1
|
Du X, Wu Y, Tao G, Xu J, Du Z, Wu M, Gu T, Xiong J, Xiao S, Wei X, Ruan Y, Xiao P, Zhang L, Zheng W. Association between PFAS exposure and thyroid health: A systematic review and meta-analysis for adolescents, pregnant women, adults and toxicological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175958. [PMID: 39233077 DOI: 10.1016/j.scitotenv.2024.175958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A burgeoning body of epidemiological and toxicological evidence suggests that thyroid health may be significantly impacted by exposure to both long- and short-chain perfluoroalkyl substances (PFAS) compounds. We conducted a meta-analysis to examine the association between 16 PFAS compounds and five thyroid hormones (TSH, TT3, TT4, FT3, and FT4) in the serum of a pregnant women, adolescents, and adults. The dose-response relationship between some PFAS and thyroid hormones in different population subpopulation was found and the model was fitted. We also amalgamated data from 18 animal experiments with previously published in vitro studies to elucidate the toxicological mechanisms underlying the impact of PFAS on the thyroid gland. The results of the study showed that (a) both conventional and emerging PFAS compounds were identified in human samples and exhibited associations with thyroid health outcomes; (b) in animal studies, PFAS have been found to impact thyroid gland health through two primary mechanisms: by influencing the hypothalamic-pituitary-thyroid axis and by binding to thyroid receptors. This study provides a systematic description of the health effects and risk assessment associated with PFAS exposure on the thyroid gland. Furthermore, dose-response relationships were established through the Hill model in python.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jun Xu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Minjuan Wu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Tianmin Gu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiasheng Xiong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Ling Zhang
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Bharal B, Ruchitha C, Kumar P, Pandey R, Rachamalla M, Niyogi S, Naidu R, Kaundal RK. Neurotoxicity of per- and polyfluoroalkyl substances: Evidence and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176941. [PMID: 39454776 DOI: 10.1016/j.scitotenv.2024.176941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in various products, including food packaging, textiles, and firefighting foam, owing to their unique properties such as amphiphilicity and strong CF bonds. Despite their widespread use, concerns have arisen due to their resistance to degradation and propensity for bioaccumulation in both environmental and human systems. Emerging evidence suggests a potential link between PFAS exposure and neurotoxic effects, spanning cognitive deficits, neurodevelopmental disorders, and neurodegenerative diseases. This review comprehensively synthesizes current knowledge on PFAS neurotoxicity, drawing insights from epidemiological studies, animal experiments, and mechanistic investigations. PFAS, known for their lipophilic nature, tend to accumulate in lipid-rich tissues, including the brain, breaching biological barriers such as the blood-brain barrier (BBB). The accumulation of PFAS within the central nervous system (CNS) has been implicated in a spectrum of neurological maladies. Neurotoxicity induced by PFAS manifests through a multitude of direct and indirect mechanisms. A growing body of research associated PFAS exposure with BBB disruption, calcium dysregulation, neurotransmitter alterations, neuroinflammation, oxidative stress, and mitochondrial dysfunction, all contributing to neuronal impairment. Despite notable strides in research, significant lacunae persist, necessitating further exploration to elucidate the full spectrum of PFAS-mediated neurotoxicity. Prospective research endeavors should prioritize developing biomarkers, delineating sensitive exposure windows, and exploring mitigation strategies aimed at safeguarding neurological integrity within populations vulnerable to PFAS exposure.
Collapse
Affiliation(s)
- Bhagyashree Bharal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Chanda Ruchitha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Paarth Kumar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravinder K Kaundal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
3
|
Claus Henn B, Leonard ER, Doherty BT, Byrne S, Hartmann N, Ptolemy AS, Ayanian S, Crawford KA. Serum per- and polyfluoroalkyl substance (PFAS) levels and health-related biomarkers in a pilot study of skiers in New England. ENVIRONMENTAL RESEARCH 2024; 263:120122. [PMID: 39389198 DOI: 10.1016/j.envres.2024.120122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), synthetic chemicals with adverse health effects, are used extensively in consumer products. Ski waxes, applied to the base of skis, contain up to 100% PFAS by mass, but exposure and health effects are poorly characterized. OBJECTIVES Our objectives were to quantify serum PFAS concentrations among skiers and explore associations with reported ski wax use and biomarkers of cardiometabolic, thyroid, and immune health. METHODS We recruited 30 active adult skiers to provide non-fasting blood samples and complete questionnaires. We quantified 18 PFAS using mass spectrometry, and measured serum lipids, thyroid hormones, and immunoglobulins. We explored associations of individual and aggregate measures of serum PFAS with wax use indicators and health biomarkers using multivariable regression models, adjusted for age and gender identity. RESULTS Nine PFAS (PFBS, PFHpS, PFHxS, Sm-PFOS, n-PFOS, PFDA, PFNA, PFUnDA, n-PFOA) were detected in 100% of participants, and MeFOSAA in 93%. Compared to NHANES, median serum concentrations (ng/ml) were similar, but higher in coaches (e.g., PFOAall: 1.1, PFOAcoaches: 2.7, PFOANHANES: 1.2; PFNAall: 0.5, PFNAcoaches: 1.7, PFNANHANES: 0.4). Factors reflecting wax exposure were positively associated with PFAS: e.g., >10 years as a snow sport athlete, compared to ≤10 years, was associated with 3.2 (95% CI: 0.7, 5.6) ng/ml higher aggregate PFAS, as defined by National Academies of Science, Engineering, and Medicine (NASEM). An IQR (6.3 ng/ml) increase in NASEM PFAS was associated with 32.1 (95% CI: 7.0, 57.2), 35.5 (13.5, 57.5), and 12.8 (0.6, 25.1) mg/dl higher total cholesterol, LDL-C, and sdLDL-C, respectively. DISCUSSION Our study provides early evidence that recreational skiers, particularly coaches, are exposed to PFAS through ski wax. Several PFAS were associated with higher serum lipids among these physically active adults. Interventions to remove PFAS from fluorinated wax could decrease direct exposure to skiers and reduce PFAS release into the environment.
Collapse
Affiliation(s)
- Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Emily R Leonard
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | | | - Sam Byrne
- Biology Department, Middlebury College, Middlebury, VT, USA; Global Health Program, Middlebury College, Middlebury, VT, USA
| | - Nicola Hartmann
- Global Health Program, Middlebury College, Middlebury, VT, USA; Program in Molecular Biology & Biochemistry, Middlebury College, Middlebury, VT, USA
| | - Adam S Ptolemy
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Shaké Ayanian
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | | |
Collapse
|
4
|
Ramasamy Chandrasekaran P, Chinnadurai J, Lim YC, Chen CW, Tsai PC, Huang PC, Gavahian M, Andaluri G, Dong CD, Lin YC, Ponnusamy VK. Advances in perfluoro-alkylated compounds (PFAS) detection in seafood and marine environments: A comprehensive review on analytical techniques and global regulations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:424. [PMID: 39316302 DOI: 10.1007/s10653-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants that severely threaten the environment and human health due to their distinct chemical composition, extensive production, widespread distribution, bioaccumulation in nature, and long-term persistence. This review focuses on the occurrence and sources of PFAS in seafood, with a particular emphasis on advanced detection methods viz. nanoparticle-based, biosensor-based, and metal-organic frameworks-based, and mass spectrometric techniques. The challenges associated with these advanced detection technologies are also discussed. Recent research and regulatory updates about PFAS, including hazardous and potential health effects, epidemiological studies, and various risk assessment models, have been reviewed. In addition, the need for global monitoring programs and regulations on PFAS are critically reviewed by underscoring their crucial role in protecting human health and the environment. Further, approaches for reducing PFAS in seafood are highlighted with future innovative remediation directions. Although advanced PFAS analytical methods are available, selectivity, sample preparation, and sensitivity are still significant challenges associated with detection of PFAS in seafood matrices. Moreover, crucial research gaps and solutions to essential concerns are critically explored in this review.
Collapse
Affiliation(s)
- Prasath Ramasamy Chandrasekaran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Jeganathan Chinnadurai
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli, 350, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan.
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
5
|
Bali SK, Martin R, Almeida NMS, Saunders C, Wilson AK. Per- and Polyfluoroalkyl (PFAS) Disruption of Thyroid Hormone Synthesis. ACS OMEGA 2024; 9:39554-39563. [PMID: 39346893 PMCID: PMC11425649 DOI: 10.1021/acsomega.4c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of environmental pollutants that have been linked to a variety of health problems in humans, including the disruption of thyroid functions. Herein, for the first time, the impact of PFAS on thyroid hormone synthesis is shown. Mid- to long-chain PFAS impact thyroid hormone synthesis by changing the local hydrogen bond network as well as the required orientation of hormonogenic residues, stopping the production of thyroxine (T4). Furthermore, the toxic effects of sulfonic PFAS are more prominent than those of carboxylic PFAS, highlighting that the exposure to these specific compounds can pose greater problems for thyroid homeostasis.
Collapse
Affiliation(s)
- Semiha Kevser Bali
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Rebecca Martin
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Nuno M S Almeida
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Catherine Saunders
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
6
|
Larrat S, Lesage V, Michaud R, Lair S. Relationship between nutritional condition and causes of death in beluga whales Delphinapterus leucas from the St. Lawrence estuary, Quebec, Canada. DISEASES OF AQUATIC ORGANISMS 2024; 159:159-169. [PMID: 39263853 DOI: 10.3354/dao03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Carcasses of endangered beluga whales Delphinapterus leucas from the St. Lawrence Estuary, Canada, have been examined consistently since 1983 to determine causes of death. The objective of this study is to compare the nutritional condition of belugas that died of different causes. Previously published categories of death were refined to discriminate acute from chronic pathological processes. Bayesian linear models were used to predict cause of death from the scaled mass index (SMI). Causes of death were as follows: 'bacterial diseases', 'verminous pneumonia', 'toxoplasmosis', 'other parasitic diseases', 'other infectious diseases', 'trauma-entrapment', 'other noninfectious diseases', 'dystocia-postpartum complications', 'neonatal mortality', 'cancer', 'primary starvation' and 'undetermined'. The models predicted a lower nutritional condition for the 'neonatal mortality' in belugas <290 cm in length and for 'primary starvation' and 'verminous pneumonia' categories for belugas ≥290 cm. Belugas that died from 'dystocia-postpartum complications' or from 'undetermined causes' had a higher-than-average SMI. Animals in the 'trauma-entrapment' category did not exhibit the highest nutritional condition, which was unexpected since individuals that died from trauma or entrapment are often used as references for optimal nutritional condition in other cetacean populations. Females that died from dystocia and postpartum complications were in similar nutritional condition as females dead from other causes during, or shortly after, pregnancy. This suggests that these females are not obese, ruling out a possible cause of dystocia. Although studying dead animals biases results toward low nutritional condition, our findings support the link between chronic pathological processes and poorer nutritional condition in belugas.
Collapse
Affiliation(s)
- Sylvain Larrat
- Consultant in Wildlife Health Veterinarian, 920 Guernic, 56330 Pluvigner, France
| | - Véronique Lesage
- Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, 850 Rte de la Mer, Mont-Joli, QC G5H 3Z4, Canada
| | - Robert Michaud
- Groupe de recherche et d'éducation sur les mammifères marins, 108, de la Cale-Sèche, Tadoussac, QC G0T 2A0, Canada
| | - Stéphane Lair
- Centre québécois sur la santé des animaux sauvages / Canadian Wildlife Health Cooperative, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, QC J2S 7C6, Canada
| |
Collapse
|
7
|
Chen F, Zhou Y, Wang L, Wang P, Wang T, Ravindran B, Mishra S, Chen S, Cui X, Yang Y, Zhang W. Elucidating the degradation mechanisms of perfluorooctanoic acid and perfluorooctane sulfonate in various environmental matrices: a review of green degradation pathways. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:349. [PMID: 39073492 DOI: 10.1007/s10653-024-02134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Given environmental persistence, potential for bioaccumulation, and toxicity of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the scientific community has increasingly focused on researching their toxicology and degradation methods. This paper presents a survey of recent research advances in the toxicological effects and degradation methods of PFOA and PFOS. Their adverse effects on the liver, nervous system, male reproductive system, genetics, and development are detailed. Additionally, the degradation techniques of PFOA and PFOS, including photochemical, photocatalytic, and electrochemical methods, are analyzed and compared, highlighted the potential of these technologies for environmental remediation. The biotransformation pathways and mechanisms of PFOA and PFOS involving microorganisms, plants, and enzymes are also presented. As the primary green degradation pathway for PFOA and PFOS, Biodegradation uses specific microorganisms, plants or enzymes to remove PFOA and PFOS from the environment through redox reactions, enzyme catalysis and other pathways. Currently, there has been a paucity of research conducted on the biodegradation of PFOA and PFOS. However, this degradation technology is promising owing to its specificity, cost-effectiveness, and ease of implementation. Furthermore, novel materials/methods for PFOA and PFOS degradation are presented in this paper. These novel materials/methods effectively improve the degradation efficiency of PFOA and PFOS and provide new ideas and tools for the degradation of PFOA and PFOS. This information can assist researchers in identifying flaws and gaps in the field, which can facilitate the formulation of innovative research ideas.
