological differences in tissue microenvironments greatly contribute to variations in DC phenotype. Oxygen tension is normally low in some lymphoid areas, including bone marrow (BM) hematopoietic niches; nevertheless, the possible impact of tissue hypoxia on DC physiology has been poorly investigated. We assessed whether DCs are hypoxic in BM and spleen, by staining for hypoxia-inducible-factor-1α subunit (HIF-1α), the master regulator of hypoxia-induced response, and pimonidazole (PIM), a hypoxic marker, and by flow cytometric analysis. Indeed, we observed that mouse DCs have a hypoxic phenotype in spleen and BM, and showed some remarkable differences between DC subsets. Notably, DCs expressing membrane c-kit, the receptor for stem cell factor (SCF), had a higher PIM median fluorescence intensity (MFI) than c-kit- DCs, both in the spleen and in the BM. To determine whether SCF (a.k.a. kit ligand) has a role in DC hypoxia, we evaluated molecular pathways activated by SCF in c-kit+ BM-derived DCs cultured in hypoxic conditions. Gene expression microarrays and gene set enrichment analysis supported the hypothesis that SCF had an impact on hypoxia response and inhibited autophagy-related gene sets. Our results suggest that hypoxic response and autophagy, and their modulation by SCF, can play a role in DC homeostasis at the steady state, in agreement with our previous findings on SCF's role in DC survival.
Collapse
Affiliation(s)
| | - Sonia Simonetti
- Institute of Molecular Biology and PathologyNational Research Council (CNR)RomeItaly,Present address:
Translational Oncology LaboratoryCampus Bio‐Medico UniversityRomeItaly
| | - Irene Filippi
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Antonella Naldini
- Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
| | - Gabriele Favaretto
- Institute of Molecular Biology and PathologyNational Research Council (CNR)RomeItaly
| | - Teresa Colombo
- Institute of Molecular Biology and PathologyNational Research Council (CNR)RomeItaly
| | - Ambra Natalini
- Institute of Molecular Biology and PathologyNational Research Council (CNR)RomeItaly,Present address:
The Francis Crick InstituteLondonUK
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and PathologyNational Research Council (CNR)RomeItaly
| | | | - Silvano Sozzani
- Department of Molecular MedicineSapienza UniversityRomeItaly
| | - Angela Santoni
- Neuromed IRCCSPozzilli, IserniaItaly,Istituto Pasteur Italia—Fondazione Cenci BolognettiRomeItaly
| | - Francesca Di Rosa
- Institute of Molecular Biology and PathologyNational Research Council (CNR)RomeItaly
| |
Collapse
|
16
|
Sánchez-de Prada L, Gorgojo-Galindo Ó, Fierro I, Martínez-García AM, de Quintana GSL, Gutiérrez-Bustillo R, Pelaez-Jareño MT, Álvarez-Fuente E, Gómez-Sánchez E, Tamayo E, Tamayo-Velasco Á, Martín-Fernández M. Time evolution of cytokine profiles associated with mortality in COVID-19 hospitalized patients. Front Immunol 2022; 13:946730. [PMID: 36238287 PMCID: PMC9551198 DOI: 10.3389/fimmu.2022.946730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background High cytokine levels have been associated with severe COVID-19 disease. Although many cytokine studies have been performed, not many of them include combinatorial analysis of cytokine profiles through time. In this study we investigate the association of certain cytokine profiles and its evolution, and mortality in SARS-CoV2 infection in hospitalized patients. Methods Serum concentration of 45 cytokines was determined in 28 controls at day of admission and in 108 patients with COVID-19 disease at first, third and sixth day of admission. A principal component analysis (PCA) was performed to characterize cytokine profiles through time associated with mortality and survival in hospitalized patients. Results At day of admission non-survivors present significantly higher levels of IL-1α and VEGFA (PC3) but not through follow up. However, the combination of HGF, MCP-1, IL-18, eotaxine, and SCF (PC2) are significantly higher in non-survivors at all three time-points presenting an increased trend in this group through time. On the other hand, BDNF, IL-12 and IL-15 (PC1) are significantly reduced in non-survivors at all time points with a decreasing trend through time, though a protective factor. The combined mortality prediction accuracy of PC3 at day 1 and PC1 and PC2 at day 6 is 89.00% (p<0.001). Conclusions Hypercytokinemia is a hallmark of COVID-19 but relevant differences between survivors and non-survivors can be early observed. Combinatorial analysis of serum cytokines and chemokines can contribute to mortality risk assessment and optimize therapeutic strategies. Three clusters of cytokines have been identified as independent markers or risk factors of COVID mortality.
Collapse
Affiliation(s)
- Laura Sánchez-de Prada
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain
- Microbiology and Immunology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Óscar Gorgojo-Galindo
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| | - Inmaculada Fierro
- Faculty of Health Science, Universidad Europea Miguel de Cervantes, Valladolid, Spain
| | - Ana María Martínez-García
- Microbiology and Immunology Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | | | - Rocío Gutiérrez-Bustillo
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain
- Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - María Teresa Pelaez-Jareño
- Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Elisa Álvarez-Fuente
- Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Esther Gómez-Sánchez
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- *Correspondence: Esther Gómez-Sánchez,
| | - Eduardo Tamayo
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain
- Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
- Anesthesiology and Critical Care Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro Tamayo-Velasco
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Haematology and Hemotherapy Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Marta Martín-Fernández
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
17
|
Arsenault S, Benoit RY, Clift F, Moore CS. Does the use of the Bruton Tyrosine Kinase inhibitors and the c-kit inhibitor masitinib result in clinically significant outcomes among patients with various forms of multiple sclerosis? Mult Scler Relat Disord 2022; 67:104164. [PMID: 36126539 DOI: 10.1016/j.msard.2022.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system accompanied by chronic inflammation, axonal loss, and neurodegeneration. Traditionally, MS has been thought of as a T-cell mediated disease, but research over the past decade has demonstrated the importance of B cells in both acute demyelination and disease progression. The highly selective irreversible Bruton Tyrosine Kinase (BTK) inhibitors evobrutinib, tolebrutinib, and orelabrutinib, and the reversible BTK inhibitor fenebrutinib, all target B-cell activation and aspects of innate immunity, including macrophage and microglia biology. The c-KIT inhibitor masitinib mitigates neuroinflammation by controlling the survival, migration, and degranulation of mast cells, leading to the inhibition of proinflammatory and vasoactive molecular cascades that result from mast cell activation. This article will review and critically appraise the ongoing clinical trials of two classes of receptor tyrosine kinase inhibitors that are emerging as potential medical treatments for the varying subtypes of MS: BTK inhibitors and c-KIT inhibitors. Specifically, this review will attempt to answer whether BTK inhibitors have measurable positive clinical effects on patients with RRMS, SPMS with relapses, relapse-free SPMS, and PPMS through their effect on MRI T1 lesions; annualized relapse rate; EDSS scale; MSFC score; and time to onset of composite 12-week confirmed disability progression. Additionally, this review will examine the literature to determine if masitinib has positive clinical effects on patients with PPMS or relapse-free SPMS through its effect on EDSS or MSFC scores.
