1
|
Feng X, Qiu F, Zheng L, Zhang Y, Wang Y, Wang M, Xia H, Tang B, Yan C, Liang R. Exposure to volatile organic compounds and mortality in US adults: A population-based prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172512. [PMID: 38636853 DOI: 10.1016/j.scitotenv.2024.172512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Volatile organic compounds (VOCs) are ubiquitous in both indoor and outdoor environments. Evidence on the associations of individual and joint VOC exposure with all-cause and cause-specific mortality is limited. Measurements of 15 urinary VOC metabolites were available to estimate exposure to 12 VOCs in the National Health and Nutritional Examination Survey (NHANES) 2005-2006 and 2011-2018. The environment risk score (ERS) was calculated using LASSO regression to reflect joint exposure to VOCs. Follow-up data on death were obtained from the NHANES Public-Use Linked Mortality File through December 31, 2019. Cox proportional hazard models and restricted cubic spline models were applied to evaluate the associations of individual and joint VOC exposures with all-cause and cause-specific mortality. Population attributable fractions were calculated to assess the death burden attributable to VOC exposure. During a median follow-up of 6.17 years, 734 (8.34 %) deaths occurred among 8799 adults. Urinary metabolites of acrolein, acrylonitrile, 1,3-butadiene, and ethylbenzene/styrene were significantly associated with all-cause, cardiovascular disease (CVD), respiratory disease (RD), and cancer mortality in a linear dose-response manner. Linear and robust dose-response relationships were also observed between ERS and all-cause and cause-specific mortality. Each 1-unit increase in ERS was associated with a 33.6 %, 39.1 %, 109.8 %, and 67.8 % increase for all-cause, CVD, RD, and cancer mortality risk, respectively. Moreover, joint exposure to VOCs contributed to 17.95 % of all-cause deaths, 13.49 % of CVD deaths, 35.65 % of RD deaths, and 33.85 % of cancer deaths. Individual and joint exposure to VOCs may enhance the risk of all-cause and cause-specific mortality. Reducing exposure to VOCs may alleviate the all-cause and cause-specific death burden.
Collapse
Affiliation(s)
- Xiaobing Feng
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Feng Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling Zheng
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Yue Zhang
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Yuji Wang
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Min Wang
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Han Xia
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Bingrong Tang
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Chunxiang Yan
- Department of Medical Records Statistics, Wuhan Children's Hospital (Wuhan Maternal and Child Health Care Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China.
| | - Ruyi Liang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Kumari P, Soni D, Aggarwal SG. Benzene: A critical review on measurement methodology, certified reference material, exposure limits with its impact on human health and mitigation strategies. Environ Anal Health Toxicol 2024; 39:e2024012-0. [PMID: 39054826 PMCID: PMC11294662 DOI: 10.5620/eaht.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/26/2024] [Indexed: 07/27/2024] Open
Abstract
Benzene is a carcinogenic pollutant with significant emission sources present in the atmosphere. The need for accurate and precise measurement of benzene in the atmosphere has become increasingly evident due to its toxicity and the adverse health effects associated with exposure to different concentrations. Certified reference material (CRM) is essential to establish the traceability of measurement results. The present review compiles the available national and international measurement methods, certified reference materials (CRMs) for benzene and the limit of benzene in fuel composition (v/v) worldwide. Overall, the review indicates the benzene level in the atmosphere and the resulting impacts on the environment and human health, which frequently exceed the exposure limits of different environment regulatory agencies. An extensive literature review was conducted to gather information on monitoring and analysis methods for benzene, revealing that the most preferred method, i.e. Gas Chromatography- Flame Ionization Detector and Mass Spectrometry, is neither cost-effective nor suitable for real-time continuous monitoring. By analysing existing literature and studies, this review will shed light on the understanding of the importance of benzene pollution monitoring in ambient air and its implications for public health. Additionally, it will reflect the mitigation strategies applied by regulators & need for future revisions of air quality guidelines.
Collapse
Affiliation(s)
- Poonam Kumari
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Daya Soni
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shankar G Aggarwal
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Zhang M, Chen C, Sun Y, Wang Y, Du P, Ma R, Li T. Association between Ambient Volatile Organic Compounds Exposome and Emergency Hospital Admissions for Cardiovascular Disease. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5695-5704. [PMID: 38502526 DOI: 10.1021/acs.est.3c08937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The limited research on volatile organic compounds (VOCs) has not taken into account the interactions between constituents. We used the weighted quantile sum (WQS) model and generalized linear model (GLM) to quantify the joint effects of ambient VOCs exposome and identify the substances that play key roles. For a 0 day lag, a quartile increase of WQS index for n-alkanes, iso/anti-alkanes, aromatic, halogenated aromatic hydrocarbons, halogenated saturated chain hydrocarbons, and halogenated unsaturated chain hydrocarbons were associated with 1.09% (95% CI: 0.13, 2.06%), 0.98% (95% CI: 0.22, 1.74%), 0.92% (95% CI: 0.14, 1.69%), 1.03% (95% CI: 0.14, 1.93%), 1.69% (95% CI: 0.48, 2.91%), and 1.85% (95% CI: 0.93, 2.79%) increase in cardiovascular disease (CVD) emergency hospital admissions, respectively. Independent effects of key substances on CVD-related emergency hospital admissions were also reported. In particular, an interquartile range increase in 1,1,1-trichloroethane, methylene chloride, styrene, and methylcyclohexane is associated with a greater risk of CVD-associated emergency hospital admissions [3.30% (95% CI: 1.93, 4.69%), 3.84% (95% CI: 1.21, 6.53%), 5.62% (95% CI: 1.35, 10.06%), 8.68% (95% CI: 3.74, 13.86%), respectively]. We found that even if ambient VOCs are present at a considerably low concentration, they can cause cardiovascular damage. This should prompt governments to establish and improve concentration standards for VOCs and their sources. At the same time, policies should be introduced to limit VOCs emission to protect public health.
Collapse
Affiliation(s)
- Mengxue Zhang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yue Sun
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Peng Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Runmei Ma
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- School of Public Health, Nanjing Medical University, Nanjing 211166, China
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
4
|
He Y, Qiu H, Wang W, Lin Y, Ho KF. Exposure to BTEX is associated with cardiovascular disease, dyslipidemia and leukocytosis in national US population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170639. [PMID: 38316304 DOI: 10.1016/j.scitotenv.2024.170639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Comprehensive research on the effects of individual benzene, toluene, ethylbenzene, and xylenes (BTEX) and their mixture measured in blood samples, on cardiovascular diseases (CVD) and related risk factors among the general population is limited. OBJECTIVES To investigate the effects of blood individual and mixed BTEX on total CVD and its subtypes, lipid profiles, and white blood cell (WBC) count. METHODS Survey-weighted multivariate logistic regression was used to examine the associations between blood individual and mixed BTEX with CVD and its subtypes in 17,007 participants from NHANES 1999-2018. The combined effect of BTEX mixture on CVD was estimated using weighted quantile sum modeling and quantile g-computation. Weighted multivariate linear regression assessed the effects of BTEX on lipid profiles and WBC, including its five-part differential count. RESULTS In comparison to the reference quartile of BTEX mixture, individuals in the highest quartile had a significantly increased adjusted odds ratio of CVD risk (1.64, 95 % CI: 1.23 to 2.19, P for trend = 0.008). Positive associations were observed for benzene, toluene, ethylbenzene, and m-/p-xylene, demonstrating a monotonically increasing exposure-response relationship. Mixed BTEX was associated with congestive heart failure (CHF), angina pectoris, and heart attack. Individual benzene, toluene, and ethylbenzene were associated with CHF, while toluene, ethylbenzene, and all xylene isomers were linked to angina pectoris. Benzene, toluene, and o-xylene were associated with heart attack. Both mixed and individual BTEX showed positive associations with triglycerides, cholesterol, low-density lipoprotein, and WBC, including its five-part differential count, but a negative relationship with high-density lipoprotein. Subgroup analyses identified modifying effects of smoking, drinking, exercise, BMI, hypertension, and diabetes on the associations between specific toxicants and CVD risk. CONCLUSIONS Exposure to BTEX was associated with cardiovascular diseases and cardiovascular risk factors. These findings emphasize the importance of considering blood BTEX levels when assessing cardiovascular health risks.