Collapse
Affiliation(s)
- Feiyu Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Yi Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Liping Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Pengfei Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Tianyue Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| | - Wenping Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming, 650500, Yunnan, China.
| |
Collapse
|
8
|
Coperchini F, Teliti M, Greco A, Croce L, Rotondi M. Per-polyfluoroalkyl substances (PFAS) as thyroid disruptors: is there evidence for multi-transgenerational effects? Expert Rev Endocrinol Metab 2024; 19:307-315. [PMID: 38764236 DOI: 10.1080/17446651.2024.2351885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION The environmental spread of pollutants has led to a persistent exposure of living beings to multiple chemicals, by now become ubiquitous in the surrounding environment. Environmental exposure to these substances has been reported to cause multi- and/or transgenerational health effects. Per- and Polyfluorinated Substances (PFAS) raise great concern, given their known effects both as endocrine disruptors and potential carcinogens. The multi/trans-generational effects of different endocrine disruptors have been investigated by several studies, and harmful effects observed also for PFAS. AREAS COVERED This review examines the current data on the multi-trans-generational effects of PFAS, with a focus on their impact on the thyroid axis. The aim is to determine if there is evidence of potential multi-trans-generational effects of PFAS on the thyroid and/or if more research is needed. EXPERT OPINION PFAS exposure impacts thyroid homeostasis and can cross the placental barrier. In addition PFAS have shown multi-transgenerational effects in laboratory experiences and animal models, but thyroid disruptive effects of PFAS were also investigated only in a small number of these studies. Efforts are needed to study the adverse effects of PFAS, as not all PFAS are regulated and removal strategies are still being developed.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Lombardia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Pavia, Italy
| |
Collapse
|
9
|
Bian J, Xu J, Guo Z, Li X, Ge Y, Tang X, Lu B, Chen X, Lu S. Per- and polyfluoroalkyl substances in Chinese commercially available red swamp crayfish (Procambarus clarkii): Implications for human exposure and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124369. [PMID: 38876375 DOI: 10.1016/j.envpol.2024.124369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The extensive utilization of per- and polyfluoroalkyl substances (PFASs) has led to their pervasive presence in the environment, resulting in contamination of aquatic products. Prolonged exposure to PFASs has been linked to direct hepatic and renal damage, along with the induction of oxidative stress, contributing to a spectrum of chronic ailments. Despite the recent surge in popularity of red swamp crayfish as a culinary delicacy in China, studies addressing PFASs' exposure and associated health risks from their consumption remain scarce. To address this gap, our study investigated the PFASs' content in 85 paired edible tissue samples sourced from the five primary red swamp crayfish breeding provinces in China. The health risks associated with dietary exposure were also assessed. Our findings revealed widespread detection of PFASs in crayfish samples, with short-chain perfluoroalkyl carboxylic acids (PFCAs) exhibiting the highest concentrations. Notably, the total PFAS concentration in the hepatopancreas (median: 160 ng/g) significantly exceeded that in muscle tissue (5.95 ng/g), as did the concentration of every single substance. The hazard quotient of perfluorohexanesulfonic acid (PFHxS) via consuming crayfish during peak season exceeded 1. In this case, a potential total non-cancer health risk of PFASs, which is mainly from the hepatopancreas and associated with PFHxS, is also observed (hazard index>1). Thus, it is recommended to avoid consuming the hepatopancreas of red swamp crayfish. Greater attention should be paid to governance technology innovation and regulatory measure strengthening for short-chain PFASs.
Collapse
Affiliation(s)
- Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
10
|
Huang SN, Hu YH, Xu TT, Luan YL, Zeng LX, Zhang ZF, Guo Y. Exposure to per- and polyfluoroalkyl substances in lung cancer patients and their associations with clinical health indicators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123995. [PMID: 38636840 DOI: 10.1016/j.envpol.2024.123995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have potential carcinogenicity, immunotoxicity, and hepatotoxicity. Research has been conducted on PFAS exposure in people to discuss their potential health effects, excluding lung cancer. In this study, we recruited participants (n = 282) with lung cancer from Heilongjiang Province, northeast China. The PFAS concentrations were measured in their serum to fill the data gap of exposure, and relationships were explored in levels between PFASs and clinical indicators of tumor, immune and liver function. Ten PFASs were found in over 80 % of samples and their total concentrations were 5.27-152 ng/mL, with the highest level for perfluorooctanesulfonate (median: 12.4 ng/mL). Long-chain PFASs were the main congeners and their median concentration (20.5 ng/mL) was nearly three times to that of short-chain PFASs (7.61 ng/mL). Significantly higher concentrations of perfluorobutanoic acid, perfluorononanoic acid and perfluorohexanesulfonate were found in males than in females (p < 0.05). Serum levels of neuro-specific enolase were positively associated with perfluoropentanoic acid in all participants and were negatively associated with perfluorononanesulfonate in females (p < 0.05, multiple linear regression models). Exposure to PFAS mixture was significantly positively associated with the lymphocytic absolute value (difference: 0.224, 95% CI: 0.018, 0.470; p < 0.05, quantile g-computation models) and serum total bilirubin (difference: 2.177, 95% CI: 0.0335, 4.33; p < 0.05). Moreover, PFAS exposure can affect γ-glutamyl transpeptidase through several immune markers (p < 0.05, mediating test). Our results suggest that exposure to certain PFASs could interfere with clinical indicators in lung cancer patients. To our knowledge, this is the first study to detect serum PFAS occurrence and check their associations with clinical indicators in lung cancer patients.
Collapse
Affiliation(s)
- Si-Nan Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Ying-Hua Hu
- International Joint Research Center for Persistent Toxic Substances, Heilongjiang Institute of Labor Hygiene and Occupational Diseases, The Second Hospital of Heilongjiang Province, Harbin, 100028, China
| | - Ting-Ting Xu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Yu-Ling Luan
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Li-Xi Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ying Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
11
|
Zhang B, Wang Z, Zhang J, Dai Y, Ding J, Guo J, Qi X, Wu C, Zhou Z. Prenatal exposure to per- and polyfluoroalkyl substances, fetal thyroid function, and intelligence quotient at 7 years of age: Findings from the Sheyang Mini Birth Cohort Study. ENVIRONMENT INTERNATIONAL 2024; 187:108720. [PMID: 38718676 DOI: 10.1016/j.envint.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) influences neurodevelopment. Thyroid homeostasis disruption is thought to be a possible underlying mechanism. However, current epidemiological evidence remains inconclusive. OBJECTIVES This study aimed to explore the effects of prenatal PFAS exposure on the intelligence quotient (IQ) of school-aged children and assess the potential mediating role of fetal thyroid function. METHODS The study included 327 7-year-old children from the Sheyang Mini Birth Cohort Study (SMBCS). Cord serum samples were analyzed for 12 PFAS concentrations and 5 thyroid hormone (TH) levels. IQ was assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models (GLM) and Bayesian Kernel Machine Regression (BKMR) were used to evaluate the individual and combined effects of prenatal PFAS exposure on IQ. Additionally, the impact on fetal thyroid function was examined using a GLM, and a mediation analysis was conducted to explore the potential mediating roles of this function. RESULTS The molar sum concentration of perfluorinated carboxylic acids (ΣPFCA) in cord serum was significantly negatively associated with the performance IQ (PIQ) of 7-year-old children (β = -6.21, 95 % confidence interval [CI]: -12.21, -0.21), with more pronounced associations observed among girls (β = -9.57, 95 % CI: -18.33, -0.81) than in boys. Negative, albeit non-significant, cumulative effects were noted when considering PFAS mixture exposure. Prenatal exposure to perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctanesulfonic acid was positively associated with the total thyroxine/triiodothyronine ratio. However, no evidence supported the mediating role of thyroid function in the link between PFAS exposure and IQ. CONCLUSIONS Increased prenatal exposure to PFASs negatively affected the IQ of school-aged children, whereas fetal thyroid function did not serve as a mediator in this relationship.
Collapse
Affiliation(s)
- Boya Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zheng Wang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Yiming Dai
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiayun Ding
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
12
|
Mitra T, Gulati R, Ramachandran K, Rajiv R, Enninga EAL, Pierret CK, Kumari R S, Janardhanan R. Endocrine disrupting chemicals: gestational diabetes and beyond. Diabetol Metab Syndr 2024; 16:95. [PMID: 38664841 PMCID: PMC11046910 DOI: 10.1186/s13098-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational Diabetes Mellitus (GDM) has been on the rise for the last two decades along with the growing incidence of obesity. The ubiquitous use of Endocrine-Disrupting Chemicals (EDCs) worldwide has been associated with this increase in GDM incidence. Epigenetic modifications such as DNA methylation, histone acetylation, and methylation have been associated with prenatal exposure to EDCs. EDC exposure can also drive a sustained disruption of the hypothalamus-pituitary-thyroid axis and various other signaling pathways such as thyroid signaling, PPARγ signaling, PI3K-AKT signaling. This disruption leads to impaired glucose metabolism, insulin resistance as well as β-cell dysfunction, which culminate into GDM. Persistent EDC exposure in pregnant women also increases adipogenesis, which results in gestational weight gain. Importantly, pregnant mothers transfer these EDCs to the fetus via the placenta, thus leading to other pregnancy-associated complications such as intrauterine growth restriction (IUGR), and large for gestational age neonates. Furthermore, this early EDC exposure of the fetus increases the susceptibility of the infant to metabolic diseases in early life. The transgenerational impact of EDCs is also associated with higher vascular tone, cognitive aberrations, and enhanced susceptibility to lifestyle disorders including reproductive health anomalies. The review focuses on the impact of environmental toxins in inducing epigenetic alterations and increasing the susceptibility to metabolic diseases during pregnancy needs to be extensively studied such that interventions can be developed to break this vicious cycle. Furthermore, the use of EDC-associated ExomiRs from the serum of patients can help in the early diagnosis of GDM, thereby leading to triaging of patients based on increasing risk factor of the clinicopathological condition.
Collapse
Affiliation(s)
- Tridip Mitra
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Richa Gulati
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Krithika Ramachandran
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rohan Rajiv
- Dietrich School of Arts and Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | - Chris K Pierret
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sajeetha Kumari R
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rajiv Janardhanan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
13
|
Tan K, Zhang Q, Wang Y, Wang C, Hu C, Wang L, Liu H, Tian Z. Associations between per- and polyfluoroalkyl substances exposure and thyroid hormone levels in the elderly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170761. [PMID: 38340830 DOI: 10.1016/j.scitotenv.2024.170761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/05/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
This study aimed to measure the exposure of the elderly to per- and polyfluoroalkyl substances (PFAS) and explore their effects on thyroid hormone levels. A cross-sectional study of plasma samples from 746 elderly people (aged >60 years) from Taiyuan, China was conducted. Fourteen PFASs were determined using liquid chromatography-tandem mass spectrometry and five thyroid function indicators, thyroid-stimulating hormone (TSH), thyroxine (T4), triiodothyronine (T3), free T4 (FT4), and free T3 (FT3), using an enzyme-linked immunoassay. Descriptive analysis was used to investigate PFC exposure and the toxic equivalent quantity (TEQ) was used to calculate the transthyretin (TTR)-disrupting toxicity of combined exposure to PFAS. Linear additive and multiple linear regression models were used to explore the relationship between PFAS and hormones, using PFC concentration as quartiles and continuous variables. Among the PFAS identified, 12 PFASs had detection rates >80 %, with perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) having the highest concentrations. Perfluorodecanoic acid (PFDA), PFOS, and perfluorononanoic acid (PFNA) were negatively correlated with TSH levels and each interquartile range (IQR) concentration increase caused a reduction in TSH levels by 2.14 %, 1.78 %, and 3.04 %, respectively. Perfluorotridecanoic acid (PFTrA) and perfluoropentanoic acid (PFPA) were positively correlated with T4 and T3 levels, respectively, and levels increased by 4.52 % (T4) and 1.14 % (T3) with IQR concentration increase. Perfluorobutanoic acid (PFBA) was negatively correlated with FT4 levels, which decreased by 1.89 % with IQR concentration increase. A negative correlation was found between the combined exposure indices of TEQ and TSH levels; IQR increase in TEQ decreased the TSH concentration by 1.91 %. In conclusion, exposure to PFAS was common in the elderly population and was associated with decreased TSH and FT4 levels and increased T4 and T3 levels. These results indicated that PFASs may cause thyroid-disrupting effects in the elderly population.