Collapse
Affiliation(s)
- Shane Arsenault
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | - Rochelle Y Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - Fraser Clift
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Craig S Moore
- Discipline of Medicine (Neurology), Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada; Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| |
Collapse
|
18
|
Warrick E, Duval C, Nouveau S, Piffaut V, Bourreau E, Bastien P, de Lacharrière O, Morita A, Bernerd F. Actinic lentigines from Japanese and European volunteers share similar impaired biological functions. J Dermatol Sci 2022; 107:8-16. [DOI: 10.1016/j.jdermsci.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
|
19
|
Zarezadeh Mehrabadi A, Aghamohamadi N, Khoshmirsafa M, Aghamajidi A, Pilehforoshha M, Massoumi R, Falak R. The roles of interleukin-1 receptor accessory protein in certain inflammatory conditions. Immunology 2022; 166:38-46. [PMID: 35231129 DOI: 10.1111/imm.13462] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Interleukin-1 receptor accessory protein (IL-1RAcP) is a member of the immunoglobulin superfamily proteins consisting of soluble and membranous isoforms. IL-1RAcP plays an essential role in the signaling of the IL-1 family cytokines such as IL-1, IL-33, and IL-36, as well as tyrosine kinases FLT3 and C-Kit. IL-1RAcP generally initiate inflammatory signaling pathway through the recruitment of signaling mediators, including MYD88 and IRAK. Chronic inflammation following prolonged signaling of cytokine receptors is a critical process in the pathogenesis of many inflammatory disorders, including autoimmunity, obesity, psoriasis, type 1 diabetes, endometriosis, preeclampsia and Alzheimer's disease. Recently IL-1RAcP aberrant signaling has been considered to play a central role in the pathogenesis of these chronic inflammatory diseases. Targeting IL-1RAcP signaling pathway that was recently considered in clinical trials related to malignancies, also indicates its potential as therapeutic target for the inflammatory and autoimmune diseases. This review summarizes the molecular structure, components associated with IL-1RAcP signaling pathways, and their involvement in the pathogenesis of different inflammatory diseases. We will also discuss the effect of IL-1RAcP inhibition for treatment proposes.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| | - Nazanin Aghamohamadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| | - Azin Aghamajidi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| | - Mohammad Pilehforoshha
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ramin Massoumi
- Department of Laboratory Medicine, Translational Cancer Research, Faculty of Medicine, Lund University, 22381, Lund, Sweden
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of medicine, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Georas SN, Wright RJ, Ivanova A, Israel E, LaVange LM, Akuthota P, Carr TF, Denlinger LC, Fajt ML, Kumar R, O'Neal WK, Phipatanakul W, Szefler SJ, Aronica MA, Bacharier LB, Burbank AJ, Castro M, Crotty Alexander L, Bamdad J, Cardet JC, Comhair SAA, Covar RA, DiMango EA, Erwin K, Erzurum SC, Fahy JV, Gaffin JM, Gaston B, Gerald LB, Hoffman EA, Holguin F, Jackson DJ, James J, Jarjour NN, Kenyon NJ, Khatri S, Kirwan JP, Kraft M, Krishnan JA, Liu AH, Liu MC, Marquis MA, Martinez F, Mey J, Moore WC, Moy JN, Ortega VE, Peden DB, Pennington E, Peters MC, Ross K, Sanchez M, Smith LJ, Sorkness RL, Wechsler ME, Wenzel SE, White SR, Zein J, Zeki AA, Noel P. The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. J Allergy Clin Immunol 2022; 149:488-516.e9. [PMID: 34848210 PMCID: PMC8821377 DOI: 10.1016/j.jaci.2021.10.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation-prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here, we describe the Precision Interventions for Severe and/or Exacerbation-Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the United States. The PrecISE Network was designed to conduct phase II/proof-of-concept clinical trials of precision interventions in the population with severe asthma, and is supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the PrecISE Network will evaluate up to 6 interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the PrecISE Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for severe asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY.
| | | | - Anastasia Ivanova
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Elliot Israel
- Department of Medicine, Divisions of Pulmonary & Critical Care Medicine & Allergy & Immunology, Brigham & Women's Hospital, Harvard Medical School, Boston, Mass
| | - Lisa M LaVange
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Praveen Akuthota
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Merritt L Fajt
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | | | - Wanda K O'Neal
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Stanley J Szefler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark A Aronica
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Allison J Burbank
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, Mo
| | - Laura Crotty Alexander
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Julie Bamdad
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| | | | | | | | | | - Kim Erwin
- Institute for Healthcare Delivery Design, University of Illinois at Chicago, Chicago, Ill
| | | | - John V Fahy
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | | | - Benjamin Gaston
- Wells Center for Pediatric Research, Indiana University, Indianapolis, Ind
| | - Lynn B Gerald
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | | | - Daniel J Jackson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - John James
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Sumita Khatri
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - John P Kirwan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Monica Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Andrew H Liu
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark C Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, the Johns Hopkins University, Baltimore, Md
| | - M Alison Marquis
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Fernando Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jacob Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Wendy C Moore
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - James N Moy
- Rush University Medical Center, Chicago, Ill
| | - Victor E Ortega
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - David B Peden
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Michael C Peters
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | - Kristie Ross
- The Cleveland Clinic, Cleveland, Ohio; UH Rainbow Babies and Children's Hospitals, Cleveland, Ohio
| | - Maria Sanchez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | | | - Ronald L Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Michael E Wechsler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | - Steven R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Patricia Noel
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| |
Collapse
|
21
|
Annese T, Tamma R, Bozza M, Zito A, Ribatti D. Autocrine/Paracrine Loop Between SCF +/c-Kit + Mast Cells Promotes Cutaneous Melanoma Progression. Front Immunol 2022; 13:794974. [PMID: 35140718 PMCID: PMC8818866 DOI: 10.3389/fimmu.2022.794974] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
c-Kit, or mast/stem cell growth factor receptor Kit, is a tyrosine kinase receptor structurally analogous to the colony-stimulating factor-1 (CSF-1) and platelet-derived growth factor (PDGF) CSF-1/PDGF receptor Tyr-subfamily. It binds the cytokine KITLG/SCF to regulate cell survival and proliferation, hematopoiesis, stem cell maintenance, gametogenesis, mast cell development, migration and function, and it plays an essential role in melanogenesis. SCF and c-Kit are biologically active as membrane-bound and soluble forms. They can be expressed by tumor cells and cells of the microenvironment playing a crucial role in tumor development, progression, and relapses. To date, few investigations have concerned the role of SCF+/c-Kit+ mast cells in normal, premalignant, and malignant skin lesions that resemble steps of malignant melanoma progression. In this study, by immunolabeling reactions, we demonstrated that in melanoma lesions, SCF and c-Kit were expressed in mast cells and released by themselves, suggesting an autocrine/paracrine loop might be implicated in regulatory mechanisms of neoangiogenesis and tumor progression in human melanoma.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Mariella Bozza
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alfredo Zito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
22
|
Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res 2021; 7:00309-2020. [PMID: 34109244 PMCID: PMC8181790 DOI: 10.1183/23120541.00309-2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Currently, and based on the development of relevant biologic therapies, T2-high is the most well-defined endotype of asthma. Although much progress has been made in elucidating T2-high inflammation pathways, no specific clinically applicable biomarkers for T2-low asthma have been identified. The therapeutic approach of T2-low asthma is a problem urgently needing resolution, firstly because these patients have poor response to steroids, and secondly because they are not candidates for the newer targeted biologic agents. Thus, there is an unmet need for the identification of biomarkers that can help the diagnosis and endotyping of T2-low asthma. Ongoing investigation is focusing on neutrophilic airway inflammation mediators as therapeutic targets, including interleukin (IL)-8, IL-17, IL-1, IL-6, IL-23 and tumour necrosis factor-α; molecules that target restoration of corticosteroid sensitivity, mainly mitogen-activated protein kinase inhibitors, tyrosine kinase inhibitors and phosphatidylinositol 3-kinase inhibitors; phosphodiesterase (PDE)3 inhibitors that act as bronchodilators and PDE4 inhibitors that have an anti-inflammatory effect; and airway smooth muscle mass attenuation therapies, mainly for patients with paucigranulocytic inflammation. This article aims to review the evidence for noneosinophilic inflammation being a target for therapy in asthma; discuss current and potential future therapeutic approaches, such as novel molecules and biologic agents; and assess clinical trials of licensed drugs in the treatment of T2-low asthma.