Collapse
Affiliation(s)
- Yansu He
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong Qiu
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wenqiao Wang
- Department of Clinical Nutrition, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yong Lin
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, HKSAR, China
| | - Kin Fai Ho
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, HKSAR, China.
| |
Collapse
|
5
|
Madani NA, Jones LE, Carpenter DO. Different volatile organic compounds in local point source air pollution pose distinctive elevated risks for respiratory disease-associated emergency room visits. CHEMOSPHERE 2023; 344:140403. [PMID: 37832881 DOI: 10.1016/j.chemosphere.2023.140403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Air pollution increases risk of respiratory disease but prior research has focused on particulate matter and criteria air pollutants, and there are few studies on respiratory effects of volatile organic compounds (VOC). We examined zip code level relationships between emergency room (ER) visits for respiratory illness and VOC pollution in New York State from 2010 to 2018. Detailed information on VOC pollution was derived from the National Emissions Inventory, which provides point source information on VOC emissions at the zip code level. We considered four respiratory diseases: asthma, acute upper respiratory infections, chronic obstructive pulmonary disease (COPD), and lower respiratory disease, using mixed effects regression with a random intercept to account for county level variability in single pollutant models, and Random Forest Regression (RFR) to assess relative importance of VOC exposures when considered together in multipollutant models. Single pollutant models show associations between respiratory-related ER visits with all pollutants of interest across all study years, even after adjusting for poverty and smoking by zip code. The largest relative single pollutant effect sizes considered included benzene, ethylbenzene, and total (summed) VOCs. Results from RFR including all VOC exposures indicate that ethylbenzene has the greatest variable importance for asthma, acute upper respiratory infections, and COPD, with toluene and benzene most important for lower respiratory ailments. RFR results also demonstrate presence of pairwise interactive effects between VOC pollutants. Our findings show that local VOC pollution may offer a significant contribution to the risk of respiratory disease-related ER visits, and that effects vary by illness and by VOC compound. ER visit rates for respiratory illness were elevated in high poverty zip codes, although this may be attributable to the fact that the poor lack basic access to health care and use ERs more frequently for routine care.
Collapse
Affiliation(s)
- Najm Alsadat Madani
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA; Department of Environmental Health Science, School of Public Health, University at Albany, Rensselaer, NY, 12144, USA.
| | - Laura E Jones
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA; Department of Biostatistics and Epidemiology, School of Public Health, University at Albany, Rensselaer, NY, 12144, USA; Center for Biostatistics, Bassett Research Institute, Bassett Health, Cooperstown, NY, 13326, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA; Department of Environmental Health Science, School of Public Health, University at Albany, Rensselaer, NY, 12144, USA
| |
Collapse
|
6
|
Wang X, Chen Z, Cheng D, Cao Y, Xie X, Zhou J, Wu Y, Li X, Yu J, Yang B. Association between urinary metabolites of volatile organic compounds and cardiovascular disease in the general population from NHANES 2011-2018. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115412. [PMID: 37714034 DOI: 10.1016/j.ecoenv.2023.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Volatile organic compounds (VOCs) contain hundreds of chemicals and human exposure to VOCs is pervasive. However, most studies have considered only a single chemical or a class of similar chemicals. OBJECTIVE We aimed to investigate the association between urinary volatile organic compound metabolites (mVOCs) and the risk of cardiovascular disease (CVD) in the general population. METHODS The data in this study were collected from the National Health and Nutrition Examination Survey in 2011-2018. Eligible patients were aged ≥20 years for whom complete data for 20 types of urinary mVOCs and CVD outcomes were available. Multivariate logistic regression models were used to elucidate the association between mVOCs and CVD. Generalized additive models were used to examine the nonlinear relationships between mVOCs and CVD. RESULTS 6814 indiviuals were included in the final analysis, of whom 508 had CVD. Higher urinary concentrations of N-acetyl-S-(2-carboxyethyl)-L-cysteine (CEMA) and N-Acetyl-S-(2-cyanoethyl)-l-cysteine (CYMA) and a lower urinary concentration of 2-aminothiazoline-4-carboxylic acid (ATCA) were associated with CVD outcomes after the adjustment for potential confounding factors. A nonlinear relationship and a threshold effect were only observed between N-acetyl-S-(N-methylcarbamoyl)-l-cysteine (AMCC) and CVD among 20 types of mVOCs. There was a significantly positive correlation between AMCC and CVD when AMCC concentration was >2.32 g/mL. CONCLUSION The findings of this study suggested a significant correlation between urinary VOC metabolites and CVD. Urinary mVOCs may indicate hazardous exposure or distinct metabolic traits in patients with CVD.
Collapse
Affiliation(s)
- Xuecheng Wang
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, TongjiUniversity, 150 Jimo Road, Shanghai 200120, PR China
| | - Zijun Chen
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, TongjiUniversity, 150 Jimo Road, Shanghai 200120, PR China
| | - Dian Cheng
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, TongjiUniversity, 150 Jimo Road, Shanghai 200120, PR China
| | - Yue Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xin Xie
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, TongjiUniversity, 150 Jimo Road, Shanghai 200120, PR China
| | - Jian Zhou
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, TongjiUniversity, 150 Jimo Road, Shanghai 200120, PR China
| | - Yizhang Wu
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, TongjiUniversity, 150 Jimo Road, Shanghai 200120, PR China
| | - Xiaorong Li
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, TongjiUniversity, 150 Jimo Road, Shanghai 200120, PR China
| | - Jinbo Yu
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, TongjiUniversity, 150 Jimo Road, Shanghai 200120, PR China.
| | - Bing Yang
- Department of Cardiovascular Medicine, Shanghai East Hospital, School of Medicine, TongjiUniversity, 150 Jimo Road, Shanghai 200120, PR China.
| |
Collapse
|
7
|
Qiu H, Chuang KJ, Fan YC, Chang TP, Chuang HC, Wong ELY, Bai CH, Ho KF. Association between ambient BTEX mixture and neurological hospitalizations: A multicity time-series study in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115239. [PMID: 37441946 DOI: 10.1016/j.ecoenv.2023.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Benzene, toluene, ethylbenzene, and xylenes, collectively known as BTEX, are hazardous chemical mixtures, and their neurological health effects have not been thoroughly evaluated. We examined the association between BTEX exposure and neurological hospital admissions. METHODS This was a multicity time-series study conducted in five major Taiwanese cities. Daily hospital admission records for diseases of the nervous system from January 1, 2016, to December 31, 2017, were collected from the National Health Insurance Research Database. Ambient BTEX and criteria pollutant concentrations and weather factors were collected from Photochemical Assessment Monitoring Stations. We applied a Poisson generalized additive model (GAM) and weighted quantile sum regression to calculate city-specific effect estimates for BTEX and conducted a random-effects meta-analysis to pool estimates. RESULTS We recorded 68 neurological hospitalizations per day during the study period. The daily mean BTEX mixture concentrations were 22.5 µg/m3, ranging from 18.3 µg/m3 in Kaohsiung to 27.0 µg/m3 in Taichung, and toluene (13.6 µg/m3) and xylene (5.8 µg/m3) were the dominant chemicals. Neurological hospitalizations increased by an average of 1.6 % (95 % CI: 0.6-2.6 %) for every interquartile range (15.8 µg/m3) increase in BTEX at lag 0 estimated using a GAM model. A quartile increase in the weighted sum of BTEX exposure was associated with a 1.7 % (95 % CI: 0.6-2.8 %) increase in daily neurological hospitalizations. CONCLUSION We found consistent acute adverse effects of BTEX on neurological hospitalizations in Taiwan, with toluene and xylene as the dominant chemicals. These findings aid the development of more targeted public health interventions.
Collapse
Affiliation(s)
- Hong Qiu
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ta-Pang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Eliza Lai-Yi Wong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chyi-Huey Bai
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
8
|
Kumari P, Soni D, Aggarwal SG, Singh K. Seasonal and diurnal measurement of ambient benzene at a high traffic inflation site in Delhi: Health risk assessment and its possible role in ozone formation pathways. Environ Anal Health Toxicol 2023; 38:e2023016-0. [PMID: 37853697 PMCID: PMC10613561 DOI: 10.5620/eaht.2023016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/13/2023] [Indexed: 10/20/2023] Open
Abstract
Benzene is the most toxic and hazardous pollutant among volatile organic compounds (VOCs), as it comes under group 1 carcinogens recognized by the International Agency for Research on Cancer (IARC). It also plays a significant role in forming secondary pollutants like ozone. The benzene concentration was measured using a charcoal sorbent tube by active sampling at a traffic junction and analysis was done using GC-FID. The maximum average concentration of benzene in ambient air was found to be 33 μg/m3. A diurnal study of benzene measurement shows higher benzene concentrations in the evening compared to the morning. Seasonal variation of benzene is found to be winter > spring > summer > autumn > monsoon and OFP was found to be 21, 19, 14, 13, and 10 respectively. Cancer (ILCR) and non-cancer (HQ) health risk assessment was done to determine the impact of ambient benzene on the residents of urban areas. The yearly average value of ILCR was found to be 2×10-6 ± 1×10-6 which ranges from acceptable value to three times the WHO acceptable value i.e 1×10-6. The correlation of ozone and its precursor, benzene with meteorological parameters is also evaluated. The correlation of benzene and ozone with solar radiation shows the influence of photochemical reactions on the levels of benzene and ozone at the study site, although it is low.