Collapse
Affiliation(s)
- Kai Tan
- School of Management, Shanxi Medical University, South Xinjian Road, Taiyuan, China
| | - QingQuan Zhang
- School of Management, Shanxi Medical University, South Xinjian Road, Taiyuan, China
| | - Yanjun Wang
- Comprehensive Service Center of Shanxi Medical and Health Institutions (Shanxi Province Blood Center), Changfeng Street, Taiyuan, China
| | - Chunfang Wang
- Experimental Animal Center, Shanxi Medical University, South Xinjian Road, Taiyuan, China
| | - Chongfang Hu
- Talent Center of Shanxi Provincial Health Commission, Bei Xiaoqiang Road, Taiyuan, China
| | - Lin Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Hualin Liu
- School of Health Management, Shanxi Technology and Business college, Taiyuan 030036, China
| | - Zhiqiang Tian
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; School of Health Management, Shanxi Technology and Business college, Taiyuan 030036, China.
| |
Collapse
|
14
|
Xie LN, Wang XC, Su LQ, Ji SS, Gu W, Barrett H, Dong XJ, Zhu HJ, Hou SS, Li ZH, Liu YL, Zhang L, Zhu Y. The association between per-/polyfluoroalkyl substances in serum and thyroid function parameters: A cross-sectional study on teenagers living near a Chinese fluorochemical industrial plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170985. [PMID: 38367719 DOI: 10.1016/j.scitotenv.2024.170985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Thyroid hormones (THs) play an important role in a wide range of crucial biological functions related to growth and development, and thyroid antibodies (TAs) can influence the biosynthesis of THs. Epidemiological studies have indicated that per- and polyfluoroalkyl substances (PFAS) could induce thyroid disruption, but studies on teenagers living in areas with high PFAS exposure are limited. This cross-sectional study focused on 836 teenagers (11- 15 years) living near a Chinese fluorochemical industrial plant. Decreased levels of free thyroxine (FT4, ﹤9.6 pmol/L, abnormal rate = 19.0 %) and elevated levels of free triiodothyronine (FT3, ﹥6.15 pmol/L, abnormal rate = 29.8 %) were observed. Correlations of serum PFAS concentrations and TAs/THs were analyzed. Increased PFOA was identified as a risk factor of decreased FT4 by using unadjusted (OR: 11.346; 95 % CI: 6.029, 21.352, p < 0.001) and adjusted (OR: 12.566; 95 % CI: 6.549, 24.115, p < 0.001) logistic regression models. In addition, significantly negative correlations were found between log10 transformed PFOA and FT4 levels using linear (unadjusted: β = -1.543, 95 % CI: -1.937, -1.148, p < 0.001; adjusted: β = -1.534, 95 % CI: -1.930, -1.137, p < 0.001) and BKMR models. For abnormal FT3, a significantly positive association between PFHxS and FT3 levels was observed in a regression model (unadjusted: β = -0.903, 95 % CI: -1.212, -0.595, p < 0.001; adjusted: β = -0.894, 95 % CI: -1.204, -0.583, p < 0.001), and PFHxS was identified as a risk factor (unadjusted: OR: 4.387; 95 % CI: 2.619, 7.346, p < 0.001; adjusted: OR: 4.527; 95 % CI: 2.665, 7.688, p < 0.001). Sensitivity analyses confirmed the robustness of the above results. This study reported the elevated PFAS exposure and thyroid function of teenagers living near a fluorochemical industrial plant from China.
Collapse
Affiliation(s)
- Lin-Na Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiao-Chen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Li-Qin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Sai-Sai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Xiao-Jie Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui-Juan Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Sha-Sha Hou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhen-Huan Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yi-Lin Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ling Zhang
- Zibo Maternal and Child Health Hospital, Zibo, Shandong Province 255000, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
15
|
Madrigal JM, Troisi R, Surcel HM, Öhman H, Kivelä J, Kiviranta H, Rantakokko P, Koponen J, Medgyesi DN, Kitahara CM, McGlynn KA, Sampson J, Albert PS, Ward MH, Jones RR. Prediagnostic serum concentrations of per- and polyfluoroalkyl substances and risk of papillary thyroid cancer in the Finnish Maternity Cohort. Int J Cancer 2024; 154:979-991. [PMID: 37902275 PMCID: PMC11286200 DOI: 10.1002/ijc.34776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
Human exposure to per- and polyfluoroalkyl substances (PFAS) occurs globally through contaminated food, dust, and drinking water. Studies of PFAS and thyroid cancer have been limited. We conducted a nested case-control study of prediagnostic serum levels of 19 PFAS and papillary thyroid cancer (400 cases, 400 controls) in the Finnish Maternity Cohort (pregnancies 1986-2010; follow-up through 2016), individually matched on sample year and age. We used conditional logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for log2 transformed and categorical exposures, overall and stratified by calendar period, birth cohort, and median age at diagnosis. We adjusted for other PFAS with Spearman correlation rho = 0.3-0.6. Seven PFAS, including perfluoroctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), N-ethyl-perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorohexane sulfonic acid (PFHxS) were detected in >50% of women. These PFAS were not associated with risk of thyroid cancer, except for PFHxS, which was inversely associated (OR log2 = 0.82, 95% CI: 0.70-0.97). We observed suggestive but imprecise increased risks associated with PFOA, PFOS, and EtFOSAA for those diagnosed at ages <40 years, whereas associations were null or inverse among those diagnosed at 40+ years (P-interaction: .02, .08, .13, respectively). There was little evidence of other interactions. These results show no clear association between PFAS and papillary thyroid cancer risk. Future work would benefit from evaluation of these relationships among those with higher exposure levels and during periods of early development when the thyroid gland may be more susceptible to environmental harms.
Collapse
Affiliation(s)
- Jessica M. Madrigal
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| | | | - Heljä-Marja Surcel
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hanna Öhman
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Juha Kivelä
- Biobank Borealis of Northern Finland, Oulu University Hospital, Oulu, Finland
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Hannu Kiviranta
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Panu Rantakokko
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Jani Koponen
- Finnish Institute for Health and Welfare /Environmental Health Unit, Kuopio, Finland
| | - Danielle N. Medgyesi
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | | | - Mary H. Ward
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| | - Rena R. Jones
- Occupational & Environmental Epidemiology Branch, Division of Cancer Epidemiology & Genetics (DCEG), National Cancer Institute (NCI), Rockville, Maryland, USA
| |
Collapse
|
16
|
Pearce EN. Endocrine Disruptors and Thyroid Health. Endocr Pract 2024; 30:172-176. [PMID: 37956907 DOI: 10.1016/j.eprac.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
A wide variety of thyroidal endocrine-disrupting chemicals (EDCs) have been identified. Exposure to known thyroidal EDCs is ubiquitous, and many likely remain unidentified. The sources of exposure include contaminated drinking water, air pollution, pesticides and agricultural chemicals, flame retardants, cleaning supplies, personal care products, food additives and packaging materials, coatings and solvents, and medical products and equipment. EDCs can affect thyroid hormone synthesis, transport, metabolism, and action in a myriad of ways. Understanding the health effects of thyroidal EDCs has been challenging because individuals may have multiple concomitant EDC exposures and many potential EDCs are not yet well characterized. Because of the importance of thyroid hormone for brain development in early life, pregnant women and young infants are particularly vulnerable to the effects of environmental thyroid disruption. The thyroidal effects of some EDCs may be exacerbated in iodine-deficient individuals, those with thyroid autoimmunity, and those with mutations in deiodinase genes. Differential exposures to EDCs may exacerbate health disparities in disadvantaged groups. High-throughput in vitro assays and in silico methods and methods that can detect the effects of relevant EDC mixtures are needed. In addition, optimal methods for detecting the effects of thyroidal EDCs on neurodevelopment need to be developed. Common sense precautions can reduce some thyroidal EDC exposures; however, regulation of manufacturing and drinking water content will ultimately be needed to protect populations.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
17
|
Hall M, Hornung R, Chevrier J, Ayotte P, Lanphear B, Till C. Fluoride exposure and thyroid hormone levels in pregnancy: The MIREC cohort. ENVIRONMENT INTERNATIONAL 2024; 184:108442. [PMID: 38237505 PMCID: PMC10973885 DOI: 10.1016/j.envint.2024.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Fluoride exposure may increase the risk of hypothyroidism, but results from previous studies are inconsistent at low-level fluoride exposure (i.e., ≤0.7 mg/L). Human studies of fluoride and thyroid hormone levels in pregnancy are scarce. OBJECTIVES We examined associations between fluoride exposure and maternal thyroid hormone levels in a Canadian pregnancy cohort, with consideration for fetal sex-specific effects. METHODS We measured fluoride concentrations in drinking water and spot urine samples collected during each trimester from 1876 pregnant women enrolled in the Maternal-Infant Research on Environmental Chemicals (MIREC) study. We also measured maternal thyroid stimulating hormone (TSH), free thyroxine (FT4), and total thyroxine (TT4) levels during the first trimester of pregnancy. We used linear and non-linear regression models to estimate associations between fluoride exposure and levels of TSH, FT4, and TT4. We explored effect modification by fetal sex and considered maternal iodine status as a potential confounder. RESULTS A 1 mg/L increase in urinary fluoride was associated with a 0.30 (95 %CI: 0.08, 0.51) logarithmic unit (i.e., 35.0 %) increase in TSH among women pregnant with females, but not males (B = 0.02; 95 %CI: -0.16, 0.19). Relative to women with urinary fluoride concentrations in the first quartile (0.05-0.32 mg/L), those with levels in the third quartile (0.49-0.75 mg/L) had higher FT4 and TT4 (i.e., inverted J-shaped associations), but the association was not statistically significant after adjustment for covariates (p = 0.06). Water fluoride concentration showed a U-shaped association with maternal FT4, whereby women with water fluoride concentrations in the second (0.13-0.52 mg/L) and third (0.52-0.62 mg/L) quartiles had significantly lower FT4 compared to those with levels in the first quartile (0.04-0.13 mg/L). Adjustment for maternal iodine status did not change the results. DISCUSSION Fluoride exposure was associated with alterations in maternal thyroid hormone levels, the magnitude of which appeared to vary by fetal sex. Given the importance of maternal thyroid hormones for fetal neurodevelopment, replication of findings is warranted.
Collapse
Affiliation(s)
- Meaghan Hall
- Psychology Department, York University, Toronto, ON, Canada.
| | - Rick Hornung
- Retired, Consultant to Psychology Department, York University, Toronto, ON, Canada.
| | - Jonathan Chevrier
- School of Population and Global Health, McGill University, Montreal, QC, Canada.
| | - Pierre Ayotte
- Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec City, QC, Canada.
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Christine Till
- Psychology Department, York University, Toronto, ON, Canada.
| |
Collapse
|
18
|
Xing Y, Li Z, Wang J, Qu Y, Hu Q, Ji S, Chang X, Zhao F, Lv Y, Pan Y, Shi X, Dai J. Associations between serum per- and polyfluoroalkyl substances and thyroid hormones in Chinese adults: A nationally representative cross-sectional study. ENVIRONMENT INTERNATIONAL 2024; 184:108459. [PMID: 38320373 DOI: 10.1016/j.envint.2024.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Disruption of thyroid homeostasis has been indicated in human studies on the effects of per- and polyfluoroalkyl substances (PFASs). However, limited research exists on this topic within the general Chinese population. Based on a substantial and representative sample of the Chinese adult population, our study provides insight into how PFASs specifically affect thyroid homeostasis. The study included 10 853 participants, aged 18 years and above, sampled from nationally representative data provided by the China National Human Biomonitoring (CNHBM). Weighted multiple linear regression and restricted cubic spline (RCS) models were used to explore the associations between eight individual PFAS concentrations and total thyroxine (T4), total triiodothyronine (T3), and the T4/T3 ratio. Bayesian kernel machine regression (BKMR) and quantile-based g-computation (qgcomp) were employed to explore the joint and independent effects of PFASs on thyroid homeostasis. Both individual PFASs and PFAS mixtures exhibited a significant inverse association with serum T3 and T4 levels, and displayed a positive association with the T4/T3 ratio. Perfluoroundecanoic acid (PFUnDA) [-0.07 (95 % confidence interval (CI): -0.08, -0.05)] exhibited the largest change in T3 level. PFUnDA also exhibited a higher weight compared to other PFAS compounds in qgcomp models. Additionally, a critical exposure threshold for each PFAS was identified based on nonlinear dose-response associations; beyond these thresholds, the decreases in T3 and T4 levels plateaued. Specifically, for perfluoroheptane sulfonic acid (PFHpS) and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an initial decline in hormone levels was observed, followed by a slight increase when concentrations surpassed 0.7 ng/mL and 2.5 ng/mL, respectively. Sex-specific effects were more pronounced in females, and significant associations were observed predominantly in younger age groups. These insights contribute to our understanding of how PFAS compounds impact thyroid health and emphasize the need for further research and environmental management measures to address these complexities.
Collapse
Affiliation(s)
- Yanan Xing
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinghua Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiongpu Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaochen Chang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Liu D, Yan S, Liu Y, Chen Q, Ren S. Association of prenatal exposure to perfluorinated and polyfluoroalkyl substances with childhood neurodevelopment: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115939. [PMID: 38211513 DOI: 10.1016/j.ecoenv.2024.115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Although previous studies have shown an association between prenatal exposure to perfluorinated and polyfluoroalkyl substances (PFAS) and neurodevelopmental disorders in children, the results have been inconsistent. We summarize studies on the association between prenatal PFAS exposure and neurodevelopment in children in order to better understand the relationship. OBJECTIVE We conducted a meta-analysis of prenatal PFAS exposure and developmental outcomes associated with intellectual, executive function and behavioral difficulty in children to explore the relationship between prenatal exposure to perfluorinated and polyfluoroalkyl substances (PFAS) and neurodevelopmental disorders in children. METHODS We searched for articles published up to August 3, 2023, included and quantified original studies on PFAS and child Intelligence Quotient (IQ), executive function and behavioral difficulty during pregnancy, and systematically summarized articles that could not be quantified. CONCLUSION There is evidence of sex-specific relationship between PFAS exposure and children's PIQ. We found that PFOS [β = -1.56, 95% CI = -2.96, - 0.07; exposure = per 1 ln (ng/ml) increase], PFOA [β = -1.87, 95% CI = -3.29, - 0.46; exposure = per 1 ln (ng/ml) increase], PFHxS [β = -2.02, 95% CI = -3.23, - 0.81; exposure = per 1 ln (ng/ml) increase] decreased performance IQ in boys, but PFOS [β = 1.56, 95% CI = 0.06, 3.06; exposure = per 1 ln (ng/ml) increase] increased performance IQ in girls. PFAS are associated with executive function impairments in children, but not related to behavioral difficulty in children.