Collapse
Affiliation(s)
- Chris Kyriakopoulos
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| | | | - Konstantinos Kostikas
- Respiratory Medicine Dept, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
23
|
Serum Concentration of Inflammatory Cytokines in Dogs with Suspected Acute Pancreatitis. Vet Sci 2021; 8:vetsci8030051. [PMID: 33803665 PMCID: PMC8003073 DOI: 10.3390/vetsci8030051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/23/2023] Open
Abstract
Acute pancreatitis is an acute inflammatory process in the pancreas that is common in dogs. This study was designed to compare cytokines between healthy dogs and dogs with suspected acute pancreatitis. For the canine cytokine antibody array, three healthy dogs and three dogs with suspected acute pancreatitis were included. Interleukin (IL)-2, IL-6, IL-10, GM-CSF, and TNF-α were not detected in either group based on the results. Conversely, IL-8 (p = 0.035), Monocyte Chemoattractant Protein-1 (MCP)-1 (p = 0.0138), Receptor for Advanced Glycation Endproducts (RAGE) (p = 0.0079), and stem cell factor (SCF) (p = 0.034) were significantly increased in dogs with suspected acute pancreatitis. However, vascular endothelial growth factor (VEGF) (p = 0.6971) did not differ significantly between groups. For the canine serum Enzyme-Linked Immunosorbent Assay (ELISA), eight healthy dogs and eight dogs with suspected acute pancreatitis were included. ELISA revealed that IL-8 (p < 0.0001), MCP-1 (p < 0.0001), RAGE (p = 0.006), and SCF (p = 0.0002) were all significantly upregulated in the experimental group. We confirmed multiple patterns of cytokines in suspected acute pancreatitis of dogs via canine cytokine antibody array using a small quantity of serum. After this procedure, we reevaluated the cytokines, which were significantly increased in dogs with suspected acute pancreatitis, by ELISA, with more samples. Through this study, we confirmed that MCP-1, RAGE, and SCF were newly suggested factors in dogs with suspected acute pancreatitis.
Collapse
|
24
|
Ding C, Guo Y, Liang T, Liu J, Yang L, Wang T, Liu X, Kang Q. Protein 4.1R negatively regulates P815 cells proliferation by inhibiting C-Kit-mediated signal transduction. Exp Cell Res 2021; 398:112403. [PMID: 33271128 DOI: 10.1016/j.yexcr.2020.112403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
The proliferation of mast cells (MCs) plays a crucial role in either physiological or pathological progression of human physical. C-Kit-mediated signaling pathway has been confirmed to play a key role in MCs proliferation, and the regulatory mechanisms of C-Kit-mediated MCs proliferation need to be further explored. Our previous study found that protein 4.1R could negatively regulate T cell receptor (TCR) mediated signal pathways in CD4+ T cells. Little is known about the function of 4.1R in C-Kit-mediated proliferation of MCs. In this study, P815-4.1R-/- cells were constructed by using CRISPR/Cas9 technique. Lack of 4.1R significantly enhanced P815 cells proliferation by accelerating the progression of cell cycle. 4.1R could also significantly alleviate the clinical symptoms of systemic mastocytosis (SM) and improve the overall survival of SM mice. Further study showed that 4.1R could interact directly with C-Kit to inhibit the activation of C-Kit-mediated Ras-Raf-MAPKs and PI3K-AKT signal pathways. Taken together, our findings demonstrate that protein 4.1R, a novel negative regulator, negatively regulates MCs proliferation by inhibiting C-Kit-mediated signal transduction, which maybe provide a potential target to the prevention and treatment of abnormal MCs proliferation-related diseases.
Collapse
Affiliation(s)
- Cong Ding
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Yuying Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Taotao Liang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jiaojiao Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Lu Yang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| |
Collapse
|
25
|
Harris KS, Shi L, Foster BM, Mobley ME, Elliott PL, Song CJ, Watabe K, Langefeld CD, Kerr BA. CD117/c-kit defines a prostate CSC-like subpopulation driving progression and TKI resistance. Sci Rep 2021; 11:1465. [PMID: 33446896 PMCID: PMC7809150 DOI: 10.1038/s41598-021-81126-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem-like cells (CSCs) are associated with cancer progression, metastasis, and recurrence, and may also represent a subset of circulating tumor cells (CTCs). In our prior study, CTCs in advanced prostate cancer patients were found to express CD117/c-kit in a liquid biopsy. Whether CD117 expression played an active or passive role in the aggressiveness and migration of these CTCs remained an open question. In this study, we show that CD117 expression in prostate cancer patients is associated with decreased overall and progression-free survival and that activation and phosphorylation of CD117 increases in prostate cancer patients with higher Gleason grades. To determine how CD117 expression and activation by its ligand stem cell factor (SCF, kit ligand, steel factor) alter prostate cancer aggressiveness, we used C4-2 and PC3-mm human prostate cancer cells, which contain a CD117+ subpopulation. We demonstrate that CD117+ cells display increased proliferation and migration. In prostaspheres, CD117 expression enhances sphere formation. In both 2D and 3D cultures, stemness marker gene expression is higher in CD117+ cells. Using xenograft limiting dilution assays and serial tumor initiation assays, we show that CD117+ cells represent a CSC population. Combined, these data indicate that CD117 expression potentially promotes tumor initiation and metastasis. Further, in cell lines, CD117 activation by SCF promotes faster proliferation and invasiveness, while blocking CD117 activation with tyrosine kinase inhibitors (TKIs) decreased progression in a context-dependent manner. We demonstrate that CD117 expression and activation drives prostate cancer aggressiveness through the CSC phenotype and TKI resistance.
Collapse
Affiliation(s)
- Koran S Harris
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Brittni M Foster
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Mary E Mobley
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Phyllis L Elliott
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Conner J Song
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.,Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Carl D Langefeld
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.,Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA. .,Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA. .,Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
26
|
Vanvanhossou SFU, Scheper C, Dossa LH, Yin T, Brügemann K, König S. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genomics 2020; 21:783. [PMID: 33176675 PMCID: PMC7656759 DOI: 10.1186/s12864-020-07170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Specific adaptive features including disease resistance and growth abilities in harsh environments are attributed to indigenous cattle breeds of Benin, but these breeds are endangered due to crossbreeding. So far, there is a lack of systematic trait recording, being the basis for breed characterizations, and for structured breeding program designs aiming on conservation. Bridging this gap, own phenotyping for morphological traits considered measurements for height at withers (HAW), sacrum height (SH), heart girth (HG), hip width (HW), body length (BL) and ear length (EL), including 449 cattle from the four indigenous Benin breeds Lagune, Somba, Borgou and Pabli. In order to utilize recent genomic tools for breed characterizations and genetic evaluations, phenotypes for novel traits were merged with high-density SNP marker data. Multi-breed genetic parameter estimations and genome-wide association studies (GWAS) for the six morphometric traits were carried out. Continuatively, we aimed on inferring genomic regions and functional loci potentially associated with conformation, carcass and adaptive traits. RESULTS SNP-based heritability estimates for the morphometric traits ranged between 0.46 ± 0.14 (HG) and 0.74 ± 0.13 (HW). Phenotypic and genetic correlations ranged from 0.25 ± 0.05 (HW-BL) to 0.89 ± 0.01 (HAW-SH), and from 0.14 ± 0.10 (HW-BL) to 0.85 ± 0.02 (HAW-SH), respectively. Three genome-wide and 25 chromosome-wide significant SNP positioned on different chromosomes were detected, located in very close chromosomal distance (±25 kb) to 15 genes (or located within the genes). The genes PIK3R6 and PIK3R1 showed direct functional associations with height and body size. We inferred the potential candidate genes VEPH1, CNTNAP5, GYPC for conformation, growth and carcass traits including body weight and body fat deposition. According to their functional annotations, detected potential candidate genes were associated with stress or immune response (genes PTAFR, PBRM1, ADAMTS12) and with feed efficiency (genes MEGF11 SLC16A4, CCDC117). CONCLUSIONS Accurate measurements contributed to large SNP heritabilities for some morphological traits, even for a small mixed-breed sample size. Multi-breed GWAS detected different loci associated with conformation or carcass traits. The identified potential candidate genes for immune response or feed efficiency indicators reflect the evolutionary development and adaptability features of the breeds.
