1
|
Wang J, Ren C, Wang J, Fu J, Yin Q, Huang Y, He Z. Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry-Based Metabolic Characterization of Mango Ripened by Different Methods. Foods 2024; 13:3548. [PMID: 39593964 PMCID: PMC11593038 DOI: 10.3390/foods13223548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
So far, the metabolic differences between tree-ripened and postharvest-ripened mangoes have largely remained unexplored. The aim of this study was to evaluate the chemical composition of nutrient substances in mangoes subjected to different ripening methods. An untargeted metabolomic approach based on ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was carried out to investigate the differences between artificially ripened and naturally ripened mangoes. The principal component analysis results indicate a clear separation between the different treatment groups. Variance analysis, fold change, and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to find potential markers. In total, 69 metabolites were identified, with significant variations in the abundance of organic acids, vitamins, carbohydrates, and polyphenols closely related to the ripening methods of mangoes. These results contribute to a better understanding of the metabolic changes in mangoes due to different ripening methods, which could be used to assist in evaluating the quality of mango fruit.
Collapse
Affiliation(s)
- Jishi Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.W.); (J.W.); (J.F.)
| | - Chaoqi Ren
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China;
| | - Jiafu Wang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.W.); (J.W.); (J.F.)
| | - Jiqiang Fu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.W.); (J.W.); (J.F.)
| | - Qingchun Yin
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, Institute of Food Testing, Hainan Academy of Inspection and Testing, State Administration for Market Regulation, Haikou 570311, China;
| | - Yongping Huang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, Institute of Food Testing, Hainan Academy of Inspection and Testing, State Administration for Market Regulation, Haikou 570311, China;
| | - Zeying He
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (J.W.); (J.W.); (J.F.)
| |
Collapse
|
2
|
Ochoa-Leite C, Rodrigues S, Ramos AS, Ribeiro F, Barbosa J, Jerónimo C, de Pinho PG, Dinis-Oliveira RJ, Costa JT. Metabolomics and proteomics in occupational medicine: a comprehensive systematic review. J Occup Med Toxicol 2024; 19:38. [PMID: 39407251 PMCID: PMC11479568 DOI: 10.1186/s12995-024-00436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/14/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Occupational biomonitoring is essential for assessing health risks linked to workplace exposures. The use of 'omics' technologies, such as metabolomics and proteomics, has become crucial in detecting subtle biological alterations induced by occupational hazards, thereby opening novel avenues for biomarker discovery. AIMS This systematic review aims to evaluate the application of metabolomics and proteomics in occupational health. METHODS Following the PRISMA guidelines, we conducted a comprehensive search on PubMed, Scopus, and Web of Science for original human studies that use metabolomics or proteomics to assess occupational exposure biomarkers. The risk of bias was assessed by adapting the Cochrane Collaboration tool and the Newcastle-Ottawa Quality Assessment Scale. RESULTS Of 2311 initially identified articles, 85 met the eligibility criteria. These studies were mainly conducted in China, Europe, and the United States of America, covering a wide range of occupational exposures. The findings revealed that metabolomics and proteomics approaches effectively identified biomarkers related to chemical, physical, biomechanical, and psychosocial hazards. Analytical methods varied, with mass spectrometry-based techniques emerging as the most prevalent. The risk of bias was generally low to moderate, with specific concerns about exposure measurement and confounding factors. CONCLUSIONS Integrating metabolomics and proteomics in occupational health biomonitoring significantly advances our understanding of exposure effects and facilitates the development of personalized preventive interventions. However, challenges remain regarding the complexity of data analysis, biomarker specificity, and the translation of findings into preventive measures. Future research should focus on longitudinal studies and biomarker validation across diverse populations to improve the reliability and applicability of occupational health interventions.
Collapse
Affiliation(s)
- Carlos Ochoa-Leite
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, 4585-116, Portugal.
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, 4585-116, Portugal.
- Occupational Medicine Office and Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal.
| | - Sara Rodrigues
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto - Rua do Campo Alegre, Porto, 823, 4150-180, Portugal
| | - Ana Sofia Ramos
- Occupational Medicine Office, Portuguese Oncology Institute of Porto (IPO Porto), Porto, 4200-072, Portugal
- Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| | - Flávio Ribeiro
- Occupational Medicine Office, Portuguese Oncology Institute of Porto (IPO Porto), Porto, 4200-072, Portugal
| | - João Barbosa
- Occupational Medicine Office, Portuguese Oncology Institute of Porto (IPO Porto), Porto, 4200-072, Portugal
| | - Carmen Jerónimo
- Department of Pathology & Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Porto, 4050-313, Portugal
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, 4585-116, Portugal.
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, 4585-116, Portugal.
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal.
- FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, no. 33-A, Lisbon, 1400-136, Portugal.
| | - José Torres Costa
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
- Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
3
|
Rosendo GBO, Padovam JC, Ferreira RLU, Oliveira AG, Barbosa F, Pedrosa LFC. Assessing the impact of arsenic, lead, mercury, and cadmium exposure on glycemic and lipid profile markers: A systematic review and meta-analysis protocol. MethodsX 2024; 12:102752. [PMID: 38799037 PMCID: PMC11127555 DOI: 10.1016/j.mex.2024.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
The toxicity of metals presents a significant threat to human health due to the metabolic changes they induce. Thus, it is crucial to understand the impact of exposure to toxic elements on glycemic and lipid profiles. To this end, we developed a systematic review protocol registered in PROSPERO (CRD42023393681), following PRISMA-P guidelines. This review aims to assess environmental exposure to arsenic, cadmium, mercury, and lead in individuals aged over ten years and elucidate their association with glycemic markers such as fasting plasma glucose, glycated hemoglobin, as well as lipid parameters including total cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein cholesterol. Articles published in the MEDLINE (PubMed), EMBASE, Web of Science, LILACS, and Google Scholar databases until March 2024 will be included without language restrictions. The modified Newcastle-Ottawa scale will be employed to assess the quality of the included studies, and the results will be presented through narrative synthesis. If adequate data are available, a meta-analysis will be conducted. This review can help understand the metabolic responses to exposure to toxic elements and the associated health risks.
Collapse
Affiliation(s)
| | - Julia Curioso Padovam
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | | | - Fernando Barbosa
- Faculty of Pharmaceutical Sciences, University of São Paulo - Ribeirão Preto, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
4
|
Lu AX, Lin Y, Li J, Liu JX, Yan CH, Zhang L. Effects of food-borne docosahexaenoic acid supplementation on bone lead mobilisation, mitochondrial function and serum metabolomics in pre-pregnancy lead-exposed lactating rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122613. [PMID: 37757928 DOI: 10.1016/j.envpol.2023.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Large bone lead (Pb) resulting from high environmental exposure during childhood is an important source of endogenous Pb during pregnancy and lactation. Docosahexaenoic acid (DHA) attenuates Pb toxicity, however, the effect of DHA on bone Pb mobilisation during lactation has not been investigated. We aimed to study the effects of DHA supplementation during pregnancy and lactation on bone Pb mobilisation during lactation and its potential mechanisms. Weaning female rats were randomly divided into control (0.05% sodium acetate) and Pb-exposed (0.05% Pb acetate) groups, after a 4-week exposure by ad libitum drinking and a subsequent 4-week washout period, all female rats were mated with healthy males until pregnancy. Then exposed rats were randomly divided into Pb and Pb + DHA groups, and the latter was given a 0.14% DHA diet, while the remaining groups were given normal feed until the end of lactation. Pb and calcium levels, bone microarchitecture, bone turnover markers, mitochondrial function and serum metabolomics were analyzed. The results showed that higher blood and bone Pb levels were observed in the Pb group compared to the control, and there was a significant negative correlation between blood and bone Pb. Also, Pb increased trabecular bone loss along with slightly elevated serum C-telopeptide of type I collagen (CTX-I) levels. However, DHA reduced CTX-I levels and improved trabecular bone microarchitecture. Metabolomics showed that Pb affected mitochondrial function, which was further demonstrated in bone tissue by significant reductions in ATP levels, Na+-K+-ATPase, Ca2+-Mg2+-ATPase and CAT activities, and elevated levels of MDA, IL-1β and IL-18. However, these alterations were partially mitigated by DHA. In conclusion, DHA supplementation during pregnancy and lactation improved bone Pb mobilisation and mitochondrial dysfunction in lactating rats induced by pre-pregnancy Pb exposure, providing potential means of mitigating bone Pb mobilisation levels during lactation, but the mechanism still needs further study.
Collapse
Affiliation(s)
- An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Lin
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun-Xia Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Suomi J, Tuominen P. Cumulative risk assessment of the dietary heavy metal and aluminum exposure of Finnish adults. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:809. [PMID: 37280451 PMCID: PMC10244267 DOI: 10.1007/s10661-023-11427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
While directly comparable toxicological data are unavailable, this pilot study used published toxicological endpoints for neurological damage to weigh the relative importance of cadmium, lead, arsenic, mercury, nickel, and aluminum in the mixture Finnish adults receive from their daily diet. In addition, the effects of a selection of these chemicals on cognition, kidney tubular damage, and fertility were assessed using the toxicological endpoints available in the Chemical Mixture Calculator developed by the Technical University of Denmark. Consumption data from the FinDiet 2012 national survey of 25 to 74-year-olds and occurrence data mainly obtained in national monitoring were used to estimate the cumulative dietary exposure, which was found to be so high that the possibility of neurological damage or kidney effects cannot be ruled out for most of the population, particularly fertile age women. For Finns below the age of 65 years, the main sources of cumulative exposure were bread and other cereals, non-alcoholic drinks, and vegetables. When mean exposure was statistically compared between age groups and genders, women aged 25 to 45 years had a statistically significantly higher exposure than men of the same age (P < 0.05) and women aged 46 to 64 years (P < 0.001).