Collapse
Affiliation(s)
- Dongge Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuqi Yan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanping Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qianqian Chen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuping Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
20
|
Li J, Ye S, Zhao Z, Xue Z, Ren S, Guan Y, Sun C, Yao Q, Chen L. Association of PFDeA exposure with hypertension (NHANES, 2013-2018). Sci Rep 2024; 14:918. [PMID: 38195691 PMCID: PMC10776849 DOI: 10.1038/s41598-024-51187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) is a series of artificial compounds which is associated with human health. However, there are few studies on the relationship between PFASs and hypertension. In this study, we examined the association between different kinds of PFASs and hypertension. Multivariable logistic regression and subgroup analysis were adopted to assess the associations between PFASs and hypertension. Spline smoothing plots and linear regression were used to assess the relationship between PFASs and blood pressure. We found a positive association between serum PFDeA concentrations and the prevalence of hypertension after fully adjusting confounders (OR = 1.2, P = 0.01), but other types of PFASs showed no positive results. Subgroup analysis stratified by ethnicity showed there was a stronger relationship among non-Hispanics than Hispanics. Serum PFDeA concentrations were positively associated with systolic pressure (β = 0.7, P< 0.01) and diastolic blood pressure (β = 0.8, P< 0.01) among non-Hispanics who did not take antihypertensive drugs. This study showed that PFDeA exposure was associated with hypertension in Americans who identify as non-Hispanic. There was a positive association between PFDeA and blood pressure in non-Hispanic Americans who did not take antihypertensive drugs.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Suling Ye
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeyuan Zhao
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhao Xue
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shupeng Ren
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Guan
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chuang Sun
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiying Yao
- Department of Physiology, Dalian Medical University, Dalian, China.
| | - Liang Chen
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
21
|
Gonkowski S, Martín J, Kortas A, Aparicio I, Santos JL, Alonso E, Sobiech P, Rytel L. Assessment of perfluoroalkyl substances concentration levels in wild bat guano samples. Sci Rep 2023; 13:22707. [PMID: 38123620 PMCID: PMC10733414 DOI: 10.1038/s41598-023-49638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Perfluoroalkyl substances (PFASs) are substances commonly used in the production of various everyday objects, including among others kitchen dishes, cosmetics, or clothes. They penetrate to the environment and living organisms causing disturbances in the functioning of many internal organs and systems. Due to environmental pollution, wildlife is also exposed to PFASs, but the knowledge about this issue is rather limited. The aim of this study was to evaluate the exposure of wild greater mouse-eared bats (Myotis myotis), living in Poland, to six selected PFASs: five perfluoroalkyl carboxylic acids (perfluorobutanoic acid-PFBuA, perfluoropentanoic acid-PFPeA, perfluorohexanoic acid-PFHxA, perfluoroheptanoic acid-PFHpA, perfluorooctanoic acid-PFOA) and perfluorooctane sulfonic acid (PFOS) through the analysis of guano samples with liquid chromatography with tandem mass spectrometry (LC-MS-MS) method. To our knowledge this is the first study concerning the PFASs levels in bats, as well as using guano samples to evaluate the exposure of wild mammals to these substances. A total of 40 guano samples were collected from 4 bats summer (nursery) colonies located in various parts of Poland. The presence of PFASs mentioned were detected in all colonies studied, and concentration levels of these substances were sampling dependent. The highest concentration levels were observed in the case of PFPeA [1.34 and 3060 ng/g dry weight (dw)] and PFHxA (8.30-314 ng/g dw). This study confirms the exposure of wild bats to PFASs.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Annemarie Kortas
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Ul. Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Przemysław Sobiech
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Ul. Oczapowskiego 14, 10-719, Olsztyn, Poland
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Ul. Oczapowskiego 14, 10-719, Olsztyn, Poland.
| |
Collapse
|
22
|
Yang J, Zhang K, Shen C, Tang P, Tu S, Li J, Chen L, Yang W. The Association of Hypertension with Perfluoroalkyl and Polyfluoroalkyl Substances. Int Heart J 2023; 64:1079-1087. [PMID: 37967990 DOI: 10.1536/ihj.23-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substance (PFAS) is a large group of fluorinated synthetic chemicals, e.g., perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorodecanoic acid (PFDA), and perfluorononanoic acid (PFNA). Many epidemiological studies have found that PFAS exposure is associated with hypertension risk, but others possess a different opinion. Overall, the relationship between PFASs and hypertension risk remains controversial. We sought to conduct a systematic review and meta-analysis to clarify the association between PFAS exposure and human risk of hypertension.We conducted a meta-analysis based on population-involving studies published from 1975 to 2023, which we collected from Web of Science, PubMed, and Embase databases. The odds ratio (OR) and standardized mean difference (SMD), with their 95% confidence interval (CI), were used to assess the risk of hypertension with PFAS exposure. The statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. Research publications related to our meta-analysis topic were systematically reviewed.Fourteen studies involving 71,663 participants, in which 26,281 suffered hypertension, met the inclusion criteria. Our analyses suggest that exposure to general PFAS (OR = 1.09, 95% CI = 1.04-1.14) or PFOS (OR = 1.17, 95% CI = 1.05-1.30) is associated with hypertension risk. Specifically, elevated levels of general PFAS (SMD = 0.25, 95% CI = 0.08-0.42), PFHxS (SMD = 0.17, 95% CI = 0.07-0.27), and PFDA (SMD = 0.08, 95% CI = 0.02-0.13) are associated with a high risk of hypertension.Our meta-analysis indicates that PFAS exposure is a risk factor for hypertension, and increased hypertension risk is associated with higher PFAS levels. Further study may eventually provide a better and more comprehensive elucidation of the potential mechanism of this association.
Collapse
Affiliation(s)
- Jingxuan Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Chengchen Shen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Peng Tang
- Department of Crop Science, College of Agriculture, Shanxi Agricultural University
| | - Shasha Tu
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Jiangyun Li
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Li Chen
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| | - Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University
| |
Collapse
|
23
|
Neto G, Bobak M, Gonzalez-Rivas JP, Klanova J. The Influence of Adiposity Levels on the Relation between Perfluoroalkyl Substances and High Depressive Symptom Scores in Czech Adults. TOXICS 2023; 11:946. [PMID: 37999598 PMCID: PMC10674478 DOI: 10.3390/toxics11110946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The extensive use and bioaccumulation of Perfluoroalkyl Substances (PFAS) over time raise concerns about their impact on health, including mental issues such as depression. This study aims to evaluate the association between PFAS and depression. In addition, considering the importance of PFAS as an endocrine disruptor and in adipogenesis, the analyses will also be stratified by body fat status. A cross-sectional study with 479 subjects (56.4% women, 25-89 years) was conducted. Four PFAS were measured: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluorooctane sulfonate (PFOS). The Poisson regression model was applied using robust error variances. The fully adjusted model included age, sex, educational level, income, smoking, physical activity, body fat percentage, and the questionnaire to assess depression. The prevalence of depression and high body fat was 7.9% and 41.1%, respectively. Only PFOA was significantly associated with depression in the entire sample (prevalence rate (PR): 1.91; confidence interval (CI95%): 1.01-3.65). However, in the group with normal adiposity, PFOA (3.20, CI95%: 1.46-7.01), PFNA (2.54, CI95%: 1.29-5.00), and PFDA (2.09, CI95%: 1.09-4.00) were also significant. Future research should investigate the role of obesity as well as the biological plausibility and possible mechanisms increasing the limited number of evidences between PFAS and depression.
Collapse
Affiliation(s)
- Geraldo Neto
- International Clinical Research Center (ICRC), St. Anne’s University Hospital (FNUSA), 65691 Brno, Czech Republic;
| | - Martin Bobak
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (M.B.); (J.K.)
- Research Department of Epidemiology and Public Health, University College London, London WC1H 9BT, UK
| | - Juan P. Gonzalez-Rivas
- International Clinical Research Center (ICRC), St. Anne’s University Hospital (FNUSA), 65691 Brno, Czech Republic;
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Harvard University, Boston, MA 02138, USA
- Foundation for Clinic, Public Health, and Epidemiology Research of Venezuela (FISPEVEN INC), Caracas 3001, Venezuela
| | - Jana Klanova
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (M.B.); (J.K.)
| |
Collapse
|
24
|
Vilhelmsson A, Rylander L, Jöud A, Lindh CH, Mattsson K, Liew Z, Guo P, Ritz B, Källén K, Thacher JD. Exposure to per- and polyfluoroalkyl substances in early pregnancy and risk of cerebral palsy in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165622. [PMID: 37474063 DOI: 10.1016/j.scitotenv.2023.165622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Most cerebral palsy (CP) cases have an unexplained etiology, but a role for environmental exposures has been suggested. One purported environmental risk factor is exposure to endocrine-disrupting pollutants specifically per- and polyfluoroalkyl substances (PFAS). OBJECTIVES We investigated the association between prenatal PFAS exposures and CP in Swedish children. METHODS In this case-control study, 322 CP cases, 343 population controls, and 258 preterm controls were identified from a birth registry in combination with a CP follow-up program from 1995 to 2014 and linked to a biobank which contains serum samples from week 10-14 of pregnancy. Maternal serum concentrations of four PFAS compounds: perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonate (PFOS) were analyzed using liquid chromatography-tandem-mass-spectrometry. We estimated odds ratios (ORs) and 95 % confidence intervals (CIs) for CP and each PFAS in quartiles and as continuous variables controlling for various sociodemographic and lifestyle factors. RESULTS In crude and adjusted analyses, we did not find consistent evidence of associations between serum PFHxS, PFOA, PFNA, PFOS and concentrations in early pregnancy and CP, except in preterm infants. The ORs comparing the highest PFAS quartiles to the lowest were 1.05 (95 % CI: 0.63-1.76), 0.96 (95 % CI: 0.55-1.68), 0.71 (95 % CI: 0.41-1.25), and 1.17 (95 % CI: 0.61-2.26), for PFHxS, PFOA, PFNA, and PFOS, respectively. Some positive associations were observed for preterm infants, but the results were imprecise. Similar patterns were observed in analyses treating PFAS as continuous variables. CONCLUSIONS In this study, we found little evidence that early pregnancy prenatal exposure to PFHxS, PFOA, PFNA, or PFOS increases the risk of CP. However, some positive associations were observed for preterm cases and warrant further investigation.
Collapse
Affiliation(s)
- Andreas Vilhelmsson
- Division of Occupational and Environmental Medicine, Lund University, Sweden
| | - Lars Rylander
- Division of Occupational and Environmental Medicine, Lund University, Sweden
| | - Anna Jöud
- Division of Occupational and Environmental Medicine, Lund University, Sweden; Department of Clinical Sciences Lund, Orthopaedics, Lund University, Faculty of Medicine, Sweden; Health Technology Assessment Skåne, Skåne University Hospital, Sweden
| | - Christian H Lindh
- Division of Occupational and Environmental Medicine, Lund University, Sweden
| | - Kristina Mattsson
- Division of Occupational and Environmental Medicine, Lund University, Sweden
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, USA; Department of Neurology, School of Medicine, UCLA, Los Angeles, USA
| | - Karin Källén
- Division of Occupational and Environmental Medicine, Lund University, Sweden; Tornblad Institute, Lund University, Sweden
| | - Jesse D Thacher
- Division of Occupational and Environmental Medicine, Lund University, Sweden.