Collapse
Affiliation(s)
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Luc Hippolyte Dossa
- School of Science and Technics of Animal Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou, Benin
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Gießen, Germany.
| |
Collapse
|
27
|
Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond) 2020; 134:1063-1079. [PMID: 32369100 DOI: 10.1042/cs20191309] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic disease of the airways that has long been viewed predominately as an inflammatory condition. Accordingly, current therapeutic interventions focus primarily on resolving inflammation. However, the mainstay of asthma therapy neither fully improves lung function nor prevents disease exacerbations, suggesting involvement of other factors. An emerging concept now holds that airway remodeling, another major pathological feature of asthma, is as important as inflammation in asthma pathogenesis. Structural changes associated with asthma include disrupted epithelial integrity, subepithelial fibrosis, goblet cell hyperplasia/metaplasia, smooth muscle hypertrophy/hyperplasia, and enhanced vascularity. These alterations are hypothesized to contribute to airway hyperresponsiveness, airway obstruction, airflow limitation, and progressive decline of lung function in asthmatic individuals. Consequently, targeting inflammation alone does not suffice to provide optimal clinical benefits. Here we review asthmatic airway remodeling, focusing on airway epithelium, which is critical to maintaining a healthy respiratory system, and is the primary defense against inhaled irritants. In asthma, airway epithelium is both a mediator and target of inflammation, manifesting remodeling and resulting obstruction among its downstream effects. We also highlight the potential benefits of therapeutically targeting airway structural alterations. Since pathological tissue remodeling is likewise observed in other injury- and inflammation-prone tissues and organs, our discussion may have implications beyond asthma and lung disease.
Collapse
|
28
|
Mickiene G, Dalgėdienė I, Zvirblis G, Dapkunas Z, Plikusiene I, Buzavaite-Verteliene E, Balevičius Z, Rukšėnaitė A, Pleckaityte M. Human granulocyte-colony stimulating factor (G-CSF)/stem cell factor (SCF) fusion proteins: design, characterization and activity. PeerJ 2020; 8:e9788. [PMID: 32884863 PMCID: PMC7444511 DOI: 10.7717/peerj.9788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/31/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF) are well-characterized vital hematopoietic growth factors that regulate hematopoiesis. G-CSF and SCF synergistically exhibit a stimulatory effect on hematopoietic progenitors. The combination of G-CSF and SCF has been used for mobilization of peripheral blood progenitor cells in cancer and non-cancerous conditions. To overcome challenges connected with the administration of two cytokines, we developed two fusion proteins composed of human SCF and human G-CSF interspaced by an alpha-helix-forming peptide linker. METHODS The recombinant proteins SCF-Lα-GCSF and GCSF-Lα-SCF were purified in three steps using an ion-exchange and mixed-mode chromatography. The purity and quantity of the proteins after each stage of purification was assessed using RP-HPLC, SDS-PAGE, and the Bradford assays. Purified proteins were identified using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS) and the Western blot analyses. The molecular weight was determined by size exclusion HPLC (SE-HPLC). The activity of heterodimers was assessed using cell proliferation assays in vitro. The capacity of recombinant fusion proteins to stimulate the increase of the absolute neutrophil count in rats was determined in vivo. The binding kinetics of the proteins to immobilized G-CSF and SCF receptors was measured using total internal reflection ellipsometry and evaluated by a standard Langmuir kinetics model. RESULTS The novel SCF-Lα-GCSF and GCSF-Lα-SCF proteins were synthesized in Escherichia coli. The purity of the heterodimers reached >90% as determined by RP-HPLC. The identity of the proteins was confirmed using the Western blot and HPLC/ESI-MS assays. An array of multimeric forms, non-covalently associated dimers or trimers were detected in the protein preparations by SE-HPLC. Each protein induced a dose-dependent proliferative response on the cell lines. At equimolar concentration, the heterodimers retain 70-140% of the SCF monomer activity (p ≤ 0.01) in promoting the M-07e cells proliferation. The G-CSF moiety in GCSF-Lα-SCF retained 15% (p ≤ 0.0001) and in SCF-Lα-GCSF retained 34% (p ≤ 0.01) of the monomeric G-CSF activity in stimulating the growth of G-NFS-60 cells. The obtained results were in good agreement with the binding data of each moiety in the fusion proteins to their respective receptors. The increase in the absolute neutrophil count in rats caused by the SCF-Lα-GCSF protein corresponded to the increase induced by a mixture of SCF and G-CSF.
Collapse
Affiliation(s)
- Gitana Mickiene
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- Profarma UAB, Vilnius, Lithuania
| | - Indrė Dalgėdienė
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | | | - Zilvinas Dapkunas
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- Profarma UAB, Vilnius, Lithuania
| | - Ieva Plikusiene
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Vilnius, Lithuania
| | - Ernesta Buzavaite-Verteliene
- Plasmonics and Nanophotonics Laboratory, Department of Laser Technology, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Zigmas Balevičius
- Plasmonics and Nanophotonics Laboratory, Department of Laser Technology, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | | | | |
Collapse
|
29
|
Overed-Sayer C, Miranda E, Dunmore R, Liarte Marin E, Beloki L, Rassl D, Parfrey H, Carruthers A, Chahboub A, Koch S, Güler-Gane G, Kuziora M, Lewis A, Murray L, May R, Clarke D. Inhibition of mast cells: a novel mechanism by which nintedanib may elicit anti-fibrotic effects. Thorax 2020; 75:754-763. [PMID: 32709610 PMCID: PMC7476277 DOI: 10.1136/thoraxjnl-2019-214000] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease which presents a grave prognosis for diagnosed patients. Nintedanib (a triple tyrosine kinase inhibitor) and pirfenidone (unclear mechanism of action) are the only approved therapies for IPF, but have limited efficacy. The pathogenic mechanisms of this disease are not fully elucidated; however, a role for mast cells (MCs) has been postulated. Objectives The aim of this work was to investigate a role for MCs in IPF and to understand whether nintedanib or pirfenidone could impact MC function. Methods and results MCs were significantly elevated in human IPF lung and negatively correlated with baseline lung function (FVC). Importantly, MCs were positively associated with the number of fibroblast foci, which has been linked to increased mortality. Furthermore, MCs were increased in the region immediately surrounding the fibroblast foci, and co-culture studies confirmed a role for MC–fibroblast crosstalk in fibrosis. Nintedanib but not pirfenidone inhibited recombinant stem cell factor (SCF)–induced MC survival. Further evaluation of nintedanib determined that it also inhibited human fibroblast-mediated MC survival. This was likely via a direct effect on ckit (SCF receptor) since nintedanib blocked SCF-stimulated ckit phosphorylation, as well as downstream effects on MC proliferation and cytokine release. In addition, nintedanib ablated the increase in lung MCs and impacted high tissue density frequency (HDFm) in a rat bleomycin model of lung fibrosis. Conclusion Nintedanib inhibits MC survival and activation and thus provides a novel additional mechanism by which this drug may exert anti-fibrotic effects in patients with IPF.
