1
|
Elkholy SE, Maher SA, Abd El-Hamid NR, Elsayed HA, Hassan WA, Abdelmaogood AKK, Hussein SM, Jaremko M, Alshawwa SZ, Alharbi HM, Imbaby S. The immunomodulatory effects of probiotics and azithromycin in dextran sodium sulfate-induced ulcerative colitis in rats via TLR4-NF-κB and p38-MAPK pathway. Biomed Pharmacother 2023; 165:115005. [PMID: 37327586 DOI: 10.1016/j.biopha.2023.115005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Ulcerative colitis (UC), a chronic autoimmune disease of the gut with a relapsing and remitting nature, considers a major health-care problem. DSS is a well-studied pharmacologically-induced model for UC. Toll-Like Receptor 4 (TLR4) and its close association with p-38-Mitogen-Activated Protein Kinase (p-38 MAPK) and nuclear factor kappa B (NF-κB) has important regulatory roles in inflammation and developing UC. Probiotics are gaining popularity for their potential in UC therapy. The immunomodulatory and anti-inflammatory role of azithromycin in UC remains a knowledge need. In the present rats-established UC, the therapeutic roles of oral probiotics (60 billion probiotic bacteria per kg per day) and azithromycin (40 mg per kg per day) regimens were evaluated by measuring changes in disease activity index, macroscopic damage index, oxidative stress markers, TLR4, p-38 MAPK, NF-κB signaling pathway in addition to their molecular downstream; tumor necrosis factor alpha (TNFα), interleukin (IL)1β, IL6, IL10 and inducible nitric oxide synthase (iNOS). After individual and combination therapy with probiotics and azithromycin regimens, the histological architecture of the UC improved with restoration of intestinal tissue normal architecture. These findings were consistent with the histopathological score of colon tissues. Each separate regimen lowered the remarkable TLR4, p-38 MAPK, iNOS, NF-κB as well as TNFα, IL1β, IL6 and MDA expressions and elevated the low IL10, glutathione and superoxide dismutase expressions in UC tissues. The combination regimen possesses the most synergistic beneficial effects in UC that, following thorough research, should be incorporated into the therapeutic approach in UC to boost the patients' quality of life.
Collapse
Affiliation(s)
- Shereen E Elkholy
- Clinical Pharmacology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Shymaa Ahmad Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Noura R Abd El-Hamid
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; Genetics unit, Histology and cell biology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba A Elsayed
- Microbiology Department, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Wael Abdou Hassan
- Pathology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Basic Sciences, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah 52726, Saudi Arabia
| | - Asmaa K K Abdelmaogood
- Clinical Pathology Department, Faculty of medicine, Suez Canal University, Ismailia, Egypt
| | - Samar M Hussein
- Physiology Department, Faculty of medicine, Suez Canal University, Ismailia, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samar Imbaby
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
2
|
Parnham MJ, Norris V, Kricker JA, Gudjonsson T, Page CP. Prospects for macrolide therapy of asthma and COPD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:83-110. [PMID: 37524493 DOI: 10.1016/bs.apha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Macrolide compounds, many of which are derived from natural sources, all share a lactone ring structure, but of varying sizes. Their biological activities differ with structure and size but tend to overlap. Marketed macrolide drugs include immunosuppressives and antibiotics. Some of the latter have been shown to exert anti-inflammatory activities, due to direct effects on inflammatory cells and processes when used for respiratory infections. Consequently, azithromycin is included in clinical guidelines for COPD and asthma treatment, though it has the disadvantage, as an antibiotic, of increasing bacterial resistance. COPD and asthma, however, like several chronic inflammatory diseases involving other organs, are driven to a large extent by epithelial barrier dysfunction. Recently, azithromycin was shown to directly enhance epithelial barrier function and a new class of derivatives, barriolides, is under development with the lead indication COPD. It is thus likely that by circumventing antibiosis and acting on a crucial etiological disease process, this type of agent will open up a new, safer approach to COPD and asthma therapy with macrolides.
Collapse
Affiliation(s)
- Michael J Parnham
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany.
| | | | - Jennifer A Kricker
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland; Department of Laboratory Hematology, Landspitali-University Hospital, Reykjavik, Iceland
| | - Clive P Page
- EpiEndo Pharmaceuticals ehf, Reykjavik, Iceland; Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
3
|
The Azithromycin Pro-Drug CSY5669 Boosts Bacterial Killing While Attenuating Lung Inflammation Associated with Pneumonia Caused by Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0229821. [PMID: 35972289 PMCID: PMC9487537 DOI: 10.1128/aac.02298-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a major problem, with methicillin-resistant Staphylococcus aureus (MRSA) being a prototypical example in surgical and community-acquired infections. S. aureus, like many pathogens, is immune evasive and able to multiply within host immune cells. Consequently, compounds that aid host immunity (e.g., by stimulating the host-mediated killing of pathogens) are appealing alternatives or adjuncts to classical antibiotics. Azithromycin is both an antibacterial and an immunomodulatory drug that accumulates in immune cells. We set out to improve the immunomodulatory properties of azithromycin by coupling the immune activators, nitric oxide and acetate, to its core structure. This new compound, designated CSY5669, enhanced the intracellular killing of MRSA by 45% ± 20% in monocyte-derived macrophages and by 55% ± 15% in peripheral blood leukocytes, compared with untreated controls. CSY5669-treated peripheral blood leukocytes produced fewer proinflammatory cytokines, while in both monocyte-derived macrophages and peripheral blood leukocytes, phagocytosis, ROS production, and degranulation were unaffected. In mice with MRSA pneumonia, CSY5669 treatment reduced inflammation, lung pathology and vascular leakage with doses as low as 0.01 μmol/kg p.o. CSY5669 had diminished direct in vitro antibacterial properties compared with azithromycin. Also, CSY5669 was immunomodulatory at concentrations well below 1% of the minimum inhibitory concentration, which would minimize selection for macrolide-resistant bacteria if it were to be used as a host-directed therapy. This study highlights the potential of CSY5669 as a possible adjunctive therapy in pneumonia caused by MRSA, as CSY5669 could enhance bacterial eradication while simultaneously limiting inflammation-associated pathology.
Collapse
|
4
|
Kragol G, Steadman VA, Marušić Ištuk Z, Čikoš A, Bosnar M, Jelić D, Ergović G, Trzun M, Bošnjak B, Bokulić A, Padovan J, Glojnarić I, Eraković Haber V. Unprecedented Epimerization of an Azithromycin Analogue: Synthesis, Structure and Biological Activity of 2'-Dehydroxy-5″-Epi-Azithromycin. Molecules 2022; 27:1034. [PMID: 35164298 PMCID: PMC8838534 DOI: 10.3390/molecules27031034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Certain macrolide antibiotics, azithromycin included, possess anti-inflammatory properties that are considered fundamental for their efficacy in the treatment of chronic inflammatory diseases, such as diffuse pan-bronchiolitis and cystic fibrosis. In this study, we disclose a novel azithromycin analog obtained via Barton-McCombie oxidation during which an unprecedented epimerization on the cladinose sugar occurs. Its structure was thoroughly investigated using NMR spectroscopy and compared to the natural epimer, revealing how the change in configuration of one single stereocenter (out of 16) profoundly diminished the antimicrobial activity through spatial manipulation of ribosome binding epitopes. At the same time, the anti-inflammatory properties of parent macrolide were retained, as demonstrated by inhibition of LPS- and cigarette-smoke-induced pulmonary inflammation. Not surprisingly, the compound has promising developable properties including good oral bioavailability and a half-life that supports once-daily dosing. This novel anti-inflammatory candidate has significant potential to fill the gap in existing anti-inflammatory agents and broaden treatment possibilities.
Collapse
Affiliation(s)
- Goran Kragol
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | | | - Zorica Marušić Ištuk
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Ana Čikoš
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Martina Bosnar
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Dubravko Jelić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Gabrijela Ergović
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Marija Trzun
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Berislav Bošnjak
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Ana Bokulić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Jasna Padovan
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Ines Glojnarić
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| | - Vesna Eraković Haber
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia; (Z.M.I.); (A.Č.); (M.B.); (D.J.); (G.E.); (M.T.); (B.B.); (A.B.); (J.P.); (I.G.); (V.E.H.)