Collapse
Affiliation(s)
- Poonam Kumari
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Daya Soni
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shankar G. Aggarwal
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Khem Singh
- CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, India
| |
Collapse
|
9
|
Chen D, Sandler DP, Keil AP, Heiss G, Whitsel EA, Edwards JK, Stewart PA, Stenzel MR, Groth CP, Ramachandran G, Banerjee S, Huynh TB, Jackson WB, Blair A, Lawrence KG, Kwok RK, Engel LS. Volatile Hydrocarbon Exposures and Incident Coronary Heart Disease Events: Up to Ten Years of Follow-up among Deepwater Horizon Oil Spill Workers. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:57006. [PMID: 37224072 PMCID: PMC10208425 DOI: 10.1289/ehp11859] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND During the 2010 Deepwater Horizon (DWH) disaster, response and cleanup workers were potentially exposed to toxic volatile components of crude oil. However, to our knowledge, no study has examined exposure to individual oil spill-related chemicals in relation to cardiovascular outcomes among oil spill workers. OBJECTIVES Our aim was to investigate the association of several spill-related chemicals [benzene, toluene, ethylbenzene, xylene, n-hexane (BTEX-H)] and total hydrocarbons (THC) with incident coronary heart disease (CHD) events among workers enrolled in a prospective cohort. METHODS Cumulative exposures to THC and BTEX-H across the cleanup period were estimated via a job-exposure matrix that linked air measurement data with self-reported DWH spill work histories. We ascertained CHD events following each worker's last day of cleanup work as the first self-reported physician-diagnosed myocardial infarction (MI) or a fatal CHD event. We estimated hazard ratios (HR) and 95% confidence intervals for the associations of exposure quintiles (Q) with risk of CHD. We applied inverse probability weights to account for bias due to confounding and loss to follow-up. We used quantile g-computation to assess the joint effect of the BTEX-H mixture. RESULTS Among 22,655 workers with no previous MI diagnoses, 509 experienced an incident CHD event through December 2019. Workers in higher quintiles of each exposure agent had increased CHD risks in comparison with the referent group (Q1) of that agent, with the strongest associations observed in Q5 (range of HR = 1.14 - 1.44 ). However, most associations were nonsignificant, and there was no evidence of exposure-response trends. We observed stronger associations among ever smokers, workers with ≤ high school education, and workers with body mass index < 30 kg / m 2 . No apparent positive association was observed for the BTEX-H mixture. CONCLUSIONS Higher exposures to volatile components of crude oil were associated with modest increases in risk of CHD among oil spill workers, although we did not observe exposure-response trends. https://doi.org/10.1289/EHP11859.
Collapse
Affiliation(s)
- Dazhe Chen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessie K. Edwards
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Mark R. Stenzel
- Exposure Assessment Applications, LLC, Arlington, Virginia, USA
| | - Caroline P. Groth
- Department of Epidemiology and Biostatistics, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sudipto Banerjee
- Department of Biostatistics, Fielding School of Public Health, University of California – Los Angeles, Los Angeles, California, USA
| | - Tran B. Huynh
- Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania, USA
| | - W. Braxton Jackson
- Social & Scientific Systems, Inc, a DLH Holdings Company, Durham, North Carolina, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Kaitlyn G. Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Richard K. Kwok
- Population Studies and Genetics Branch, National Institute on Aging, Bethesda, Maryland, USA
| | - Lawrence S. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
10
|
Khalili M, Nasrabadi T. Assessment of occupational health risk due to inhalation of chemical compounds in an aircraft maintenance, repair, and overhaul company. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57558-57570. [PMID: 36964811 DOI: 10.1007/s11356-023-26572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
This study was conducted in an aircraft maintenance, repair, and overhaul (MRO) company in 2021 to identify the extent of occupational exposures and quantitative assessment of the health risk due to inhalation of chemical compounds. According to the inspection of different parts of this company, heavy metals including Co, Cd, Ni, Pb, Cr(VI), and Mn and organic compounds including benzene, toluene, ethylbenzene, xylene (BTEX), and methyl ethyl ketone (MEK) were selected for health risk assessment. In total, the air in the inhalation area of active workers was sampled in 51 workstations. Measurement of the above pollutants showed that the average occupational exposure to Cd, Pb, and all organic compounds fell within the acceptable range of occupational exposure standard, while the measured values for Co, Ni, Mn, and Cr(VI) exceeded the standard limit. According to calculations, the highest carcinogenic risk (CR) was seen in the plating (airplane) workshop for exposure to Cr(VI) (7.58E-01), and the lowest CR was observed in the electronic workshop for exposure to Pb (7.75E-08). The highest non-carcinogenic hazard (HQ) was found in the welding workshop for exposure to Co (1.00E + 04), while the lowest HQ was related to toluene in the fabrication workshop (9.10E-03). Considering the high rate of exposure indicators, CR and HQ exceeded the standards set by the American Environmental Protection Agency (EPA) in most workshops. Accordingly, company managers should take the necessary measures to reduce the vulnerability of individuals working in areas with unacceptable CR and HQ.
Collapse
Affiliation(s)
| | - Touraj Nasrabadi
- Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Gas flow-assisted headspace-single drop microextraction to determine benzene, toluene, ethylbenzene and xylene in aqueous samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Liu N, Bu Z, Liu W, Kan H, Zhao Z, Deng F, Huang C, Zhao B, Zeng X, Sun Y, Qian H, Mo J, Sun C, Guo J, Zheng X, Weschler LB, Zhang Y. Health effects of exposure to indoor volatile organic compounds from 1980 to 2017: A systematic review and meta-analysis. INDOOR AIR 2022; 32:e13038. [PMID: 35622720 DOI: 10.1111/ina.13038] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Exposure to volatile organic compounds (VOCs) indoors is thought to be associated with several adverse health effects. However, we still lack concentration-response (C-R) relationships between VOC levels in civil buildings and various health outcomes. For this paper, we conducted a systematic review and meta-analysis of observational studies to summarize related associations and C-R relationships. Four databases were searched to collect all relevant studies published between January 1980 and December 2017. A total of 39 studies were identified in the systematic review, and 32 of these were included in the meta-analysis. We found that the pooled relative risk (RR) for leukemia was 1.03 (95% CI: 1.01-1.05) per 1 μg/m3 increase of benzene and 1.25 (95%CI: 1.14-1.37) per 0.1 μg/m3 increase of butadiene. The pooled RRs for asthma were 1.08 (95% CI: 1.02-1.14), 1.02 (95% CI: 1.00-1.04), and 1.04 (95% CI: 1.02-1.06) per 1 μg/m3 increase of benzene, toluene, and p-dichlorobenzene, respectively. The pooled RR for low birth weight was 1.12 (95% CI: 1.05-1.19) per 1 μg/m3 increase of benzene. Our findings provide robust evidence for associations between benzene and leukemia, asthma, and low birth weight, as well as for health effects of some other VOCs.
