1
|
Mallah MA, Hill JW, Neupane B, Ahmad MZ, Ali M, Bibi J, Akhtar MF, Naveed M, Zhang Q. Urinary polycyclic aromatic hydrocarbons and adult obesity among the US population: NHANES 2003-2016. Clin Obes 2024; 14:e12687. [PMID: 38965765 DOI: 10.1111/cob.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are naturally occurring environmental pollutants that may contribute to obesity in the adult population. To investigate the relationship between the urinary concentrations of PAH metabolites and adult obesity among the US population, the National Health and Nutritional Examination Survey (NHANES, 2003-2016) was used as a data source for this study. As many as 4464 participants in the NHANES 2003-2016 were included in the final analyses. We used logistic regression to look at the link between urinary PAH metabolites and obesity, using odds ratios (ORs) and 95% confidence intervals (CIs). The study sample comprised 4464 individuals aged ≥18 years, 2199 were male and 2265 were female. The study characteristics for four different quartiles were analyzed, and the average ages of the four urinary PAH quartiles were 49.61 ± 20.01, 46.63 ± 20.33, 44.28 ± 19.19, and 43.27 ± 17.68 years, respectively. In the quartile analysis of all participants, the third quartile was significantly associated with an increased prevalence of obesity (OR = 1.33, 95% CI = 1.12-1.59) with p-values <.05. In addition, females, but not males, had a strong link between the second, third, and fourth quartiles of urinary PAH and a higher risk of obesity (OR = 1.27, 95% CI = 1.00-1.61; OR = 1.52, 95% CI = 1.19-1.94; and OR = 1.39, 95% CI = 1.09-1.78). In conclusion, the study observed that urinary PAH metabolites were associated with the prevalence of obesity among the US population.
Collapse
Affiliation(s)
| | - Jennifer W Hill
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Bidusha Neupane
- Transcultural Psychosocial Organization Nepal (TPO Nepal), Kathmandu, Nepal
| | - Muhammad Zia Ahmad
- Faculty of Social Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Mukhtiar Ali
- Faculty of Science, Quaid-e-Awam University of Engineering, Science & Technology, Nawab Shah, Sindh, Pakistan
| | - Jannat Bibi
- School of Physical Education, Beijing Sport University, Beijing, China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Naveed
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Siewert B, Kozajda A, Jaskulak M, Zorena K. Examining the Link between Air Quality (PM, SO 2, NO 2, PAHs) and Childhood Obesity: A Systematic Review. J Clin Med 2024; 13:5605. [PMID: 39337093 PMCID: PMC11432682 DOI: 10.3390/jcm13185605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Childhood obesity has emerged as a global health concern with profound implications for long-term health outcomes. In recent years, there has been increasing interest in the potential role of environmental factors in the development of childhood obesity. This comprehensive review aims to elucidate the intricate relationship between various components of air pollution and childhood obesity. Methods: We systematically analyze the existing literature from the past 5 years to explore the mechanistic pathways linking air pollution, including particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), and polycyclic aromatic hydrocarbons (PAHs), to childhood obesity. This systematic review examines 33 epidemiological studies on the link between air pollution and childhood obesity, published from 1 January 2018, to 31 January 2024. Results: Studies from counties with low overall air pollution noticed only low to no impact of the exposure to childhood obesity, unlike studies from countries with higher levels of pollution, suggesting that the mitigation of air pollutants can reduce the chance of it being a negative factor for the development of obesity. This relationship was noticed for PM2.5, PM1, PM10, NOx, and SO2 but not for PAHs, which showed a negative effect on children's health across 10 out of 11 studies. Conclusions: This review underscores the need for interdisciplinary approaches to address both environmental and socio-economic determinants of childhood obesity. Efforts aimed at reducing air pollution levels and promoting healthy lifestyle behaviors are essential for safeguarding the health and well-being of children worldwide.