| |
Collapse
|
5
|
Gorelik Y, Freilich S, Gerassy-Vainberg S, Pressman S, Friss C, Blatt A, Focht G, Weisband YL, Greenfeld S, Kariv R, Lederman N, Dotan I, Geva-Zatorsky N, Shen-Orr SS, Kashi Y, Chowers Y. Antibiotic use differentially affects the risk of anti-drug antibody formation during anti-TNFα therapy in inflammatory bowel disease patients: a report from the epi-IIRN. Gut 2022; 71:287-295. [PMID: 34344783 PMCID: PMC8762017 DOI: 10.1136/gutjnl-2021-325185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Anti-drug antibodies (ADA) to anti-tumour necrosis factor (anti-TNF) therapy drive treatment loss of response. An association between intestinal microbial composition and response to anti-TNF therapy was noted. We therefore aimed to assess the implications of antibiotic treatments on ADA formation in patients with inflammatory bowel disease (IBD). DESIGN We analysed data from the epi-IIRN (epidemiology group of the Israeli IBD research nucleus), a nationwide registry of all patients with IBD in Israel. We included all patients treated with anti-TNF who had available ADA levels. Survival analysis with drug use as time varying covariates were used to assess the association between antibiotic use and ADA development. Next, specific pathogen and germ-free C57BL mice were treated with respective antibiotics and challenged with infliximab. ADA were assessed after 14 days. RESULTS Among 1946 eligible patients, with a median follow-up of 651 days from initiation of therapy, 363 had positive ADA. Cox proportional hazard model demonstrated an increased risk of ADA development in patients who used cephalosporins (HR=1.97, 95% CI 1.58 to 2.44), or penicillins with β-lactamase inhibitors (penicillin-BLI, HR=1.4, 95% CI 1.13 to 1.74), whereas a reduced risk was noted in patients treated with macrolides (HR=0.38, 95% CI 0.16 to 0.86) or fluoroquinolones (HR=0.20, 95% CI 0.12 to 0.35). In mice exposed to infliximab, significantly increased ADA production was observed in cephalosporin as compared with macrolide pretreated mice. Germ-free mice produced no ADA. CONCLUSION ADA production is associated with the microbial composition. The risk of ADA development during anti-TNF therapy can possibly be reduced by avoidance of cephalosporins and penicillin-BLIs, or by treatment with fluoroquinolones or macrolides.
Collapse
Affiliation(s)
- Yuri Gorelik
- Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Shay Freilich
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel,Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel
| | - Shiran Gerassy-Vainberg
- Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel,Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Sigal Pressman
- Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Chagit Friss
- Juliet Keidan Institute of Pediatric Gastroenterology Hepatology and Nutrition, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Gili Focht
- The Juliet Keiden Institute of Pediatric Gastroenterology and Nutrition, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Shira Greenfeld
- Medical Informatics, Maccabi Health Services, Tel Aviv, Israel,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Revital Kariv
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel,Gastroenterology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nathan Lederman
- Gastroenterology, Meuhedet Health Services, Jerusalem, Israel
| | - Iris Dotan
- Gastroenterology, Rabin Medical Center, Petah Tikva, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naama Geva-Zatorsky
- Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel,Rappaport Technion Integrated Cancer Center (RTICC), Technion Israel Institute of Technology, Haifa, Israel
| | | | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Yehuda Chowers
- Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | | |
Collapse
|
6
|
Kricker JA, Page CP, Gardarsson FR, Baldursson O, Gudjonsson T, Parnham MJ. Nonantimicrobial Actions of Macrolides: Overview and Perspectives for Future Development. Pharmacol Rev 2021; 73:233-262. [PMID: 34716226 DOI: 10.1124/pharmrev.121.000300] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrolides are among the most widely prescribed broad spectrum antibacterials, particularly for respiratory infections. It is now recognized that these drugs, in particular azithromycin, also exert time-dependent immunomodulatory actions that contribute to their therapeutic benefit in both infectious and other chronic inflammatory diseases. Their increased chronic use in airway inflammation and, more recently, of azithromycin in COVID-19, however, has led to a rise in bacterial resistance. An additional crucial aspect of chronic airway inflammation, such as chronic obstructive pulmonary disease, as well as other inflammatory disorders, is the loss of epithelial barrier protection against pathogens and pollutants. In recent years, azithromycin has been shown with time to enhance the barrier properties of airway epithelial cells, an action that makes an important contribution to its therapeutic efficacy. In this article, we review the background and evidence for various immunomodulatory and time-dependent actions of macrolides on inflammatory processes and on the epithelium and highlight novel nonantibacterial macrolides that are being studied for immunomodulatory and barrier-strengthening properties to circumvent the risk of bacterial resistance that occurs with macrolide antibacterials. We also briefly review the clinical effects of macrolides in respiratory and other inflammatory diseases associated with epithelial injury and propose that the beneficial epithelial effects of nonantibacterial azithromycin derivatives in chronic inflammation, even given prophylactically, are likely to gain increasing attention in the future. SIGNIFICANCE STATEMENT: Based on its immunomodulatory properties and ability to enhance the protective role of the lung epithelium against pathogens, azithromycin has proven superior to other macrolides in treating chronic respiratory inflammation. A nonantibiotic azithromycin derivative is likely to offer prophylactic benefits against inflammation and epithelial damage of differing causes while preserving the use of macrolides as antibiotics.
Collapse
Affiliation(s)
- Jennifer A Kricker
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Clive P Page
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Fridrik Runar Gardarsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Olafur Baldursson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Thorarinn Gudjonsson
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| | - Michael J Parnham
- EpiEndo Pharmaceuticals, Reykjavik, Iceland (J.A.K., C.P.P., F.R.G., O.B., T.G., M.J.P.); Stem Cell Research Unit, Biomedical Center, University of Iceland, Reykjavik, Iceland (J.A.K., T.G.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); Department of Respiratory Medicine (O.B.), Department of Laboratory Hematology (T.G.), Landspitali-University Hospital, Reykjavik, Iceland; Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt am Main, Germany (M.J.P.)
| |
Collapse
|
7
|
El-Shiekh RA, Hussein D, Atta AH, Mounier SM, Mousa Shiekh MR, Abdel-Sattar E. Anti-inflammatory activity of Jasminum grandiflorum L. subsp. floribundum (Oleaceae) in inflammatory bowel disease and arthritis models. Biomed Pharmacother 2021; 140:111770. [PMID: 34119929 DOI: 10.1016/j.biopha.2021.111770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023] Open
Abstract
Our study has renewed interest in the genus Jasmine for the treatment of chronic inflammatory conditions. Aerial parts of Jasminum grandiflorum L. subsp. floribundum total methanolic extract (JTME) were tested for its therapeutic potential as an anti-inflammatory agent using two experimental models in rats; acetic acid (AA) induced ulcerative colitis and adjuvant induced arthritis. The administration of JTME showed anti-inflammatory activity in a dose dependent manner. JTME, 400 mg/kg was like prednisolone, 2 mg/kg p.o. (the reference drug), since it improved the tissues of the colon clinically, macro and microscopically (ulcer index), and histopathological (scoring). It reduced the intestinal expression of pro-inflammatory cytokines in the colonic mucosa; IFNγ, TNFα, IL-6, IL-1, and MPO. It also preserved tight junctions in intestinal epithelial cells by counter-regulating claudin-5 and occludin levels additionally, it had a potent antioxidant activity. The expressions of NF-κB p65, TNF-α and caspase-3 in rats administered AA (2 mL of 4% solution, once, intrarectally) were significantly increased, where the lowest expression was scored in JTME, 400 mg/kg group. In the adjuvant induced model of rheumatoid arthritis, the TJME, 400 mg/kg reduced the levels of cathepsin D, iNOS, NO, RF, CRP, CPP and elevated the total antioxidant capacity of tissues. Additionally, it maintained bones without histopathological lesions, articular cartilage damage, and inflammation of the synovial membrane and periarticular tissues, in contrast to arthritic rats. Finally, we report a new detailed study to validate the medicinal importance of Jasminum for the chronic inflammatory disorders with immune dysfunction with anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini St, Cairo 11562, Egypt.
| | - Dorria Hussein
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Attia H Atta
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Samar M Mounier
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | | | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini St, Cairo 11562, Egypt.