Collapse
Affiliation(s)
- Catherine Overed-Sayer
- Regeneration, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elena Miranda
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Dunmore
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elena Liarte Marin
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lorea Beloki
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Doris Rassl
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Helen Parfrey
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Alan Carruthers
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amina Chahboub
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sofia Koch
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gülin Güler-Gane
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael Kuziora
- Translational Science, Early Oncology, Oncology Bioinformatics, AstraZeneca, Gaithersburg, Maryland, USA
| | - Arthur Lewis
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lynne Murray
- Regeneration, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard May
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Deborah Clarke
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
30
|
What Have In Vitro Co-Culture Models Taught Us about the Contribution of Epithelial-Mesenchymal Interactions to Airway Inflammation and Remodeling in Asthma? Cells 2020; 9:cells9071694. [PMID: 32679790 PMCID: PMC7408556 DOI: 10.3390/cells9071694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
As the lung develops, epithelial-mesenchymal crosstalk is essential for the developmental processes that drive cell proliferation, differentiation, and extracellular matrix (ECM) production within the lung epithelial-mesenchymal trophic unit (EMTU). In asthma, a number of the lung EMTU developmental signals have been associated with airway inflammation and remodeling, which has led to the hypothesis that aberrant activation of the asthmatic EMTU may lead to disease pathogenesis. Monoculture studies have aided in the understanding of the altered phenotype of airway epithelial and mesenchymal cells and their contribution to the pathogenesis of asthma. However, 3-dimensional (3D) co-culture models are needed to enable the study of epithelial-mesenchymal crosstalk in the setting of the in vivo environment. In this review, we summarize studies using 3D co-culture models to assess how defective epithelial-mesenchymal communication contributes to chronic airway inflammation and remodeling within the asthmatic EMTU.
Collapse
|
31
|
Mu X, Shi L, Pan S, He L, Niu Y, Wang X. A Customized Self-Assembling Peptide Hydrogel-Wrapped Stem Cell Factor Targeting Pulp Regeneration Rich in Vascular-Like Structures. ACS OMEGA 2020; 5:16568-16574. [PMID: 32685822 PMCID: PMC7364552 DOI: 10.1021/acsomega.0c01266] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/15/2020] [Indexed: 05/27/2023]
Abstract
Pulp regeneration is to replace the inflamed/necrotic pulp tissue with regenerated pulp-like tissue to rejuvenate the teeth. Self-assembling peptide hydrogels RADA16-I (Ac-(RADA16-I)4-CONH2) can provide a three-dimensional environment for cells. The stem cell factor (SCF) plays a crucial role in homing stem cells. Combining these advantages, our study investigated the effects of SCF-RADA16-I on adhesion, proliferation, and migration of human dental pulp stem cells (DPSCs) and the angiogenesis of human umbilical vein endothelial cells (HUVECs). The β-sheet and grid structure were observed by circular dichroism (CD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Cytoskeleton staining, living cell staining, cell viability, cell migration, angiogenesis, and western blot assays were performed, and the results indicated that all the SCF groups were superior to the corresponding non-SCF groups in cell adhesion, proliferation, migration, and angiogenesis. RADA16-I provided a three-dimensional environment for DPSCs. Besides, the SCF promoted HUVECs to form more vascular-like structures and release more vascular endothelial growth factor A. In summary, the SCF-loaded RADA16-I scaffold improved adhesion, proliferation, and migration of DPSCs and the formation of more vascular-like structures of HUVECs. SCF-RADA16-I holds promise for guided pulp regeneration, and it can potentially be applied widely in tissue engineering and translational medicine in the future.
Collapse
Affiliation(s)
- Xiaodan Mu
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Lei Shi
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Shuang Pan
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Lina He
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Yumei Niu
- The
First Affiliated Hospital, Harbin Medical
University, 23 Post Street, Nangang District, Harbin, Heilongjiang 150001, China
- School
of Stomatology, Harbin Medical University, 143 Yiman Street, Nangang District, Harbin, Heilongjiang 150001, China
| | - Xiumei Wang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing 100084, China
| |
Collapse
|
32
|
Bösken B, Hepner-Schefczyk M, Vonderhagen S, Dudda M, Flohé SB. An Inverse Relationship Between c-Kit/CD117 and mTOR Confers NK Cell Dysregulation Late After Severe Injury. Front Immunol 2020; 11:1200. [PMID: 32670280 PMCID: PMC7330140 DOI: 10.3389/fimmu.2020.01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Major trauma-induced tissue injury causes a dysregulation of the immune system. Severe systemic inflammation occurs early after the insult. Later on, an enhanced risk for life-threatening opportunistic infections develops that culminates at the end of the first week after trauma. CD56bright Natural killer (NK) cells play a key role in the defense against infection due to their rapid release of Interferon (IFN) γ in response to Interleukin (IL) 12. NK cells are impaired in IFN-γ synthesis after severe injury due to a disturbed IL-12/IFN-γ axis. Thereby, a circulating factor mediates extrinsic suppression of NK cells. Yet unknown cell-intrinsic mechanisms manifest by day 8 after trauma and render NK cells unresponsive to stimulatory cytokines. In the present study, we investigated the origin of such late NK cell-intrinsic suppression after major trauma. Peripheral blood mononuclear cells (PBMC) were isolated from patients 8 day after severe injury and from healthy control subjects and were stimulated with inactivated Staphylococcus aureus. The expression of diverse cytokine receptors, intracellular signaling molecules, and the secretion of IFN-γ by CD56bright NK cells were examined. After stimulation with S. aureus, NK cells from patients expressed enhanced levels of c-kit/CD117 that inversely correlated with IFN-γ synthesis and IL-12 receptor (IL-12R) β2 expression. Supplementation with IL-15 and inhibition of the transforming growth factor receptor (TGF-βR) I reduced CD117 expression and increased the level of IL-12Rβ2 and IFN-γ. NK cells from patients showed reduced phosphorylation of mammalian target of rapamycin (mTOR). Addition of IL-15 at least partly restored mTOR phosphorylation and increased IL-12Rβ2 expression. The reduced mTOR phosphorylation after severe injury was cell-intrinsic as it was not induced by serum factors. Inhibition of mTOR in purified NK cells from healthy donors by rapamycin decreased the synthesis of IFN-γ. Thus, impaired mTOR phosphorylation in response to a microbial challenge contributes to the cell-intrinsic mechanisms that underlie NK cell dysregulation after trauma. Restoration of the mTOR phosphorylation capacity along with inhibition of the TGF-βRI signaling in NK cells after severe injury might improve the immune defense against opportunistic infections.