Collapse
Affiliation(s)
- Ningrui Liu
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| | - Zhuohui Zhao
- School of Public Health, Fudan University, Shanghai, China
| | - Furong Deng
- School of Public Health, Peking University, Beijing, China
| | - Chen Huang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Zhao
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xiangang Zeng
- School of Environment and Natural Resources, Renmin University of China, Beijing, China
| | - Yuexia Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Jinhan Mo
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Chanjuan Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianguo Guo
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
| | | | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| |
Collapse
|
13
|
Chen Y, Zhang F, Ye X, Hu JJ, Yang X, Yao L, Zhao BC, Deng F, Liu KX. Association Between Gut Dysbiosis and Sepsis-Induced Myocardial Dysfunction in Patients With Sepsis or Septic Shock. Front Cell Infect Microbiol 2022; 12:857035. [PMID: 35372123 PMCID: PMC8964439 DOI: 10.3389/fcimb.2022.857035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Sepsis-induced myocardial dysfunction (SIMD) seriously affects the evolution and prognosis of the sepsis patient. The gut microbiota has been confirmed to play an important role in sepsis or cardiovascular diseases, but the changes and roles of the gut microbiota in SIMD have not been reported yet. This study aims to assess the compositions of the gut microbiota in sepsis or septic patients with or without myocardial injury and to find the relationship between the gut microbiota and SIMD. Methods The prospective, observational, and 1:1 matched case–control study was conducted to observe gut microbiota profiles from patients with SIMD (n = 18) and matched non-SIMD (NSIMD) patients (n = 18) by 16S rRNA gene sequencing. Then the relationship between the relative abundance of microbial taxa and clinical indicators and clinical outcomes related to SIMD was analyzed. The receiver operating characteristic (ROC) curves were used to evaluate the predictive efficiencies of the varied gut microbiota to SIMD. Results SIMD was associated with poor outcomes in sepsis patients. The beta-diversity of the gut microbiota was significantly different between the SIMD patients and NSIMD subjects. The gut microbiota profiles in different levels significantly differed between the two groups. Additionally, the abundance of some microbes (Klebsiella variicola, Enterobacteriaceae, and Bacteroides vulgatus) was correlated with clinical indicators and clinical outcomes. Notably, ROC analysis indicated that K. variicola may be a potential biomarker of SIMD. Conclusion Our study indicates that SIMD patients may have a particular gut microbiota signature and that the gut microbiota might be a potential diagnostic marker for evaluating the risk of developing SIMD.
Collapse
Affiliation(s)
- Yu Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Anesthesiology, Jinshan Branch of Fujian Provincial Hospital, Fuzhou, China.,Department of Anesthesiology, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Fu Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Ye
- Department of Anesthesiology, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Yao
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Qiu H, Chuang KJ, Fan YC, Chang TP, Bai CH, Ho KF. Acute effects of ambient non-methane hydrocarbons on cardiorespiratory hospitalizations: A multicity time-series study in Taiwan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113370. [PMID: 35255250 DOI: 10.1016/j.ecoenv.2022.113370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Few environmental epidemiological studies and no large multicity studies have evaluated the acute short-term health effects of ambient non-methane hydrocarbons (NMHC), the essential precursors of ground-level ozone and secondary organic aerosol formation. OBJECTIVE We conducted this multicity time-series study in Taiwan to evaluate the association between airborne NMHC exposure and cardiorespiratory hospital admissions. METHODS We collected the daily mean concentrations of NMHC, fine particulate matter (PM2.5), ozone (O3), weather conditions, and daily hospital admission count for cardiorespiratory diseases between 2014 and 2017 from eight major cities of Taiwan. We applied an over-dispersed generalized additive Poisson model (GAM) with adjustment for temporal trends, seasonal variations, weather conditions, and calendar effects to compute the effect estimate for each city. Then we conducted a random-effects meta-analysis to pool the eight city-specific effect estimates to obtain the overall associations of NMHC exposure on lag0 day with hospital admissions for respiratory and circulatory diseases, respectively. RESULTS On average, a 0.1-ppm increase of lag0 NMHC demonstrated an overall 0.9% (95% CI: 0.4-1.3%) and 0.8% (95% CI: 0.4-1.2%) increment of hospital admissions for respiratory and circulatory diseases, respectively. Further analyses with adjustment for PM2.5 and O3 in the multi-pollutant model or sensitivity analyses with restricting the NMHC monitoring from the general stations only confirmed the robustness of the association between ambient NMHC exposure and cardiorespiratory hospitalizations. CONCLUSION Our findings provide robust evidence of higher cardiorespiratory hospitalizations in association with acute exposure to ambient NMHC in eight major cities of Taiwan.
Collapse
Affiliation(s)
- Hong Qiu
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ta-Pang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Environmental exposure to volatile organic compounds is associated with endothelial injury. Toxicol Appl Pharmacol 2022; 437:115877. [PMID: 35045333 PMCID: PMC10045232 DOI: 10.1016/j.taap.2022.115877] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Volatile organic compounds (VOCs) are airborne toxicants abundant in outdoor and indoor air. High levels of VOCs are also present at various Superfund and other hazardous waste sites; however, little is known about the cardiovascular effects of VOCs. We hypothesized that ambient exposure to VOCs exacerbate cardiovascular disease (CVD) risk by depleting circulating angiogenic cells (CACs). APPROACH AND RESULTS In this cross-sectional study, we recruited 603 participants with low-to-high CVD risk and measured 15 subpopulations of CACs by flow cytometry and 16 urinary metabolites of 12 VOCs by LC/MS/MS. Associations between CAC and VOC metabolite levels were examined using generalized linear models in the total sample, and separately in non-smokers. In single pollutant models, metabolites of ethylbenzene/styrene and xylene, were negatively associated with CAC levels in both the total sample, and in non-smokers. The metabolite of acrylonitrile was negatively associated with CD45dim/CD146+/CD34+/AC133+ cells and CD45+/CD146+/AC133+, and the toluene metabolite with AC133+ cells. In analysis of non-smokers (n = 375), multipollutant models showed a negative association with metabolites of ethylbenzene/styrene, benzene, and xylene with CD45dim/CD146+/CD34+ cells, independent of other VOC metabolite levels. Cumulative VOC risk score showed a strong negative association with CD45dim/CD146+/CD34+ cells, suggesting that total VOC exposure has a cumulative effect on pro-angiogenic cells. We found a non-linear relationship for benzene, which showed an increase in CAC levels at low, but depletion at higher levels of exposure. Sex and race, hypertension, and diabetes significantly modified VOC associated CAC depletion. CONCLUSION Low-level ambient exposure to VOCs is associated with CAC depletion, which could compromise endothelial repair and angiogenesis, and exacerbate CVD risk.
Collapse
|
16
|
Qin N, Zhu Y, Zhong Y, Tian J, Li J, Chen L, Fan R, Wei F. External Exposure to BTEX, Internal Biomarker Response, and Health Risk Assessment of Nonoccupational Populations near a Coking Plant in Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020847. [PMID: 35055669 PMCID: PMC8775548 DOI: 10.3390/ijerph19020847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023]
Abstract
Benzene, toluene, ethylbenzene and xylene isomers (BTEX) have raised increasing concern due to their adverse effects on human health. In this study, a coking factory and four communities nearby were selected as the research area. Atmospheric BTEX samples were collected and determined by a preconcentrator GC-MS method. Four biomarkers in the morning urine samples of 174 participants from the communities were measured by LC-MS. The health risks of BTEX exposure via inhalation were estimated. This study aimed to investigate the influence of external BTEX exposure on the internal biomarker levels and quantitatively evaluate the health risk of populations near the coking industry. The results showed that the average total BTEX concentration in residential area was 7.17 ± 7.24 μg m-3. Trans,trans-muconic acid (T,T-MA) was the urinary biomarker with the greatest average level (127 ± 285 μg g-1 crt). Similar spatial trends can be observed between atmospheric benzene concentration and internal biomarker levels. The mean values of the LCR for male and female residents were 2.15 × 10-5 and 2.05 × 10-5, respectively. The results of the risk assessment indicated that special attention was required for the non-occupational residents around the area.
Collapse
Affiliation(s)
- Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (F.W.)
| | - Yuanyuan Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (F.W.)
- China National Environmental Monitoring Center, Beijing 100012, China
- Correspondence:
| | - Yan Zhong
- Anshan Ecological Environment Monitoring Center of Liaoning Province, Anshan 114000, China; (Y.Z.); (J.T.)
| | - Jing Tian
- Anshan Ecological Environment Monitoring Center of Liaoning Province, Anshan 114000, China; (Y.Z.); (J.T.)
| | - Jihua Li
- Qujing Center for Disease Control and Prevention, Qujing 655011, China;
| | - Laiguo Chen
- Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Science, Ministry of Ecological Environment, Guangzhou 510655, China;
- Air Pollution Control Engineering Laboratory of Guangdong Province, South China Institute of Environmental Science, Ministry of Ecological Environment, Guangzhou 510655, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China;
| | - Fusheng Wei
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; (N.Q.); (F.W.)