| |
Collapse
|
8
|
Yadav N, Thakur AK, Shekhar N, Ayushi. Potential of Antibiotics for the Treatment and Management of Parkinson Disease: An Overview. Curr Drug Res Rev 2021; 13:166-171. [PMID: 33719951 DOI: 10.2174/2589977513666210315095133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
Evidences have emerged over the last 2 decades to ascertain the proof of concepts viz. mitochondrial dysfunction, inflammation-derived oxidative damage and cytokine-induced toxicity that play a significant role in Parkinson's disease (PD). The available pharmacotherapies for PD are mainly symptomatic and typically indications of L-DOPA to restrain dopamine deficiency and their consequences. In the 21st century, the role of the antibiotics has emerged at the forefront of medicine in health and human illness. There are several experimental and pre-clinical evidences that supported the potential use of antibiotic as neuroprotective agent. The astonishing effects of antibiotics and their neuroprotective properties against neurodegeneration and neuro-inflammation would be phenomenal for the development of effective therapy against PD. Antibiotics are also testified as useful not only to prevent the formation of alpha-synuclein but also act on mitochondrial dysfunction and neuro-inflammation. Thus, the possible therapy with antibiotics in PD would impact both the pathways leading to neuronal cell death in substantia nigra and pars compacta in midbrain. Moreover, the antibiotic based pharmacotherapy will open a scientific research passageway to add more to the evidence based and rational use of antibiotics for the treatment and management of PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Narayan Yadav
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Ajit Kumar Thakur
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Nikhila Shekhar
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| | - Ayushi
- Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi-110 017. India
| |
Collapse
|
9
|
Lloyd K, Papoutsopoulou S, Smith E, Stegmaier P, Bergey F, Morris L, Kittner M, England H, Spiller D, White MHR, Duckworth CA, Campbell BJ, Poroikov V, Martins Dos Santos VAP, Kel A, Muller W, Pritchard DM, Probert C, Burkitt MD. Using systems medicine to identify a therapeutic agent with potential for repurposing in inflammatory bowel disease. Dis Model Mech 2020; 13:dmm044040. [PMID: 32958515 PMCID: PMC7710021 DOI: 10.1242/dmm.044040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) cause significant morbidity and mortality. Aberrant NF-κB signalling is strongly associated with these conditions, and several established drugs influence the NF-κB signalling network to exert their effect. This study aimed to identify drugs that alter NF-κB signalling and could be repositioned for use in IBD. The SysmedIBD Consortium established a novel drug-repurposing pipeline based on a combination of in silico drug discovery and biological assays targeted at demonstrating an impact on NF-κB signalling, and a murine model of IBD. The drug discovery algorithm identified several drugs already established in IBD, including corticosteroids. The highest-ranked drug was the macrolide antibiotic clarithromycin, which has previously been reported to have anti-inflammatory effects in aseptic conditions. The effects of clarithromycin effects were validated in several experiments: it influenced NF-κB-mediated transcription in murine peritoneal macrophages and intestinal enteroids; it suppressed NF-κB protein shuttling in murine reporter enteroids; it suppressed NF-κB (p65) DNA binding in the small intestine of mice exposed to lipopolysaccharide; and it reduced the severity of dextran sulphate sodium-induced colitis in C57BL/6 mice. Clarithromycin also suppressed NF-κB (p65) nuclear translocation in human intestinal enteroids. These findings demonstrate that in silico drug repositioning algorithms can viably be allied to laboratory validation assays in the context of IBD, and that further clinical assessment of clarithromycin in the management of IBD is required.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Katie Lloyd
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | - Stamatia Papoutsopoulou
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Emily Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | | | | | | | | | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Dave Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Mike H R White
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | - Barry J Campbell
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | | | | | | | - Werner Muller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | - Chris Probert
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | - Michael D Burkitt
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
10
|
Erythromycin has therapeutic efficacy on muscle fatigue acting specifically on orosomucoid to increase muscle bioenergetics and physiological parameters of endurance. Pharmacol Res 2020; 161:105118. [DOI: 10.1016/j.phrs.2020.105118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023]
|
11
|
Jiang YN, Muk T, Stensballe A, Nguyen DN, Sangild PT, Jiang PP. Early Protein Markers of Necrotizing Enterocolitis in Plasma of Preterm Pigs Exposed to Antibiotics. Front Immunol 2020; 11:565862. [PMID: 33133078 PMCID: PMC7578346 DOI: 10.3389/fimmu.2020.565862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Most hospitalized preterm infants receive antibiotics in the first days of life to prevent or treat infections. Short-term, early antibiotic treatment may also prevent the microbiota-dependent gut inflammatory disorder, necrotizing enterocolitis (NEC). It remains a challenge to predict NEC, and a few early blood diagnostic markers exist. Using preterm pigs as model for infants, blood parameters and plasma proteins affected by early progression of NEC were profiled in preterm pigs subjected to oral, systemic, or no antibiotics after preterm birth. Methods: Preterm newborn pigs were treated with saline (CON) or antibiotics (ampicillin, gentamicin, and metronidazole) given enterally (ENT) or parenterally (PAR), and fed formula for 4 days to induce variable microbiome-dependent sensitivities to NEC. The gut was collected for macroscopic scoring of NEC lesions and blood for hematology, blood biochemistry, and LC/MS-based plasma proteomics. Statistical modeling was applied to detect plasma proteins affected by NEC and/or antibiotics. Results: Analyzed across different antibiotic regimens, NEC progression was associated with altered blood parameters and abundance of 89 plasma proteins that were functionally involved in extracellular membrane destruction, lipid metabolism, coagulopathy, and acute phase response. Large NEC-related changes were observed in abundance of RBP4, FGA, AHSG, C5, PTPRG, and A-1-antichymotrypsin 2, indicating potential serving as early markers of NEC. Conversely, antibiotic treatment, independent of NEC, affected only 4 proteins with main differences found between ENT and CON pigs. Conclusion: Early postnatal development of NEC lesions is associated with marked plasma protein changes that may be used for early NEC diagnosis.
Collapse
Affiliation(s)
- Yan-Nan Jiang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Tik Muk
- Department of Veterinary and Animal Sciences, Section for Comparative Paediatrics and Nutrition, University of Copenhagen, Frederiksberg, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Duc Ninh Nguyen
- Department of Veterinary and Animal Sciences, Section for Comparative Paediatrics and Nutrition, University of Copenhagen, Frederiksberg, Denmark
| | - Per Torp Sangild
- Department of Veterinary and Animal Sciences, Section for Comparative Paediatrics and Nutrition, University of Copenhagen, Frederiksberg, Denmark.,Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
| | - Ping-Ping Jiang
- School of Public Health, Sun Yat-sen University, Guangzhou, China.,Department of Veterinary and Animal Sciences, Section for Comparative Paediatrics and Nutrition, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
12
|
Andrada AC, Azuma MM, Furusho H, Hirai K, Xu S, White RR, Sasaki H. Immunomodulation Mediated by Azithromycin in Experimental Periapical Inflammation. J Endod 2020; 46:1648-1654. [PMID: 32763436 DOI: 10.1016/j.joen.2020.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The purpose of the present study was to compare the immunomodulatory effect of azithromycin (AZM), ampicillin (AMP), amoxicillin (AMX), and clindamycin (CLI) in vitro and AZM on preexisting periapical lesions compared with AMP. METHODS The susceptibility of 4 common human endodontic pathogens (Parvimonas micra, Streptococcus intermedius, Prevotella intermedia, and Fusobacterium nucleatum) to AZM, AMP, AMX, and CLI was confirmed by agar disk diffusion assay. Preexisting periapical lesions in C57BL/6J mice were treated with AZM, AMP, or phosphate-buffered saline (PBS). Periapical bone healing and the pattern of inflammatory cell infiltration were evaluated after a 10-day treatment by micro-computed tomographic and histology, respectively. Besides, the effect of antibiotics in pathogen-stimulated nuclear factor kappa B activation and the production of interleukin 1 alpha and tumor necrosis factor alpha was assessed in vitro by luciferase assay and enzyme-linked immunosorbent assay. RESULTS All examined endodontic pathogens were susceptible to AZM, AMP, AMX, and CLI. AZM significantly attenuated periapical bone loss versus PBS. PBS resulted in widely diffused infiltration of mixed inflammatory cells. By contrast, AZM brought about localized infiltration of neutrophils and M2 macrophages and advanced fibrosis. Although the effect of AMP on bone was uncertain, inflammatory cell infiltration was considerably milder than PBS. However, most macrophages observed seemed to be M1 macrophages. AZM suppressed pathogen-stimulated nuclear factor kappa B activation and cytokine production, whereas AMP, AMX, and CLI reduced only cytokine production moderately. CONCLUSIONS This study showed that AZM led to the resolution of preexisting experimental periapical inflammation. Our data provide a perspective on host response in antibiotic selection for endodontic treatment. However, well-designed clinical trials are necessary to better elucidate the benefits of AZM as an adjunctive therapy for endodontic treatment when antibiotic therapy is recommended. Although both AZM and AMP were effective on preexisting periapical lesions, AZM led to advanced wound healing, probably depending on its immunomodulatory effect.
Collapse
Affiliation(s)
- Ana Cristina Andrada
- Division of Endodontics, Department of Essentials and Simulation, University of Detroit Mercy School of Dentistry, Detroit, Michigan; Division of Endodontics, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Mariane Maffei Azuma
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University, Hiroshima, Japan
| | - Kimito Hirai
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109; Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts; Department of Periodontics and Endodontics, Okayama University School of Dentistry, Kitaku, Okayama, Japan
| | - Shuang Xu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts; Functional Genomics Laboratory, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robert R White
- Division of Endodontics, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109; Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts; Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts.
| |
Collapse
|
13
|
Fujikawa H, Kawakami T, Nakashima R, Nasu A, Kamei S, Nohara H, Eto Y, Ueno-Shuto K, Takeo T, Nakagata N, Suico MA, Kai H, Shuto T. Azithromycin Inhibits Constitutive Airway Epithelial Sodium Channel Activation in Vitro and Modulates Downstream Pathogenesis in Vivo. Biol Pharm Bull 2020; 43:725-730. [PMID: 32009028 DOI: 10.1248/bpb.b19-01091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial sodium channel (ENaC) is an amiloride-sensitive sodium ion channel that is expressed in epithelial tissues. ENaC overexpression and/or hyperactivation in airway epithelial cells cause sodium over-absorption and dysregulated ciliary movement for mucus clearance; however, the agents that suppress constitutive airway ENaC activation are yet to be clinically available. Here, we focused on macrolides, which are widely used antibiotics that have many potential immunomodulatory effects. We examined whether macrolides could modulate constitutive ENaC activity and downstream events that typify cystic fibrosis (CF) and chronic obstructive pulmonary diseases (COPD) in in vitro and in vivo models of ENaC overexpression. Treatment of ENaC-overexpressing human bronchial epithelial cells (β/γENaC-16HBE14o- cells) with three macrolides (erythromycin, clarithromycin, azithromycin) confirmed dose-dependent suppression of ENaC function. For in vivo studies, mice harboring airway specific βENaC overexpression (C57BL/6J-βENaC-transgenic mice) were treated orally with azithromycin, a well-established antimicrobial agent that has been widely prescribed. Azithromycin treatment modulated pulmonary mechanics, emphysematous phenotype and pulmonary dysfunction. Notably, a lower dose (3 mg kg-1) of azithromycin significantly increased forced expiratory volume in 0.1 s (FEV0.1), an inverse indicator of bronchoconstriction. Although not statistically significant, improvement of pulmonary obstructive parameters such as emphysema and lung dysfunction (FEV0.1%) was observed. Our results demonstrate that macrolides directly attenuate constitutive ENaC function in vitro and may be promising for the treatment of obstructive lung diseases with defective mucociliary clearance, possibly by targeting ENaC hyperactivation.