Collapse
Affiliation(s)
- Johanna Suomi
- Finnish Food Authority, Risk Assessment Unit, Helsinki, Finland.
| | - Pirkko Tuominen
- Finnish Food Authority, Risk Assessment Unit, Helsinki, Finland
| |
Collapse
|
6
|
Gu W, Pang R, Chen Y, Deng F, Zhang M, Shao Z, Zhang S, Duan H, Tang S. Short-term exposure to antimony induces hepatotoxicity and metabolic remodeling in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114852. [PMID: 37023648 DOI: 10.1016/j.ecoenv.2023.114852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Antimony (Sb) poses a significant threat to human health due to sharp increases in its exploitation and application globally, but few studies have explored the pathophysiological mechanisms of acute hepatotoxicity induced by Sb exposure. We established an in vivo model to comprehensively explore the endogenous mechanisms underlying liver injury induced by short-term Sb exposure. Adult female and male Sprague-Dawley rats were orally administrated various concentrations of potassium antimony tartrate for 28 days. After exposure, the serum Sb concentration, liver-to-body weight ratio, and serum glucose levels significantly increased in a dose-dependent manner. Body weight gain and serum concentrations of biomarkers of hepatic injury (e.g., total cholesterol, total protein, alkaline phosphatase, and the aspartate aminotransferase/alanine aminotransferase ratio) decreased with increasing Sb exposure. Through integrative non-targeted metabolome and lipidome analyses, alanine, aspartate, and glutamate metabolism; phosphatidylcholines; sphingomyelins; and phosphatidylinositols were the most significantly affected pathways in female and male rats exposed to Sb. Additionally, correlation analysis showed that the concentrations of certain metabolites and lipids (e.g., deoxycholic acid, N-methylproline, palmitoylcarnitine, glycerophospholipids, sphingomyelins, and glycerol) were significantly associated with hepatic injury biomarkers, indicating that metabolic remodeling may be involved in apical hepatotoxicity. Our study demonstrated that short-term exposure to Sb induces hepatotoxicity, possibly through a glycolipid metabolism disorder, providing an important reference for the health risks of Sb pollution.
Collapse
Affiliation(s)
- Wen Gu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ruifang Pang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yuanyuan Chen
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zijin Shao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuyi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
7
|
Nolasco DM, Mendes MPR, Marciano LPDA, Costa LF, Macedo AND, Sakakibara IM, Silvério ACP, Paiva MJN, André LC. An Exploratory Study of the Metabolite Profiling from Pesticides Exposed Workers. Metabolites 2023; 13:metabo13050596. [PMID: 37233637 DOI: 10.3390/metabo13050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 05/27/2023] Open
Abstract
Pesticides constitute a category of chemical products intended specifically for the control and mitigation of pests. With their constant increase in use, the risk to human health and the environment has increased proportionally due to occupational and environmental exposure to these compounds. The use of these chemicals is associated with several toxic effects related to acute and chronic toxicity, such as infertility, hormonal disorders and cancer. The present work aimed to study the metabolic profile of individuals occupationally exposed to pesticides, using a metabolomics tool to identify potential new biomarkers. Metabolomics analysis was carried out on plasma and urine samples from individuals exposed and non-exposed occupationally, using liquid chromatography coupled with mass spectrometry (UPLC-MS). Non-targeted metabolomics analysis, using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) or partial least squares discriminant orthogonal analysis (OPLS-DA), demonstrated good separation of the samples and identified 21 discriminating metabolites in plasma and 17 in urine. The analysis of the ROC curve indicated the compounds with the greatest potential for biomarkers. Comprehensive analysis of the metabolic pathways influenced by exposure to pesticides revealed alterations, mainly in lipid and amino acid metabolism. This study indicates that the use of metabolomics provides important information about complex biological responses.
Collapse
Affiliation(s)
- Daniela Magalhães Nolasco
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Michele P R Mendes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Luiz Paulo de Aguiar Marciano
- Toxicants and Drugs Analysis Laboratory, Faculty of Pharmacy, Federal University of Alfenas (UNIFAL), Alfenas 37130-001, MG, Brazil
| | - Luiz Filipe Costa
- Toxicants and Drugs Analysis Laboratory, Faculty of Pharmacy, Federal University of Alfenas (UNIFAL), Alfenas 37130-001, MG, Brazil
| | - Adriana Nori De Macedo
- Chemistry Department, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Isarita Martins Sakakibara
- Toxicants and Drugs Analysis Laboratory, Faculty of Pharmacy, Federal University of Alfenas (UNIFAL), Alfenas 37130-001, MG, Brazil
| | | | - Maria José N Paiva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Leiliane C André
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
8
|
Araujo ANM, Leroux IN, Furtado DZS, Ferreira APSDS, Batista BL, Silva HDT, Handakas E, Assunção NA, Olympio KPK. Integration of proteomic and metabolomic analyses: New insights for mapping informal workers exposed to potentially toxic elements. Front Public Health 2023; 10:899638. [PMID: 36761330 PMCID: PMC9905639 DOI: 10.3389/fpubh.2022.899638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Occupational exposure to potentially toxic elements (PTEs) is a concerning reality of informal workers engaged in the jewelry production chain that can lead to adverse health effects. In this study, untargeted proteomic and metabolomic analyses were employed to assess the impact of these exposures on informal workers' exposome in Limeira city, São Paulo state, Brazil. PTE levels (Cr, Mn, Ni, Cu, Zn, As, Cd, Sn, Sb, Hg, and Pb) were determined in blood, proteomic analyses were performed for saliva samples (n = 26), and metabolomic analyses in plasma (n = 145) using ultra-high performance liquid chromatography (UHPLC) coupled with quadrupole-time-of-flight (Q-TOF) mass spectrometry. Blood PTE levels of workers, controls, and their family members were determined by inductively coupled plasma-mass spectrometry (ICP-MS). High concentration levels of Sn and Cu were detected in welders' blood (p < 0.001). Statistical analyses were performed using MetaboAnalyst 4.0. The results showed that 26 proteins were upregulated, and 14 proteins downregulated on the welder group, and thirty of these proteins were also correlated with blood Pb, Cu, Sb, and Sn blood levels in the welder group (p < 0.05). Using gene ontology analysis of these 40 proteins revealed the biological processes related to the upregulated proteins were translational initiation, SRP-dependent co-translational protein targeting to membrane, and viral transcription. A Metabolome-Wide Association Study (MWAS) was performed to search for associations between blood metabolites and exposure groups. A pathway enrichment analysis of significant features from the MWAS was then conducted with Mummichog. A total of 73 metabolomic compounds and 40 proteins up or down-regulated in welders were used to perform a multi-omics analysis, disclosing seven metabolic pathways potentially disturbed by the informal work: valine leucine and isoleucine biosynthesis, valine leucine and isoleucine degradation, arginine and proline metabolism, ABC transporters, central carbon metabolism in cancer, arachidonic acid metabolism and cysteine and methionine metabolism. The majority of the proteins found to be statistically up or downregulated in welders also correlated with at least one blood PTE level, providing insights into the biological responses to PTE exposures in the informal work exposure scenario. These findings shed new light on the effects of occupational activity on workers' exposome, underscoring the harmful effects of PTE.
Collapse
Affiliation(s)
- Alda Neis Miranda Araujo
- Graduate Program in Translational Medicine, Paulista School of Medicine, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Isabelle Nogueira Leroux
- School of Public Health, Department of Environmental Health, University of São Paulo, São Paulo, Brazil
| | - Danielle Zildeana Sousa Furtado
- Department of Chemistry, Institute of Environmental, Chemical, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil,Technology School of Teresina, Teresina, Piauí, Brazil
| | | | - Bruno Lemos Batista
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Heron Dominguez Torres Silva
- Department of Chemistry, Institute of Environmental, Chemical, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Evangelos Handakas
- Department of Medicine, Computation and Medicine, Imperial College London, London, United Kingdom
| | - Nilson Antônio Assunção
- Department of Chemistry, Institute of Environmental, Chemical, and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil,Nilson Antônio Assunção ✉
| | - Kelly Polido Kaneshiro Olympio
- School of Public Health, Department of Environmental Health, University of São Paulo, São Paulo, Brazil,*Correspondence: Kelly Polido Kaneshiro Olympio ✉
| |
Collapse
|
9
|
Chen XX, Xu YM, Lau ATY. Metabolic effects of long-term cadmium exposure: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89874-89888. [PMID: 36367641 DOI: 10.1007/s11356-022-23620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Cadmium (Cd) is a toxic non-essential heavy metal. Chronic low Cd exposure (CLCE) has been associated with distinct pathologies in many organ systems, including liver and kidney damage, osteoporosis, carcinogenicity, or reproductive toxicity. Currently, about 10% of the global population is at risk of CLCE. It is urgent to find robust and effective biomarkers for early diagnosis of Cd exposure and treatment. Metabolomics is a high-throughput method based on mass spectrometry to study the dynamic changes in a series of endogenous small molecular metabolites (typically < 1000 Da) of tissues, cells, or biofluids. It can reflect the rich and complex biochemical changes in the body after exposure to heavy metals, which may be useful in screening biomarkers to monitor exposure to environmental pollutants and/or predict disease risk. Therefore, this review focuses on the changes in metabolic profiles of humans and rodents under long-term Cd exposure from the perspective of metabolomics. Furthermore, the relationship between the disturbance of metabolic pathways and the toxic mechanism of Cd is discussed. All these information will facilitate the development of reliable metabolic biomarkers for early detection and diagnosis of Cd-related diseases.
Collapse
Affiliation(s)
- Xiao-Xia Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| |
Collapse
|
10
|
Yaqoob A, Rehman K, Akash MSH, Alvi M, Shoaib SM. Biochemical profiling of metabolomics in heavy metal-intoxicated impaired metabolism and its amelioration using plant-based bioactive compound. Front Mol Biosci 2022; 9:1029729. [PMID: 36330218 PMCID: PMC9623090 DOI: 10.3389/fmolb.2022.1029729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/28/2022] [Indexed: 07/25/2023] Open
Abstract
Exposure to Pb is widely spreading and has far-reaching negative effects on living systems. This study aimed to investigate the toxic effects of Pb, through biochemical profiling and the ameliorative effects of quercetin against Pb-toxicity. Twenty-five male Wistar albino mice were divided into the following five groups. The CON-group received normal saline; the Pb-group received PbAc; the Pb + Q-CRN group received lead acetate followed by quercetin; the Q-CRN group received quercetin; and the CRN group received corn oil. After 4 weeks, the mice were euthanized. It was speculated that Pb significantly increased the levels of serine, threonine, and asparagine and decreased the levels of valine, lysine, and glutamic acid in the plasma of Pb-group, thus impairing amino acid metabolism. However, in the Pb + Q-CRN group, the level of these six amino acids was restored significantly due to the ameliorative effect of quercetin. The presence of lipid metabolites (L-carnitine, sphinganine, phytosphingosine, and lysophosphatidylcholine) in mice serum was confirmed by ESI/MS. The GPx, SOD, GSH, and CAT levels were significantly decreased, and the MDA level was significantly increased, thus confirming the oxidative stress and lipid peroxidation in the Pb group. The antioxidant effect of quercetin was elucidated in the Pb + Q-CRN group. Expression of CPT-I, CPT-II, LCAT, CROT, CACT, and MTR genes was significantly upregulated in the liver of Pb goup mice. Hence, the findings of this study proved that Pb exposure induced oxidative stress, upregulated gene expression, and impaired the lipid and amino acid metabolism in mice.