Collapse
Affiliation(s)
- Björn Bösken
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Monika Hepner-Schefczyk
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sonja Vonderhagen
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
33
|
Si H, Wang J, Meininger CJ, Peng X, Zawieja DC, Zhang SL. Ca 2+ release-activated Ca 2+ channels are responsible for histamine-induced Ca 2+ entry, permeability increase, and interleukin synthesis in lymphatic endothelial cells. Am J Physiol Heart Circ Physiol 2020; 318:H1283-H1295. [PMID: 32275470 DOI: 10.1152/ajpheart.00544.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lymphatic functions in maintaining lymph transport, and immune surveillance can be impaired by infections and inflammation, thereby causing debilitating disorders, such as lymphedema and inflammatory bowel disease. Histamine is a key inflammatory mediator known to trigger vasodilation and vessel hyperpermeability upon binding to its receptors and evoking intracellular Ca2+ ([Ca2+]i) dynamics for downstream signal transductions. However, the exact molecular mechanisms beneath the [Ca2+]i dynamics and the downstream cellular effects have not been elucidated in the lymphatic system. Here, we show that Ca2+ release-activated Ca2+ (CRAC) channels, formed by Orai1 and stromal interaction molecule 1 (STIM1) proteins, are required for the histamine-elicited Ca2+ signaling in human dermal lymphatic endothelial cells (HDLECs). Blockers or antagonists against CRAC channels, phospholipase C, and H1R receptors can all significantly diminish the histamine-evoked [Ca2+]i dynamics in lymphatic endothelial cells (LECs), while short interfering RNA-mediated knockdown of endogenous Orai1 or STIM1 also abolished the Ca2+ entry upon histamine stimulation in LECs. Furthermore, we find that histamine compromises the lymphatic endothelial barrier function by increasing the intercellular permeability and disrupting vascular endothelial-cadherin integrity, which is remarkably attenuated by CRAC channel blockers. Additionally, the upregulated expression of inflammatory cytokines, IL-6 and IL-8, after histamine stimulation was abolished by silencing Orai1 or STIM1 with RNAi in LECs. Taken together, our data demonstrated the essential role of CRAC channels in mediating the [Ca2+]i signaling and downstream endothelial barrier and inflammatory functions induced by histamine in the LECs, suggesting a promising potential to relieve histamine-triggered vascular leakage and inflammatory disorders in the lymphatics by targeting CRAC channel functions.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Jian Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
34
|
Melanogenic Properties and Expression Profiles of Melanogenic Paracrine Molecules in Riehl's Melanosis. Int J Mol Sci 2020; 21:ijms21051695. [PMID: 32121626 PMCID: PMC7084821 DOI: 10.3390/ijms21051695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Riehl's melanosis is a hyperpigmentary disorder that occurs predominantly on the face and neck. To date, the pathogenesis of Riehl's melanosis with regards to the melanogenic properties and paracrine melanogenic molecules has not well been studied. This study was aimed to provide a novel perspective on the pathogenesis of Riehl's melanosis by identifying the relevant paracrine melanogenic molecules in Riehl's melanosis. Skin biopsies were performed on lesional and normal-appearing perilesional skin of 12 patients with Riehl's melanosis and 12 age- and sex-matched healthy controls. Histopathological and immunohistochemical staining for paracrine melanogenic molecules was analyzed. The major histopathological findings of Riehl's melanosis were basal hyperpigmentation, melanocyte proliferation, interface change, dermal pigmentary incontinence, vascular proliferation, and dermal inflammation. Dermal expression intensities of stem cell factor (SCF) and c-kit were increased in the lesional skin of Riehl's melanosis. In addition, increased expression of epidermal and dermal ET-1 was also observed in the lesional skin of Riehl's melanosis. Increased tissue expressions of SCF, c-kit, and ET-1 in Riehl's melanosis support the role of these paracrine melanogenic molecules in the pathogenesis of Riehl's melanosis. The findings from this study might present useful information on the pathogenetic mechanism of Riehl's melanosis.
Collapse
|
35
|
The c-kit Receptor Tyrosine Kinase Marks Sweet or Umami Sensing T1R3 Positive Adult Taste Cells in Mice. CHEMOSENS PERCEPT 2020. [DOI: 10.1007/s12078-019-09277-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Wang Y, Ma H, Tao X, Luo Y, Wang H, He J, Fang Q, Guo S, Song C. SCF promotes the production of IL-13 via the MEK-ERK-CREB signaling pathway in mast cells. Exp Ther Med 2019; 18:2491-2496. [PMID: 31555361 PMCID: PMC6755428 DOI: 10.3892/etm.2019.7866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 07/12/2018] [Indexed: 12/26/2022] Open
Abstract
Mast cells serve a key role in the occurrence and development of allergy. As an important growth factor of mast cells, stem cell factor (SCF) has an effect on the apoptosis, chemotaxis, adhesion, degranulation and other biological characteristics of mast cells. However, there are few studies regarding the effect of SCF signal on the production of cytokines from mast cells, particularly Th2 type cytokines. In the present study, the expression and secretion of IL-13 in P815 cells stimulated by SCF were detected by fluorescence quantitative PCR and ELISA, and western blotting and EMSA were used to detect ERK phosphorylation and activation of CREB in stimulated P815 cells. The results demonstrated that the production of IL-13 was significantly increased in P815 cells stimulated by SCF (1–100 ng/ml; P<0.01). There was an obvious phosphorylation of ERK and CREB activation in P815 cells stimulated by SCF (50 ng/ml). Compared with the SCF single stimulation group, the production of IL-13 was significantly reduced in P815 cells stimulated with U0126 (ERK-MEK/pathway inhibitor) or H-89 (CREB inhibitor) combined with SCF stimulation group (P<0.01). However, JSI-124 (JAK/STAT3 pathway inhibitor), Wortmannin (PI3K/Akt pathway inhibitor) and PDTC (NF-κB inhibitor) had no effect on the role of SCF promoting the P815 cells producing IL-13. Therefore, SCF signaling promotes mast cell P815 to produce IL-13, and this effect is associated with the MEK-ERK-CREB signaling pathway.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hua Ma
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiangnan Tao
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yulan Luo
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Helong Wang
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jing He
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shujun Guo
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chuanwang Song
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
37
|
Mast Cells in Cardiovascular Disease: From Bench to Bedside. Int J Mol Sci 2019; 20:ijms20143395. [PMID: 31295950 PMCID: PMC6678575 DOI: 10.3390/ijms20143395] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Mast cells are pluripotent leukocytes that reside in the mucosa and connective tissue. Recent studies show an increased prevalence of cardiovascular disease among patients with mastocytosis, which is a hematological disease that is characterized by the accumulation of mast cells due to clonal proliferation. This association suggests an important role for mast cells in cardiovascular disease. Indeed, the evidence establishing the contribution of mast cells to the development and progression of atherosclerosis is continually increasing. Mast cells may contribute to plaque formation by stimulating the formation of foam cells and causing a pro-inflammatory micro-environment. In addition, these cells are able to promote plaque instability by neo-vessel formation and also by inducing intraplaque hemorrhage. Furthermore, mast cells appear to stimulate the formation of fibrosis after a cardiac infarction. In this review, the available data on the role of mast cells in cardiovascular disease are summarized, containing both in vitro research and animal studies, followed by a discussion of human data on the association between cardiovascular morbidity and diseases in which mast cells are important: Kounis syndrome, mastocytosis and allergy.
Collapse
|
38
|
Blucher AS, McWeeney SK, Stein L, Wu G. Visualization of drug target interactions in the contexts of pathways and networks with ReactomeFIViz. F1000Res 2019; 8:908. [PMID: 31372215 PMCID: PMC6644836 DOI: 10.12688/f1000research.19592.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 01/08/2023] Open
Abstract
The precision medicine paradigm is centered on therapies targeted to particular molecular entities that will elicit an anticipated and controlled therapeutic response. However, genetic alterations in the drug targets themselves or in genes whose products interact with the targets can affect how well a drug actually works for an individual patient. To better understand the effects of targeted therapies in patients, we need software tools capable of simultaneously visualizing patient-specific variations and drug targets in their biological context. This context can be provided using pathways, which are process-oriented representations of biological reactions, or biological networks, which represent pathway-spanning interactions among genes, proteins, and other biological entities. To address this need, we have recently enhanced the Reactome Cytoscape app, ReactomeFIViz, to assist researchers in visualizing and modeling drug and target interactions. ReactomeFIViz integrates drug-target interaction information with high quality manually curated pathways and a genome-wide human functional interaction network. Both the pathways and the functional interaction network are provided by Reactome, the most comprehensive open source biological pathway knowledgebase. We describe several examples demonstrating the application of these new features to the visualization of drugs in the contexts of pathways and networks. Complementing previous features in ReactomeFIViz, these new features enable researchers to ask focused questions about targeted therapies, such as drug sensitivity for patients with different mutation profiles, using a pathway or network perspective.