Collapse
Affiliation(s)
- Haruka Fujikawa
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program," Kumamoto University
| | - Taise Kawakami
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Ryunosuke Nakashima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Aoi Nasu
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Shunsuke Kamei
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program," Kumamoto University.,Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University
| | - Hirofumi Nohara
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program," Kumamoto University
| | - Yuka Eto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Keiko Ueno-Shuto
- Laboratory of Pharmacology, Division of Life Science, Faculty of Pharmaceutical Sciences, Sojo University
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
14
|
Amantea D, Petrelli F, Greco R, Tassorelli C, Corasaniti MT, Tonin P, Bagetta G. Azithromycin Affords Neuroprotection in Rat Undergone Transient Focal Cerebral Ischemia. Front Neurosci 2019; 13:1256. [PMID: 31849581 PMCID: PMC6902046 DOI: 10.3389/fnins.2019.01256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 01/04/2023] Open
Abstract
Repurposing existing drugs represents a promising approach for successful development of acute stroke therapies. In this context, the macrolide antibiotic azithromycin has been shown to exert neuroprotection in mice due to its immunomodulatory properties. Here, we have demonstrated that acute administration of a single dose of azithromycin upon reperfusion produces a dose-dependent (ED50 = 1.40 mg/kg; 95% CI = 0.48-4.03) reduction of ischemic brain damage measured 22 h after transient (2 h) middle cerebral artery occlusion (MCAo) in adult male rats. Neuroprotection by azithromycin (150 mg/kg, i.p., upon reperfusion) was associated with a significant elevation of signal transducer and activator of transcription 3 (STAT3) phosphorylation in astrocytes and neurons of the peri-ischemic motor cortex as detected after 2 and 22 h of reperfusion. By contrast, in the core region of the striatum, drug administration resulted in a dramatic elevation of STAT3 phosphorylation only after 22 h of reperfusion, being the signal mainly ascribed to infiltrating leukocytes displaying an M2 phenotype. These early molecular events were associated with a long-lasting neuroprotection, since a single dose of azithromycin reduced brain infarct damage and neurological deficit measured up to 7 days of reperfusion. These data, together with the evidence that azithromycin was effective in a clinically relevant time-window (i.e., when administered after 4.5 h of MCAo), provide robust preclinical evidence to support the importance of developing azithromycin as an effective acute therapy for ischemic stroke.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesco Petrelli
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Rosaria Greco
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Tassorelli
- Headache Science Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
15
|
Silva I, Pinto R, Mateus V. Preclinical Study in Vivo for New Pharmacological Approaches in Inflammatory Bowel Disease: A Systematic Review of Chronic Model of TNBS-Induced Colitis. J Clin Med 2019; 8:jcm8101574. [PMID: 31581545 PMCID: PMC6832474 DOI: 10.3390/jcm8101574] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
The preclinical studies in vivo provide means of characterizing physiologic interactions when our understanding of such processes is insufficient to allow replacement with in vitro systems and play a pivotal role in the development of a novel therapeutic drug cure. Chemically induced colitis models are relatively easy and rapid to develop. The 2,4,6-trinitrobenzenesulfonic acid (TNBS) colitis model is one of the main models in the experimental studies of inflammatory bowel disease (IBD) since inflammation induced by TNBS mimics several features of Crohn’s disease. This review aims to summarize the existing literature and discuss different protocols for the induction of chronic model of TNBS-induced colitis. We searched MEDLINE via Pubmed platform for studies published through December 2018, using MeSH terms (Crohn Disease.kw) OR (Inflammatory Bowel Diseases.kw) OR (Colitis, Ulcerative.kw) AND (trinitrobenzenesulfonic acid.kw) AND (disease models, animal.kw) AND (mice.all). The inclusion criteria were original articles, preclinical studies in vivo using mice, chronic model of colitis, and TNBS as the inducer of colitis and articles published in English. Chronic TNBS-induced colitis is made with multiple TNBS intrarectal administrations in an average dose of 1.2 mg using a volume lower than 150 μL in 50% ethanol. The strains mostly used are Balb/c and C57BL/6 with 5–6 weeks. To characterize the preclinical model the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers like interferon (IFN)-γ, myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of the inflammation. Experimental chronic colitis is induced by multiple rectal instillations of TNBS increasing doses in ethanol using Balb/c and C57BL/6 mice.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisboa, Portugal;
- Correspondence: ; Tel.: +351-218-980-400; Fax: +351-218-980-460
| |
Collapse
|
16
|
Anderson SJ, Lockhart JS, Estaki M, Quin C, Hirota SA, Alston L, Buret AG, Hancock TM, Petri B, Gibson DL, Morck DW. Effects of Azithromycin on Behavior, Pathologic Signs, and Changes in Cytokines, Chemokines, and Neutrophil Migration in C57BL/6 Mice Exposed to Dextran Sulfate Sodium. Comp Med 2019; 69:4-15. [PMID: 30545428 PMCID: PMC6382047 DOI: 10.30802/aalas-cm-18-000001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
Abstract
Here we characterized the murine dextran sulfate sodium (DSS) model of acute colitis. Specifically, we evaluated azithromycin and metronidazole treatment regimens to assess their effects on animal wellbeing, pathologic changes, barrier function, cytokine and chemokine profiles, and neutrophil migration in colon tissue. Azithromycin treatment significantly reduced the severity of colitis, as assessed through body weight change, water consumption, macroscopic lesions, and animal behaviors (activity level, climbing, and grooming), but did not alter food consumption or feeding behavior. Mucosal barrier function (evaluated by using FITC-labeled dextran) was decreased after DSS exposure; azithromycin did not significantly alter barrier function in mice with colitis, whereas metronidazole exacerbated the colitis-related deficit in barrier function. In addition, metronidazole appeared to exacerbate disease as assessed through water consumption and animal behaviors (overall activity, climbing, grooming, and drinking) but had no effect on weight loss, macroscopic lesions, or eating behavior. Pathologic changes were typical for DSS treatment. Antibiotic treatment resulted in reduced levels of proinflammatory cytokines and chemokines and decreased neutrophil adhesion and emigration in DSS-exposed mice. The results highlight the importance of clinical and behavioral assessments in addition to laboratory evaluation as tools to evaluate animal welfare and therapeutic efficacy in disease models. Data from this study suggest that azithromycin may convey some benefits in the mouse DSS colitis model through modulation of the immune response, including neutrophil migration into tissues, whereas metronidazole may exacerbate colitis.