Collapse
Affiliation(s)
- Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The University Multan, Multan, Pakistan
| | | | - Maria Alvi
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Syed Muhammad Shoaib
- Drugs Testing Laboratory, Faisalabad, Primary & Secondary Healthcare Department, Government of the Punjab, Faisalabad, Pakistan
| |
Collapse
|
11
|
Zhang L, Fan L, Li F, Sun Q, Chen Y, He Y, Shen H, Liu L. Study on the Effect of Different Iodine Intake on Hippocampal Metabolism in Offspring Rats. Biol Trace Elem Res 2022; 200:4385-4394. [PMID: 34855145 DOI: 10.1007/s12011-021-03032-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Iodine is an essential trace element in the human body. Severe maternal iodine deficiency during pregnancy leads to obvious intellectual disability in the offspring. The effects of iodine deficiency on brain development have been demonstrated, but there is no clear evidence of the effects of iodine excess on brain development. To clarify the effects of iodine excess on the brain development of offspring and to provide clues to the mechanisms underlying the effects of iodine deficiency and iodine excess on the brain development of offspring. In this study, animal models with different iodine intakes were constructed using potassium iodate (KIO3). The models included four experimental groups (low-iodine group one (LI, 0μg/L iodine), low-iodine group two (LII, 5μg/L iodine), high-iodine group one (HI, 3000μg/L iodine), and high-iodine group two (HII, 10000μg/L iodine)) and one control group (NI, 100μg/L iodine). There were 20 female rats in each group, and 8 offspring were chosen from each group following birth to assess metabolic alterations. The metabolites of subsets of brain hippocampal tissue were profiled by ultra-performance liquid chromatography-linked electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) and the results were subjected to multivariate data analysis. Differential substances were screened by t test (p<0.05), principal component analysis (PCA), and partial least squares analysis (PLS-DA, VIP>1). The thyroid function of the female rats in the experimental group was abnormally changed. Metabolic analysis showed that the five groups were separated which revealed significant differences in hippocampal tissue metabolism among the five groups of offspring. A total of 12 potential metabolites were identified, with the majority of them being related to amino acid and energy metabolism. These metabolites are involved in various metabolic pathways, are interrelated, and may play a function in brain development. Our study highlights changes in metabolites and metabolic pathways in the brain hippocampus of offspring rats with different iodine intakes compared to controls, revealing new insights into hippocampal metabolism in offspring rats and new relevant targets.
Collapse
Affiliation(s)
- Li Zhang
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lijun Fan
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fan Li
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qihao Sun
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yao Chen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhong He
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongmei Shen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lixiang Liu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
12
|
Dehghani F, Yousefinejad S, Walker DI, Omidi F. Metabolomics for exposure assessment and toxicity effects of occupational pollutants: current status and future perspectives. Metabolomics 2022; 18:73. [PMID: 36083566 DOI: 10.1007/s11306-022-01930-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Work-related exposures to harmful agents or factors are associated with an increase in incidence of occupational diseases. These exposures often represent a complex mixture of different stressors, challenging the ability to delineate the mechanisms and risk factors underlying exposure-disease relationships. The use of omics measurement approaches that enable characterization of biological marker patterns provide internal indicators of molecular alterations, which could be used to identify bioeffects following exposure to a toxicant. Metabolomics is the comprehensive analysis of small molecule present in biological samples, and allows identification of potential modes of action and altered pathways by systematic measurement of metabolites. OBJECTIVES The aim of this study is to review the application of metabolomics studies for use in occupational health, with a focus on applying metabolomics for exposure monitoring and its relationship to occupational diseases. METHODS PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2021. RESULTS Most of reviewed studies included worker populations exposed to heavy metals such as As, Cd, Pb, Cr, Ni, Mn and organic compounds such as tetrachlorodibenzo-p-dioxin, trichloroethylene, polyfluoroalkyl, acrylamide, polyvinyl chloride. Occupational exposures were associated with changes in metabolites and pathways, and provided novel insight into the relationship between exposure and disease outcomes. The reviewed studies demonstrate that metabolomics provides a powerful ability to identify metabolic phenotypes and bioeffect of occupational exposures. CONCLUSION Continued application to worker populations has the potential to enable characterization of thousands of chemical signals in biological samples, which could lead to discovery of new biomarkers of exposure for chemicals, identify possible toxicological mechanisms, and improved understanding of biological effects increasing disease risk associated with occupational exposure.
Collapse
Affiliation(s)
- Fatemeh Dehghani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Health Sciences, Research Institute for Health, Department of Occupational Health and Safety Engineering, School of Health Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Research Center for Health Sciences, Research Institute for Health, Department of Occupational Health and Safety Engineering, School of Health Shiraz, University of Medical Sciences, Shiraz, Iran.
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fariborz Omidi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Li N, Zhao Y, Wang F, Song L, Qiao M, Wang T, Huang X. Folic acid alleviates lead acetate-mediated cardiotoxicity by down-regulating the expression levels of Nrf2, HO-1, GRP78, and CHOP proteins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55916-55927. [PMID: 35322363 DOI: 10.1007/s11356-022-19821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to explore the interventional effects of folic acid on the heart damage caused by lead acetate exposure. Twenty-four 60-day-old male Sprague-Dawley (SD) rats were randomly divided into 4 groups with 6 rats in each group. The control group (C group) was normal rats; the lead exposure group (L group) rats drank 0.2% lead acetate solution freely for 14 days. The rats in the intervention group (T group) were given 0.2% lead acetate solution for 14 days, respectively, and 0.4 mg/kg BW folic acid solution was given to the rats by gavage on the 7th day of lead administration. The rats in the folic acid group (group E) were given 0.4 mg/kg BW folic acid solution by gavage. To weigh rat body weight and heart weight, calculate heart index, and observe the expression level of nuclear factor erythroid 2-related factor 2(Nrf2), heme oxygenase 1(HO-1), glucose-regulated protein 78/binding immunoglobulin protein (GRP78), and C/EBP-homologous protein (CHOP) by immunofluorescence method. The results showed that compared with group C, serum lead levels in group L and T were significantly increased (P < 0.05); superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-PX) levels in group L were significantly decreased (P < 0.05), and malondialdehyde (MDA) content was significantly higher increased (P < 0.05), and the GSH-PX content in group T were significantly increased in group L (P < 0.05), and the MDA content in group T was significantly lower than that in group L (P < 0.05). Compared with group C, the expression of Nrf2, HO-1, GRP78, and CHOP in group L increased significantly, and the difference was statistically significant (P < 0.05). Compared with the L group, the expression of Nrf2, HO-1, GRP78, and CHOP in the T group was reduced. Therefore, folic acid has a certain protective effect on the oxidative damage of lead-exposed rat heart tissue. Lead exposure will increase ROS, NO, MDA, and other oxidizing substances and reduce the level of GSH, SOD, CAT, GPx, and other antioxidant factors, which will lead to cardiac hypertrophy, cardiac index increase, oxidative stress, Nrf2, and HO-1. The expression of stress-related proteins such as GRP78 and CHOP also increased, leading to cardiomyocyte apoptosis. After a folic acid intervention, these changes can be significantly reversed.
Collapse
Affiliation(s)
- Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yali Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Tianlin Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
14
|
Missawi O, Venditti M, Cappello T, Zitouni N, Marco GDE, Boughattas I, Bousserrhine N, Belbekhouche S, Minucci S, Maisano M, Banni M. Autophagic event and metabolomic disorders unveil cellular toxicity of environmental microplastics on marine polychaete Hediste diversicolor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119106. [PMID: 35248622 DOI: 10.1016/j.envpol.2022.119106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Although the hazards of microplastics (MPs) have been quite well explored, the aberrant metabolism and the involvement of the autophagy pathway as an adverse response to environmental MPs in benthic organisms are still unclear. The present work aims to assess the impact of different environmental MPs collected from the south coast of the Mediterranean Sea, composed by polyethylene (PE), polyethylene vinyl acetate (PEVA), low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polyamide (PA) on the metabolome and proteome of the marine polychaete Hediste diversicolor. As a result, all the microplastic types were detected with Raman microspectroscopy in polychaetes tissues, causing cytoskeleton damage and induced autophagy pathway manifested by immunohistochemical labeling of specific targeted proteins, through Tubulin (Tub), Microtubule-associated protein light chain 3 (LC3), and p62 (also named Sequestosome 1). Metabolomics was conducted to further investigate the metabolic alterations induced by the environmental MPs-mixture in polychaetes. A total of 28 metabolites were differentially expressed between control and MPs-treated polychaetes, which showed elevated levels of amino acids, glucose, ATP/ADP, osmolytes, glutathione, choline and phosphocholine, and reduced concentration of aspartate. These novel findings extend our understanding given the toxicity of environmental microplastics and unravel their underlying mechanisms.