| |
Collapse
|
25
|
Rodríguez-Carrillo A, Salamanca-Fernández E, den Hond E, Verheyen VJ, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Remy S, Govarts E, Schoeters G, Olea N, Freire C, Fernández MF. Association of exposure to perfluoroalkyl substances (PFAS) and phthalates with thyroid hormones in adolescents from HBM4EU aligned studies. ENVIRONMENTAL RESEARCH 2023; 237:116897. [PMID: 37598845 DOI: 10.1016/j.envres.2023.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) and phthalates are synthetic chemicals widely used in various types of consumer products. There is epidemiological and experimental evidence that PFAS and phthalates may alter thyroid hormone levels; however, studies in children and adolescents are limited. AIM To investigate the association of exposure to PFAS and phthalate with serum levels of thyroid hormones in European adolescents. METHODS A cross-sectional study was conducted in 406 female and 327 male adolescents (14-17 years) from Belgium, Slovakia, and Spain participating in the Aligned Studies of the HBM4EU Project (FLEHS IV, PCB cohort, and BEA, respectively). Concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) were measured in sera from study participants, and urinary metabolites of six phthalates (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and the non-phthalate plasticizer DINCH® were quantified in spot urine samples. Associations were assessed with linear regression and g-computational models for mixtures. Effect modification by sex was examined. RESULTS In females, serum PFOA and the PFAS mixture concentrations were associated with lower FT4 and higher FT3 levels; MEP and the sums of DEHP, DiNP, and DINCH® metabolites (∑DEHP, ∑DiNP, and ∑DINCH) were associated with higher FT4; ∑DEHP with lower FT3; and the phthalate/DINCH® metabolite mixture with higher FT4 and lower FT3. In males, PFOA was associated with lower FT4 and the PFAS mixture with higher TSH levels and lower FT4/TSH ratio; MEP and ∑DiNP were associated with higher FT4; and MBzP, ∑DEHP, and the phthalate/DINCH® metabolite mixture with lower TSH and higher FT4/TSH. PFOA, mono-(2-ethyl-5-hydroxyhexyl) phthalate (OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP), and monocarboxyoctyl phthalate (MCOP) made the greatest contribution to the mixture effect. CONCLUSIONS Results suggest that exposure to PFAS and phthalates is associated with sex-specific differences in thyroid hormone levels in adolescents.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 18071, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
26
|
Xu Z, Du B, Wang H, Li Z, Wu Y, Wang Q, Niu Y, Zhang Q, Sun K, Wang J, Chen S. Perfluoroalkyl substances in umbilical cord blood and blood pressure in offspring: a prospective cohort study. Environ Health 2023; 22:72. [PMID: 37858165 PMCID: PMC10585876 DOI: 10.1186/s12940-023-01023-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Humans are widely exposed to perfluoroalkyl substances (PFAS), which have been found to be associated with various adverse birth outcomes. As blood pressure (BP) is an important parameter reflecting cardiovascular health in early life, it is necessary to investigate the association of PFAS exposure during early lifetime and BP in childhood. Therefore, we investigated the potential association between PFAS levels in umbilical cord blood and BP of the offspring at 4 years of age in a prospective cohort study. METHODS PFAS in umbilical cord blood samples after birth were measured with high-performance liquid chromatography/tandem mass spectrometry in the Shanghai Birth Cohort. BP was measured at 4 years of age in the offspring. Multiple linear regression model was used to investigate the association between individual PFAS level and BP of the offspring. Bayesian kernel machine regression (BKMR) was used to analyze the relationship between the PFAS mixture and BP of the offspring, while weighted quantile sum (WQS) regression was utilized for sensitivity analysis. RESULTS A total of 129 mother-child pairs were included in our analysis. In multiple linear regressions, we observed that long-chain PFAS, mainly including perfluorooctane sulfonate (PFOS), perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUA), was negatively associated with systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP). BKMR showed that an increase in umbilical cord blood PFAS mixture levels was significantly associated with a decrease in SBP, DBP and MAP [Estimated differences (SD): -0.433 (0.161); -0.437 (0.176); -0.382 (0.179), respectively]. The most important component in the association with SBP, DBP, and MAP was PFUA. PFDoA was found to be positively associated with SBP, DBP and MAP in both models. Sensitivity analysis with WQS regression showed consistent results. CONCLUSION Our findings suggested that umbilical blood PFAS exposure was negatively associated with BP in offspring at 4 years of age, including SBP, DBP, and MAP.
Collapse
Affiliation(s)
- Zhikang Xu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Bowen Du
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Hualin Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Yujian Wu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Qianchuo Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Yiwei Niu
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
27
|
Rodríguez-Carrillo A, Remy S, Koppen G, Wauters N, Freire C, Olivas-Martínez A, Schillemans T, Åkesson A, Desalegn A, Iszatt N, den Hond E, Verheyen V, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Cox B, Govarts E, Baken K, Tena-Sempere M, Olea N, Schoeters G, Fernández MF. PFAS association with kisspeptin and sex hormones in teenagers of the HBM4EU aligned studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122214. [PMID: 37482334 DOI: 10.1016/j.envpol.2023.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Exposure to Perfluoroalkyl acids (PFAS) can impair human reproductive function, e.g., by delaying or advancing puberty, although their mechanisms of action are not fully understood. We therefore set out to evaluate the relationship between serum PFAS levels, both individually and as a mixture, on the Hypothalamic-Pituitary-Gonadal (HPG) axis by analyzing serum levels of reproductive hormones and also kisspeptin in European teenagers participating in three of the HBM4EU Aligned Studies. For this purpose, PFAS compounds were measured in 733 teenagers from Belgium (FLEHS IV study), Slovakia (PCB cohort follow-up), and Spain (BEA study) by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS) in laboratories under the HBM4EU quality assurance quality control (QA/QC) program. In the same serum samples, kisspeptin 54 (kiss-54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were also measured using immunosorbent assays. Sex-stratified single pollutant linear regression models for separate studies, mixed single pollutant models accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the mixture of the three most available (PFNA, PFOA, and PFOS) were fit. PFAS associations with reproductive markers differed according to sex. Each natural log-unit increase of PFOA, PFNA, and PFOS were associated with higher TT [18.41 (6.18; 32.31), 15.60 (7.25; 24.61), 14.68 (6.18; 24.61), respectively] in girls, in the pooled analysis (all studies together). In males, G-computation showed that PFAS mixture was associated with lower FSH levels [-10.51 (-18.81;-1.36)]. The BKMR showed the same patterns observed in G-computation, including a significant increase on male Kiss-54 and SHBG levels. Overall, effect biomarkers may enhance the current epidemiological knowledge regarding the adverse effect of PFAS in human HPG axis, although further research is warranted.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Carmen Freire
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | | | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Agneta Åkesson
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Anteneh Desalegn
- Division of Food Safety, Norwegian Institute of Public Health, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Veerle Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Kirsten Baken
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Manuel Tena-Sempere
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Menéndez Pidal s/n. 14004., Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, Km. 396. 14071. Córdoba, Spain; University Hospital Reina Sofía, Menéndez Pidal s/n. 14004, Córdoba, Spain; CIBER Pathophysiology of Obesity and Nutrition, Carlos III Health Institute, Menéndez Pidal s/n. 14004. Córdoba, Spain
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
28
|
Ren J, Jin T, Li R, Zhong YY, Xuan YX, Wang YL, Yao W, Yu SL, Yuan JT. Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:847-866. [PMID: 37920972 DOI: 10.1080/1062936x.2023.2269855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Diet is an important exposure route of endocrine-disrupting chemicals (EDCs), but many unfiltered potential EDCs remain in food. The in silico prediction of EDCs is a popular method for preliminary screening. Potential EDCs in food were screened using Endocrine Disruptome, an open-source platform for inverse docking, to predict the binding probabilities of 587 food chemical contaminants with 18 human nuclear hormone receptor (NHR) conformations. In total, 25 contaminants were bound to multiple NHRs such as oestrogen receptor α/β and androgen receptor. These 25 compounds mainly include pesticides and per- and polyfluoroalkyl substances (PFASs). The prediction results were validated with the in vitro data. The structural features and the crucial amino acid residues of the four NHRs were also validated based on previous literature. The findings indicate that the screening has good prediction efficiency. In addition, the epidemic evidence about endocrine interference of PFASs in food on children was further validated through this screening. This study provides preliminary screening results for EDCs in food and a priority list for in vitro and in vivo research.
Collapse
Affiliation(s)
- J Ren
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - T Jin
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - R Li
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y Y Zhong
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y X Xuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - Y L Wang
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - W Yao
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| | - S L Yu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng, Henan, P. R. China
| | - J T Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
29
|
Dai Y, Zhang J, Wang Z, Ding J, Xu S, Zhang B, Guo J, Qi X, Chang X, Wu C, Zhou Z. Per- and polyfluoroalkyl substances in umbilical cord serum and body mass index trajectories from birth to age 10 years: Findings from a longitudinal birth cohort (SMBCS). ENVIRONMENT INTERNATIONAL 2023; 180:108238. [PMID: 37783122 DOI: 10.1016/j.envint.2023.108238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to low birth weight but higher childhood weight and obesity. However, little is known regarding the associations between PFAS exposure and dynamic body mass index (BMI) trajectories, particularly from birth through preadolescence. OBJECTIVE To evaluate the associations of cord serum PFAS concentrations with BMI trajectories from birth to age 10 years and longitudinal BMI in different periods. METHODS Based on 887 mother-child pairs in the longitudinal prospective birth cohort, we measured 12 PFAS congeners in cord serum and calculated BMI with anthropometric indicators at 9 follow-up time points from birth to age 10 years. The BMI trajectories were identified using group-based trajectory model (GBTM). To estimate the associations of cord serum PFAS levels with BMI trajectories and longitudinal changes in BMI, logistic regression models, linear mixed models, Bayesian kernel machine regression, and quantile-based g-computation models (QGC) were used. RESULTS The median concentrations of 10 PFAS congeners included in statistical analysis ranged from 0.047 to 3.623 μg/L. Two BMI trajectory classes were identified by GBTM, characterized by high group and low group. In logistic regression models, five PFAS congeners (PFBA, PFHpA, PFHxS, PFHpS, and PFDoDA) were associated with the higher probability of being in high BMI trajectory group (odds ratio, OR: 1.21 to 1.74, p < 0.05). Meanwhile, higher PFAS mixture were related to elevated odds for the high group in both BKMR models and QGC models, with PFHpA and PFHpS being the two most important drivers jointly. In the sex-stratified analysis, the positive associations remained significant exclusively among males. In the longitudinal analysis, PFUnDA and PFDoDA were associated with increased BMI from birth to age 10 years. Furthermore, PFBS and PFHpA were negatively related to BMI throughout infancy and toddlerhood (from birth to age 3 years), whereas PFDoDA confirmed a positive association with mid-childhood (from age 6 to 10 years) BMI. CONCLUSIONS Prenatal PFAS exposure was positively associated with BMI trajectories from birth to preadolescence and longitudinal BMI in various periods. Future research could use better trajectory modeling strategies to shape more complete growth trajectories and explore the relationship between BMI trajectories and adulthood health.
Collapse
Affiliation(s)
- Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Sinan Xu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
30
|
Cathey AL, Nguyen VK, Colacino JA, Woodruff TJ, Reynolds P, Aung MT. Exploratory profiles of phenols, parabens, and per- and poly-fluoroalkyl substances among NHANES study participants in association with previous cancer diagnoses. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:687-698. [PMID: 37718377 PMCID: PMC10541322 DOI: 10.1038/s41370-023-00601-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Some hormonally active cancers have low survival rates, but a large proportion of their incidence remains unexplained. Endocrine disrupting chemicals may affect hormone pathways in the pathology of these cancers. OBJECTIVE To evaluate cross-sectional associations between per- and polyfluoroalkyl substances (PFAS), phenols, and parabens and self-reported previous cancer diagnoses in the National Health and Nutrition Examination Survey (NHANES). METHODS We extracted concentrations of 7 PFAS and 12 phenols/parabens and self-reported diagnoses of melanoma and cancers of the thyroid, breast, ovary, uterus, and prostate in men and women (≥20 years). Associations between previous cancer diagnoses and an interquartile range increase in exposure biomarkers were evaluated using logistic regression models adjusted for key covariates. We conceptualized race as social construct proxy of structural social factors and examined associations in non-Hispanic Black, Mexican American, and other Hispanic participants separately compared to White participants. RESULTS Previous melanoma in women was associated with higher PFDE (OR:2.07, 95% CI: 1.25, 3.43), PFNA (OR:1.72, 95% CI: 1.09, 2.73), PFUA (OR:1.76, 95% CI: 1.07, 2.89), BP3 (OR: 1.81, 95% CI: 1.10, 2.96), DCP25 (OR: 2.41, 95% CI: 1.22, 4.76), and DCP24 (OR: 1.85, 95% CI: 1.05, 3.26). Previous ovarian cancer was associated with higher DCP25 (OR: 2.80, 95% CI: 1.08, 7.27), BPA (OR: 1.93, 95% CI: 1.11, 3.35) and BP3 (OR: 1.76, 95% CI: 1.00, 3.09). Previous uterine cancer was associated with increased PFNA (OR: 1.55, 95% CI: 1.03, 2.34), while higher ethyl paraben was inversely associated (OR: 0.31, 95% CI: 0.12, 0.85). Various PFAS were associated with previous ovarian and uterine cancers in White women, while MPAH or BPF was associated with previous breast cancer among non-White women. IMPACT STATEMENT Biomarkers across all exposure categories (phenols, parabens, and per- and poly- fluoroalkyl substances) were cross-sectionally associated with increased odds of previous melanoma diagnoses in women, and increased odds of previous ovarian cancer was associated with several phenols and parabens. Some associations differed by racial group, which is particularly impactful given the established racial disparities in distributions of exposure to these chemicals. This is the first epidemiological study to investigate exposure to phenols in relation to previous cancer diagnoses, and the first NHANES study to explore racial/ethnic disparities in associations between environmental phenol, paraben, and PFAS exposures and historical cancer diagnosis.
Collapse
Affiliation(s)
- Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Vy K Nguyen
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Rosen Vollmar AK, Lin EZ, Nason SL, Santiago K, Johnson CH, Ma X, Godri Pollitt KJ, Deziel NC. Per- and polyfluoroalkyl substances (PFAS) and thyroid hormone measurements in dried blood spots and neonatal characteristics: a pilot study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:737-747. [PMID: 37730931 PMCID: PMC10541328 DOI: 10.1038/s41370-023-00603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Pediatric thyroid diseases have been increasing in recent years. Environmental risk factors such as exposures to chemical contaminants may play a role but are largely unexplored. Archived neonatal dried blood spots (DBS) offer an innovative approach to investigate environmental exposures and effects. OBJECTIVE In this pilot study, we applied a new method for quantifying per- and polyfluoroalkyl substances (PFAS) to 18 archived DBS from babies born in California from 1985-2018 and acquired thyroid hormone measurements from newborn screening tests. Leveraging these novel data, we evaluated (1) changes in the concentrations of eight PFAS over time and (2) the relationship between PFAS concentrations, thyroid hormone concentrations, and neonatal characteristics to inform future research. METHODS PFAS concentrations in DBS were measured using ultra-high-performance liquid chromatography-mass spectrometry. Summary statistics and non-parametric Wilcoxon rank-sum and Kruskal-Wallis tests were used to evaluate temporal changes in PFAS concentrations and relationships between PFAS concentrations, thyroid hormone concentrations, and neonatal characteristics. RESULTS The concentration and detection frequencies of several PFAS (PFOA, PFOS, and PFOSA) declined over the assessment period. We observed that the timing of specimen collection in hours after birth was related to thyroid hormone but not PFAS concentrations, and that thyroid hormones were related to some PFAS concentrations (PFOA and PFOS). IMPACT STATEMENT This pilot study examines the relationship between concentrations of eight per- and polyfluoroalkyl substances (PFAS), thyroid hormone levels, and neonatal characteristics in newborn dried blood spots (DBS) collected over a period of 33 years. To our knowledge, 6 of the 22 PFAS we attempted to measure have not been quantified previously in neonatal DBS, and this is the first study to examine both PFAS and thyroid hormone concentrations using DBS. This research demonstrates the feasibility of using newborn DBS for quantifying PFAS exposures in population-based studies, highlights methodological considerations in the use of thyroid hormone data for future studies using newborn DBS, and indicates potential relationships between PFAS concentrations and thyroid hormones for follow-up in future research.