Collapse
Affiliation(s)
- Stefanie J Anderson
- Animal Health Unit, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Joey S Lockhart
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Mehrbod Estaki
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Candice Quin
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Simon A Hirota
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Laurie Alston
- Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Trina M Hancock
- Animal Health Unit, University of Calgary, Calgary, Alberta, Canada
| | - Björn Petri
- Department of Microbiology, Immunology, and Infectious Diseases, Department of Physiology and Pharmacology, Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Douglas W Morck
- Animal Health Unit, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada;,
| |
Collapse
|
17
|
Zhang B, Kopper TJ, Liu X, Cui Z, Van Lanen SG, Gensel JC. Macrolide derivatives reduce proinflammatory macrophage activation and macrophage-mediated neurotoxicity. CNS Neurosci Ther 2019; 25:591-600. [PMID: 30677254 PMCID: PMC6488883 DOI: 10.1111/cns.13092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction Azithromycin (AZM) and other macrolide antibiotics are applied as immunomodulatory treatments for CNS disorders. The immunomodulatory and antibiotic properties of AZM are purportedly independent. Aims To improve the efficacy and reduce antibiotic resistance risk of AZM‐based therapies, we evaluated the immunomodulatory and neuroprotective properties of novel AZM derivatives. We semisynthetically prepared derivatives by altering sugar moieties established as important for inhibiting bacterial protein synthesis. Bone marrow‐derived macrophages (BMDMs) were stimulated in vitro with proinflammatory, M1, stimuli (LPS + INF‐gamma) with and without derivative costimulation. Pro‐ and anti‐inflammatory cytokine production, IL‐12 and IL‐10, respectively, was quantified using ELISA. Neuron culture treatment with BMDM supernatant was used to assess derivative neuroprotective potential. Results Azithromycin and some derivatives increased IL‐10 and reduced IL‐12 production of M1 macrophages. IL‐10/IL‐12 cytokine shifts closely correlated with the ability of AZM and derivatives to mitigate macrophage neurotoxicity. Conclusions Sugar moieties that bind bacterial ribosomal complexes can be modified in a manner that retains AZM immunomodulation and neuroprotection. Since the effects of BMDMs in vitro are predictive of CNS macrophage responses, our results open new therapeutic avenues for managing maladaptive CNS inflammation and support utilization of IL‐10/12 cytokine profiles as indicators of macrophage polarization and neurotoxicity.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Timothy J Kopper
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Xiaodong Liu
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Zheng Cui
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Steven G Van Lanen
- Division of Bioorganic, Medicinal, & Computational Chemistry, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Department of Physiology, College of Medicine, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
18
|
Azithromycin Promotes the Osteogenic Differentiation of Human Periodontal Ligament Stem Cells after Stimulation with TNF- α. Stem Cells Int 2018; 2018:7961962. [PMID: 30515223 PMCID: PMC6234456 DOI: 10.1155/2018/7961962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/18/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background and Objective This study investigated the effects and underlying mechanisms of azithromycin (AZM) treatment on the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) after their stimulation with TNF-α in vitro. Methods. PDLSCs were isolated from periodontal ligaments from extracted teeth, and MTS assay was used to evaluate whether AZM and TNF-α had toxic effects on PDLSCs viability and proliferation. After stimulating PDLSCs with TNF-α and AZM, we analyzed alkaline phosphatase staining, alkaline phosphatase activity, and alizarin red staining to detect osteogenic differentiation. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis was performed to detect the mRNA expression of osteogenic-related genes, including RUNX2, OCN, and BSP. Western blotting was used to measure the NF-κB signaling pathway proteins p65, phosphorylated p65, IκB-α, phosphorylated IκB-α, and β-catenin as well as the apoptosis-related proteins caspase-8 and caspase-3. Annexin V assay was used to detect PDLSCs apoptosis. Results TNF-α stimulation of PDLSCs decreased alkaline phosphatase and alizarin red staining, alkaline phosphatase activity, and mRNA expression of RUNX2, OCN, and BSP in osteogenic-conditioned medium. AZM enhanced the osteogenic differentiation of PDLSCs that were stimulated with TNF-α. Western blot analysis showed that β-catenin, phosphorated p65, and phosphorylated IκB-α protein expression decreased in PDLSCs treated with AZM. In addition, pretreatment of PDLSCs with AZM (10 μg/ml, 20 μg/ml) prevented TNF-α-induced apoptosis by decreasing caspase-8 and caspase-3 expression. Conclusions Our results showed that AZM promotes PDLSCs osteogenic differentiation in an inflammatory microenvironment by inhibiting the WNT and NF-κB signaling pathways and by suppressing TNF-α-induced apoptosis. This suggests that AZM has potential as a clinical therapeutic for periodontitis.
Collapse
|
19
|
Ballow M, Paris K, de la Morena M. Should Antibiotic Prophylaxis Be Routinely Used in Patients with Antibody-Mediated Primary Immunodeficiency? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:421-426. [DOI: 10.1016/j.jaip.2017.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023]
|
20
|
Cai Y, Gu H, Kenney T. Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization. MICROBIOME 2017; 5:110. [PMID: 28859695 PMCID: PMC5579944 DOI: 10.1186/s40168-017-0323-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/02/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Learning the structure of microbial communities is critical in understanding the different community structures and functions of microbes in distinct individuals. We view microbial communities as consisting of many subcommunities which are formed by certain groups of microbes functionally dependent on each other. The focus of this paper is on methods for extracting the subcommunities from the data, in particular Non-Negative Matrix Factorization (NMF). Our methods can be applied to both OTU data and functional metagenomic data. We apply the existing unsupervised NMF method and also develop a new supervised NMF method for extracting interpretable information from classification problems. RESULTS The relevance of the subcommunities identified by NMF is demonstrated by their excellent performance for classification. Through three data examples, we demonstrate how to interpret the features identified by NMF to draw meaningful biological conclusions and discover hitherto unidentified patterns in the data. Comparing whole metagenomes of various mammals, (Muegge et al., Science 332:970-974, 2011), the biosynthesis of macrolides pathway is found in hindgut-fermenting herbivores, but not carnivores. This is consistent with results in veterinary science that macrolides should not be given to non-ruminant herbivores. For time series microbiome data from various body sites (Caporaso et al., Genome Biol 12:50, 2011), a shift in the microbial communities is identified for one individual. The shift occurs at around the same time in the tongue and gut microbiomes, indicating that the shift is a genuine biological trait, rather than an artefact of the method. For whole metagenome data from IBD patients and healthy controls (Qin et al., Nature 464:59-65, 2010), we identify differences in a number of pathways (some known, others new). CONCLUSIONS NMF is a powerful tool for identifying the key features of microbial communities. These identified features can not only be used to perform difficult classification problems with a high degree of accuracy, they are also very interpretable and can lead to important biological insights into the structure of the communities. In addition, NMF is a dimension-reduction method (similar to PCA) in that it reduces the extremely complex microbial data into a low-dimensional representation, allowing a number of analyses to be performed more easily-for example, searching for temporal patterns in the microbiome. When we are interested in the differences between the structures of two groups of communities, supervised NMF provides a better way to do this, while retaining all the advantages of NMF-e.g. interpretability and a simple biological intuition.
Collapse
Affiliation(s)
- Yun Cai
- Department of Mathematics and Statistics, Dalhousie, Halifax, Canada
| | - Hong Gu
- Department of Mathematics and Statistics, Dalhousie, Halifax, Canada
| | - Toby Kenney
- Department of Mathematics and Statistics, Dalhousie, Halifax, Canada.
| |
Collapse
|
21
|
Gensel JC, Kopper TJ, Zhang B, Orr MB, Bailey WM. Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci Rep 2017; 7:40144. [PMID: 28057928 PMCID: PMC5216345 DOI: 10.1038/srep40144] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/01/2016] [Indexed: 11/25/2022] Open
Abstract
Spinal cord injury (SCI) triggers a heterogeneous macrophage response that when experimentally polarized toward alternative forms of activation (M2 macrophages) promotes tissue and functional recovery. There are limited pharmacological therapies that can drive this reparative inflammatory state. In the current study, we used in vitro systems to comprehensively defined markers of macrophages with known pathological (M1) and reparative (M2) properties in SCI. We then used these markers to objectively define the macrophage activation states after SCI in response to delayed azithromycin treatment. Mice were subjected to moderate-severe thoracic contusion SCI. Azithromycin or vehicle was administered beginning 30 minutes post-SCI and then daily for 3 or 7 days post injury (dpi). We detected a dose-dependent polarization toward purportedly protective M2 macrophages with daily AZM treatment. Specifically, AZM doses of 10, 40, or 160 mg/kg decreased M1 macrophage gene expression at 3 dpi while the lowest (10 mg/kg) and highest (160 mg/kg) doses increased M2 macrophage gene expression at 7 dpi. Azithromycin has documented immunomodulatory properties and is commonly prescribed to treat infections in SCI individuals. This work demonstrates the utility of objective, comprehensive macrophage gene profiling for evaluating immunomodulatory SCI therapies and highlights azithromycin as a promising agent for SCI treatment.
Collapse
Affiliation(s)
- John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine University of Kentucky Lexington, Kentucky 40536
| | - Timothy J Kopper
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine University of Kentucky Lexington, Kentucky 40536
| | - Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine University of Kentucky Lexington, Kentucky 40536
| | - Michael B Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine University of Kentucky Lexington, Kentucky 40536
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine University of Kentucky Lexington, Kentucky 40536
| |
Collapse
|
22
|
Qiu S, Zhong X. Macrolides: a promising pharmacologic therapy for chronic obstructive pulmonary disease. Ther Adv Respir Dis 2016; 11:147-155. [PMID: 28030992 PMCID: PMC5933650 DOI: 10.1177/1753465816682677] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic inflammation plays a central role in the pathogenesis of chronic
obstructive pulmonary disease (COPD). However, there are no effective
anti-inflammatory pharmacologic therapies available for COPD so far. Recent
evidence suggests that an immunologic mechanism has a role in the pathogenesis
of COPD. Macrolides possess anti-inflammatory and immune-modulating effects may
be helpful in the treatment of COPD. Several clinical studies have shown that
long-term use of macrolides reduces the frequency of COPD exacerbations.
However, the subgroups that most effectively respond to long-term treatment of
macrolides still need to be determined. The potential adverse events to
individuals and the microbial resistance in community populations raises great
concern on the long-term use of macrolides. Thus, novel macrolides have
anti-inflammatory and immuno-modulating effects, but without antibiotic effects,
and are promising as an anti-inflammatory agent for the treatment of COPD. In
addition, the combination of macrolides and other anti-inflammatory
pharmacologic agents may be a new strategy for the treatment of COPD.