Collapse
Affiliation(s)
- Omayma Missawi
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia.
| | - Massimo Venditti
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Tiziana Cappello
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Nesrine Zitouni
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia
| | - Giuseppe DE Marco
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Iteb Boughattas
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia; Regional Field Crops Research Center of Beja, Tunisia
| | - Noureddine Bousserrhine
- University Paris-Est Creteil, Laboratory of Water, Environment and Urban Systems, Faculty of Science and Technology, Creteil Cedex, France
| | - Sabrina Belbekhouche
- CNRS, University of Paris-Est Creteil, Institute of Chemistry and Materials Paris-Est ICMPE, UMR7182, 94320 Thiais, France
| | - Sergio Minucci
- Department of Experimental Medicine, Section Human Physiology and Integrated Biological Functions "F. Bottazzi", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maisano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, 98166 Messina, Italy
| | - Mohamed Banni
- University of Sousse, Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, Sousse, Tunisia; Higher Institute of Biotechnology Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
15
|
Galvez-Fernandez M, Sanchez-Saez F, Domingo-Relloso A, Rodriguez-Hernandez Z, Tarazona S, Gonzalez-Marrachelli V, Grau-Perez M, Morales-Tatay JM, Amigo N, Garcia-Barrera T, Gomez-Ariza JL, Chaves FJ, Garcia-Garcia AB, Melero R, Tellez-Plaza M, Martin-Escudero JC, Redon J, Monleon D. Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study. Redox Biol 2022; 52:102314. [PMID: 35460952 PMCID: PMC9048061 DOI: 10.1016/j.redox.2022.102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Background Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals. In a population-based sample, cobalt, copper, selenium, zinc, arsenic, cadmium and antimony exposures were related to some metabolic patterns. Carriers of redox-related variants displayed differential susceptibility to metabolic alterations associated to excessive metal exposures. Cobalt and zinc showed a number of statistical interactions with variants from genes sharing biological pathways with a role in chronic diseases. The metabolic impact of metals combined with variation in redox-related genes might be large in the population, given metals widespread exposure.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sanchez-Saez
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Applied Statistics and Operations Research and Quality Politècnica de València, Valencia, Spain
| | - Vannina Gonzalez-Marrachelli
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jose M Morales-Tatay
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain; Department of Basic Medical Sciences, University Rovira I Virgili, Reus, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - F Javier Chaves
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Rebeca Melero
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, Valladolid, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
16
|
Zheng X, Wang L, You L, Liu Y, Cohen M, Tian S, Li W, Li X. Dietary licorice enhances in vivo cadmium detoxification and modulates gut microbial metabolism in mice. IMETA 2022; 1:e7. [PMID: 38867726 PMCID: PMC10989944 DOI: 10.1002/imt2.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2024]
Abstract
Mass cadmium (Cd) poisoning is a serious health problem in many parts of the world. We propose that dietary intervention can be a practical solution to this problem. This study aimed to identify effective dietary products from traditional Chinese herbs that can detoxify Cd. Five candidate herbal foods with detoxifying potential were selected and subjected to mouse toxicological tests. The chemical composition and dose-response effects of licorice on mouse hepatocytes were determined. Licorice was selected for further tests to examine its effects on growth, tissue Cd accumulation, and gut and liver fitness of mice. The expression of hepatic metallothionein (Mt) genes was quantified in vitro in hepatocytes and in vivo in liver tissues of mice. The results showed that licorice dietary intervention was effective in reducing blood Cd by >50% within 1 month. Cd was also substantially reduced in the heart and lung tissues, but increased 2.1-fold in the liver. The liver of Cd poisoned mice improved with licorice intervention. Licorice treatment significantly induced Cd accumulation and expression of the Mt1 gene in hepatic cells both in vitro and in vivo. Licorice intake substantially altered gut microbial structure and enriched Parabacteroides distasonis. Omics results showed that licorice improved gut metabolism, particularly the metabolic pathways for glycyrrhizin, bile acids, and amino acids. Dietary licorice effectively reduced mouse blood Cd and had a profound impact on liver and gut fitness. We conclude that herbal licorice can be used as a dietary intervention for mass Cd poisoning.
Collapse
Affiliation(s)
- Xin Zheng
- Hebei Key Laboratory of Soil Ecology, Centre for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Likun Wang
- Hebei Key Laboratory of Soil Ecology, Centre for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Linhao You
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life ScienceHebei Normal UniversityShijiazhuangChina
| | - Yong‐Xin Liu
- Institute of Genetics and Developmental Biology, State Key Laboratory of Plant GenomicsChinese Academy of SciencesBeijingChina
| | - Michael Cohen
- Department of BiologySonoma State UniversityRohnert ParkCaliforniaUSA
| | - Siyu Tian
- Laboratory of Molecular Iron Metabolism, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life ScienceHebei Normal UniversityShijiazhuangChina
| | - Wenjun Li
- Hebei Key Laboratory of Soil Ecology, Centre for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Centre for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| |
Collapse
|
17
|
Metabolomic Alteration in the Plasma of Wild Rodents Environmentally Exposed to Lead: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010541. [PMID: 35010801 PMCID: PMC8744629 DOI: 10.3390/ijerph19010541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 01/01/2022] [Indexed: 01/27/2023]
Abstract
Lead poisoning is often considered a traditional disease; however, the specific mechanism of toxicity remains unclear. The study of Pb-induced alterations in cellular metabolic pathways is important to understand the biological response and disorders associated with environmental exposure to lead. Metabolomics studies have recently been paid considerable attention to understand in detail the biological response to lead exposure and the associated toxicity mechanisms. In the present study, wild rodents collected from an area contaminated with lead (N = 18) and a control area (N = 10) were investigated. This was the first ever experimental metabolomic study of wildlife exposed to lead in the field. While the levels of plasma phenylalanine and isoleucine were significantly higher in a lead-contaminated area versus the control area, hydroxybutyric acid was marginally significantly higher in the contaminated area, suggesting the possibility of enhancement of lipid metabolism. In the interregional least-absolute shrinkage and selection operator (lasso) regression model analysis, phenylalanine and isoleucine were identified as possible biomarkers, which is in agreement with the random forest model. In addition, in the random forest model, glutaric acid, glutamine, and hydroxybutyric acid were selected. In agreement with previous studies, enrichment analysis showed alterations in the urea cycle and ATP-binding cassette transporter pathways. Although regional rodent species bias was observed in this study, and the relatively small sample size should be taken into account, the present results are to some extent consistent with those of previous studies on humans and laboratory animals.
Collapse
|
18
|
Zhang M, Buckley JP, Liang L, Hong X, Wang G, Wang MC, Wills-Karp M, Wang X, Mueller NT. A metabolome-wide association study of in utero metal and trace element exposures with cord blood metabolome profile: Findings from the Boston Birth Cohort. ENVIRONMENT INTERNATIONAL 2022; 158:106976. [PMID: 34991243 PMCID: PMC8742133 DOI: 10.1016/j.envint.2021.106976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exposure to metals lead (Pb), mercury (Hg), and cadmium (Cd) and trace elements selenium (Se) and manganese (Mn) has been linked to the developmental origins of cardiometabolic diseases, but the mechanisms are not well-understood. OBJECTIVE Conduct a metabolome-wide association study to understand how in utero exposure to Pb, Hg, Cd, Se, and Mn affects the metabolic programming of fetuses. METHODS We used data from the Boston Birth Cohort, which enrolled mother-child pairs from Boston, MA. We measured metals and trace elements in maternal red blood cells (RBCs) collected 24-72 h after delivery, and metabolites in cord blood collected at birth. We used multivariable linear regression to examine associations of metals and trace elements with metabolites and Bonferroni correction to account for multiple comparisons. We assessed non-linear associations of metals and trace elements with metabolites using restricted cubic spline plots. RESULTS This analysis included 670 mother-child pairs (57% non-Hispanic Black and 24% Hispanic). After Bonferroni correction, there were 25 cord metabolites associated with at least one of the metals or trace elements. Pb was negatively associated with the xenobiotic piperine, Cd was positively associated with xenobiotics cotinine and hydroxycotinine, and Hg was associated with 8 lipid metabolites (in both directions). Se and Mn shared associations with 6 metabolites (in both directions), which mostly included nucleotides and amino acids; Se was additionally associated with 7 metabolites (mostly amino acids, nucleotides, and carnitines) and Mn was additionally associated with C36:4 hydroxy phosphatidylcholine. Restricted cubic spline plots showed that most associations were linear. DISCUSSION Maternal RBC metal and trace element concentrations were associated in a dose-dependent fashion with cord blood metabolites. What remains to be determined is whether these metals- and trace elements-associated changes in cord metabolites can influence a child's risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Jessie P Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
Niedzwiecki MM, Eggers S, Joshi A, Dolios G, Cantoral A, Lamadrid-Figueroa H, Amarasiriwardena C, Téllez-Rojo MM, Wright RO, Petrick L. Lead exposure and serum metabolite profiles in pregnant women in Mexico City. Environ Health 2021; 20:125. [PMID: 34893088 PMCID: PMC8665540 DOI: 10.1186/s12940-021-00810-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lead (Pb) exposure is a global health hazard causing a wide range of adverse health outcomes. Yet, the mechanisms of Pb toxicology remain incompletely understood, especially during pregnancy. To uncover biological pathways impacted by Pb exposure, this study investigated serum metabolomic profiles during the third trimester of pregnancy that are associated with blood Pb and bone Pb. METHODS We used data and specimens from 99 women enrolled in the Programming Research in Obesity, Growth, Environment, and Social Stressors birth cohort in Mexico City. Maternal Pb exposure was measured in whole blood samples from the third trimester of pregnancy and in the tibia and patella bones at 1 month postpartum. Third-trimester serum samples underwent metabolomic analysis; metabolites were identified based on matching to an in-house analytical standard library. A metabolome-wide association study was performed using multiple linear regression models. Class- and pathway-based enrichment analyses were also conducted. RESULTS The median (interquartile range) blood Pb concentration was 2.9 (2.6) µg/dL. Median bone Pb, measured in the tibia and patella, were 2.5 (7.3) µg/g and 3.6 (9.5) µg/g, respectively. Of 215 total metabolites identified in serum, 31 were associated with blood Pb (p < 0.05). Class enrichment analysis identified significant overrepresentation of metabolites classified as fatty acids and conjugates, amino acids and peptides, and purines. Tibia and patella Pb were associated with 14 and 8 metabolites, respectively (p < 0.05). Comparing results from bone and blood Pb, glycochenodeoxycholic acid, glycocholic acid, and 1-arachidonoylglycerol were positively associated with blood Pb and tibia Pb, and 7-methylguanine was negatively associated with blood Pb and patella Pb. One metabolite, 5-aminopentanoic acid, was negatively associated with all three Pb measures. CONCLUSIONS This study identified serum metabolites in pregnant women associated with Pb measured in blood and bone. These findings provide insights on the metabolic profile around Pb exposure in pregnancy and information to guide mechanistic studies of toxicological effects for mothers and children.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | - Shoshannah Eggers
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | - Anu Joshi
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | - Georgia Dolios
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | | | | | - Chitra Amarasiriwardena
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | | | - Robert O Wright
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | - Lauren Petrick
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| |
Collapse
|
20
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
21
|
Ventura C, Gomes BC, Oberemm A, Louro H, Huuskonen P, Mustieles V, Fernández MF, Ndaw S, Mengelers M, Luijten M, Gundacker C, Silva MJ. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008-2020. ENVIRONMENTAL RESEARCH 2021; 197:110998. [PMID: 33713715 DOI: 10.1016/j.envres.2021.110998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, β-2-microglobulin (B2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.