Collapse
Affiliation(s)
- Barbara Siewert
- Environment and Health Scientific Circle, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (B.S.); (A.K.)
| | - Agata Kozajda
- Environment and Health Scientific Circle, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (B.S.); (A.K.)
| | - Marta Jaskulak
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
3
|
Huo X, Xu X, Wang Q, Zhang J, Hylkema MN, Zeng Z. Associations of co-exposure to polycyclic aromatic hydrocarbons and lead (Pb) with IGF1 methylation in peripheral blood of preschool children from an e-waste recycling area. ENVIRONMENT INTERNATIONAL 2024; 190:108833. [PMID: 38908275 DOI: 10.1016/j.envint.2024.108833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Childhood exposure to polycyclic aromatic hydrocarbons (PAHs) or lead (Pb) is associated with epigenetic modifications. However, the effects of their co-exposures on IGF1 (Insulin-like growth factor 1) methylation and the potential role in child physical growth are unclear. METHODS From our previous children study (N = 238, ages of 3-6), 75 children with higher total concentrations of urinary ten hydroxyl PAH metabolites (∑10OH-PAHs) from an e-waste recycling area, Guiyu, and 75 with lower ∑10OH-PAHs from Haojiang (reference area) were included. Pb and IGF1 P2 promoter methylation in peripheral blood were also measured. Multivariable linear regression analyses were performed to estimate individual associations, overall effects and interactions of co-exposure to OH-PAHs and Pb on IGF1 methylation were further explored using Bayesian kernel machine regression. RESULTS Methylation of IGF1 (CG-232) was lower (38.00 vs. 39.74 %, P < 0.001), but of CG-207 and CG-137 were higher (59.94 vs. 58.41 %; 57.60 vs. 56.28 %, both P < 0.05) in exposed children than the reference. The elevated urinary 2-OHPhe was associated with reduced methylation of CG-232 (B = -0.051, 95 % CI: -0.096, -0.005, P < 0.05), whereas blood Pb was positively associated with methylation of CG-108 (B = 0.106, 95 %CI: 0.013, 0.199, P < 0.05), even after full adjustment. Methylations of CG-224 and 218 significantly decreased when all OH-PAHs and Pb mixtures were set at 35th - 40th and 45th - 55th percentile compared to when all fixed at 50th percentile. There were bivariate interactions of co-exposure to the mixtures on methylations of CG-232, 224, 218, and 108. Methylations correlated with height, weight, were observed in the exposed children. CONCLUSIONS Childhood co-exposure to high PAHs and Pb from the e-waste may be associated with IGF1 promoter methylation alterations in peripheral blood. This, in turn, may interrupt the physical growth of preschool children.
Collapse
Affiliation(s)
- Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Jian Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Zhijun Zeng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, Chongqing, China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, Chongqing, China.
| |
Collapse
|
4
|
Zhang Z, Bai C, Zhao L, Liu L, Guo W, Liu M, Yang H, Lai X, Zhang X, Yang L. Polycyclic aromatic hydrocarbons exposure and arterial stiffness-related plasma miRNAs: A panel study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104464. [PMID: 38729543 DOI: 10.1016/j.etap.2024.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
The underlying mechanisms between polycyclic aromatic hydrocarbons (PAHs) exposure and arterial stiffness are poorly understood. We carried out a panel study involving three repeated surveys to examine the associations of individual and mixture of PAHs exposure with arterial stiffness-related miRNAs among 123 community adults. In linear mixed-effect (LME) models, we found that urinary 9-hydroxyfluorene (9-OHFlu), 2-hydroxyphenanthrene (2-OHPh), 9-hydroxyphenanthrene (9-OHPh) at lag 0 day were positively linked to miR-146a and/or miR-222. The Bayesian kernel machine regression (BKMR) analyses revealed positive overall associations of PAHs mixture at lag 0 day with miR-146a and miR-222, and urinary 9-OHFlu contributed the most. In addition, an inter-quartile range (IQR) increase in urinary 9-OHFlu at lag 0 day was associated with elevated miR-146a and miR-222 by 0.16 (95% CI: 0.02, 0.30) to 0.34 (95% CI: 0.13, 0.54). Accordingly, exposure to PAHs, especially 9-OHFlu at lag 0 day, was related to elevated arterial stiffness-related plasma miRNAs.