Collapse
Affiliation(s)
- Shilin Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Shuangyong road, Nanning, Guangxi 530021, China
| |
Collapse
|
23
|
Past, present and future of macrolide therapy for chronic rhinosinusitis in Japan. Auris Nasus Larynx 2015; 43:131-6. [PMID: 26441370 DOI: 10.1016/j.anl.2015.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
In 1984, the effectiveness of low-dose, long-term erythromycin treatment (macrolide therapy) for diffuse panbronchiolitis (DPB) was first reported in Japan. The 5-year survival rate for DPB improved from 62.9 to 91.4% after implementation of macrolide therapy. The usefulness of this treatment has since been demonstrated in patients with other chronic airway diseases, such as chronic bronchitis, cystic fibrosis, bronchiectasis, bronchial asthma, and chronic rhinosinusitis (CRS). The new 14-membered macrolides clarithromycin and roxithromycin and the 15-membered macrolide azithromycin are also effective for treating these inflammatory diseases. The mechanism of action of the 14- and 15-membered macrolides may involve anti-inflammatory rather than anti-bacterial activities. Macrolide therapy is now widely used for the treatment of CRS in Japan; it is particularly effective for treating neutrophil-associated CRS and is useful for suppressing mucus hypersecretion. However, macrolide therapy is not effective for eosinophil-predominant CRS, which is characterized by serum and tissue eosinophilia, high serum IgE levels, multiple polyposis, and bronchial asthma. Recent reports have described the clinical efficacy of macrolides in treating other inflammatory diseases and new biological activities (e.g., anti-viral). New macrolide derivatives exhibiting anti-inflammatory but not anti-bacterial activity thus have therapeutic potential as immunomodulatory drugs. The history, current state, and future perspectives of macrolide therapy for treating CRS in Japan will be discussed in this review.
Collapse
|
24
|
Microbiological assay for the analysis of certain macrolides in pharmaceutical dosage forms. Int J Pharm 2015; 491:285-91. [DOI: 10.1016/j.ijpharm.2015.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
|
25
|
Sugawara A, Maita N, Gouda H, Yamamoto T, Hirose T, Kimura S, Saito Y, Nakano H, Kasai T, Nakano H, Shiomi K, Hirono S, Watanabe T, Taniguchi H, O̅mura S, Sunazuka T. Creation of Customized Bioactivity within a 14-Membered Macrolide Scaffold: Design, Synthesis, and Biological Evaluation Using a Family-18 Chitinase. J Med Chem 2015; 58:4984-97. [DOI: 10.1021/acs.jmedchem.5b00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Akihiro Sugawara
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobuo Maita
- Institute
for Enzyme Research, University of Tokushima, 3-18-15 Kuramotocho, Tokushima City, Tokushima, 770-8503, Japan
| | - Hiroaki Gouda
- School
of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsuyoshi Yamamoto
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Saori Kimura
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshifumi Saito
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hayato Nakano
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takako Kasai
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirofumi Nakano
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuro Shiomi
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School
of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takeshi Watanabe
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | - Hisaaki Taniguchi
- Institute
for Enzyme Research, University of Tokushima, 3-18-15 Kuramotocho, Tokushima City, Tokushima, 770-8503, Japan
| | - Satoshi O̅mura
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
26
|
The design of novel classes of macrolides for neutrophil-dominated inflammatory diseases. Future Med Chem 2015; 6:657-74. [PMID: 24895894 DOI: 10.4155/fmc.14.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neutrophil-dominated inflammatory diseases, like chronic obstructive pulmonary disease, cystic fibrosis, bronchiectasis, bronchiolitis obliteras syndrome and non-eosinophilic asthma, present a significant medical problem lacking adequate therapy. Macrolide antibiotics have been reported to be effective in the treatment of the aforementioned diseases, for reasons unrelated to their antibacterial action. This has resulted in research activities aimed at gaining a better understanding of the immunomodulatory actions of macrolides and the synthesis of various novel anti-inflammatory macrolides without antimicrobial activity. Despite the difficult chemistry and lack of an extensive knowledge for their mechanism of action, several interesting molecules from this class, including potential clinical candidates, are on the horizon.
Collapse
|
27
|
Qiu SL, Zhong XN. Current status and inspiration on macrolides in the treatment of chronic obstructive pulmonary disease. J Transl Int Med 2015; 3:85-88. [PMID: 27847894 PMCID: PMC4936464 DOI: 10.1515/jtim-2015-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Xiao-ning Zhong
- Address for Correspondence: Xiao-ning Zhong, Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China. E-mail:
| |
Collapse
|
28
|
Balloy V, Deveaux A, Lebeaux D, Tabary O, le Rouzic P, Ghigo JM, Busson PF, Boëlle PY, Guez JG, Hahn U, Clement A, Chignard M, Corvol H, Burnet M, Guillot L. Azithromycin analogue CSY0073 attenuates lung inflammation induced by LPS challenge. Br J Pharmacol 2014; 171:1783-94. [PMID: 24417187 DOI: 10.1111/bph.12574] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/16/2013] [Accepted: 01/07/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Azithromycin is a macrolide antibiotic with anti-inflammatory and immunomodulating effects. Long-term azithromycin therapy in patients with chronic lung diseases such as cystic fibrosis has been associated with increased antimicrobial resistance, emergence of hypermutable strains, ototoxicity and cardiac toxicity. The aim of this study was to assess the anti-inflammatory effects of the non-antibiotic azithromycin derivative CSY0073. EXPERIMENTAL APPROACH We compared the effects of CSY0073 with those of azithromycin in experiments on bacterial cultures, Pseudomonas aeruginosa biofilm, lung cells and mice challenged intranasally with P. aeruginosa LPS. KEY RESULTS In contrast to azithromycin, CSY0073 did not inhibit the growth of P. aeruginosa, Staphylococcus aureus or Haemophilus influenzae and had no effect on an established P. aeruginosa biofilm. Bronchoalveolar lavage (BAL) fluids and lung homogenates collected after the LPS challenge in mice showed that CSY0073 and azithromycin (200 mg·kg(-1), i.p.) decreased neutrophil counts at 24 h and TNF-α, CXCL1 and CXCL2 levels in the BAL fluid after 3 h and IL-6, CXCL2 and IL-1β levels in the lung after 3 h compared with the vehicle. However, only azithromycin reduced IL-1β levels in the lung 24 h post LPS challenge. CSY0073 and azithromycin similarly diminished the production of pro-inflammatory cytokines by macrophages, but not lung epithelial cells, exposed to P. aeruginosa LPS. CONCLUSIONS AND IMPLICATIONS Unlike azithromycin, CSY0073 had no antibacterial effects but it did have a similar anti-inflammatory profile to that of azithromycin. Hence, CSY0073 may have potential as a long-term treatment for patients with chronic lung diseases.
Collapse
Affiliation(s)
- V Balloy
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France; Inserm U874, Paris, France; Unité de défense Innée et Inflammation, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fan LC, Xu JF. Advantages and drawbacks of long-term macrolide use in the treatment of non-cystic fibrosis bronchiectasis. J Thorac Dis 2014; 6:867-71. [PMID: 25093082 DOI: 10.3978/j.issn.2072-1439.2014.07.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
Abstract
Non-cystic fibrosis (non-CF) bronchiectasis is a respiratory disease characterized by persistent airway inflammation and dilation of bronchial wall driven by various causes. Patients with bronchiectasis suffer from excessive sputum production, recurrent exacerbations, and progressive airway destruction. Major therapy for bronchiectasis is focused on breaking the "vicious cycle" of mucus stasis, infection, inflammation, and airway destruction. Growing evidences have been shown that macrolides possess immunoregulatory and anti-inflammatory functions beyond their antimicrobial effects. Macrolide antibiotics have been effectively used in the treatment of diffuse panbronchiolitis, CF and bronchiolitis obliterans syndrome. Currently a number of clinical trials were performed to assess macrolide treatment in the management of non-CF bronchiectasis. The purpose of this paper is to review the efficacy and potential risks of these recent studies on the use of macrolides in non-CF bronchiectasis.
Collapse
Affiliation(s)
- Li-Chao Fan
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jin-Fu Xu
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
30
|
Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther 2014; 143:225-45. [PMID: 24631273 DOI: 10.1016/j.pharmthera.2014.03.003] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 01/02/2023]
Abstract
Azithromycin is a macrolide antibiotic which inhibits bacterial protein synthesis, quorum-sensing and reduces the formation of biofilm. Accumulating effectively in cells, particularly phagocytes, it is delivered in high concentrations to sites of infection, as reflected in rapid plasma clearance and extensive tissue distribution. Azithromycin is indicated for respiratory, urogenital, dermal and other bacterial infections, and exerts immunomodulatory effects in chronic inflammatory disorders, including diffuse panbronchiolitis, post-transplant bronchiolitis and rosacea. Modulation of host responses facilitates its long-term therapeutic benefit in cystic fibrosis, non-cystic fibrosis bronchiectasis, exacerbations of chronic obstructive pulmonary disease (COPD) and non-eosinophilic asthma. Initial, stimulatory effects of azithromycin on immune and epithelial cells, involving interactions with phospholipids and Erk1/2, are followed by later modulation of transcription factors AP-1, NFκB, inflammatory cytokine and mucin release. Delayed inhibitory effects on cell function and high lysosomal accumulation accompany disruption of protein and intracellular lipid transport, regulation of surface receptor expression, of macrophage phenotype and autophagy. These later changes underlie many immunomodulatory effects of azithromycin, contributing to resolution of acute infections and reduction of exacerbations in chronic airway diseases. A sub-group of post-transplant bronchiolitis patients appears to be sensitive to azithromycin, as may be patients with severe sepsis. Other promising indications include chronic prostatitis and periodontitis, but weak activity in malaria is unlikely to prove crucial. Long-term administration of azithromycin must be balanced against the potential for increased bacterial resistance. Azithromycin has a very good record of safety, but recent reports indicate rare cases of cardiac torsades des pointes in patients at risk.