Collapse
Affiliation(s)
- Célia Ventura
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Bruno Costa Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | - Marcel Mengelers
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Department of Food Safety, Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
22
|
Chen Z, Huo X, Chen G, Luo X, Xu X. Lead (Pb) exposure and heart failure risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28833-28847. [PMID: 33840028 DOI: 10.1007/s11356-021-13725-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Lead (Pb) is a heavy metal with widespread industrial use, but it is also a widespread environmental contaminant with serious toxicological consequences to many species. Pb exposure adversely impacts the cardiovascular system in humans, leading to cardiac dysfunction, but its effects on heart failure risk remain poorly elucidated. To better understand the pathophysiological effects of Pb, we review potential mechanisms by which Pb exposure leads to cardiac dysfunction. Adverse effects of Pb exposure on cardiac function include heart failure risk, pressure overload, arrhythmia, myocardial ischemia, and cardiotoxicity. The data reviewed clearly establish that Pb exposure can play an important role in the occurrence and development of heart failure. Future epidemiological and mechanistic studies should be developed to better understand the involvement of Pb exposure in heart failure.
Collapse
Affiliation(s)
- Zihan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xiuli Luo
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
23
|
Zhao Y, Qiao R, Zhang S, Wang G. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123663. [PMID: 33264870 DOI: 10.1016/j.jhazmat.2020.123663] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 05/23/2023]
Abstract
To explore the intestinal toxicity of microplastic fibers, zebrafish larvae and adults were exposed to different length of microplastic fibers (50 ± 26 μm and 200 ± 90 μm). After exposure, microplastic fibers were observed in the gut of zebrafish even at the early life stage, causing length-dependent intestinal damage and toxicities manifested by histopathological changes and biomarker responses. Long microplastic fibers induced more serious effects. They significantly decreased the food intake of zebrafish by 54 %-67 % compared with short microplastic fibers. Metabolomics was conducted to further reveal the metabolic alterations induced by microplastic fibers in zebrafish. A total of 124 and 123 metabolites were significantly changed by short and long microplastic fibers. At the meanwhile, 41 significantly changed metabolites were shared between short and long fibers treatment groups and were further investigated to reveal the influence of fiber length on the toxicity. The results demonstrate that microplastic fibers can up-regulate glycerophospholipids metabolism which exacerbates oxidative damage and inflammation and down-regulate fatty acyls metabolism related to nutritional deficiency. These novel findings enhance our understanding of the intestinal toxicity of microplastic fibers and demonstrate that metabolomics is powerful to unravel the underlying mechanisms of microplastics (MPs) toxicity.
Collapse
Affiliation(s)
- Yanping Zhao
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China.
| | - Ruxia Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Siyuan Zhang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing, 210023, China
| |
Collapse
|
24
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|
25
|
Kelly RS, Bayne H, Spiro A, Vokonas P, Sparrow D, Weiss ST, Schwartz J, Nassan FL, Lee-Sarwar K, Huang M, Kachroo P, Chu SH, Litonjua AA, Lasky-Su JA. Metabolomic signatures of lead exposure in the VA Normative Aging Study. ENVIRONMENTAL RESEARCH 2020; 190:110022. [PMID: 32791250 PMCID: PMC7983049 DOI: 10.1016/j.envres.2020.110022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/02/2020] [Accepted: 07/29/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lead (Pb) is widespread and exposure to this non-essential heavy metal can cause multiple negative health effects; however the mechanisms underlying these effects remain incompletely understood. OBJECTIVES To identify plasma metabolomic signatures of Pb exposure, as measured in blood and toenails. METHODS In a subset of men from the VA Normative Aging Study, mass-spectrometry based plasma metabolomic profiling was performed. Pb levels were measured in blood samples and toenail clippings collected concurrently. Multivariable linear regression models, smoothing splines and Pathway analyses were employed to identify metabolites associated with Pb exposure. RESULTS In 399 men, 858 metabolites were measured and passed QC, of which 154 (17.9%) were significantly associated with blood Pb (p < 0.05). Eleven of these passed stringent correction for multiple testing, including pro-hydroxy-pro (β(95%CI): 1.52 (0.93,2.12), p = 7.18x10-7), N-acetylglycine (β(95%CI): 1.44 (0.85,2.02), p = 1.12x10-6), tartarate (β(95%CI): 0.68 (0.35,1.00), p = 4.84x10-5), vanillylmandelate (β(95%CI): 1.05 (0.47,1.63), p = 4.44x10-7), and lysine (β(95%CI): 1.88 (-2.8,-0.95), p = 9.10x10-5). A subset of 48 men had a second blood sample collected a mean of 6.1 years after their first. Three of the top eleven metabolites were also significant in this second blood sample. Furthermore, we identified 70 plasma metabolites associated with Pb as measured in toenails. Twenty-three plasma metabolites were significantly associated with both blood and toenail measures, while others appeared to be specific to the biosample in which Pb was measured. For example, benzanoate metabolism appeared to be of importance with the longer-term exposure assessed by toenails. DISCUSSION Pb exposure is responsible for 0.6% of the global burden of disease and metabolomics is particularly well-suited to explore its pathogenic mechanisms. In this study, we identified metabolites and metabolomic pathways associated with Pb exposure that suggest that Pb exposure acts through oxidative stress and immune dysfunction. These findings help us to better understand the biology of this important public health burden.
Collapse
Affiliation(s)
- Rachel S Kelly
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| | - Haley Bayne
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Avron Spiro
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA, 02130, USA; Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Pantel Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, School of Medicine and School of Public Health, Boston University, USA
| | - David Sparrow
- VA Normative Aging Study, VA Boston Healthcare System, School of Medicine and School of Public Health, Boston University, USA
| | - Scott T Weiss
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Feiby L Nassan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Mengna Huang
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Su H Chu
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
26
|
Li R, Wang Y, Hou B, Lam SM, Zhang W, Chen R, Shui G, Sun Q, Qiang G, Liu C. Lipidomics insight into chronic exposure to ambient air pollution in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114668. [PMID: 32443199 DOI: 10.1016/j.envpol.2020.114668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/11/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
More recent evidences are supportive of air pollution exposure on diabetes risk, including worsening of whole-body insulin sensitivity, enhancement of hepatic lipogenesis and nonalcoholic fatty liver disease after fine particulate matter (PM2.5) exposure. Therefore, we aimed to explore the lipidomics to get a comprehensive insight about ambient real-world PM2.5 exposure on lipid metabolism in blood and liver. After ambient PM2.5 exposure for 6 months, excess triglyceride accumulation in the liver was observed. Remarkable metabolic alterations including neutral lipids, glycerophospholipids and sphingolipids were noticed. Lipidomic signatures in liver is different from plasma in response to PM2.5 exposure. Lipids including species of ceramide, sphingomyeline and triglyceride may become potential biomarkers of lipotoxicity contributing to PM2.5-induced metabolic dysfunction, and the present study may serve as a reference lipid bank for further studies.
Collapse
Affiliation(s)
- Ran Li
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yixuan Wang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Biyu Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenhui Zhang
- Department of Environmental and Occupational Health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Rucheng Chen
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Guifeng Qiang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
27
|
Koelmel JP, Napolitano MP, Ulmer CZ, Vasiliou V, Garrett TJ, Yost RA, Prasad MNV, Godri Pollitt KJ, Bowden JA. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics 2020; 16:56. [PMID: 32307636 DOI: 10.1007/s11306-020-01665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Understanding the interaction between organisms and the environment is important for predicting and mitigating the effects of global phenomena such as climate change, and the fate, transport, and health effects of anthropogenic pollutants. By understanding organism and ecosystem responses to environmental stressors at the molecular level, mechanisms of toxicity and adaptation can be determined. This information has important implications in human and environmental health, engineering biotechnologies, and understanding the interaction between anthropogenic induced changes and the biosphere. One class of molecules with unique promise for environmental science are lipids; lipids are highly abundant and ubiquitous across nearly all organisms, and lipid profiles often change drastically in response to external stimuli. These changes allow organisms to maintain essential biological functions, for example, membrane fluidity, as they adapt to a changing climate and chemical environment. Lipidomics can help scientists understand the historical and present biofeedback processes in climate change and the biogeochemical processes affecting nutrient cycles. Lipids can also be used to understand how ecosystems respond to historical environmental changes with lipid signatures dating back to hundreds of millions of years, which can help predict similar changes in the future. In addition, lipids are direct targets of environmental stressors, for example, lipids are easily prone to oxidative damage, which occurs during exposure to most toxins. AIM OF REVIEW This is the first review to summarize the current efforts to comprehensively measure lipids to better understand the interaction between organisms and their environment. This review focuses on lipidomic applications in the arenas of environmental toxicology and exposure assessment, xenobiotic exposures and health (e.g., obesity), global climate change, and nutrient cycles. Moreover, this review summarizes the use of and the potential for lipidomics in engineering biotechnologies for the remediation of persistent compounds and biofuel production. KEY SCIENTIFIC CONCEPT With the preservation of certain lipids across millions of years and our ever-increasing understanding of their diverse biological roles, lipidomic-based approaches provide a unique utility to increase our understanding of the contemporary and historical interactions between organisms, ecosystems, and anthropogenically-induced environmental changes.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Michael P Napolitano
- CSS, Inc., under contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Candice Z Ulmer
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Ft. Johnson Road, Charleston, SC, 29412, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - M N V Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
28
|
Locci E, Lecca LI, Piras R, Noto A, Pilia I, d'Aloja E, Campagna M. Urinary 1H NMR metabolomics profile of Italian citizens exposed to background levels of arsenic: a (pre)cautionary tale. Biomarkers 2019; 24:727-734. [PMID: 31613149 DOI: 10.1080/1354750x.2019.1677777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objectives: Arsenic is a toxic metal ubiquitous in the environment and in daily life items. Long-term arsenic exposure is associated with severe adverse health effects involving various target organs. It would be useful to investigate the existence of metabolic alterations associated with lifestyle and/or with the environment. For this purpose, we studied the correlation between urinary arsenic levels and urinary proton nuclear magnetic resonance spectroscopy (1H NMR) metabolomics profiles in a non-occupationally nor environmentally arsenic exposed general population.Methods: Urine samples were collected from 86 healthy subjects. Total and non-alimentary urinary arsenic (U-naAs) levels, namely the sum of arsenite, arsenate, monomethylarsonate and dimethylarsinate, were measured and 1H NMR analysis was performed. Orthogonal Projection to Latent Structures was applied to explore the correlation between the metabolomics profiles and U-naAs levels.Results: Despite the extremely low U-naAs levels (mean value = 6.13 ± 3.17 µg/g creatinine) of our studied population a urinary metabolomics profile related to arsenic was identified.Conclusion: The identified profile could represent a fingerprint of early arsenic biological effect and could be used in further studies as an indicator of susceptibility, also in subjects exposed to a low arsenic dose, with implications in occupational health, toxicology, and public health.