Collapse
Affiliation(s)
- Ziqian Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Conghua Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Liu C, Liu Q, Song S, Li W, Feng Y, Cong X, Ji Y, Li P. The association between internal polycyclic aromatic hydrocarbons exposure and risk of Obesity-A systematic review with meta-analysis. CHEMOSPHERE 2023; 329:138669. [PMID: 37059208 DOI: 10.1016/j.chemosphere.2023.138669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is emerging as a risk factor for obesity, but with conflicting findings. The aim of this systematic review is to investigate and summarize the current evidence towards the associations between PAHs exposure and risk of obesity. We conducted a systematic search of online databases, including PubMed, Embase, Cochrane Library, and Web of Science up to April 28, 2022. Eight cross-sectional studies with data from 68,454 participants were included. The present study illustrated that there was a significant positive association between naphthalene (NAP), phenanthrene (PHEN), and total OH-PAH metabolites and risk of obesity, the pooled OR (95% CI) was estimated at 1.43 (1.07, 1.90), 1.54 (1.18, 2.02), and 2.29 (1.32, 3.99), respectively. However, there was no significant association between fluorene (FLUO) and1-hydroxypyrene (1-OHP) metabolite and risk of obesity. Subgroup analyses showed that associations between PAHs exposure and risk of obesity were more apparent in children, female, smokers and developing regions.
Collapse
Affiliation(s)
- Chunyu Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qisijing Liu
- Research Institute of Public Health, Nankai University, Tianjin, 300071, China
| | - Shanjun Song
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China; National Institute of Metrology, Beijing, 100029, China.
| | - Weixia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuanyuan Feng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiangru Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China.
| |
Collapse
|
6
|
Sun Y, Kan Z, Zhang ZF, Song L, Jiang C, Wang J, Ma WL, Li YF, Wang L, Liu LY. Association of occupational exposure to polycyclic aromatic hydrocarbons in workers with hypertension from a northeastern Chinese petrochemical industrial area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121266. [PMID: 36780976 DOI: 10.1016/j.envpol.2023.121266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Elevated urinary polycyclic aromatic hydrocarbon metabolites have been linked to an increased risk of cardiovascular diseases (CVDs). However, for petrochemical workers with potentially high PAH exposure, it remains largely unknown whether the link will be amplified. Thus, this work aimed to investigate 14 urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in 746 petrochemical workers working in a Chinese petrochemical industrial area and their association with the risk of hypertension using the binary logistic regression. Metabolites of naphthalene, fluorene, phenanthrene, and pyrene were frequently detected in the 746 urine samples analyzed (>98%), with Σ10OH-PAH concentration in the range of 0.906-358 ng/mL. 2-hydroxynaphthalene accounted for the largest proportion of ten detected OH-PAHs (60.8% of Σ10OH-PAHs). There were significant correlations between these metabolites and other factors, including gender, age, and body mass index. Diastolic blood pressure, not systolic blood pressure, was significant positively associated with the urinary Σ10OH-PAH concentrations of the petrochemical workers. Elevated urinary 2/3-OH-Flu was significantly associated with an increased risk of hypertension (adjusted odds ratio: 1.96, 95% confidence interval: 1.20-3.18, p = 0.007), suggesting that PAH exposure in petrochemical workers was a driving factor of hypertension. In the stratified analysis, the association was more pronounced in those who were overweight with older age. Although the PAH exposure risk in petrochemical workers based on the estimated daily intakes was relatively low. Given the long-term impact, we call attention to CVDs of petrochemical workers.