Collapse
Affiliation(s)
- Ana K Rosen Vollmar
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Sara L Nason
- Departments of Environmental Science and Forestry and Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Katerina Santiago
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
32
|
Boyer E, Monfort C, Lainé F, Gaudreau É, Tillaut H, Bonnaure-Mallet M, Cordier S, Meuric V, Chevrier C. Prenatal exposure to persistent organic pollutants and molar-incisor hypomineralization among 12-year-old children in the French mother-child cohort PELAGIE. ENVIRONMENTAL RESEARCH 2023; 231:116230. [PMID: 37236387 DOI: 10.1016/j.envres.2023.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Exceptional episodes of exposure to high levels of persistent organic pollutants have already been associated with developmental defects of enamel among children, but knowledge is still scarce concerning the contribution of background levels of environmental contamination. METHODS Children of the French PELAGIE mother-child cohort were followed from birth, with collection of medical data and cord blood samples that were used to measure polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), and perfluorinated alkyl substances (PFASs). At 12 years of age, molar-incisor hypomineralization (MIH) and other enamel defects (EDs) were recorded for 498 children. Associations were studied using logistic regression models adjusted for potential prenatal confounders. RESULTS An increasing log-concentration of β-HCH was associated with a reduced risk of MIH and EDs (OR = 0.55; 95% CI, 0.32-0.95, and OR = 0.65; 95% CI, 0.43-0.98, respectively). Among girls, intermediate levels of p,p'-DDE were associated with a reduced risk of MIH. Among boys, we observed an increased risk of EDs in association with intermediate levels of PCB 138, PCB 153, PCB 187, and an increased risk of MIH with intermediate levels of PFOA and PFOS. CONCLUSIONS Two OCs were associated with a reduced risk of dental defects, whereas the associations between PCBs and PFASs and EDs or MIH were generally close to null or sex-specific, with an increased risk of dental defects in boys. These results suggest that POPs could impact amelogenesis. Replication of this study is required and the possible underlying mechanisms need to be explored.
Collapse
Affiliation(s)
- Emile Boyer
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolism and Cancer), F-35000, Rennes, France.
| | - Christine Monfort
- Univ Rennes, INSERM, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | | | - Éric Gaudreau
- Centre de Toxicologie Du Québec (CTQ), Institut National de Santé Publique Du Québec (INSPQ), Québec, Québec, Canada
| | - Hélène Tillaut
- Univ Rennes, INSERM, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Martine Bonnaure-Mallet
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolism and Cancer), F-35000, Rennes, France
| | - Sylvaine Cordier
- Univ Rennes, INSERM, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Vincent Meuric
- INSERM, INRAE, Univ Rennes, CHU Rennes, Institut NUMECAN (Nutrition Metabolism and Cancer), F-35000, Rennes, France
| | - Cécile Chevrier
- Univ Rennes, INSERM, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| |
Collapse
|
33
|
Reardon AJF, Hajihosseini M, Dinu I, Field CJ, Kinniburgh DW, MacDonald AM, Dewey D, England-Mason G, Martin JW. Maternal co-exposure to mercury and perfluoroalkyl acid isomers and their associations with child neurodevelopment in a Canadian birth cohort. ENVIRONMENT INTERNATIONAL 2023; 178:108087. [PMID: 37454627 DOI: 10.1016/j.envint.2023.108087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs) within the broader class of per- and polyfluoroalkyl substances (PFAS) are present in human serum as isomer mixtures, but epidemiological studies have yet to address isomer-specific associations with child development and behavior. OBJECTIVES To examine associations between prenatal exposure to 25 PFAAs, including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) isomers, and child neurodevelopment among 490 mother-child pairs in a prospective Canadian birth cohort, the Alberta Pregnancy Outcomes and Nutrition (APrON) study. To consider the influence of a classic neurotoxicant, total mercury (THg), based on its likelihood of co-exposure with PFAAs from common dietary sources. METHODS Maternal blood samples were collected in the second trimester and child neurodevelopment was assessed at 2 years of age using the Bayley Scales of Infant and Toddler Development, 3rd Edition (Bayley-III). Linear or curvilinear multiple regression models were used to examine associations between exposures and neurodevelopment outcomes. RESULTS Select PFAAs were associated with lower Cognitive composite scores, including perfluoroheptanoate (PFHpA) (β = -0.88, 95% confidence interval (CI): -1.7, -0.06) and perfluorododecanoate (PFDoA) (β = -2.0, 95% CI: -3.9, -0.01). Non-linear relationships revealed associations of total PFOS (β = -4.4, 95% CI: -8.3, -0.43), and linear-PFOS (β = -4.0, 95% CI: -7.5, -0.57) and 1m-PFOS (β = -1.8, 95% CI: -3.3, -0.24) isomers with lower Language composite scores. Although there was no effect modification, including THg interaction terms in PFAA models revealed negative associations between perfluorononanoate (PFNA) and Motor (β = -3.3, 95% CI: -6.2, -0.33) and Social-Emotional (β = -3.0, 95% CI: -5.6, -0.40) composite scores. DISCUSSION These findings reinforce previous reports of adverse effects of maternal PFAA exposure during pregnancy on child neurodevelopment. The unique hazards posed from isomers of PFOS justify isomer-specific analysis in future studies. To control for possible confounding, mercury co-exposure may be considered in studies of PFAAs.
Collapse
Affiliation(s)
- Anthony J F Reardon
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Irina Dinu
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Science, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada; Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
34
|
Mandour DA, Morsy MM, Fawzy A, Mohamed NM, Ahmad MM. Structural and molecular changes in the rat myocardium following perfluoroctane sulfonate (PFOS) exposure are mitigated by quercetin via modulating HSP 70 and SERCA 2. J Mol Histol 2023; 54:283-296. [PMID: 37365388 PMCID: PMC10412685 DOI: 10.1007/s10735-023-10134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a man-made fluorinated compound employed in a variety of industrial and civilian applications. Due to its long elimination half-life and promotion of oxidative stress and inflammation, it is one of the most abundant organic contaminants. The present study was designed to determine the cytotoxic effect of PFOS on adult male rat cardiac tissue and to assess the cardioprotective role of the flavonoid quercetin (Que), which possesses antioxidant, anti-inflammatory, and anti-apoptotic properties. Twenty-four adult male Sprague-Dawley rats were randomly divided into four equal groups: Group I (Control). Group II (Que) received Que (75 mg/kg/day for 4 weeks) by oral gavage. Group III (PFOS group): supplemented orally with PFOS (20 mg/kg/day for 4 weeks) and Group IV (PF OS/Que). The rat heart was processed for histological, immunohistochemical, and gene expression studies. The PFOS group showed histological alterations in the myocardium that were partially reversed by the administration of Que. The inflammatory biomarkers (TNF, IL-6, and IL-1), lipid profile, TSH, MDA, and serum cardiac enzymes (LDH and CK-MB) were all altered. These findings collectively suggest that PFOS had adverse effects on the cardiac muscle structure, and these effects were alleviated by quercetin, which is a promising cardioprotective flavonoid.
Collapse
Affiliation(s)
- Dalia A. Mandour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal M. Morsy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Fawzy
- Department of Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Marwa M. Ahmad
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
35
|
Yim G, McGee G, Gallagher L, Baker E, Jackson BP, Calafat AM, Botelho JC, Gilbert-Diamond D, Karagas MR, Romano ME, Howe CG. Metals and per- and polyfluoroalkyl substances mixtures and birth outcomes in the New Hampshire Birth Cohort Study: Beyond single-class mixture approaches. CHEMOSPHERE 2023; 329:138644. [PMID: 37031836 PMCID: PMC10208216 DOI: 10.1016/j.chemosphere.2023.138644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
We aimed to investigate the joint, class-specific, and individual impacts of (i) PFAS, (ii) toxic metals and metalloids (referred to collectively as "metals"), and (iii) essential elements on birth outcomes in a prospective pregnancy cohort using both established and recent mixture modeling approaches. Participants included 537 mother-child pairs from the New Hampshire Birth Cohort Study. Concentrations of 6 metals and 5 PFAS were measured in maternal toenail clippings and plasma, respectively. Birth weight, birth length, and head circumference at birth were abstracted from medical records. Joint, index-wise, and individual associations of the metals and PFAS concentrations with birth outcomes were evaluated using Bayesian Kernel Machine Regression (BKMR) and Bayesian Multiple Index Models (BMIM). After controlling for potential confounders, the metals-PFAS mixture was associated with a larger head circumference at birth, which was driven by manganese. When using BKMR, the difference in the head circumference z-score when changing manganese from its 25th to 75th percentiles while holding all other mixture components at their medians was 0.22 standard deviations (95% posterior credible interval [CI]: -0.02, 0.46). When using BMIM, the posterior mean of index weight estimates assigned to manganese for head circumference z-score was 0.72 (95% CI: 0, 0.99). Prenatal exposure to the metals-PFAS mixture was not associated with birth weight or birth length by either BKMR or BMIM. Using both traditional and new mixture modeling approaches, prenatal exposure to manganese was associated with a larger head circumference at birth after accounting for exposure to PFAS and multiple toxic and essential metals.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| | - Glen McGee
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Lisa Gallagher
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Emily Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth-Hitchcock Weight and Wellness Center, Department of Medicine at Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
36
|
Wang Z, Zhang J, Dai Y, Zhang L, Guo J, Xu S, Chang X, Wu C, Zhou Z. Mediating effect of endocrine hormones on association between per- and polyfluoroalkyl substances exposure and birth size: Findings from sheyang mini birth cohort study. ENVIRONMENTAL RESEARCH 2023; 226:115658. [PMID: 36894112 DOI: 10.1016/j.envres.2023.115658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been reported to affect fetus growth, but current results were inconsistent and their mechanism remained unclear. OBJECTIVES We aimed to evaluate the associations of prenatal exposure to single and/or multiple PFAS with birth size and to elucidate whether thyroid hormones and reproductive hormones mediate these associations. METHODS A total of 1087 mother-newborn pairs from Sheyang Mini Birth Cohort Study were included in the present cross-sectional analysis. 12 PFAS, 5 thyroid hormones and 2 reproductive hormones were measured in cord serum. Multiple linear regression models and Bayesian kernel machine regression (BKMR) models were used to examine the associations of PFAS with either birth size or endocrine hormones. One-at-a-time pairwise mediating effect analysis was applied to estimate the mediating effect of single hormone in the association between individual chemical and birth size. High-dimensional mediation approach including elastic net regularization and Bayesian shrinkage estimation were further performed to reduce exposure dimension and figure out the global mediation effects of joint endocrine hormones. RESULTS Perfluorononanoic acid (PFNA) exposure was positively associated to weight for length z score [WLZ, per log10-unit: regression coefficient (β) = 0.26, 95% confidence intervals (CI): 0.04, 0.47] and ponderal index (PI, β = 0.56, 95% CI: 0.09, 1.02), and PFAS mixture results fit by BKMR model showed consistent consequences. High-dimensional mediating analyses revealed that thyroid stimulating hormone (TSH) explained 6.7% of the positive association between PFAS mixtures exposure and PI [Total effect (TE) = 1.499 (0.565, 2.405); Indirect effect (IE) = 0.105 (0.015, 0.231)]. Besides, 7.3% of the PI variance was indirectly explained by 7 endocrine hormones jointly [TE = 0.810 (0.802, 0.819); IE = 0.040 (0.038, 0.041)]. CONCLUSIONS Prenatal PFAS mixtures exposure, especially PFNA, was positively associated to birth size. Such associations were partly mediated by cord serum TSH.