Collapse
Affiliation(s)
- Emanuela Locci
- Department of Medical Sciences and Public Health, Legal Medicine Section, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Luigi Isaia Lecca
- Department of Medical Sciences and Public Health, Occupational Health Section, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Roberto Piras
- Department of Medical Sciences and Public Health, Legal Medicine Section, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, Legal Medicine Section, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Ilaria Pilia
- Department of Medical Sciences and Public Health, Occupational Health Section, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Ernesto d'Aloja
- Department of Medical Sciences and Public Health, Legal Medicine Section, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, Occupational Health Section, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| |
Collapse
|
29
|
Lipid Metabolism Alterations in a Rat Model of Chronic and Intergenerational Exposure to Arsenic. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4978018. [PMID: 31737665 PMCID: PMC6815581 DOI: 10.1155/2019/4978018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Chronic exposure to arsenic (As), whether directly through the consumption of contaminated drinking water or indirectly through the daily intake of As-contaminated food, is a health threat for more than 150 million people worldwide. Epidemiological studies found an association between chronic consumption of As and several pathologies, the most common being cancer-related disorders. However, As consumption has also been associated with metabolic disorders that could lead to diverse pathologies, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and obesity. Here, we used ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization/quadrupole time-of-flight mass spectrometry (ESI-QToF) to assess the effect of chronic intergenerational As exposure on the lipid metabolism profiles of serum from 4-month-old Wistar rats exposed to As prenatally and also during early life in drinking water (3 ppm). Significant differences in the levels of certain identified lysophospholipids, phosphatidylcholines, and triglycerides were found between the exposed rats and the control groups, as well as between the sexes. Significantly increased lipid oxidation determined by the malondialdehyde (MDA) method was found in exposed rats compared with controls. Chronic intergenerational As exposure alters the rat lipidome, increases lipid oxidation, and dysregulates metabolic pathways, the factors associated with the chronic inflammation present in different diseases associated with chronic exposure to As (i.e., keratosis, Bowen's disease, and kidney, liver, bladder, and lung cancer).
Collapse
|
30
|
Liu D, Lu L, Wang M, Hussain B, Tian S, Luo W, Zhou J, Yang X. Tetracycline uptake by pak choi grown on contaminated soils and its toxicity in human liver cell line HL-7702. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:312-321. [PMID: 31323614 DOI: 10.1016/j.envpol.2019.06.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/24/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Tetracycline (TC) can enter the human body via the soil-vegetable-human food chain; therefore, it is necessary to understand the toxicity of TC to humans through vegetables grown on contaminated soils. The present study combined an enzyme-linked immunosorbent assay method and an HL-7702 cell model and assessed the bioavailability and toxicity of TC from pak choi (Brassica campestris L. ssp. chinensis) grown on TC-contaminated soils. The results showed that the degradation rate of TC in black soil was significantly higher than that in purplish clay, while the results for TC uptake in pak choi were opposite. The bioaccessibility of TC was found to be higher in pak choi grown on purplish clay (5.67-7.59%) than in that grown on black soil (5.22-6.77%). It is suggested that soil properties contribute to the uptake of TC by pak choi. More fertile soil contained lower TC concentrations and thus mediated lower TC toxicity to humans. It may seem comforting that TC concentrations in the edible parts of pak choi are often found to be below safe limits. However, the TC diagnosis method showed that even moderate increases in TC concentrations in pak choi may induce oxidative stress, liver injury, mitochondrial cristae and rough endoplasmic reticulum swelling, and early apoptosis in liver cells HL-7702. The pak choi grown in purplish clay showed higher TC cytotoxicity than that grown in black soil. The TC cytotoxicity of raw pak choi was found to be higher than that of cooked pak choi. These results provide direct evidence of effective ways to prevent TC toxicity in humans.
Collapse
Affiliation(s)
- Di Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China.
| | - Lingli Lu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China.
| | - Mei Wang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China.
| | - Bilal Hussain
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China.
| | - Shengke Tian
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China.
| | - Weijun Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China.
| | - Jiali Zhou
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China.
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
31
|
Liu X, Wang W, Chen HL, Zhang HY, Zhang NX. Interplay between Alzheimer's disease and global glucose metabolism revealed by the metabolic profile alterations of pancreatic tissue and serum in APP/PS1 transgenic mice. Acta Pharmacol Sin 2019; 40:1259-1268. [PMID: 31089202 DOI: 10.1038/s41401-019-0239-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Increasing evidence suggests that there is a correlation between type 2 diabetes mellitus (T2D) and Alzheimer's disease (AD). Increased Aβ polypeptide production in AD patients would promote metabolic abnormalities, insulin signaling dysfunction and perturbations in glucose utilization, thus leading to the onset of T2D. However, the metabolic mechanisms underlying the interplay between AD and its diabetes-promoting effects are not fully elucidated. Particularly, systematic metabolomics analysis has not been performed for the pancreas tissues of AD subjects, which play key roles in the glucose metabolism of living systems. In the current study, we characterized the dynamic metabolic profile alterations of the serum and the pancreas of APP/PS1 double-transgenic mice (an AD mouse model) using the untargeted metabolomics approaches. Serum and pancreatic tissues of APP/PS1 transgenic mice and wild-type mice were extracted and subjected to NMR analysis to evaluate the functional state of pancreas in the progress of AD. Multivariate analysis of principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were conducted to define the global and the local (pancreas) metabolic features associated with the possible initiation of T2D in the progress of AD. Our results showed the onset of AD-induced global glucose metabolism disorders in AD mice. Hyperglycemia and its accompanying metabolic disorders including energy metabolism down-regulation and oxidative stress were observed in the serum of AD mice. Meanwhile, global disturbance of branched-chain amino acid (BCAA) metabolism was detected, and the change of BCAA (leucine) was positively correlated to the alteration of glucose. Moreover, increased level of glucose and enhanced energy metabolism were observed in the pancreas of AD mice. The results suggest that the diabetes-promoting effects accompanying the progress of AD are achieved by down-regulating the global utilization of glucose and interfering with the metabolic function of pancreas. Since T2D is a risk factor for the pathogenesis of AD, our findings suggest that targeting the glucose metabolism dysfunctions might serve as a supplementary therapeutic strategy for Alzheimer's disease.
Collapse
|
32
|
Deng X, Yang Z, Chen R. Study of characteristics on metabolism of Penicillium chrysogenum F1 during bioleaching of heavy metals from contaminated soil. Can J Microbiol 2019; 65:629-641. [DOI: 10.1139/cjm-2018-0624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Penicillium chrysogenum F1 is very efficient in bioleaching heavy metals from the soil and is used for that purpose. We found that F1 can extract 19.8 mg Cd, Cu, Pb, and Zn from 2.5 g soil; the total heavy metals’ bioleaching ratio was 60.4%. In this study, the bioleaching mechanism was investigated by means of metabonomics; different metabolite ions were screened (relative standard deviation >30%) and analyzed using clustering, univariate and multivariate analysis. Statistical analyses via Volcano Plot, principal component analysis, and partial least square discriminant analysis models revealed a difference between Ctrl 7 (the controls cultured and sampled on day 7) and Ctrl 15 (the controls cultured and sampled on day 15). Samp 15 (the samples cultured with heavy-metal-contaminated soil) was significantly different from Ctrl 7 and Ctrl 15. Analysis of the different ions demonstrated that the glucose catabolism pathways of glycolysis and the tricarboxylic acid (TCA) cycle were enhanced, and glucose anabolism through the pentose phosphate pathway was inhibited during bioleaching. At the same time, the metabolism of glutathione was also downregulated. Therefore, the catabolism of glucose was unaffected by the addition of heavy-metal-contaminated soil, and increasing glucose is beneficial to catabolism. The extraction of metals is mainly attributed to the metabolites of the TCA cycle.
Collapse
Affiliation(s)
- Xinhui Deng
- College of Life Science and Chemistry of Hunan University of Technology, Hunan Zhuzhou 412007, China
| | - Zhihui Yang
- College of Metallurgy and Environment of Central South University, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Hunan Changsha 410083, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry Science and Technology, Hunan Changsha 410007, China
| |
Collapse
|
33
|
|
34
|
Walker DI, Valvi D, Rothman N, Lan Q, Miller GW, Jones DP. The metabolome: A key measure for exposome research in epidemiology. CURR EPIDEMIOL REP 2019; 6:93-103. [PMID: 31828002 PMCID: PMC6905435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Application of omics to study human health has created a new era of opportunities for epidemiology research. However, approaches to characterize exogenous health triggers have largely not leveraged advances in analytical platforms and big data. In this review, we highlight the exposome, which is defined as the cumulative measure of exposure and biological responses across a lifetime as a cornerstone for new epidemiology approaches to study complex and preventable human diseases. RECENT FINDINGS While no universal approach exists to measure the entirety of the exposome, use of high-resolution mass spectrometry methods provide distinct advantages over traditional biomonitoring and have provided key advances necessary for exposome research. Application to different study designs and recommendations for combining exposome data with novel data analytic frameworks to study complex interactions of multiple stressors are also discussed. SUMMARY Even though challenges still need to be addressed, advances in methods to characterize the exposome provide exciting new opportunities for epidemiology to support fundamental discoveries to improve public health.
Collapse
Affiliation(s)
- Douglas I. Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Damaskini Valvi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, United States
| | - Nathaniel Rothman
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Qing Lan
- Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York NY
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
35
|
Environmental cadmium exposure induces alterations in the urinary metabolic profile of pregnant women. Int J Hyg Environ Health 2019; 222:556-562. [DOI: 10.1016/j.ijheh.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/29/2022]
|
36
|
Mo TT, Dai H, Du H, Zhang RY, Chai KP, An Y, Chen JJ, Wang JK, Chen ZJ, Chen CZ, Jiang XJ, Tang R, Wang LP, Tan Q, Tang P, Miao XY, Meng P, Zhang LB, Cheng SQ, Peng B, Tu BJ, Han TL, Xia YY, Baker PN. Gas chromatography-mass spectrometry based metabolomics profile of hippocampus and cerebellum in mice after chronic arsenic exposure. ENVIRONMENTAL TOXICOLOGY 2019; 34:103-111. [PMID: 30375170 DOI: 10.1002/tox.22662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Intake of arsenic (As) via drinking water has been a serious threat to global public health. Though there are numerous reports of As neurotoxicity, its pathogenesis mechanisms remain vague especially its chronic effects on metabolic network. Hippocampus is a renowned area in relation to learning and memory, whilst recently, cerebellum is argued to be involved with process of cognition. Therefore, the study aimed to explore metabolomics alternations in these two areas after chronic As exposure, with the purpose of further illustrating details of As neurotoxicity. Twelve 3-week-old male C57BL/6J mice were divided into two groups, receiving deionized drinking water (control group) or 50 mg/L of sodium arsenite (via drinking water) for 24 weeks. Learning and memory abilities were tested by Morris water maze (MWM) test. Pathological and morphological changes of hippocampus and cerebellum were captured via transmission electron microscopy (TEM). Metabolic alterations were analyzed by gas chromatography-mass spectrometry (GC-MS). MWM test confirmed impairments of learning and memory abilities of mice after chronic As exposure. Metabolomics identifications indicated that tyrosine increased and aspartic acid (Asp) decreased simultaneously in both hippocampus and cerebellum. Intermediates (succinic acid) and indirect involved components of tricarboxylic acid cycle (proline, cysteine, and alanine) were found declined in cerebellum, indicating disordered energy metabolism. Our findings suggest that these metabolite alterations are related to As-induced disorders of amino acids and energy metabolism, which might therefore, play an important part in mechanisms of As neurotoxicity.