- China National Environmental Monitoring Center, Beijing 100012, China
| |
Collapse
|
17
|
Hessou EP, Bédé LA, Jabraoui H, Semmeq A, Badawi M, Valtchev V. Adsorption of Toluene and Water over Cationic-Exchanged Y Zeolites: A DFT Exploration. Molecules 2021; 26:5486. [PMID: 34576957 PMCID: PMC8466149 DOI: 10.3390/molecules26185486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, density functional theory (DFT) calculations have been performed to investigate the adsorption mechanisms of toluene and water onto various cationic forms of Y zeolite (LiY, NaY, KY, CsY, CuY and AgY). Our computational investigation revealed that toluene is mainly adsorbed via π-interactions on alkalis exchanged Y zeolites, where the adsorbed toluene moiety interacts with a single cation for all cases with the exception of CsY, where two cations can simultaneously contribute to the adsorption of the toluene, hence leading to the highest interaction observed among the series. Furthermore, we find that the interaction energies of toluene increase while moving down in the alkaline series where interaction energies are 87.8, 105.5, 97.8, and 114.4 kJ/mol for LiY, NaY, KY and CsY, respectively. For zeolites based on transition metals (CuY and AgY), our calculations reveal a different adsorption mode where only one cation interacts with toluene through two carbon atoms of the aromatic ring with interaction energies of 147.0 and 131.5 kJ/mol for CuY and AgY, respectively. More importantly, we show that water presents no inhibitory effect on the adsorption of toluene, where interaction energies of this latter were 10 kJ/mol (LiY) to 47 kJ/mol (CsY) higher than those of water. Our results point out that LiY would be less efficient for the toluene/water separation while CuY, AgY and CsY would be the ideal candidates for this application.
Collapse
Affiliation(s)
- Etienne P. Hessou
- Laboratoire de Physique et Chimie Théoriques, Faculté des Sciences et Technologies, CNRS, Université de Lorraine, Boulevard des Aiguillettes, 54500 Vandoeuvre-lès-Nancy, France; (A.S.); (M.B.)
| | - Lucie A. Bédé
- Laboratoire de Constitution et Réaction de la Matière, Université Felix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire;
| | - Hicham Jabraoui
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France;
| | - Abderrahmane Semmeq
- Laboratoire de Physique et Chimie Théoriques, Faculté des Sciences et Technologies, CNRS, Université de Lorraine, Boulevard des Aiguillettes, 54500 Vandoeuvre-lès-Nancy, France; (A.S.); (M.B.)
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, Faculté des Sciences et Technologies, CNRS, Université de Lorraine, Boulevard des Aiguillettes, 54500 Vandoeuvre-lès-Nancy, France; (A.S.); (M.B.)
| | - Valentin Valtchev
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, CNRS, 6 Boulevard Maréchal Juin, 14050 Caen, France;
| |
Collapse
|
18
|
Qiu H, Bai CH, Chuang KJ, Fan YC, Chang TP, Yim SHL, Ho KF. Association of cardiorespiratory hospital admissions with ambient volatile organic compounds: Evidence from a time-series study in Taipei, Taiwan. CHEMOSPHERE 2021; 276:130172. [PMID: 33721630 DOI: 10.1016/j.chemosphere.2021.130172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
As important precursors of ozone and secondary organic aerosols, the harmful impact of exposure to ambient volatile organic compounds (VOCs) is of public health interest. However, few studies have investigated the health risks of numerous individual VOC species. This study linked the daily concentrations of 54 C2-C11 VOC species monitored from the Wanhua Photochemical Assessment Monitoring Station and hospital admissions for cardiorespiratory diseases in Taipei, Taiwan, from the National Health Insurance Research Database. A standard time-series approach entailing a series of sensitivity analyses was applied to investigate the short-term health risks of exposure to VOC subgroups and species. Consistent associations of all VOC subgroups and main species with chronic obstructive pulmonary disease (COPD) hospitalizations were demonstrated. In addition, associations of the C5-C6 alkanes, C2-C3 alkenes, toluene, and xylene with asthma hospitalizations were found, as were associations of aromatic hydrocarbons with hospitalizations for heart failure. An interquartile range increase in total VOC exposure at lag0 day (102.6 parts per billion carbon) was associated with increments of 1.84% (95% confidence interval: 0.54%-3.15%), 1.65% (0.71%-2.60%), and 1.21% (0.36%-2.07%) in hospitalizations for asthma, COPD, and heart failure, respectively. The effect estimates were robust with data excluding extreme values, the second pollutant adjustment for PM2.5 and O3, and the Bonferroni correction. The associations of ambient VOC exposure with cardiorespiratory hospitalizations in Taipei serve as a reference for VOC regulations and ozone control strategies.
Collapse
Affiliation(s)
- Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Ta-Pang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Xinyi District, 11031, Taipei, Taiwan
| | - Steve Hung-Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region; Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region; JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Sha Tin, Hong Kong Special Administrative Region.
| |
Collapse
|
19
|
Deng B, Zhang H, Wu J. Modeling VOCs emission/sorption with variable operating parameters and general boundary conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116315. [PMID: 33360663 DOI: 10.1016/j.envpol.2020.116315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/19/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
An integrated model of VOCs emission/sorption from/on dry building materials with a general boundary condition, variable air exchange rate and inlet concentration is developed. An analytical solution is obtained by using the generalized integral transform technique. Good agreements are obtained between the present model and the experimental data. The effects of environmental conditions on the emission are investigated. The emission from two surfaces can increase the concentration of hexanal in the air and decrease the initial emission rate at x=δ with the increase in mass transfer coefficient at x=0. Periodical inlet concentration can lead to the periodic variation of materials between a source and a sink. Ventilation can keep the concentration in the air at a low level and help to decrease the concentration of hexanal in materials. The present model is capable of simulating indoor air quality due to the VOCs emission and sorption.
Collapse
Affiliation(s)
- Baoqing Deng
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Haiyan Zhang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jiming Wu
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| |
Collapse
|
20
|
Ou J, Huang Z, Klimont Z, Jia G, Zhang S, Li C, Meng J, Mi Z, Zheng H, Shan Y, Louie PKK, Zheng J, Guan D. Role of export industries on ozone pollution and its precursors in China. Nat Commun 2020; 11:5492. [PMID: 33127894 PMCID: PMC7603491 DOI: 10.1038/s41467-020-19035-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
This study seeks to estimate how global supply chain relocates emissions of tropospheric ozone precursors and its impacts in shaping ozone formation. Here we show that goods produced in China for foreign markets lead to an increase of domestic non-methane volatile organic compounds (NMVOCs) emissions by 3.5 million tons in 2013; about 13% of the national total or, equivalent to half of emissions from European Union. Production for export increases concentration of NMVOCs (including some carcinogenic species) and peak ozone levels by 20-30% and 6-15% respectively, in the coastal areas. It contributes to an estimated 16,889 (3,839-30,663, 95% CI) premature deaths annually combining the effects of NMVOCs and ozone, but could be reduced by nearly 40% by closing the technology gap between China and EU. Export demand also alters the emission ratios between NMVOCs and nitrogen oxides and hence the ozone chemistry in the east and south coast.
Collapse
Affiliation(s)
- Jiamin Ou
- Department of Sociology, Utrecht University, Utrecht, 3584 CH, the Netherlands
- School of International Development, University of East Anglia, Norwich, NR4 7JT, UK
- International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria
| | - Zhijiong Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Zbigniew Klimont
- International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria.
| | - Guanglin Jia
- School of Environment and Energy, South China University of Technology, University Town, Guangzhou, China
| | - Shaohui Zhang
- International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria
- School of Economics and Management, Beihang University, 37 Xueyuan Road, 100091, Beijing, China
| | - Cheng Li
- Research Center for Eco-Envivronmental Engineering, Dongguan University of Technology, Dongguan, China
| | - Jing Meng
- The Bartlett School of Construction and Project Management, University College London, London, WC1E 7HB, UK
| | - Zhifu Mi
- The Bartlett School of Construction and Project Management, University College London, London, WC1E 7HB, UK
| | - Heran Zheng
- School of International Development, University of East Anglia, Norwich, NR4 7JT, UK
- Industrial Ecology Programme, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yuli Shan
- Integrated Research on Energy, Environment and Society (IREES), Energy and Sustainability Research Institute Groningen, University of Groningen, Groningen, 9747, AG, the Netherlands
| | - Peter K K Louie
- Hong Kong Environmental Protection Department, 5 Gloucester Road, Hong Kong, China
| | - Junyu Zheng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China.
| | - Dabo Guan
- The Bartlett School of Construction and Project Management, University College London, London, WC1E 7HB, UK.