Collapse
Affiliation(s)
- Zheng Wang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Sinan Xu
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health/ MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
37
|
Zang L, Liu X, Xie X, Zhou X, Pan Y, Dai J. Exposure to per- and polyfluoroalkyl substances in early pregnancy, risk of gestational diabetes mellitus, potential pathways, and influencing factors in pregnant women: A nested case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121504. [PMID: 36965679 DOI: 10.1016/j.envpol.2023.121504] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Although previous studies have reported an association between maternal serum perfluoroalkyl substance (PFAS) exposure and gestational diabetes mellitus (GDM) risk, results have been inconsistent. Few studies have focused on the combined effects of emerging and legacy PFASs on glucose homeostasis while humans are always exposed to multiple PFASs simultaneously. Moreover, the potential pathways by which PFAS exposure induces GDM are unclear. A total of 295 GDM cases and 295 controls were enrolled from a prospective cohort of 2700 pregnant women in Shanghai, China. In total, 16 PFASs were determined in maternal spot serum samples in early pregnancy. We used conditional logistic regression, multiple linear regression, and Bayesian kernel machine regression (BKMR) to examine individual and joint effects of PFAS exposure on GDM risk and oral glucose tolerance test outcomes. The mediating effects of maternal serum biochemical parameters, including thyroid and liver function were further assessed. Maternal perfluorooctanoic acid (PFOA) exposure was associated with an increased risk of GDM (odds ratio (OR) = 1.68; 95% confidence interval (95% CI): 1.10, 2.57), consistent with higher concentrations in GDM cases than controls. Based on mediation analysis, an increase in the free triiodothyronine to free thyroxine ratio partially explained the effect of this association. For continuous glycemic outcomes, positive associations were observed between several PFASs and 1-h and 2-h glucose levels. In BKMR, PFAS mixture exposure showed a positive trend with GDM incidence, although the CIs were wide. These associations were more pronounced among women with normal pre-pregnancy body mass index (BMI). Mixed PFAS congeners may affect glucose homeostasis by increasing 1-h glucose levels, with perfluorononanoic acid found to be a main contributor. Exposure to PFASs was associated with increased risk of GDM and disturbance in glucose homeostasis, especially in normal weight women. The PFAS-associated disruption of maternal thyroid function may alter glucose homeostasis.
Collapse
Affiliation(s)
- Lu Zang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaorui Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xianjing Xie
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
38
|
McAdam J, Bell EM. Determinants of maternal and neonatal PFAS concentrations: a review. Environ Health 2023; 22:41. [PMID: 37161484 PMCID: PMC10170754 DOI: 10.1186/s12940-023-00992-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are used for their properties such as stain and water resistance. The substances have been associated with adverse health outcomes in both pregnant mothers and infants, including pre-eclampsia and low birthweight. A growing body of research suggests that PFAS are transferred from mother to fetus through the placenta, leading to in utero exposure. A systematic review was performed using the PubMed database to search for studies evaluating determinants of PFAS concentrations in blood matrices of pregnant mothers and neonates shortly after birth. Studies were included in this review if an observational study design was utilized, exposure to at least one PFAS analyte was measured, PFAS were measured in maternal or neonatal matrices, at least one determinant of PFAS concentrations was assessed, and results such as beta estimates were provided. We identified 35 studies for inclusion in the review and evaluated the PFAS and determinant relationships among the factors collected in these studies. Parity, breastfeeding history, maternal race and country of origin, and household income had the strongest and most consistent evidence to support their roles as determinants of certain PFAS concentrations in pregnant mothers. Reported study findings on smoking status, alcohol consumption, and pre-pregnancy body mass index (BMI) suggest that these factors are not important determinants of PFAS concentrations in pregnant mothers or neonates. Further study into informative factors such as consumer product use, detailed dietary information, and consumed water sources as potential determinants of maternal or neonatal PFAS concentrations is needed. Research on determinants of maternal or neonatal PFAS concentrations is critical to estimate past PFAS exposure, build improved exposure models, and further our understanding on dose-response relationships, which can influence epidemiological studies and risk assessment evaluations. Given the potential for adverse outcomes in pregnant mothers and neonates exposed to PFAS, it is important to identify and understand determinants of maternal and neonatal PFAS concentrations to better implement public health interventions in these populations.
Collapse
Affiliation(s)
- Jordan McAdam
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA.
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY, USA.
| |
Collapse
|
39
|
Ojemaye CY, Ojemaye MO, Okoh AI, Okoh OO. Evaluation of the research trends on perfluorinated compounds using bibliometric analysis: knowledge gap and future perspectives. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:570-595. [PMID: 37128712 DOI: 10.1080/10934529.2023.2203639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Detection of perfluorinated compounds (PFCs) in the environment has been a global concern because of the risk they pose due to their endocrine-disruptive properties. This study analyzed the global trends and research productivity of PFCs from 1990 to 2021. A total number of 3256 articles on PFCs were retrieved from the Web of Science focusing on different environmental and biological matrices. An increase in the productivity of research on PFCs was observed during the survey period which indicates that more research and publications on this class of contaminants are expected in the future. Evaluating the most productive countries and the number of citations per country on PFCs research shows that China and the United States of America were ranked in first and second places. It was also observed that research on PFCs received the most attention from scientists in developed countries, with little research emerging from Africa. Hence, research on PFCs in developing countries, especially low-income countries should be promoted. Consequently, more research programs should be implemented to investigate PFCs in countries and regions where research on these contaminants is low. The study will help researchers, government agencies and policymakers to tailor future research, allocation of funds to PFCs research and countries' collaboration.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
40
|
Uhl M, Schoeters G, Govarts E, Bil W, Fletcher T, Haug LS, Hoogenboom R, Gundacker C, Trier X, Fernandez MF, Calvo AC, López ME, Coertjens D, Santonen T, Murínová ĽP, Richterová D, Brouwere KD, Hauzenberger I, Kolossa-Gehring M, Halldórsson ÞI. PFASs: What can we learn from the European Human Biomonitoring Initiative HBM4EU. Int J Hyg Environ Health 2023; 250:114168. [PMID: 37068413 DOI: 10.1016/j.ijheh.2023.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017-2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on mother-child exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed. The HBM4EU Aligned Studies have generated internal exposure reference levels for 12 PFASs in 1957 European teenagers aged 12-18 years. The results showed that serum levels of 14.3% of the teenagers exceeded 6.9 μg/L PFASs, which corresponds to the EFSA guideline value for a tolerable weekly intake (TWI) of 4.4 ng/kg for some of the investigated PFASs (PFOA, PFOS, PFNA and PFHxS). In Northern and Western Europe, 24% of teenagers exceeded this level. The most relevant sources of exposure identified were drinking water and some foods (fish, eggs, offal and locally produced foods). HBM4EU occupational studies also revealed very high levels of PFASs exposure in workers (P95: 192 μg/L in chrome plating facilities), highlighting the importance of monitoring PFASs exposure in specific workplaces. In addition, environmental contaminated hotspots causing high exposure to the population were identified. In conclusion, the frequent and high PFASs exposure evidenced by HBM4EU strongly suggests the need to take all possible measures to prevent further contamination of the European population, in addition to adopting remediation measures in hotspot areas, to protect human health and the environment. HBM4EU findings also support the restriction of the whole group of PFASs. Further, research and definition for additional toxicological dose-effect relationship values for more PFASs compounds is needed.
Collapse
Affiliation(s)
- Maria Uhl
- Environment Agency Austria, Vienna, Austria.
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; University of Antwerp, Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Wieneke Bil
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Tony Fletcher
- UK Health Security Agency, Chilton, Didcot, Oxfordshire, England, UK
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research, Wageningen, the Netherlands
| | | | - Xenia Trier
- European Environment Agency, Copenhagen, Denmark
| | | | | | | | | | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Uusimaa, Finland
| | | | | | - Katleen De Brouwere
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | | |
Collapse
|
41
|
Pini L, Salvalaggio A, Wennberg AM, Dimakou A, Matteoli M, Corbetta M. The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Res Rev 2023; 86:101867. [PMID: 36720351 DOI: 10.1016/j.arr.2023.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
The study of pollutant effects is extremely important to address the epochal challenges we are facing, where world populations are increasingly moving from rural to urban centers, revolutionizing our world into an urban world. These transformations will exacerbate pollution, thus highlighting the necessity to unravel its effect on human health. Epidemiological studies have reported that pollution increases the risk of neurological diseases, with growing evidence on the risk of neurodegenerative disorders. Air pollution and water pollutants are the main chemicals driving this risk. These chemicals can promote inflammation, acting in synergy with genotype vulnerability. However, the biological underpinnings of this association are unknown. In this review, we focus on the link between pollution and brain network connectivity at the macro-scale level. We provide an updated overview of epidemiological findings and studies investigating brain network changes associated with pollution exposure, and discuss the mechanistic insights of pollution-induced brain changes through neural networks. We explain, in detail, the pollutome-connectome axis that might provide the functional substrate for pollution-induced processes leading to cognitive impairment and neurodegeneration. We describe this model within the framework of two pollutants, air pollution, a widely recognized threat, and polyfluoroalkyl substances, a large class of synthetic chemicals which are currently emerging as new neurotoxic source.
Collapse
Affiliation(s)
- Lorenzo Pini
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy.
| | | | - Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anastasia Dimakou
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy
| | - Michela Matteoli
- Neuro Center, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milano, Italy; CNR Institute of Neuroscience, Milano, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Italy; Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
| |
Collapse
|
42
|
Tomei Torres FA, Masten SJ. Endocrine-disrupting substances: I. Relative risks of PFAS in drinking water. JOURNAL OF WATER AND HEALTH 2023; 21:451-462. [PMID: 37119147 DOI: 10.2166/wh.2023.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Concentrations of per and polyfluorinated alkyl substances (PFAS) in drinking water are significantly lower than in vivo levels of the native target hormone. These concentrations are orders of magnitude lower than the hormone in question, particularly when corrected for transactivation. A pregnant woman can excrete about 7,000 μg/day of total estrogens. A low-dose oral contraceptive pill contains 20 μg estradiol. Soy-based baby formula contains phytoestrogens equivalent to a low-dose oral contraceptive pill. A woman on a low-dose oral hormone replacement therapy consumes about 0.5-2 mg/day of one or more estrogens. The levels of endocrine-disrupting substances (EDSs) exposure by oral, respiratory, or dermal routes have the potential to make removing PFAS from drinking water due to its estrogenic activity divert valuable resources. These levels become even less of a threat when their estrogenic potencies are compared with those of the target hormones present as contaminants in water and even more so when compared with levels commonly present in human tissues. The fact that PFAS constitute a tiny fraction compared to exposure to phytoestrogens makes the effort even more insignificant. If PFAS are to be removed from drinking water, it is not due to their estrogenic activity.
Collapse
Affiliation(s)
- Francisco Alberto Tomei Torres
- Ibero-American Society of Environmental Health (SIBSA), Zabala 3555, Ciudad Autónoma de Buenos Aires (CABA), Rep. Argentina, CP 1427 E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
43
|
Bonefeld-Jørgensen EC, Boesen SAH, Wielsøe M, Henriksen TB, Bech BH, Halldórsson ÞI, Long M. Exposure to persistent organic pollutants in Danish pregnant women: Hormone levels and fetal growth indices. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104108. [PMID: 36921699 DOI: 10.1016/j.etap.2023.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
This study examines possible associations of maternal Persistent Organic Pollutants (POP) exposure during pregnancy, maternal hormone levels and fetal growth indices (FGI). During 1st trimester, we measured maternal thyroids, androgens and estrogens, lipophilic POP and perfluorinated-alkyl-acid (PFAA) levels in serum from nulliparous women. Adjusted multivariate-linear regression models assessed associations between exposure and outcomes. Maternal characteristics and POP exposures associated with maternal hormone levels. Lipophilic POP elicited inverse association with androgen and estrogen levels but no strong association with thyroids. Higher level of PFAA was associated with higher thyroid and androgen levels. The PFAA did not associate with estrogens. Higher thyroid-peroxidase-antibody (TPO-Ab) and estradiol level associated with higher birth weight and length in sons. For daughters, the TPO-Ab associations were the opposite being inversely associated with birth weight and length, and higher TPO-Ab and estradiol associated with lower gestational age. Mediation analyses suggested that TPO-Ab mediates the association of PFAA with FGI.
Collapse
Affiliation(s)
- Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland.