Collapse
Affiliation(s)
- Ting-Ting Mo
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Hua Dai
- Department of Public Health, Guiyang Center for Disease Control and Prevention, Guiyang, China
| | - Hang Du
- Center of Experimental Medicine, Chongqing Municipal Hospital for Prevention and Control of Occupational Diseases, Chongqing, China
| | - Rui-Yuan Zhang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ke-Ping Chai
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yao An
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ji-Ji Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Jun-Ke Wang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Zi-Jin Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Cheng-Zhi Chen
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Xue-Jun Jiang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Rong Tang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Li-Ping Wang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Qiang Tan
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ping Tang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Xin-Yu Miao
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Pan Meng
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Long-Bin Zhang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Shu-Qun Cheng
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Bin Peng
- Department of Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Bai-Jie Tu
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- The Liggins Institute, University of Auckland, Auckland, New Zealand
- China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yin-Yin Xia
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
- China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Philip N Baker
- College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
37
|
Niedzwiecki MM, Walker DI, Vermeulen R, Chadeau-Hyam M, Jones DP, Miller GW. The Exposome: Molecules to Populations. Annu Rev Pharmacol Toxicol 2019; 59:107-127. [PMID: 30095351 DOI: 10.1146/annurev-pharmtox-010818-021315] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Derived from the term exposure, the exposome is an omic-scale characterization of the nongenetic drivers of health and disease. With the genome, it defines the phenome of an individual. The measurement of complex environmental factors that exert pressure on our health has not kept pace with genomics and historically has not provided a similar level of resolution. Emerging technologies make it possible to obtain detailed information on drugs, toxicants, pollutants, nutrients, and physical and psychological stressors on an omic scale. These forces can also be assessed at systems and network levels, providing a framework for advances in pharmacology and toxicology. The exposome paradigm can improve the analysis of drug interactions and detection of adverse effects of drugs and toxicants and provide data on biological responses to exposures. The comprehensive model can provide data at the individual level for precision medicine, group level for clinical trials, and population level for public health.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ,
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA;
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, Netherlands;
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 Utrecht, Netherlands
- MRC/PHE Centre for Environmental Health, Department of Epidemiology and Public Health, Imperial College London, W2 1PG London, United Kingdom;
| | - Marc Chadeau-Hyam
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, Netherlands;
- MRC/PHE Centre for Environmental Health, Department of Epidemiology and Public Health, Imperial College London, W2 1PG London, United Kingdom;
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322, USA;
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
- Current affiliation: Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
38
|
Biomonitoring of workers using nuclear magnetic resonance-based metabolomics of exhaled breath condensate: A pilot study. Toxicol Lett 2018; 298:4-12. [DOI: 10.1016/j.toxlet.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
|
39
|
Eguchi A, Nomiyama K, Sakurai K, Kim Trang PT, Viet PH, Takahashi S, Iwata H, Tanabe S, Todaka E, Mori C. Alterations in urinary metabolomic profiles due to lead exposure from a lead-acid battery recycling site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:98-105. [PMID: 29966840 DOI: 10.1016/j.envpol.2018.06.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/16/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Lead poisoning is considered a public health threat, particularly in developing countries. Health problems from Pb exposure occur in many parts of the world, especially near Pb mines, Pb smelters, and used lead-acid battery (ULAB) recycling plants. In this study, we analyzed the urine metabolome of residents in a village located near a ULAB recycling facility to investigate the biological effects of Pb exposure (ULAB: n = 44, Reference: n = 51). Lasso linear regression models were moderately predictive of blood Pb levels, as evaluated by a training set (R2 = 0.813) and against an external test set (R2EXT = 0.647). In lasso logistic regression models, areas under receiver operating characteristic curves, as measured by 5-fold cross-validation (AUCCV = 0.871) and against an external test set (AUCEXT = 0.917), indicated accurate classification of urine samples from the affected village and from a reference site. Ten candidate biomarkers identified at false discovery rates of <0.05 were associated with ATP-binding cassette (ABC) transporters, possibly related to the disruption of small-molecule transport in the kidney; amino acid, porphyrin, and chlorophyll metabolism; and the heme biosynthetic pathway. Collectively, the results suggest that lead Pb is related to the health effects in individuals residing in ULAB site by alteration of these biological pathways.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, 263-8522, Japan.
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime, 790-8577, Japan
| | - Kenichi Sakurai
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, 263-8522, Japan
| | - Pham Thi Kim Trang
- Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, Vietnam National University, T3 Building, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Pham Hung Viet
- Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, Vietnam National University, T3 Building, 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Viet Nam
| | - Shin Takahashi
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime, 790-8577, Japan; Center of Advanced Technology for the Environment, Faculty of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8566, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime, 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime, 790-8577, Japan
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, 263-8522, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba, 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba, 260-8670, Japan
| |
Collapse
|
40
|
Huang YS, Wang SH, Chen SM, Lee JA. Metabolic profiling of metformin treatment for low-level Pb-induced nephrotoxicity in rat urine. Sci Rep 2018; 8:14587. [PMID: 30275489 PMCID: PMC6167321 DOI: 10.1038/s41598-018-32501-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease is a worldwide problem, and Pb contamination is a potential risk factor. Since current biomarkers are not sensitive for the diagnosis of Pb-induced nephrotoxicity, novel biomarkers are needed. Metformin has both hypoglycaemic effects and reno-protection ability. However, its mechanism of action is unknown. We aimed to discover the early biomarkers for the diagnosis of low-level Pb-induced nephrotoxicity and understand the mechanism of reno-protection of metformin. Male Wistar rats were randomly divided into control, Pb, Pb + ML, Pb + MH and MH groups. Pb (250 ppm) was given daily via drinking water. Metformin (50 or 100 mg/kg/d) was orally administered. Urine was analysed by nuclear magnetic resonance (NMR)-based metabolomics coupled with multivariate statistical analysis, and potential biomarkers were subsequently quantified. The results showed that Pb-induced nephrotoxicity was closely correlated with the elevation of 5-aminolevulinic acid, D-lactate and guanidinoacetic acid in urine. After co-treatment with metformin, 5-aminolevulinic acid and D-lactate were decreased. This is the first demonstration that urinary 5-aminolevulinic acid, D-lactate and guanidinoacetic acid could be early biomarkers of low-level Pb-induced nephrotoxicity in rats. The reno-protection of metformin might be attributable to the reduction of D-lactate excretion.
Collapse
Affiliation(s)
- Yu-Shen Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan
| | - Shwu-Huey Wang
- Core Facility Center, Department of Research Development, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan
| | - Shih-Ming Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan.
| | - Jen-Ai Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei, Taiwan.
| |
Collapse
|
41
|
Crowley G, Kwon S, Haider SH, Caraher EJ, Lam R, St-Jules DE, Liu M, Prezant DJ, Nolan A. Metabolomics of World Trade Center-Lung Injury: a machine learning approach. BMJ Open Respir Res 2018; 5:e000274. [PMID: 30233801 PMCID: PMC6135464 DOI: 10.1136/bmjresp-2017-000274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Introduction Biomarkers of metabolic syndrome expressed soon after World Trade Center (WTC) exposure predict development of WTC Lung Injury (WTC-LI). The metabolome remains an untapped resource with potential to comprehensively characterise many aspects of WTC-LI. This case–control study identified a clinically relevant, robust subset of metabolic contributors of WTC-LI through comprehensive high-dimensional metabolic profiling and integration of machine learning techniques. Methods Never-smoking, male, WTC-exposed firefighters with normal pre-9/11 lung function were segregated by post-9/11 lung function. Cases of WTC-LI (forced expiratory volume in 1s <lower limit of normal, n=15) and controls (n=15) were identified from previous cohorts. The metabolome of serum drawn within 6 months of 9/11 was quantified. Machine learning was used for dimension reduction to identify metabolites associated with WTC-LI. Results 580 metabolites qualified for random forests (RF) analysis to identify a refined metabolite profile that yielded maximal class separation. RF of the refined profile correctly classified subjects with a 93.3% estimated success rate. 5 clusters of metabolites emerged within the refined profile. Prominent subpathways include known mediators of lung disease such as sphingolipids (elevated in cases of WTC-LI), and branched-chain amino acids (reduced in cases of WTC-LI). Principal component analysis of the refined profile explained 68.3% of variance in five components, demonstrating class separation. Conclusion Analysis of the metabolome of WTC-exposed 9/11 rescue workers has identified biologically plausible pathways associated with loss of lung function. Since metabolites are proximal markers of disease processes, metabolites could capture the complexity of past exposures and better inform treatment. These pathways warrant further mechanistic research.