- Department of Earth System Science, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
21
|
Idris SA'A, Hanafiah MM, Khan MF, Hamid HHA. Indoor generated PM 2.5 compositions and volatile organic compounds: Potential sources and health risk implications. CHEMOSPHERE 2020; 255:126932. [PMID: 32402880 DOI: 10.1016/j.chemosphere.2020.126932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The aim of the present study was to investigate the potential sources of heavy metals in fine air particles (PM2.5) and benzene, toluene, ethylbenzene, and isomeric xylenes (BTEX) in gas phase indoor air. PM2.5 samples were collected using a low volume sampler. BTEX samples were collected using passive sampling onto sorbent tubes and analyzed using gas chromatography-mass spectrometry (GC-MS). For the lower and upper floors of the evaluated building, the concentrations of PM2.5 were 96.4 ± 2.70 μg/m3 and 80.2 ± 3.11 μg/m3, respectively. The compositions of heavy metals in PM2.5 were predominated by iron (Fe), zinc (Zn), and aluminum (Al) with concentration of 500 ± 50.07 ng/m3, 466 ± 77.38 ng/m3, and 422 ± 147.38 ng/m3. A principal component analysis (PCA) showed that the main sources of BTEX were originated from vehicle emissions and exacerbate because of temperature variations. Hazard quotient results for BTEX showed that the compounds were below acceptable limits and thus did not possess potential carcinogenic risks. However, a measured output of lifetime cancer probability revealed that benzene and ethylbenzene posed definite carcinogenic risks. Pollutants that originated from heavy traffic next to the sampling site contributed to the indoor pollution.
Collapse
Affiliation(s)
- Siti Amira 'Ainaa' Idris
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Marlia M Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia; Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| | - Md Firoz Khan
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China
| | - Haris Hafizal Abd Hamid
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| |
Collapse
|
22
|
Source-Specific Volatile Organic Compounds and Emergency Hospital Admissions for Cardiorespiratory Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176210. [PMID: 32867048 PMCID: PMC7503811 DOI: 10.3390/ijerph17176210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 01/29/2023]
Abstract
Knowledge gaps remain regarding the cardiorespiratory impacts of ambient volatile organic compounds (VOCs) for the general population. This study identified contributing sources to ambient VOCs and estimated the short-term effects of VOC apportioned sources on daily emergency hospital admissions for cardiorespiratory diseases in Hong Kong from 2011 to 2014. We estimated VOC source contributions using fourteen organic chemicals by positive matrix factorization. Then, we examined the associations between the short-term exposure to VOC apportioned sources and emergency hospital admissions for cause-specific cardiorespiratory diseases using generalized additive models with polynomial distributed lag models while controlling for meteorological and co-pollutant confounders. We identified six VOC sources: gasoline emissions, liquefied petroleum gas (LPG) usage, aged VOCs, architectural paints, household products, and biogenic emissions. We found that increased emergency hospital admissions for chronic obstructive pulmonary disease were positively linked to ambient VOCs from gasoline emissions (excess risk (ER%): 2.1%; 95% CI: 0.9% to 3.4%), architectural paints (ER%: 1.5%; 95% CI: 0.2% to 2.9%), and household products (ER%: 1.5%; 95% CI: 0.2% to 2.8%), but negatively associated with biogenic VOCs (ER%: -6.6%; 95% CI: -10.4% to -2.5%). Increased congestive heart failure admissions were positively related to VOCs from architectural paints and household products in cold seasons. This study suggested that source-specific VOCs might trigger the exacerbation of cardiorespiratory diseases.
Collapse
|
23
|
Qiu H, Bai CH, Chuang KJ, Fan YC, Chang TP, Yim SHL, Ho KF. Association of ambient non-methane hydrocarbons exposure with respiratory hospitalizations: A time series study in Taipei, Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139010. [PMID: 32361457 DOI: 10.1016/j.scitotenv.2020.139010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ambient hydrocarbons are important precursors of ground-level ozone and secondary organic aerosol formation. However, few studies have assessed the health impact of airborne hydrocarbons. We conducted this time series ecological study to evaluate the association of short-term airborne hydrocarbons exposure with hospital admissions for respiratory diseases, while controlling for co-exposure to criteria pollutants. Taipei air pollution and weather data for the period spanning from January 2010 to December 2017 were obtained from Taiwan Air Quality Monitoring Network. Subsequently, daily pollutant concentrations were linked with daily hospital admission counts for respiratory diseases into a time series data frame. The standard generalized additive Poisson model adjusted for temporal trends, seasonal variations, weather conditions, and calendar effects, was applied to examine the short-term associations of acute airborne hydrocarbon exposure with respiratory hospital admissions. Next, the robustness of the associations was tested using two-pollutant models with further adjustment for fine particulate matter (PM2.5) and gaseous pollutants. The results demonstrated that an interquartile range increase in non-methane hydrocarbon (NMHC) exposure on lag0 day (0.15 ppm) was associated with a 0.86% (95% confidence interval: 0.37%-1.36%), 2.06% (0.77%-3.38%), and 1.25% (0.31%-2.20%) increment in all-respiratory-disease-, asthma-, and chronic-obstructive-pulmonary-disease-linked hospital admissions, respectively. The associations were robust with further adjustment for co-exposure to PM2.5 and ozone. The acute effect estimate of methane on each respiratory category was sensitive to the co-pollutant adjustment and lost statistical significance in the two-pollutant models. In conclusion, we confirmed that airborne NMHC exposure increased the risk of respiratory-disease-related hospital admissions in Taipei; this information may aid in the regulation of hydrocarbon pollution.
Collapse
Affiliation(s)
- Hong Qiu
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Chun Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ta-Pang Chang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Steve Hung-Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
24
|
Li Z, Ho KF, Yim SHL. Source apportionment of hourly-resolved ambient volatile organic compounds: Influence of temporal resolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138243. [PMID: 32298889 DOI: 10.1016/j.scitotenv.2020.138243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
High temporal-resolution VOC concentration data can provide detailed and important temporal variations of VOC species and emission sources, which is not possible when using coarse temporal-resolution data. In this study, we utilized the positive matrix factorization (PMF) model to conduct source apportionment of hourly concentrations of nineteen VOC species and CO measured at the Mong Kok air quality monitoring station, operated by the Hong Kong Environmental Protection Department, from January 2013 to December 2014. The PMF analysis of the hourly dataset (PMF_Hourly) identified five sources, including liquefied petroleum gas (LPG) (contribution of 45%), gasoline exhaust (21%), combustion (20%), biogenic emission (9%), and paint solvents (6%). The diurnal patterns of VOC emissions from identified sources are likely to be affected by the strength of emissions, variation of the planetary boundary layer height, and photochemical reactions. In addition, the PMF analyses of hourly and 24-hour averaged data of the hourly-resolved data (PMF_Hourly and PMF_Daily) were generally comparable, but the time series of VOC emissions from PMF_Hourly could not be well captured by PMF_Daily for two local VOC sources of gasoline exhaust and LPG. This study highlights the benefit of high temporal-resolution measurement data in apportioning VOC sources, hence providing critical information on VOC emission sources (e.g., diurnal variations) for controlling VOC emissions effectively.
Collapse
Affiliation(s)
- Zhiyuan Li
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Steve Hung Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
25
|
Chen J, Yi J, Ji Y, Zhao B, Ji Y, Li G, An T. Enhanced H-abstraction contribution for oxidation of xylenes via mineral particles: Implications for particulate matter formation and human health. ENVIRONMENTAL RESEARCH 2020; 186:109568. [PMID: 32344213 DOI: 10.1016/j.envres.2020.109568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/23/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Xylenes are important aromatic hydrocarbons having broad industrial emissions and profound implication to air quality and human health. Generally, homogeneous atmospheric oxidation of xylenes is initiated by hydroxyl radical (OH) resulting in minor H-abstraction and major OH-addition pathways. However, the effect of mineral particles on the homogeneous atmospheric oxidation mechanism of xylenes is still not well understood. In the present study, the heterogeneous atmospheric oxidation of xylenes on mineral particles (TiO2) is examined in detail. Both the experimental data and theoretical calculations are combined to achieve the feast. The experimental results detected a major H-abstraction (≥87.18%) and minor OH-addition (≤12.82%) pathways for the OH-initiated heterogeneous oxidation of three xylenes on TiO2 under ultraviolet (UV) irradiation. Theoretical calculations demonstrated favorable H-abstraction on methyl group of xylenes by surface OH with large exothermic energies, because of the reason that their methyl group rather than the phenyl ring is more occupied by TiO2 via hydrogen bonding. Furthermore, the particle monitor and acute risk assessment results indicated that the H-abstraction products significantly enhance the formation of particulate matter and health risk to human beings. Taken together, these results indicate that the atmospheric oxidation mechanism of xylenes is altered in the presence of mineral particles, highlighting the necessity to re-evaluate its implication in the environment and human health.