| | - Sophie Amalie H Boesen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Tine Brink Henriksen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Perinatal Research Unit, Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Bodil Hammer Bech
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| |
Collapse
|
44
|
Rivera-Núñez Z, Kinkade CW, Khoury L, Brunner J, Murphy H, Wang C, Kannan K, Miller RK, O'Connor TG, Barrett ES. Prenatal perfluoroalkyl substances exposure and maternal sex steroid hormones across pregnancy. ENVIRONMENTAL RESEARCH 2023; 220:115233. [PMID: 36621543 PMCID: PMC9977559 DOI: 10.1016/j.envres.2023.115233] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Poly- and perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants that may act as endocrine disruptors in utero, but the specific endocrine pathways are unknown. OBJECTIVE We examined associations between maternal serum PFAS and sex steroid hormones at three time points during pregnancy. METHODS Pregnant women participating in the Understanding Pregnancy Signals and Infant Development (UPSIDE) study contributed biospecimens, questionnaire, and medical record data in each trimester (n = 285). PFAS (including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA)) were analyzed in second-trimester serum samples by high-performance liquid chromatography and tandem mass spectrometry (LC-MS/MS). Total testosterone [TT], free testosterone [fT], estrone [E1], estradiol [E2], and estriol [E3]) were measured by LC-MS/MS in serum samples from each trimester. Linear mixed models with random intercepts were used to examine associations between log-transformed PFAS concentrations and hormone levels, adjusting for covariates, and stratifying by fetal sex. Results are presented as the mean percentage difference (Δ%) in hormone levels per ln-unit increase in PFAS concentration. RESULTS In adjusted models, PFHxS was associated with higher TT (%Δ = 20.0, 95%CI: 1.7, 41.6), particularly among women carrying male fetuses (%Δ = 15.3, 95%CI: 1.2, 30.7); this association strengthened as the pregnancy progressed. PFNA (%Δ = 7.9, 95%CI: 3.4, 12.5) and PFDA (%Δ = 7.2, 95%CI: 4.9, 9.7) were associated with higher fT, with associations again observed only in women carrying male fetuses. PFHxS was associated with higher levels of E2 and E3 in women carrying female fetuses (%Δ = 13.2, 95%CI: 0.5, 29.1; %Δ = 17.9, 95%CI: 3.2, 34.8, respectively). No associations were observed for PFOS and PFOA. CONCLUSION PFHxS, PFNA, and PFDA may disrupt androgenic and estrogenic pathways in pregnancy in a sex-dependent manner.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Leena Khoury
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Jessica Brunner
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Hannah Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor -UCLA Medical Center, Torrance, CA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, And Department of Environmental Medicine, New York University, Grossman School of Medicine, NY, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
45
|
Zhang L, Liang J, Gao A. Contact to perfluoroalkyl substances and thyroid health effects: A meta-analysis directing on pregnancy. CHEMOSPHERE 2023; 315:137748. [PMID: 36610509 DOI: 10.1016/j.chemosphere.2023.137748] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In vivo, in vitro, and epidemiological evidence suggests that perfluoroalkyl substances (PFAS) may alter thyroid function in human health, with negative effects on maternal and fetal development outcomes. However, data on the effects of PFAS on thyroid hormones remain controversial. Here, we conducted a meta-analysis of 13 eligible studies searched from Embase, PubMed, and Web of Science by July 10, 2022, to explore the relationship between maternal exposure to PFAS and thyroid health effects, including thyroid stimulating hormone (TSH), triiodothyronine (TT3), thyroxin (TT4), free T3 (FT3), and free T4 (FT4). The estimated values (β) and the corresponding confidence intervals (95%CI) were extracted for analysis. The tests for heterogeneity, sensitivity and publication bias between studies were performed using Stata 15.0. The combined results showed a positive association between changes in TSH and exposure to perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), with no significant correlation observed between changes in other thyroid hormones and exposure to PFAS. This difference was attributed to sample size, region, sample type, body mass index (BMI), and gestational week. Our data recommend verifying the relationship between PFAS exposure and thyroid health effects in a large sample population cohort in future studies. In addition, health care should be taken into account in early and mid-pregnancy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jiayi Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
46
|
Azhagiya Singam ER, Durkin KA, La Merrill MA, Furlow JD, Wang JC, Smith MT. The vitamin D receptor as a potential target for the toxic effects of per- and polyfluoroalkyl substances (PFASs): An in-silico study. ENVIRONMENTAL RESEARCH 2023; 217:114832. [PMID: 36403651 PMCID: PMC10044465 DOI: 10.1016/j.envres.2022.114832] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Due to their persistence and toxicity, perfluoroalkyl and polyfluoroalkyl substances (PFASs) constitute significant hazards to human health and the environment. Their effects include immune suppression, altered hormone levels, and osteoporosis. Recently, the most studied PFAS, perfluorooctanoic acid (PFOA), was shown to competitively binding to the Vitamin D receptor (VDR). VDR plays a crucial role in regulating genes involved in maintaining immune, endocrine, and calcium homeostasis, suggesting it may be a target for at least some of the health effects of PFAS. Hence, this study examined the potential binding of 5206 PFASs to VDR using molecular docking, molecular dynamics, and free energy binding calculations. We identified 14 PFAS that are predicted to interact strongly with VDR, similar to the natural ligands. We further investigated the interactions of VDR with 256 PFASs of established commercial importance. Eighty-three (32%) of these 256 commercially important PFAS were predicted to be stronger binders to VDR than PFOA. At least 16 PFASs of regulatory importance, because they have been identified in water supplies and human blood samples, were also more potent binders to VDR than PFOA. Further, PFASs are usually found together in contaminated drinking water and human blood samples, which raises the concern that multiple PFASs may act together as a mixture on VDR function, potentially producing harmful effects on the immune, endocrine, and bone homeostasis.
Collapse
Affiliation(s)
| | - Kathleen A Durkin
- Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA, 94720, USA.
| | - Michele A La Merrill
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - J David Furlow
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, 95616, CA, USA
| | - Jen-Chywan Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, CA, 94720, USA.
| |
Collapse
|
47
|
Cao Z, Li J, Yang M, Gong H, Xiang F, Zheng H, Cai X, Xu S, Zhou A, Xiao H. Prenatal exposure to perfluorooctane sulfonate alternatives and associations with neonatal thyroid stimulating hormone concentration: A birth cohort study. CHEMOSPHERE 2023; 311:136940. [PMID: 36273603 DOI: 10.1016/j.chemosphere.2022.136940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chlorinated polyfluorinated ether sulfonic acids (Cl-PFESA) and perfluorobutane sulfonate (PFBS), used as perfluorooctanesulfonate (PFOS) alternatives, were indicated as thyroid hormone disruptive toxicants in experimental studies. However, it is unclear whether prenatal exposure to Cl-PFESA and PFBS affects neonatal thyroid stimulating hormone (TSH) in human. OBJECTIVE To disclose the relationships between prenatal Cl-PFESAs and PFBS exposure and neonatal thyroid-stimulating hormone (TSH) levels based on a perspective cohort study. METHODS A total of 1015 pairs of mother and newborn were included from an ongoing birth cohort study in Wuhan, China, between 2013 and 2014. Six PFASs in cord blood sera and TSH concentration in neonatal postpartum heel sticks blood were quantified. Mixed linear and weighted quantile sum (WQS) regression models were applied to assess the individual and combination effects of PFASs exposure on neonatal TSH levels with multiple covariates adjustments. RESULTS After adjusting for potential confounders and other five PFASs, for each 1-ng/mL increase of PFBS or 8:2 Cl-PFESA, was negatively associated with 25.90% (95%CI: 37.37%, -12.32%; P < 0.001) and 27.19% (95%CI: 46.15%, -1.55%; P = 0.033) change in TSH in male but not female infants, respectively. No significant association was found between other PFASs exposure and neonatal TSH. Higher PFAS mixture in cord blood was significantly associated with decrease TSH concentration in all newborns (β = -0.36; 95%CI: 0.58, -0.13; P = 0.001) identified by WQS regression model. PFBS, PFOS and 6:2 Cl-PFESA were the major contributors to the neonatal TSH decrement with the weights of 56.50%, 18.71%, 12.81% among PFAS mixture, respectively. CONCLUSIONS our prospective cohort study suggested a negative association of cord serum PFBS and 8:2 CI-PFESA with TSH concentration in newborns, especially for boys. Additional studies are required to elaborate on the underlying biological mechanisms, especially for PFBS.
Collapse
Affiliation(s)
- Zhongqiang Cao
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Junwei Li
- Department of Pediatrics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Meng Yang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongjian Gong
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Feiyan Xiang
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hao Zheng
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaonan Cai
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Aifen Zhou
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Han Xiao
- Institute of Maternal and Children Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
48
|
Mejías C, Martín J, Santos JL, Aparicio I, Alonso E. Adsorption of perfluoroalkyl substances on polyamide microplastics: Effect of sorbent and influence of environmental factors. ENVIRONMENTAL RESEARCH 2023; 216:114834. [PMID: 36400220 DOI: 10.1016/j.envres.2022.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) and perfluoroalkyl substances (PFASs) are two types of pollutants coexisting in the environment. Their co-exposure is a source of increasing concern. MPs present in the natural environment suppose an ideal surface for the sorption of hazardous contaminants. This study investigates the adsorption behaviour of six PFASs on polyamide (PA) MPs. Adsorption experiments under various internal (PA and PFASs dosage, PA particle size) and environmental (pH, ionic strength, dissolved organic matter) factors were carried out. Isotherm results (from 0.1 to 25 mg/L of PFASs) showed that the maximum adsorption capacity of the selected PFASs on the PA was as follows: perfluorooctanesulfonic acid (PFOS, 0.873 mg/g) > perfluorooctanoic acid (0.235 mg/g) > perfluoroheptanoic acid (0.231 mg/g) > perfluorohexanoic acid (0.201 mg/g) > perfluoropentanoic acid (0.192 mg/g) > perfluorobutanoic acid (0.188 mg/g) (pH 5.88, 0% salinity and 0% of dissolved organic matter). The PFOS has more tendency to be sorbed onto PA than perfluorocarboxilic acids. The MP characterization by scanning electron microscopy, X ray diffraction and Fourier transform infrared spectroscopy showed changes in the PA surface after adsorption assays. Pore filling, hydrophobic interactions and hydrogen bonds governed sorption process. The sorption capacity of PFASs was crucially affected by the PA size (from 19.6% to 99.9% for 3 mm and 50 μm particle size, respectively). The process was not significantly influenced by salinity while the dissolved organic matter exerted a negative effect (decrease from 100% to 26% for PFOS in presence of 25 mg/L of humic acid). Finally, adsorption rates of PFASs were quantified in real water matrices (influent and effluent wastewater, surface and tap water samples). The results revealed interactions between PA and PFASs and evidenced the role of PA as a vector to transport PFASs in the aquatic environment.
Collapse
Affiliation(s)
- Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011, Seville, Spain.
| |
Collapse
|
49
|
Tillaut H, Monfort C, Giton F, Warembourg C, Rouget F, Cordier S, Lainé F, Gaudreau E, Garlantézec R, Saint-Amour D, Chevrier C. Persistent Organic Pollutant Exposure and Thyroid Function among 12-Year-Old Children. Neuroendocrinology 2022; 113:1232-1247. [PMID: 36502793 PMCID: PMC10906475 DOI: 10.1159/000528631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Polychlorobiphenyls (PCBs), organochlorine pesticides (OCPs), and per- and polyfluoroalkyl substances (PFASs) are persistent organic pollutants (POPs) having numerous toxicological properties, including thyroid endocrine disruption. Our aim was to assess the impact of POPs on thyroid hormones among 12-year-old children, while taking puberty into consideration. METHODS Exposure to 7 PCBs, 4 OCPs, and 6 PFASs (in µg/L), and free tri-iodothyronine (fT3, pg/mL), free thyroxine (fT4, ng/dL), and thyroid-stimulating hormones (TSH, mIU/L) were assessed through blood-serum measurements at age 12 years in 249 boys and 227 girls of the PELAGIE mother-child cohort (France). Pubertal status was clinically rated using the Tanner stages. For each POP, associations were estimated using linear regression, adjusted for potential confounders. RESULTS Among boys, hexachlorobenzene and perfluorodecanoic acid were associated with decreased fT3 (log-scale; β [95% confidence interval] = -0.07 [-0.12,-0.02] and β = -0.03 [-0.06,-0.00], respectively). Intermediate levels of perfluorohexanesulfonic acid (PFHxS) and PCB180 were associated, respectively, with increased and decreased fT4. After stratification on pubertal status, PCBs and OCPs were associated with decreased TSH only in the more advanced Tanner stages (3-5) and with decreased fT3 among early Tanner stages (1-2). Among girls, PFHxS was associated with decreased TSH (log-scale; β = -0.15 [-0.29,-0.00]), and perfluorooctanoic acid was associated with decreased fT3 (β2nd_tercile = -0.06 [-0.10,-0.03] and β3rd_tercile = -0.04 [-0.08,-0.00], versus. 1st tercile). DISCUSSION This cross-sectional study highlights associations between some POPs and thyroid function disruption, which appears consistent with the literature. Considering that the associations were sex-specific and moderated by pubertal status in boys, complex endocrine interactions are likely involved.
Collapse
Affiliation(s)
- Hélène Tillaut
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christine Monfort
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Frank Giton
- AP-HP, Pôle Biologie-Pathologie Henri Mondor, Créteil, France
- Inserm IMRB, Faculté de Santé, Créteil, France
| | - Charline Warembourg
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Florence Rouget
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Sylvaine Cordier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | | - Eric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Québec, Canada
| | | | - Dave Saint-Amour
- Département de Psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France,
| |
Collapse
|
50
|
Egalini F, Marinelli L, Rossi M, Motta G, Prencipe N, Rossetto Giaccherino R, Pagano L, Grottoli S, Giordano R. Endocrine disrupting chemicals: effects on pituitary, thyroid and adrenal glands. Endocrine 2022; 78:395-405. [PMID: 35604630 PMCID: PMC9637063 DOI: 10.1007/s12020-022-03076-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In recent years, scientific research has increasingly focused on Endocrine Disrupting Chemicals (EDCs) and demonstrated their relevant role in the functional impairment of endocrine glands. This induced regulatory authorities to ban some of these compounds and to carefully investigate others in order to prevent EDCs-related conditions. As a result, we witnessed a growing awareness and interest on this topic. AIMS This paper aims to summarize current evidence regarding the detrimental effects of EDCs on pivotal endocrine glands like pituitary, thyroid and adrenal ones. Particularly, we directed our attention on the known and the hypothesized mechanisms of endocrine dysfunction brought by EDCs. We also gave a glimpse on recent findings from pioneering studies that could in the future shed a light on the pathophysiology of well-known, but poorly understood, endocrine diseases like hormone-producing adenomas. CONCLUSIONS Although intriguing, studies on endocrine dysfunctions brought by EDCs are challenging, in particular when investigating long-term effects of EDCs on humans. However, undoubtedly, it represents a new intriguing field of science research.
Collapse
Affiliation(s)
- Filippo Egalini
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.
| | - Lorenzo Marinelli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Mattia Rossi
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Giovanna Motta
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Nunzia Prencipe
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Ruth Rossetto Giaccherino
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Loredana Pagano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Silvia Grottoli
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Roberta Giordano
- Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
- Department of Biological and Clinical Science, University of Turin, Regione Gonzole 10, 10043, Orbassano (TO), Italy
| |
Collapse
|