Collapse
Affiliation(s)
- Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ze Kan
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li Song
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Chao Jiang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Ji Wang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Li Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
7
|
Rafique M, Rashid A, Tao S, Wang B, Ullah A, Lu L, Ullah H, Ali MU, Naseem W. Urinary PAHs metabolites in Karakoram Highway's heavy traffic vehicle (HTV) drivers: evidence of exposure and health risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1013-1026. [PMID: 35635682 DOI: 10.1007/s10653-022-01301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The current study features PAHs exposure on Karakoram Highway, a route of utmost importance in Pakistan. The drivers of heavy traffic vehicles (HTV) on Karakoram Highway spend long hours amid dense traffic and therefore, inevitably inhale huge amount of PAH carcinogens. The urinary metabolites of PAHs in such drivers (meeting selection criteria n = 48) and a control group (n = 49) were comparatively profiled. The higher urinary biomarkers among ninety-six percent HTV drivers were evident of PAHs exposure. We observed elevated concentrations of urinary benzo[a]pyrene metabolites (3-OH-BaP = 3.53 ± 0.62 ng g-1 creatinine and 9-OH-BaP = 3.69 ± 0.74 ng g-1 creatinine) in HTV driver's samples compared to controls (0.85 ± 0.08 and 0.31 ± 0.03 ng g-1 creatinine, respectively). Interestingly, urinary benzo[a]pyrene metabolites were detected in almost similar amount among HTV drivers irrespective of their working hours. A distinct smoking effect was manifested with rising urinary levels of 1-hydroxypyrene, 2-hydroxyphenanthrene, and 3-hydroxybenzo[a]pyrene with corresponding increase in driving hours per day. These metabolites exhibited characteristic exposures to low molecular weight volatile PAHs that are commonly found in vehicular exhaust. The elevated PAH body burden was directly linked to the nature of their job and the route-long environmental pollution on Karakoram Highway. Additionally, the poor economic status and smoking also increased HTV driver's health vulnerability and significantly declined their health capacity. There was conclusive evidence that HTV drivers were exposed to PAHs during a ride on Karakoram Highway, back and forth, an aspect not reported earlier.
Collapse
Affiliation(s)
- Maria Rafique
- Eco-Health Research Group, Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Audil Rashid
- Eco-Health Research Group, Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan.
- Faculty of Science, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan.
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Bin Wang
- Institute of Reproductive and Child Health, Department of Epidemiology and Health Statistics, School of Public Health, Peking University, Beijing, China
| | - Aman Ullah
- Eco-Health Research Group, Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081, China
| | - Waqas Naseem
- Department of Geology, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| |
Collapse
|
8
|
Lu L, Ni R. Association between polycyclic aromatic hydrocarbon exposure and hypertension among the U.S. adults in the NHANES 2003-2016: A cross-sectional study. ENVIRONMENTAL RESEARCH 2023; 217:114907. [PMID: 36436553 DOI: 10.1016/j.envres.2022.114907] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The global burden of hypertension, the major cause of cardiovascular disease (CVD) globally, remains unresolved. Exposure to PM2.5 has been linked to hypertension (HTN) in adults and the elderly globally according to previous studies. Nonetheless, evidence on the association of polycyclic aromatic hydrocarbon (PAH) exposure and HTN risk in the general adult population in the United States was limited. To investigate the relationship between PAH exposure and HTN in adults in the United States, cross-sectional data during 2003 and 2016 from the National Health and Nutrition Examination Survey (NHANES) on a stratified multistage random sample of the civilian non-institutionalized population were utilized. After eliminating individuals with incomplete information of interest, the final analysis contained 8951 subjects aged ≥20. In the multivariate logistic regression model, 1-hydroxynaphthalene and 2-hydroxyfluorene were found positively associated with increased risk of HTN among overall participants after adjusting for the covariates. 1-hydroxynaphthalene and 2-hydroxynaphthalene showed positive associations with HTN risk among overweight participants. In the Bayesian kernel machine regression (BKMR) model, 1-hydroxynaphthalene and 2-hydroxyfluorene presented great importance to HTN risk among overall individuals. In the male subgroup analyses by BKMR, 2-hydroxyfluorene presented a positive effect on HTN risk when the remaining OH-PAHs were set at their 25th, 50th, and 75th percentile. Our findings highlight the complexities of estimating the risk of HTN associated with mixed PAH exposure, and additional longitudinal studies are required to determine the exact link between PAH exposure and HTN risk, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Lingyi Lu
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Rong Ni
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China.