Collapse
Affiliation(s)
- Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Jiajing Yi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Baocong Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yongpeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
26
|
Yao S, Chen Z, Xie H, Yuan Y, Zhou R, Xu B, Chen J, Wu X, Wu Z, Jiang B, Tang X, Lu H, Nozaki T, Kim HH. Highly efficient decomposition of toluene using a high-temperature plasma-catalysis reactor. CHEMOSPHERE 2020; 247:125863. [PMID: 31972485 DOI: 10.1016/j.chemosphere.2020.125863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Plasma-catalysis technologies (PCTs) have the potential to control the emissions of volatile organic compounds, although their low-energy efficiency is a bottleneck for their practical applications. A plasma-catalyst reactor filled with a CeO2/γ-Al2O3 catalyst was developed to decompose toluene with a high-energy efficiency enhanced by the elevating reaction temperature. When the reaction temperature was raised from 50 °C to 250 °C, toluene conversion dramatically increased from 45.3% to 95.5% and the energy efficiency increased from 53.5 g/kWh to 113.0 g/kWh. Conversely, the toluene conversion using a thermal catalysis technology (TCT) exhibited a maximum of 16.7%. The activation energy of toluene decomposition using PCTs is 14.0 kJ/mol, which is far lower than those of toluene decomposition using TCTs, which implies that toluene decomposition using PCT differs from that using TCT. The experimental results revealed that the Ce3+/Ce4+ ratio decreased and Oads/Olatt ratio increased after the 40-h evaluation experiment, suggesting that CeO2 promoted the formation of the reactive oxygen species that is beneficial for toluene decomposition.
Collapse
Affiliation(s)
- Shuiliang Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China; School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| | - Zhizong Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Han Xie
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Yuchen Yuan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Ruowen Zhou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Bingqing Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Junxia Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Xinyue Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China; School of Environmental and Safety Engineering, Changzhou University, Jiangsu, 213164, China.
| | - Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Hao Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Tomohiro Nozaki
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Hyun-Ha Kim
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8560, Japan
| |
Collapse
|
27
|
Morya R, Salvachúa D, Thakur IS. Burkholderia: An Untapped but Promising Bacterial Genus for the Conversion of Aromatic Compounds. Trends Biotechnol 2020; 38:963-975. [PMID: 32818444 DOI: 10.1016/j.tibtech.2020.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022]
Abstract
Burkholderia, a bacterial genus comprising more than 120 species, is typically reported to inhabit soil and water environments. These Gram-negative bacteria harbor a variety of aromatic catabolic pathways and are thus potential organisms for bioremediation of sites contaminated with aromatic pollutants. However, there are still substantial gaps in our knowledge of these catabolic processes that must be filled before these pathways and organisms can be harnessed for biotechnological applications. This review presents recent discoveries on the catabolism of monoaromatic and polycyclic aromatic hydrocarbons, as well as of heterocyclic compounds, by a diversity of Burkholderia strains. We also present a perspective on the beneficial features of Burkholderia spp. and future directions for their potential utilization in the bioremediation and bioconversion of aromatic compounds.
Collapse
Affiliation(s)
- Raj Morya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Davinia Salvachúa
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
28
|
Chen D, Mayvaneh F, Baaghideh M, Entezari A, Ho HC, Xiang Q, Jiao A, Zhang F, Hu K, Chen G, Zhao Q, Sun S, Zhang Y. Utilizing daily excessive concentration hours to estimate cardiovascular mortality and years of life lost attributable to fine particulate matter in Tehran, Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134909. [PMID: 31757557 DOI: 10.1016/j.scitotenv.2019.134909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/22/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Evidence for associations between fine particulate matter (PM2.5) and cardiovascular diseases (CVDs) in Iran is scarce. Given large within-day variations of PM2.5 concentration, using the daily mean of PM2.5 (PM2.5mean) as exposure metric might bias the health-related assessment. This study applied a novel indicator, daily excessive concentration hours (DECH), to evaluate the effect of ambient PM2.5 on CVD mortality and years of life lost (YLL) in Tehran, the capital city of Iran. METHODS Hourly concentration data for PM2.5, daily information for meteorology and records of registered cardiovascular deaths from 2012 to 2016 were obtained from Tehran, Iran. Daily excessive concentration hours of PM2.5 (PM2.5DECH) was defined as daily total concentration-hours exceeding 35 μg/m3. Using a time-series design, we applied generalized linear models to assess the attributable effects of PM2.5DECH and PM2.5mean on CVD mortality and YLL. RESULTS For an interquartile range (IQR) rise in PM2.5DECH, total CVD mortality at lag 0-10 days and YLL at lag 0-8 days increased 2.26% (95% confidence interval (CI): 0.85-3.69%) and 23.24 (6.07-40.42) person years, respectively. Corresponding increases were 3.45% (1.44-5.49%) and 35.21 (10.85-59.58) person years for an IQR rise in PM2.5mean. Significant associations between PM2.5 pollution (i.e., PM2.5mean and PM2.5DECH) and cause-specific cardiovascular health (i.e., mortality and YLL) were only identified in stroke. Subgroup analyses showed that male and people aged 0-64 years suffered more from PM2.5 pollution. Furthermore, we attributed a greater CVD burden to PM2.5DECH (1.67% for mortality and 2.67% for YLL) than PM2.5mean (0.63% for mortality and 0.70% for YLL) during the study period. CONCLUSIONS This study strengthened the evidence for the aggravated CVD mortality burden associated with short-term exposure to PM2.5. Our findings also suggested that PM2.5DECH might be a potential alternative indicator of exposure assessment in PM2.5-related health investigations.
Collapse
Affiliation(s)
- Dieyi Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Fatemeh Mayvaneh
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617916487, Khorasan Razavi, Iran
| | - Mohammad Baaghideh
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617916487, Khorasan Razavi, Iran
| | - Alireza Entezari
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar 9617916487, Khorasan Razavi, Iran
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
| | - Qianqian Xiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Anqi Jiao
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Faxue Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Kejia Hu
- Department of Precision Health and Data Science, School of Public Health, Zhejiang University, Hangzhou 310003, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Qi Zhao
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Shengzhi Sun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912, USA
| | - Yunquan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
29
|
Wei S, Kou X, Liu Y, Zhu F, Xu J, Ouyang G. Facile construction of superhydrophobic hybrids of metal-organic framework grown on nanosheet for high-performance extraction of benzene homologues. Talanta 2019; 211:120706. [PMID: 32070608 DOI: 10.1016/j.talanta.2019.120706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 01/09/2023]
Abstract
Encapsulating functional nanomaterials within the bulk of metal-organic frameworks (MOFs) offers the opportunity to construct high-performance hybrid coating materials for solid phase microextraction (SPME). In this work, we proposed the facile synthesis of a superhydrophobic MOF composite material (NSZIF-8Si) by growing ZIF-8 on MnxOy nanosheet (NS) and subsequently depositing short-chain polysiloxane on the surface of the composite. A novel SPME fiber was successfully prepared based on the NSZIF-8Si composite. The NSZIF-8Si fiber possessed outstanding thermal stability (up to 450 °C). In headspace SPME of BTEX, the home-made fiber exhibited extraction efficiencies much higher than the commercially available PDMS fiber. This phenomenon was due to the synergetic cooperation of the π-π stacking and the hydrophobic interactions between the NSZIF-8Si coating and the analyte molecules, as well as the increased aspect ratio of the MOF grown on the nanosheet. The established method achieved wide linearity (5-2000 ng L-1) and low LODs (0.02 ng L-1 to 0.21 ng L-1). Satisfactory recoveries were obtained in the analysis of real water samples collected from the Pearl River, indicative of the good reliability of the established method for real-scenario applications. This work might provide critical insights in constructing novel NS/MOF composite materials for the development of high-performance SPME fiber coatings.