Collapse
Affiliation(s)
- Aurora S Blucher
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.,Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Lincoln Stein
- Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
39
|
Yousefi M, Mamipour M, Sokullu SE, Ghaderi S, Amini H, Rahbarghazi R. Toll-like receptors in the functional orientation of cardiac progenitor cells. J Cell Physiol 2019; 234:19451-19463. [PMID: 31025370 DOI: 10.1002/jcp.28738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue.
Collapse
Affiliation(s)
- Mohammadreza Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Mina Mamipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| | - Sadiye E Sokullu
- Engineering Sciences, Bioengineering Department, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Shahrooz Ghaderi
- Department of System Physiology, Ruhr University, Bochum, Germany
| | - Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Murata A, Hikosaka M, Yoshino M, Zhou L, Hayashi SI. Kit-independent mast cell adhesion mediated by Notch. Int Immunol 2019; 31:69-79. [PMID: 30299470 DOI: 10.1093/intimm/dxy067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Kit/CD117 plays a crucial role in the cell-cell and cell-matrix adhesion of mammalian mast cells (MCs); however, it is unclear whether other adhesion molecule(s) perform important roles in the adhesion of MCs. In the present study, we show a novel Kit-independent adhesion mechanism of mouse cultured MCs mediated by Notch family members. On stromal cells transduced with each Notch ligand gene, Kit and its signaling become dispensable for the entire adhesion process of MCs from tethering to spreading. The Notch-mediated spreading of adherent MCs involves the activation of signaling via phosphatidylinositol 3-kinases and mitogen-activated protein kinases, similar to Kit-mediated spreading. Despite the activation of the same signaling pathways, while Kit supports the adhesion and survival of MCs, Notch only supports adhesion. Thus, Notch family members are specialized adhesion molecules for MCs that effectively replace the adhesion function of Kit in order to support the interaction of MCs with the surrounding cellular microenvironments.
Collapse
Affiliation(s)
- Akihiko Murata
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mari Hikosaka
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Miya Yoshino
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shin-Ichi Hayashi
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
41
|
Alfaleh MA, Arora N, Yeh M, de Bakker CJ, Howard CB, Macpherson P, Allavena RE, Chen X, Harkness L, Mahler SM, Jones ML. Canine CD117-Specific Antibodies with Diverse Binding Properties Isolated from a Phage Display Library Using Cell-Based Biopanning. Antibodies (Basel) 2019; 8:E15. [PMID: 31544821 PMCID: PMC6640692 DOI: 10.3390/antib8010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/28/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
CD117 (c-Kit) is a tyrosine kinase receptor that is overexpressed in multiple dog tumors. There is 100% homology between the juxtamembrane domain of human and canine CD117, and many cancer-causing mutations occur in this region in both species. Thus, CD117 is an important target for cancer treatment in dogs and for comparative oncology studies. Currently, there is no monoclonal antibody (mAb) specifically designed to target the exposed region of canine CD117, although there exist some with species cross-reactivity. We panned a naïve phage display library to isolate antibodies against recombinant CD117 on whole cells. Several mAbs were isolated and were shown to bind recombinant canine CD117 at low- to sub-nanomolar affinity. Additionally, binding to native canine CD117 was confirmed by immunohistochemistry and by flow cytometry. Competitive binding assays also identified mAbs that competed with the CD117 receptor-specific ligand, the stem cell factor (SCF). These results show the ability of our cell-based biopanning strategy to isolate a panel of antibodies that have varied characteristics when used in different binding assays. These in vitro/ex vivo assessments suggest that some of the isolated mAbs might be promising candidates for targeting overexpressed CD117 in canine cancers for different useful applications.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center (KFMRC), King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Neetika Arora
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Michael Yeh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christopher J de Bakker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD 4072, Australia.
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Philip Macpherson
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia.
| | - Rachel E Allavena
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia.
| | - Xiaoli Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Linda Harkness
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
42
|
Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev 2019; 282:151-167. [PMID: 29431215 DOI: 10.1111/imr.12638] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the origin of the phrase "birds of a feather flock together" is unclear, it has been in use for centuries and is typically employed to describe the phenomenon that people with similar tastes or interests tend to seek each other out and congregate together. In this review, we have co-opted this phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because they very often accumulate together in tissue sites under both homeostatic and inflammatory conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell surface phenotype, mediator release profiles and roles in diseases have been compared and contrasted. What emerges is a sense that these two cell types often interact with each other and their tissue environment to provide synergistic contributions to a variety of normal and pathologic immune responses.
Collapse
Affiliation(s)
- Piper A Robida
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
43
|
Kay LJ, Suvarna SK, Peachell PT. Histamine H 4 receptor mediates chemotaxis of human lung mast cells. Eur J Pharmacol 2018; 837:38-44. [PMID: 30148998 DOI: 10.1016/j.ejphar.2018.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022]
Abstract
The diverse effects of histamine are mediated by discrete histamine receptors. The principal repository of histamine in the body is the mast cell. However, the effects of histamine on mast cells, especially those of human origin, have not been fully elucidated. In this study, the expression of histamine receptors in human lung mast cells was evaluated. Moreover, the effects of histamine receptor engagement on both mediator release and chemotaxis were investigated. Mast cells were isolated and purified from human lung tissue. Histamine receptor expression was determined by RT-PCR and q-PCR. Both methods for the detection of histamine receptors were in accordance and human lung mast cells expressed mRNA for histamine H4 and histamine H1 receptors, variably expressed histamine H2 receptor but did not express histamine H3 receptor. The effects of selective histamine receptor agonists on the release of both pre-formed (histamine) and newly-synthesised (cysteinyl-leukotriene, prostaglandin D2) mediators were investigated. None of the agonists tested had any direct effects on mediator release. None of the agonists modulated release stimulated by anti-IgE. Further studies showed that histamine induced migration of mast cells. Chemotaxis appeared to be mediated by the histamine H4 receptor since JNJ28610244 (H4 agonist) was chemotactic for mast cells whereas 2-(2-pyridyl) ethylamine (H1 agonist) was not. Furthermore, the selective histamine H4 receptor antagonist, JNJ7777120, effectively reversed the chemotaxis of mast cells induced by JNJ28610244. Overall, these experiments identify the histamine H4 receptor as chemotactic for human lung mast cells. This mechanism might influence mast cell accumulation in the lung.
Collapse
Affiliation(s)
- Linda J Kay
- Academic Unit of Respiratory Medicine, University of Sheffield, The Medical School (Floor L), Beech Hill Road, Sheffield S10 2RX, UK
| | - S Kim Suvarna
- Department of Histopathology, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK
| | - Peter T Peachell
- Academic Unit of Respiratory Medicine, University of Sheffield, The Medical School (Floor L), Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|
44
|
Development of Human Mast Cells from Hematopoietic Stem Cells within a 3D Collagen Matrix: Effect of Stem Cell Media on Mast Cell Generation. Stem Cells Int 2018; 2018:2136193. [PMID: 30123284 PMCID: PMC6079339 DOI: 10.1155/2018/2136193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/20/2018] [Accepted: 05/27/2018] [Indexed: 12/24/2022] Open
Abstract
Mast cells (MCs) arise from hematopoietic stem cells (HSCs) that mature within vascularized tissues. Fibroblasts and endothelial cells (ECs) play a role in the maturation of HSCs in the tissues. Due to difficulties in isolating MCs from tissues, large numbers of committed MC precursors can be generated in 2D culture systems with the use of differentiation factors. Since MCs are tissue-resident cells, the development of a 3D tissue-engineered model with ancillary cells that more closely mimics the 3D in vivo microenvironment has greater relevance for MC studies. The goals of this study were to show that MCs can be derived from HSCs within a 3D matrix and to determine a media to support MCs, fibroblasts, and ECs. The results show that HSCs within a collagen matrix cultured in StemSpan media with serum added at the last week yielded a greater number of c-kit+ cells and a greater amount of histamine granules compared to other media tested. Media supplemented with serum were necessary for EC survival, while fibroblasts survived irrespective of serum with higher cell yields in StemSpan. This work demonstrates the development of functional MCs within a 3D collagen matrix using a stem cell media that supports fibroblast and ECs.