Collapse
Affiliation(s)
- George Crowley
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
| | - Sophia Kwon
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
| | - Syed Hissam Haider
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
| | - Erin J Caraher
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
| | - Rachel Lam
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA
| | - David E St-Jules
- Departmentof Population Health, Division of Health and Behavior, New York University School of Medicine, New York, USA
| | - Mengling Liu
- Department of Environmental Medicine, New York University School of Medicine, New York, USA.,Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, USA
| | - David J Prezant
- Department of Population Health, Divison of Biostatistics, New York University School of Medicine, New York, USA.,Department of Medicine, Pulmonary Medicine Divison, Montefiore Medical Center and Albert Einstein College of Medicine, Brooklyn, New York, USA
| | - Anna Nolan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, USA.,Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York, USA.,Department of Population Health, Divison of Biostatistics, New York University School of Medicine, New York, USA
| |
Collapse
|
42
|
Zhang Y, Li Y, Shi Z, Wu J, Yang X, Feng L, Ren L, Duan J, Sun Z. Metabolic impact induced by total, water soluble and insoluble components of PM 2.5 acute exposure in mice. CHEMOSPHERE 2018; 207:337-346. [PMID: 29803883 DOI: 10.1016/j.chemosphere.2018.05.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Fine particulate matter (PM2.5) has been listed as an important environmental risk factor for human health. However, the systemic biological effects on metabolic responses induced by PM2.5 and its components were poorly understood. This study was aimed to evaluate the toxicity of different components of PM2.5 at molecular level via metabolomics approach. In the present study, we adopted a 1H NMR-based metabolomics approach to evaluate metabolic profiles in mice after acute exposure to Total-PM2.5, water soluble components of PM2.5 (WS-PM2.5) and water insoluble components of PM2.5 (WIS-PM2.5). First, we characterized the morphological features and chemical composition of PM2.5. Then, the metabolites changes of serum and urine in mice were systematically analyzed using 800 MHz 1H NMR techniques in combination with multivariate statistical analysis. Total-PM2.5 exposure affected metabolites mainly involved in amino acid metabolism, protein biosynthesis, energy metabolism and metabolism of cofactors and vitamins. WS-PM2.5 exposure influenced lipid metabolism and carbohydrate metabolism. WIS-PM2.5 exposure mainly perturbed amino acid metabolism and energy metabolism. The results suggested that acute exposure to the Total-PM2.5, WS-PM2.5 and WIS-PM2.5 in mice exhibited marked systemic metabolic changes. In addition, the insoluble fraction of PM2.5 contributed greatly to the toxicity of PM2.5.
Collapse
Affiliation(s)
- Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhixiong Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lihua Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
43
|
Bonvallot N, David A, Chalmel F, Chevrier C, Cordier S, Cravedi JP, Zalko D. Metabolomics as a powerful tool to decipher the biological effects of environmental contaminants in humans. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2017.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
García-Barrera T, Rodríguez-Moro G, Callejón-Leblic B, Arias-Borrego A, Gómez-Ariza J. Mass spectrometry based analytical approaches and pitfalls for toxicometabolomics of arsenic in mammals: A tutorial review. Anal Chim Acta 2018; 1000:41-66. [DOI: 10.1016/j.aca.2017.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 02/06/2023]
|
45
|
Sarmiento-Ortega VE, Treviño S, Flores-Hernández JÁ, Aguilar-Alonso P, Moroni-González D, Aburto-Luna V, Diaz A, Brambila E. Changes on serum and hepatic lipidome after a chronic cadmium exposure in Wistar rats. Arch Biochem Biophys 2017; 635:52-59. [PMID: 29066246 DOI: 10.1016/j.abb.2017.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/19/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Samuel Treviño
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - José Ángel Flores-Hernández
- Departamento de Análisis Clínicos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Patricia Aguilar-Alonso
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Diana Moroni-González
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Violeta Aburto-Luna
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Alfonso Diaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Eduardo Brambila
- Laboratorio de Investigaciones Químico Clínicas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico.
| |
Collapse
|
46
|
Metabolomic analysis of alterations in lipid oxidation, carbohydrate and amino acid metabolism in dairy goats caused by exposure to Aflotoxin B1. J DAIRY RES 2017; 84:401-406. [DOI: 10.1017/s0022029917000590] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purposes of this study were to investigate the systemic and characteristic metabolites in the serum of dairy goats induced by aflatoxin B1 (AFB1) exposure and to further understand the endogenous metabolic alterations induced by it. A nuclear magnetic resonance (NMR)-based metabonomic approach was used to analyse the metabolic alterations in dairy goats that were induced by low doses of AFB1 (50 µg/kg DM). We found that AFB1 exposure caused significant elevations of glucose, citrate, acetate, acetoacetate, betaine, and glycine yet caused reductions of lactate, ketone bodies (acetate, β-hydroxybutyrate), amino acids (citrulline, leucine/isoleucine, valine, creatine) and cell membrane structures (choline, lipoprotein, N-acetyl glycoproteins) in the serum. These data indicated that AFB1 caused endogenous metabolic changes in various metabolic pathways, including cell membrane-associated metabolism, the tricarboxylic acid cycle, glycolysis, lipids, and amino acid metabolism. These findings provide both a comprehensive insight into the metabolic aspects of AFB1-induced adverse effects on dairy goats and a method for monitoring dairy animals exposed to low doses of AFB1.
Collapse
|
47
|
Zhang Y, Xu X, Sun D, Cao J, Zhang Y, Huo X. Alteration of the number and percentage of innate immune cells in preschool children from an e-waste recycling area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:615-622. [PMID: 28806563 DOI: 10.1016/j.ecoenv.2017.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 02/05/2023]
Abstract
Heavy metal lead (Pb) and cadmium (Cd) are widespread environmental contaminants and exert detrimental effects on the immune system. We evaluated the association between Pb/Cd exposures and innate immune cells in children from an electronic waste (e-waste) recycling area. A total number of 294 preschool children were recruited, including 153 children from Guiyu (e-waste exposed group), and 141 from Haojiang (reference group). Pb and Cd levels in peripheral blood were measured by graphite furnace atomic absorption spectrophotometer, NK cell percentages were detected by flow cytometer, and other innate immune cells including monocytes, eosinophils, neutrophils and basophils were immediately measured by automated hematology analyzer. Results showed children in Guiyu had significantly higher Pb and Cd levels than in reference group. Absolute counts of monocytes, eosinophils, neutrophils and basophils, as well as percentages of eosinophils and neutrophils were significantly higher in the Guiyu group. In contrast, NK cell percentages were significantly lower in Guiyu group. Pb elicited significant escalation in counts of monocytes, eosinophils and basophils, as well as percentages of monocytes, but decline in percentages of neutrophils in different quintiles with respect to the first quintile of Pb concentrations. Cd induced significant increase in counts and percentages of neutrophils in the highest quintile compared with the first quintile of Cd concentrations. We concluded alteration of the number and percentage of innate immune cells are linked to higher levels of Pb and Cd, which indicates Pb and Cd exposures might affect the innate and adaptive immune response in Guiyu children.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Di Sun
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Junjun Cao
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
48
|
Elmhiri G, Gloaguen C, Grison S, Kereselidze D, Elie C, Tack K, Benderitter M, Lestaevel P, Legendre A, Souidi M. DNA methylation and potential multigenerational epigenetic effects linked to uranium chronic low-dose exposure in gonads of males and females rats. Toxicol Lett 2017; 282:64-70. [PMID: 29024790 DOI: 10.1016/j.toxlet.2017.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/28/2017] [Accepted: 10/02/2017] [Indexed: 01/30/2023]
Abstract
INTRODUCTION An increased health problem in industrialised countries is the contemporary concern of public and scientific community as well. This has been attributed in part to accumulated environmental pollutants especially radioactive substances and the use of nuclear power plants worldwide. However, the outcome of chronic exposure to low doses of a radionuclide such as uranium remains unknown. Recently, a paradigm shift in the perception of risk of radiotoxicology has emerged through investigating the possibility of transmission of biological effects over generations, in particular by epigenetic pathways. These processes are known for their crucial roles associated with the development of several diseases. OBJECTIVE The current work investigates the epigenetic effect of chronic exposure to low doses of uranium and its inheritance across generations. Materials and Methods To test this proposition, a rodent multigenerational model, males and females, were exposed to a non-toxic concentration of uranium (40mgL-1 drinking water) for nine months. The uranium effects on were evaluated over three generations (F0, F1 and F2) by analysing the DNA methylation profile and DNMT genes expression in ovaries and testes tissues. RESULTS Here we report a significant hypermethylation of testes DNA (p <0.005) whereas ovaries showed hypomethylated DNA (p <0.005). Interestingly, this DNA methylation profile was significantly maintained across generations F0, F1 and F2. Furthermore, qPCR results of both tissues imply a significant change in the expression of DNA methyltransferase genes (DNMT 1 and DNMT3a/b) as well. CONCLUSION Altogether, our work demonstrates for the first time a sex-dependance and inheritance of epigenetic marks, DNA methylation, as a biological response to the exposure to low doses of uranium. However, it is not clear which type of reproductive cell type is more responsive in this context.
Collapse
Affiliation(s)
- G Elmhiri
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France
| | - C Gloaguen
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France
| | - S Grison
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France
| | - D Kereselidze
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France
| | - C Elie
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France
| | - K Tack
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France
| | - M Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France
| | - P Lestaevel
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France
| | - A Legendre
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France
| | - M Souidi
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux Roses, France; Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM, Fontenay-aux Roses, France.
| |
Collapse
|
49
|
Laine JE, Bailey KA, Olshan AF, Smeester L, Drobná Z, Stýblo M, Douillet C, García-Vargas G, Rubio-Andrade M, Pathmasiri W, McRitchie S, Sumner SJ, Fry RC. Neonatal Metabolomic Profiles Related to Prenatal Arsenic Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:625-633. [PMID: 27997141 PMCID: PMC5460981 DOI: 10.1021/acs.est.6b04374] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Prenatal inorganic arsenic (iAs) exposure is associated with health effects evident at birth and later in life. An understanding of the relationship between prenatal iAs exposure and alterations in the neonatal metabolome could reveal critical molecular modifications, potentially underpinning disease etiologies. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis was used to identify metabolites in neonate cord serum associated with prenatal iAs exposure in participants from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, in Gómez Palacio, Mexico. Through multivariable linear regression, ten cord serum metabolites were identified as significantly associated with total urinary iAs and/or iAs metabolites, measured as %iAs, %monomethylated arsenicals (MMAs), and %dimethylated arsenicals (DMAs). A total of 17 metabolites were identified as significantly associated with total iAs and/or iAs metabolites in cord serum. These metabolites are indicative of changes in important biochemical pathways such as vitamin metabolism, the citric acid (TCA) cycle, and amino acid metabolism. These data highlight that maternal biotransformation of iAs and neonatal levels of iAs and its metabolites are associated with differences in neonate cord metabolomic profiles. The results demonstrate the potential utility of metabolites as biomarkers/indicators of in utero environmental exposure.
Collapse
Affiliation(s)
- Jessica E. Laine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kathryn A. Bailey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zuzana Drobná
- Department of Biological Sciences, College of Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gonzalo García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango 35050, Mexico
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango 35050, Mexico
| | - Wimal Pathmasiri
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Susan McRitchie
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Susan J. Sumner
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
50
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
- Department of Chemistry, University of Washington, Seattle, Washington 98109, United States
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| |
Collapse
|