Collapse
Affiliation(s)
- Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group Translational Medicine and Pharmacology, Frankfurt am Main, Germany; Institute of Pharmacology for Life Scientists, Goethe University Frankfurt, Frankfurt am Main, Germany; Institute of Clinical Pharmacology, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | - Evangelos J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, University of Athens, Medical School, Athens, Greece; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
| | - Gianpaolo Perletti
- Biomedical Research Division, Department of Theoretical and Applied Sciences, University of Insubria, Busto A., Varese, Italy; Department of Basic Medical Sciences, Ghent University, Ghent, Belgium.
| | - Geert M Verleden
- Respiratory Division, Lung Transplantation Unit, University Hospitals Leuven and Department of Clinical and Experimental Medicine, KU Leuven, Belgium.
| | - Robin Vos
- Respiratory Division, Lung Transplantation Unit, University Hospitals Leuven and Department of Clinical and Experimental Medicine, KU Leuven, Belgium.
| |
Collapse
|
31
|
Al-Banna NA, Pavlovic D, Bac VH, Utpatel K, Janke E, Rippke JN, Borowiak M, Cerny V, Spassov A, Johnston B, Issekutz TB, Lehmann CH. Acute administration of antibiotics modulates intestinal capillary perfusion and leukocyte adherence during experimental sepsis. Int J Antimicrob Agents 2013; 41:536-43. [PMID: 23622880 DOI: 10.1016/j.ijantimicag.2013.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/19/2022]
Abstract
Antibiotic treatment represents a mainstay of therapy for clinical sepsis. Distinct from their antimicrobial effects, antibiotics may impact the inflammatory process in sepsis, e.g. within the intestinal microcirculation. The impact of seven antibiotics relevant to clinical sepsis on intestinal leukocyte recruitment and capillary perfusion was studied in rats with colon ascendens stent peritonitis (CASP)-induced sepsis or after endotoxin [lipopolysaccharide (LPS)] challenge. The following antibiotics were included: daptomycin; erythromycin; imipenem; linezolid; tigecycline; tobramycin; and vancomycin. The number of rolling and adherent leukocytes in intestinal submucosal venules and the functional capillary density (FCD) in three layers of the intestinal wall were assessed using intravital microscopy. CASP-induced sepsis reduces the intestinal FCD by 30-50%. Single administration of daptomycin, tigecycline or linezolid increased the intestinal FCD. CASP sepsis increased the number of rolling leukocytes by 4.5-fold, which was reduced by erythromycin but increased by vancomycin. The number of adherent leukocytes increased 3-fold in rats with CASP sepsis. It was reduced following administration of daptomycin, tigecycline (in V1 and V3 venules), erythromycin and linezolid (in V1 venules). However, following tobramycin and vancomycin, leukocyte adhesion was further enhanced. Administration of tigecycline and linezolid reduced the LPS-induced increase in the number of adherent leukocytes by 50%. However, imipenem did not affect leukocyte adherence. In conclusion, this work highlights the beneficial impact of the antibiotics daptomycin, tigecycline, erythromycin and linezolid in that they improve intestinal capillary perfusion and/or reduce leukocyte recruitment, whilst the antibiotics imipenem, tobramycin and vancomycin do not exert these properties.
Collapse
Affiliation(s)
- N A Al-Banna
- Department of Anesthesia, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Serisier DJ. Risks of population antimicrobial resistance associated with chronic macrolide use for inflammatory airway diseases. THE LANCET RESPIRATORY MEDICINE 2013; 1:262-74. [PMID: 24429132 DOI: 10.1016/s2213-2600(13)70038-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Macrolide antibiotics have established efficacy in the management of cystic fibrosis and diffuse panbronchiolitis-uncommon lung diseases with substantial morbidity and the potential for rapid progression to death. Emerging evidence suggests benefits of maintenance macrolide treatment in more indolent respiratory diseases including chronic obstructive pulmonary disease and non-cystic fibrosis bronchiectasis. In view of the greater patient population affected by these disorders (and potential for macrolide use to spread to disorders such as chronic cough), widespread use of macrolides, particularly azithromycin, has the potential to substantially influence antimicrobial resistance rates of a range of respiratory microbes. In this Personal View, I explore theories around population (rather than patient) macrolide resistance, appraise evidence linking macrolide use with development of resistance, and highlight the risks posed by injudicious broadening of their use, particularly of azithromycin. These risks are weighed against the potential benefits of macrolides in less aggressive inflammatory airway disorders. A far-sighted approach to maintenance macrolide use in non-cystic fibrosis inflammatory airway diseases is needed, which minimises risks of adversely affecting community macrolide resistance: combining preferential use of erythromycin and restriction of macrolide use to those patients at greatest risk represents an appropriately cautious management approach.
Collapse
Affiliation(s)
- David J Serisier
- Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, QLD, Australia; University of Queensland and Mater Medical Research Institute, Mater Health Services, South Brisbane, QLD, Australia.
| |
Collapse
|
33
|
Recycling of peptidyl-tRNAs by peptidyl-tRNA hydrolase counteracts azithromycin-mediated effects on Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57:1617-24. [PMID: 23318806 DOI: 10.1128/aac.02582-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute and chronic infections caused by the opportunistic pathogen Pseudomonas aeruginosa pose a serious threat to human health worldwide, and its increasing resistance to antibiotics requires alternative treatments that are more effective than available strategies. Clinical studies have clearly demonstrated that cystic fibrosis (CF) patients with chronic P. aeruginosa infections benefit from long-term low-dose azithromycin (AZM) treatment. Immunomodulating activity, the impact of AZM on the expression of quorum-sensing-dependent virulence factors, type three secretion, and motility in P. aeruginosa seem to contribute to the therapeutic response. However, to date, the molecular mechanisms underlying these AZM effects have remained elusive. Our data indicate that the AZM-mediated phenotype is caused by a depletion of the intracellular pools of tRNAs available for protein synthesis. Overexpression of the P. aeruginosa peptidyl-tRNA hydrolase, which recycles the tRNA from peptidyl-tRNA drop-off during translation, counteracted the effects of AZM on stationary-phase cell killing, cytotoxicity, and the production of rhamnolipids and partially restored swarming motility. Intriguingly, the exchange of a rare for a frequent codon in rhlR also explicitly diminished the AZM-mediated decreased production of rhamnolipids. These results indicate that depletion of the tRNA pools by AZM seems to affect the translation of genes that use rare aminoacyl-tRNA isoacceptors to a great extent and might explain the selective activity of AZM on the P. aeruginosa proteome and possibly also on the protein expression profiles of other bacterial pathogens.
Collapse
|
34
|
Cameron EJ, McSharry C, Chaudhuri R, Farrow S, Thomson NC. Long-term macrolide treatment of chronic inflammatory airway diseases: risks, benefits and future developments. Clin Exp Allergy 2013; 42:1302-12. [PMID: 22925316 DOI: 10.1111/j.1365-2222.2012.03979.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macrolide antibiotics were discovered over 50 years ago and following their use as antimicrobials it became apparent that this group of antibiotics also possessed anti-inflammatory properties. Subsequent clinical trials showed benefits of macrolides as long-term adjuncts in the treatment of a spectrum of chronic inflammatory respiratory diseases, particularly diffuse panbronchiolitis, cystic fibrosis, post-transplant bronchiolitis obliterans and more recently chronic obstructive pulmonary disease (COPD). The evidence for efficacy of macrolides in the long-term treatment of chronic asthma and bronchiectasis is less well established. The mechanism(s) of action of macrolides in the treatment of these diseases remains unexplained, but may be due to their antibacterial and/or anti-inflammatory actions, which include reductions in interleukin-8 production, neutrophil migration and/or function. Macrolides have additional potentially beneficial properties including anti-viral actions and an ability to restore corticosteroid sensitivity. The increased prescribing of macrolides for long-term treatment could result in the development of microbial resistance and adverse drug effects. New macrolides have been developed which do not possess any antimicrobial activity and hence lack the ability to produce microbial resistance, but which still retain immunomodulatory effects. Potentially novel macrolides may overcome a significant barrier to the use of this type of drug for the long-term treatment of chronic inflammatory airway diseases.