Collapse
|
45
|
Gaudenzio N, Marichal T, Galli SJ, Reber LL. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Front Immunol 2018; 9:1275. [PMID: 29922295 PMCID: PMC5996070 DOI: 10.3389/fimmu.2018.01275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liège, Belgium
- Faculty of Veterinary Medicine, Liege University, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Immunology and Microbiology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Laurent L. Reber
- Unit of Antibodies in Therapy and Pathology, INSERM Unit 1222, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
46
|
Caslin HL, Kiwanuka KN, Haque TT, Taruselli MT, MacKnight HP, Paranjape A, Ryan JJ. Controlling Mast Cell Activation and Homeostasis: Work Influenced by Bill Paul That Continues Today. Front Immunol 2018; 9:868. [PMID: 29755466 PMCID: PMC5932183 DOI: 10.3389/fimmu.2018.00868] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 01/13/2023] Open
Abstract
Mast cells are tissue resident, innate immune cells with heterogenous phenotypes tuned by cytokines and other microenvironmental stimuli. Playing a protective role in parasitic, bacterial, and viral infections, mast cells are also known for their role in the pathogenesis of allergy, asthma, and autoimmune diseases. Here, we review factors controlling mast cell activation, with a focus on receptor signaling and potential therapies for allergic disease. Specifically, we will discuss our work with FcεRI and FγR signaling, IL-4, IL-10, and TGF-β1 treatment, and Stat5. We conclude with potential therapeutics for allergic disease. Much of these efforts have been influenced by the work of Bill Paul. With many mechanistic targets for mast cell activation and different classes of therapeutics being studied, there is reason to be hopeful for continued clinical progress in this area.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Kasalina N Kiwanuka
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Tamara T Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Marcela T Taruselli
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - H Patrick MacKnight
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Anuya Paranjape
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
47
|
Wu Q, Xiong X, Cao Y, He L, Fei Z. Exemplifying Prediction of Preferred Coupling Partners in Developing a Buchwald–Hartwig Coupling for the Synthesis of a c-Kit Inhibitor. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Quanbing Wu
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Co. Ltd., Changshu, Jiangsu 215537, China
| | - Xin Xiong
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Co. Ltd., Changshu, Jiangsu 215537, China
| | - Yudong Cao
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Co. Ltd., Changshu, Jiangsu 215537, China
| | - Lijuan He
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Co. Ltd., Changshu, Jiangsu 215537, China
| | - Zhongbo Fei
- Chemical and Analytical Development, Suzhou Novartis Pharma Technology Co. Ltd., Changshu, Jiangsu 215537, China
| |
Collapse
|
48
|
Foster BM, Zaidi D, Young TR, Mobley ME, Kerr BA. CD117/c-kit in Cancer Stem Cell-Mediated Progression and Therapeutic Resistance. Biomedicines 2018. [PMID: 29518044 PMCID: PMC5874688 DOI: 10.3390/biomedicines6010031] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metastasis is the primary cause of cancer patient morbidity and mortality, but due to persisting gaps in our knowledge, it remains untreatable. Metastases often occur as patient tumors progress or recur after initial therapy. Tumor recurrence at the primary site may be driven by a cancer stem-like cell or tumor progenitor cell, while recurrence at a secondary site is driven by metastatic cancer stem cells or metastasis-initiating cells. Ongoing efforts are aimed at identifying and characterizing these stem-like cells driving recurrence and metastasis. One potential marker for the cancer stem-like cell subpopulation is CD117/c-kit, a tyrosine kinase receptor associated with cancer progression and normal stem cell maintenance. Further, activation of CD117 by its ligand stem cell factor (SCF; kit ligand) in the progenitor cell niche stimulates several signaling pathways driving proliferation, survival, and migration. This review examines evidence that the SCF/CD117 signaling axis may contribute to the control of cancer progression through the regulation of stemness and resistance to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Brittni M Foster
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Danish Zaidi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Tyler R Young
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Mary E Mobley
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Bethany A Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA.
| |
Collapse
|
49
|
Raghav PK, Singh AK, Gangenahalli G. A change in structural integrity of c-Kit mutant D816V causes constitutive signaling. Mutat Res 2018; 808:28-38. [PMID: 29482074 DOI: 10.1016/j.mrfmmm.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Several signaling pathways, ligands, and genes that regulate proliferative and self-renewal properties of the Hematopoietic Stem Cells (HSCs) have been studied meticulously. One of the signaling pathways that play a crucial role in the process of hematopoiesis is the Stem Cell Factor (SCF) mediated c-Kit pathway. The c-Kit is a Receptor Tyrosine Kinase (RTK), which is expressed in the cells including HSCs. It undergoes dimerization upon binding with its cognate ligand SCF. As a result, phosphorylation of the Juxtamembrane (JM) domain of c-Kit takes place at Tyr568 and Tyr570 residues. These phosphorylated residues become the docking sites for protein tyrosine phosphatases (PTPs) namely SHP-1 and SHP-2, which in turn cause dephosphorylation and negative regulation of the downstream signaling responsible for the cell proliferation. Interestingly, it has been reported that the mutation of c-Kit at D816V makes it independent of SCF stimulation and SHP-1/SHP-2 inhibition, thereby, causing its constitutive activation. The present study was commenced to elucidate the structural behavior of this mutation in the JM and A-loop region of c-Kit using Molecular Dynamics (MD) simulations of the wild-type and mutant c-Kit in unphosphorylated and phosphorylated states. The energy difference computed between the wild type and mutant (D816V) c-Kit, and protein-protein docking and complex analysis revealed the impact of this single residue mutation on the integrity dynamics of c-Kit that makes it independent of SHP-1/SHP-2 negative regulation.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Ajay Kumar Singh
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences (INMAS), Brigadier S. K. Mazumdar Marg, Timarpur, Delhi, 110054, India.
| |
Collapse
|
50
|
Capuzzi SJ, Thornton TE, Liu K, Baker N, Lam WI, O’Banion CP, Muratov EN, Pozefsky D, Tropsha A. Chemotext: A Publicly Available Web Server for Mining Drug-Target-Disease Relationships in PubMed. J Chem Inf Model 2018; 58:212-218. [PMID: 29300482 PMCID: PMC6063520 DOI: 10.1021/acs.jcim.7b00589] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Elucidation of the mechanistic relationships between drugs, their targets, and diseases is at the core of modern drug discovery research. Thousands of studies relevant to the drug-target-disease (DTD) triangle have been published and annotated in the Medline/PubMed database. Mining this database affords rapid identification of all published studies that confirm connections between vertices of this triangle or enable new inferences of such connections. To this end, we describe the development of Chemotext, a publicly available Web server that mines the entire compendium of published literature in PubMed annotated by Medline Subject Heading (MeSH) terms. The goal of Chemotext is to identify all known DTD relationships and infer missing links between vertices of the DTD triangle. As a proof-of-concept, we show that Chemotext could be instrumental in generating new drug repurposing hypotheses or annotating clinical outcomes pathways for known drugs. The Chemotext Web server is freely available at http://chemotext.mml.unc.edu .
Collapse
Affiliation(s)
- Stephen J. Capuzzi
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Thomas E. Thornton
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kammy Liu
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nancy Baker
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Wai In Lam
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Colin P. O’Banion
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene N. Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemical Technology, Odessa National Polytechnic University, Odessa, 65000, Ukraine
| | - Diane Pozefsky
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|