Collapse
Affiliation(s)
- Songbo Wei
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiaoxue Kou
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Yan Liu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Fang Zhu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Jianqiao Xu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China
| |
Collapse
|
30
|
Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Mohd Nadzir MS, Othman M, Sahani M, Abdul Wahab MI, Mohamad N, Uning R, Poh SC, Fadzil MF, Sentian J, Tahir NM. BTEX compositions and its potential health impacts in Malaysia. CHEMOSPHERE 2019; 237:124451. [PMID: 31394440 DOI: 10.1016/j.chemosphere.2019.124451] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
This study aims to determine the composition of BTEX (benzene, toluene, ethylbenzene and xylene) and assess the risk to health at different sites in Malaysia. Continuous monitoring of BTEX in Kuala Lumpur City Centre, Kuala Terengganu, Kota Kinabalu and Fraser Hill were conducted using Online Gas Chromatograph. For comparison, BTEX at selected hotspot locations were determined by active sampling method using sorbent tubes and Thermal Desorption Gas Chromatography Mass Spectrometry. The hazard quotient (HQ) for non-carcinogenic and the life-time cancer risk (LTCR) of BTEX were calculated using the United States Environmental Protection Agency (USEPA) health risk assessment (HRA) methods. The results showed that the highest total BTEX concentrations using continuous monitoring were recorded in the Kuala Lumpur City Centre (49.56 ± 23.71 μg/m3). Toluene was the most dominant among the BTEX compounds. The average concentrations of benzene ranged from 0.69 ± 0.45 μg/m3 to 6.20 ± 3.51 μg/m3. Measurements using active sampling showed that BTEX concentrations dominated at the roadside (193.11 ± 114.57 μg/m3) in comparison to petrol station (73.08 ± 30.41 μg/m3), petrochemical industry (32.10 ± 13.13 μg/m3) and airport (25.30 ± 6.17 μg/m3). Strong correlations among BTEX compounds (p<0.01, r>0.7) at Kuala Lumpur City Centre showed that BTEX compounds originated from similar sources. The values of HQ at all stations were <1 indicating the non-carcinogenic risk are negligible and do not pose threats to human health. The LTCR value based on benzene inhalation (1.59 × 10-5) at Kuala Lumpur City Centre were between 1 × 10-4 and 1 × 10-5, representing a probable carcinogenic risk.
Collapse
Affiliation(s)
- Mohd Talib Latif
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Haris Hafizal Abd Hamid
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Fatimah Ahamad
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Md Firoz Khan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Shahrul Mohd Nadzir
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Murnira Othman
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mazrura Sahani
- Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Muhammad Ikram Abdul Wahab
- Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Noorlin Mohamad
- Environmental Research Group, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Royston Uning
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Seng Chee Poh
- Environmental Research Group, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Muhammad Fais Fadzil
- Environmental Research Group, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Justin Sentian
- Faculty Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Norhayati Md Tahir
- Environmental Research Group, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
31
|
Ran J, Sun S, Yang A, Yang L, Han L, Mason TG, Chan KP, Li J, Tian L. Effects of ambient benzene and toluene on emergency COPD hospitalizations: A time series study in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:28-35. [PMID: 30530216 DOI: 10.1016/j.scitotenv.2018.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although numerous studies have demonstrated that the criteria air pollutants increased the risk of exacerbation of chronic obstructive pulmonary disease (COPD), few have explored the effects of ambient benzene and toluene on COPD. OBJECTIVE This study aimed to evaluate the short-term effects of ambient benzene and toluene on emergency COPD (eCOPD) hospitalizations. METHODS We obtained daily mean and maximum concentrations of benzene and toluene during April 1, 2011 - December 31, 2014 from the Hong Kong Environmental Protection Department, and daily counts of eCOPD hospitalizations from the Hospital Authority. Generalized additive distributed lag models were used to estimate the percentage excess risk (ER%) of eCOPD hospitalizations per interquartile range (IQR) increase in ambient benzene and toluene. RESULTS The ER% estimates of eCOPD hospitalizations post cumulative exposure of up to two days were 2.62% (95%CI: 0.17% to 5.13%) and 1.42% (0.16% to 2.69%), for per IQR increase of daily mean benzene (1.4μg/m3) and toluene (4.6μg/m3), respectively. People below the age of 65 had a significantly higher risk of eCOPD hospitalizations associated with daily maximum toluene than the elderly. CONCLUSIONS Ambient benzene and toluene might be environmental stressors for acute exacerbations of COPD in the Hong Kong population.
Collapse
Affiliation(s)
- Jinjun Ran
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Shengzhi Sun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Aimin Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Lin Yang
- School of Nursing, The Hong Kong Polytechnic University, China
| | - Lefei Han
- School of Nursing, The Hong Kong Polytechnic University, China
| | - Tonya G Mason
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - King-Pan Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Jinhui Li
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China.
| |
Collapse
|
32
|
Poirier C, Lavenu A, Bertaud V, Campillo-Gimenez B, Chazard E, Cuggia M, Bouzillé G. Real Time Influenza Monitoring Using Hospital Big Data in Combination with Machine Learning Methods: Comparison Study. JMIR Public Health Surveill 2018; 4:e11361. [PMID: 30578212 PMCID: PMC6320394 DOI: 10.2196/11361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022] Open
Abstract
Background Traditional surveillance systems produce estimates of influenza-like illness (ILI) incidence rates, but with 1- to 3-week delay. Accurate real-time monitoring systems for influenza outbreaks could be useful for making public health decisions. Several studies have investigated the possibility of using internet users’ activity data and different statistical models to predict influenza epidemics in near real time. However, very few studies have investigated hospital big data. Objective Here, we compared internet and electronic health records (EHRs) data and different statistical models to identify the best approach (data type and statistical model) for ILI estimates in real time. Methods We used Google data for internet data and the clinical data warehouse eHOP, which included all EHRs from Rennes University Hospital (France), for hospital data. We compared 3 statistical models—random forest, elastic net, and support vector machine (SVM). Results For national ILI incidence rate, the best correlation was 0.98 and the mean squared error (MSE) was 866 obtained with hospital data and the SVM model. For the Brittany region, the best correlation was 0.923 and MSE was 2364 obtained with hospital data and the SVM model. Conclusions We found that EHR data together with historical epidemiological information (French Sentinelles network) allowed for accurately predicting ILI incidence rates for the entire France as well as for the Brittany region and outperformed the internet data whatever was the statistical model used. Moreover, the performance of the two statistical models, elastic net and SVM, was comparable.
Collapse
Affiliation(s)
- Canelle Poirier
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, Rennes, France.,INSERM, U1099, Rennes, France
| | - Audrey Lavenu
- Centre d'Investigation Clinique de Rennes, Université de Rennes 1, Rennes, France
| | - Valérie Bertaud
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, Rennes, France.,INSERM, U1099, Rennes, France.,Centre Hospitalier Universitaire de Rennes, Centre de Données Cliniques, Rennes, France
| | - Boris Campillo-Gimenez
- INSERM, U1099, Rennes, France.,Comprehensive Cancer Regional Center, Eugene Marquis, Rennes, France
| | - Emmanuel Chazard
- Centre d'Etudes et de Recherche en Informatique Médicale EA2694, Université de Lille, Lille, France.,Public Health Department, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | - Marc Cuggia
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, Rennes, France.,INSERM, U1099, Rennes, France.,Centre Hospitalier Universitaire de Rennes, Centre de Données Cliniques, Rennes, France
| | - Guillaume Bouzillé
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, Rennes, France.,INSERM, U1099, Rennes, France.,Centre Hospitalier Universitaire de Rennes, Centre de Données Cliniques, Rennes, France
| |
Collapse
|
33
|
Ran J, Qiu H, Sun S, Yang A, Tian L. Are ambient volatile organic compounds environmental stressors for heart failure? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1810-1816. [PMID: 30077408 DOI: 10.1016/j.envpol.2018.07.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Numerous epidemiological studies have indicated the adverse cardiovascular effects of air pollution on heart failure (HF) risk. However, little data are available directly evaluating the association of ambient volatile organic compounds (VOCs) with HF risk. We aimed to estimate the short-term effects of ambient VOCs on HF emergency hospitalizations in Hong Kong and to evaluate whether the associations were modified by sex and age. METHODS We collected the daily VOCs concentrations from the Hong Kong Environmental Protection Department between April 2011 to December 2014. HF emergency hospital admission data were obtained from the Hospital Authority of Hong Kong. Generalized additive model (GAM) integrated with the distributed lag model (DLM) was used to estimate the excess risks of HF emergency hospitalizations with ambient concentrations of each VOCs groups - alkane, alkene, alkyne, benzene and substituted benzene. RESULTS We observed short-term effects of alkyne and benzene on an increased risk of HF emergency hospitalizations. The cumulative effect over 0-6 lag days (dlm0-6) for an IQR increment of alkyne (1.17 ppb) was associated with 4.2% (95% CI: 1.18%-7.26%) increases of HF emergency hospitalizations, while the corresponding effect estimate over dlm0-2 for benzene per IQR (0.43 ppb) was 2.7% (95% CI: 0.39%-5.04%). Each VOCs groups was significantly associated with HF emergency hospitalizations in men. CONCLUSIONS Ambient volatile organic compounds, particularly alkyne and benzene, were associated with increased risks of heart failure in the Hong Kong population.
Collapse
Affiliation(s)
- Jinjun Ran
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Hong Qiu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Shengzhi Sun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Aimin Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China.
| |
Collapse
|