Collapse
Affiliation(s)
- E J Cameron
- Respiratory Medicine, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
35
|
Effets immunomodulateurs des macrolides au cours des pathologies respiratoires chroniques. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-012-0639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Rodriguez-Cerdeira C, Sanchez-Blanco E, Molares-Vila A. Clinical application of development of nonantibiotic macrolides that correct inflammation-driven immune dysfunction in inflammatory skin diseases. Mediators Inflamm 2012; 2012:563709. [PMID: 23258954 PMCID: PMC3507315 DOI: 10.1155/2012/563709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 07/20/2012] [Accepted: 07/22/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Inflammation-driven immune dysfunction supports the development of several chronic human disorders including skin diseases. Nonantibiotic macrolides have anti-inflammatory and/or immunomodulatory activity that suggests the exploitation of these in the treatment of skin diseases characterized by inflammatory disorders. MATERIALS AND METHODS We performed an extensive review of the nonantibiotic macrolide literature published between 2005 and 2012, including cross-references of any retrieved articles. We also included some data from our own experience. RESULTS Calcineurin antagonists such as tacrolimus and ascomycins (e.g., pimecrolimus) act by inhibiting the activation of the nuclear factor for activated T cells (NFAT). There are new applications for these macrolides that have been available for several years and have been applied to skin and hair disorders such as atopic dermatitis, oral lichen planus, vitiligo, chronic autoimmune urticaria, rosacea, alopecia areata, pyoderma gangrenosum, Behcet's disease, neutrophilic dermatosis, and lupus erythematosus. We also reviewed new macrolides, like rapamycin, everolimus, and temsirolimus. In addition to the literature review, we report a novel class of nonantibiotic 14-member macrocycle with anti-inflammatory and immunomodulatory effects. CONCLUSIONS This paper summarizes the most important clinical studies and case reports dealing with the potential benefits of nonantibiotic macrolides which have opened new avenues in the development of anti-inflammatory strategies in the treatment of cutaneous disorders.
Collapse
|
37
|
Macrolide therapy in chronic inflammatory diseases. Mediators Inflamm 2012; 2012:636157. [PMID: 22969171 PMCID: PMC3432395 DOI: 10.1155/2012/636157] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 01/03/2023] Open
Abstract
Macrolides are a group of antibiotics with a distinctive macrocyclic lactone ring combined with sugars (cladinose, desosamine). The action of macrolides is to block protein synthesis by binding to the subunit of 50S ribosome of bacteria. Prototype macrolide was erythromycin, which came into clinical practice in the 50s of the 20th century. Its antimicrobial spectrum covers the scope of the penicillins but is extended to the impact of atypical bacteria. In the 90s more drugs of this group were synthesized—they have less severe side effects than erythromycin, extended spectrum of Gram-negative bacteria. Macrolides are effective in treating mycobacterial infections especially in patients infected with HIV. It is now known that in addition to antibacterial abilities, macrolides have immunomodulatory effects—they inhibit the production of proinflammatory cytokines (TNF, IL1, 6, and 8) affect transcription factors (NF-κB) as well as costimulaton (CD 80) and adhesion molecules (ICAM). This review article focused not only on the their antimicrobial abilities but also on efficacy in the treatment of several inflammatory disorders independent of the infectious agent. Their wider use as immunomodulators requires further study, which can lead to an extension of indications for their administration.
Collapse
|
38
|
Labro MT. Immunomodulatory effects of antimicrobial agents. Part I: antibacterial and antiviral agents. Expert Rev Anti Infect Ther 2012; 10:319-40. [PMID: 22397566 DOI: 10.1586/eri.12.11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite impressive therapeutic progresses in the battle against infections, microorganisms are still a threat to mankind. With hundreds of antibacterial molecules, major concerns remain about the emergence of resistant and multidrug-resistant pathogens. On the other hand, the antiviral drug armamentarium is comprised of only a few dozens of compounds which are highly pathogen specific, and resistance is also a concern. According to Arturo Casadevall (Albert Einstein College of Medicine, NY, USA), we have now entered the third era of anti-infective strategy, which intends to favor the interplay between active molecules and the immune system. The first part of this review focuses on the potential immunomodulating properties of anti-infective agents, beginning with antibacterial and antiviral agents.
Collapse
Affiliation(s)
- Marie-Thérèse Labro
- Inserm SC14 Centre d'Expertise Collective, Université Paris Diderot Paris, 7 Faculté de Médecine Site Bichat, 16 rue Henri Huchard, 75890, Paris Cedex 18, France.
| |
Collapse
|
39
|
Bosnar M, Kragol G, Koštrun S, Vujasinović I, Bošnjak B, Bencetić Mihaljević V, Marušić Ištuk Z, Kapić S, Hrvačić B, Brajša K, Tavčar B, Jelić D, Glojnarić I, Verbanac D, Čulić O, Padovan J, Alihodžić S, Eraković Haber V, Spaventi R. N′-Substituted-2′-O,3′-N-carbonimidoyl Bridged Macrolides: Novel Anti-inflammatory Macrolides without Antimicrobial Activity. J Med Chem 2012; 55:6111-23. [DOI: 10.1021/jm300356u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martina Bosnar
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Goran Kragol
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Sanja Koštrun
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Ines Vujasinović
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Berislav Bošnjak
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | | | - Zorica Marušić Ištuk
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Samra Kapić
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Boška Hrvačić
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Karmen Brajša
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Branka Tavčar
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Dubravko Jelić
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Ines Glojnarić
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Donatella Verbanac
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Ognjen Čulić
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Jasna Padovan
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Sulejman Alihodžić
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Vesna Eraković Haber
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| | - Radan Spaventi
- GlaxoSmithKline Research Centre
Zagreb, Prilaz baruna Filipovića 29, Zagreb, Croatia
| |
Collapse
|
40
|
Matera MG, Calzetta L, Segreti A, Cazzola M. Emerging drugs for chronic obstructive pulmonary disease. Expert Opin Emerg Drugs 2012; 17:61-82. [DOI: 10.1517/14728214.2012.660917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Blasi F, Mantero M, Aliberti S. Antibiotics as immunomodulant agents in COPD. Curr Opin Pharmacol 2012; 12:293-9. [PMID: 22321568 DOI: 10.1016/j.coph.2012.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 12/14/2022]
Abstract
It is widely accepted that some antibiotics have activities beyond their direct antibacterial effects. Macrolide is the antibiotic class with more convincing studies and evidence on its immunomodulatory and anti-inflammatory activities. Different clinical studies have shown that macrolide prophylaxis in patients with moderate-severe chronic obstructive pulmonary disease (COPD) can have a significant impact on the exacerbation rate reducing morbidity and, potentially, mortality of the disease. Other antibiotics, such as fluoroquinolones, demonstrate a variety of immunomodulatory effects but only few clinical data are available in COPD. New macrolide derivatives devoid of antibacterial activity have been synthetized. This review analyses the relevance of immunomodulatory and anti-inflammatory effects of antibiotics in the management of COPD.
Collapse
Affiliation(s)
- Francesco Blasi
- Respiratory Medicine Section, Dipartimento Toraco-Polmonare e Cardiocircolatorio, University of Milan, IRCCS Fondazione Cà Granda Ospedale Maggiore, Milan, Italy.
| | | | | |
Collapse
|
42
|
Musher DM, Corrales-Medina VF. Azithromycin for prevention of exacerbations of COPD. N Engl J Med 2011; 365:2236-6; author reply 2236-7. [PMID: 22150045 DOI: 10.1056/nejmc1111248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Hirsch R, Deng H, Laohachai MN. Azithromycin in periodontal treatment: more than an antibiotic. J Periodontal Res 2011; 47:137-48. [PMID: 22050485 DOI: 10.1111/j.1600-0765.2011.01418.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Azithromycin is a macrolide antibiotic used extensively in medicine for the treatment of a wide range of infections such as upper respiratory tract infections, middle ear infections, sexually transmitted infections and trachoma. It is also effective against the most common periodontopathogens. The versatility of the macrolides extends beyond their antibiotic properties as a result of their well-documented immune-modulating/anti-inflammatory effects. Macrolides, including azithromycin, are therefore used to treat diseases not associated with bacteria, such as severe asthma, chronic obstructive pulmonary diseases and, more recently, cystic fibrosis. Azithromycin is concentrated in neutrophils, macrophages and particularly fibroblasts; all of these cells are central players in the pathogenesis of most periodontal diseases. This paper reviews the diverse properties of azithromycin and the clinical periodontal studies of its effects in both the treatment of periodontitis and in resolving drug-related gingival overgrowth. Evidence exists to support the use of a single course of azithromycin in the treatment of advanced periodontal diseases. Azithromycin could have a triple role in the treatment and resolution of periodontal diseases: suppressing periodontopathogens, anti-inflammatory activity and healing through persistence at low levels in macrophages and fibroblasts in periodontal tissues, even after a single course of three tablets. If future periodontal research confirms these properties, it could become a valuable host-modulator in periodontal treatment.
Collapse
Affiliation(s)
- R Hirsch
- School of Dentistry, The University of Adelaide, Adelaide, SA, Australia.
| | | | | |
Collapse
|