| |
Collapse
|
9
|
Mlyczyńska E, Bongrani A, Rame C, Węgiel M, Maślanka A, Major P, Zarzycki P, Ducluzeau PH, De Luca A, Bourbao-Tournois C, Froment P, Rak A, Dupont J. Concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in Human Serum and Adipose Tissues and Stimulatory Effect of Naphthalene in Adipogenesis in 3T3-L1 Cells. Int J Mol Sci 2023; 24:ijms24021455. [PMID: 36674971 PMCID: PMC9861916 DOI: 10.3390/ijms24021455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most prevalent classes of environmental pollutants. Some evidence shows that PAHs could be involved in human obesity. However, little is known about the distribution patterns of PAHs in human adipose tissue (AT) and the role of PAHs on adipogenesis/lipogenesis. The aims of this pilot study were to determine concentrations of 16 PAHs defined as high-priority pollutants in the plasma and adipose tissue of French and Polish bariatric patients, as well as their correlation with body mass index (BMI), plasma and AT adipokines expression levels. We finally investigated the role of naphthalene on cell proliferation, viability, and differentiation in 3T3-L1 preadipocytes. The concentration of most PAHs was similar in the three types of AT and it was significantly higher in AT as compared to plasma, suggesting bioaccumulation. Polish patients had higher PAH levels in AT than French ones. Only the concentration of naphthalene in AT was positively correlated with the BMI and serum or adipose chemerin, adiponectin and resistin expression, in French but not in Polish patients, who had significantly higher BMIs. Moreover, naphthalene exposure increased the cell proliferation of 3T3-L1 preadipocytes and lipogenesis, and increased the expression of genes involved in adipogenesis after cell differentiation. Taken together, PAHs and more particularly naphthalene could be an obesogenic molecule and increase the risk of obesity.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Alice Bongrani
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Department of Animal Physiology, Université de Tours, 37041 Tours, France
| | - Christelle Rame
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Department of Animal Physiology, Université de Tours, 37041 Tours, France
| | - Małgorzata Węgiel
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Anna Maślanka
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Piotr Major
- 2nd Department of General Surgery, Jagiellonian University Medical College, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland
| | - Piotr Zarzycki
- 2nd Department of General Surgery, Jagiellonian University Medical College, Macieja Jakubowskiego 2 Street, 30-688 Krakow, Poland
| | - Pierre-Henri Ducluzeau
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Department of Animal Physiology, Université de Tours, 37041 Tours, France
- CHRU of Tours, Department of Endocrinology-Diabetology and Nutrition, 37032 Tours, France
| | - Arnaud De Luca
- CHRU of Tours, Department of Endocrinology-Diabetology and Nutrition, 37032 Tours, France
- Nutrition, Growth and Cancer (N2C) UMR 1069, University of Tours, INSERM, 37032 Tours, France
| | | | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Department of Animal Physiology, Université de Tours, 37041 Tours, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Joëlle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Department of Animal Physiology, Université de Tours, 37041 Tours, France
- Correspondence: ; Tel.: +33-2-47-42-77-89; Fax: +33-2-47-42-77-43
| |
Collapse
|
10
|
Tian Y, Zhang R, Liu X, Liu Y, Xiong S, Wang X, Zhang H, Li Q, Liao J, Fang D, Wang L, Zhang Y, Yuan H, Zhang L, He C, An S, Chen W, Zhou Y, Shen X. Characteristics of exposure to 10 polycyclic aromatic hydrocarbon metabolites among pregnant women: cohort of pregnant women in Zunyi, southwest China. Occup Environ Med 2023; 80:34-41. [PMID: 36424171 DOI: 10.1136/oemed-2022-108324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/29/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Our aim was to elucidate the polycyclic aromatic hydrocarbon (PAH) metabolites exposure levels of pregnant women in the underdeveloped region of Zunyi, southwest China. METHODS Sociodemographic information was collected via questionnaires, and urine samples were collected at the same time. A total of 3047 pregnant women participated in the study. Gas chromatography/mass spectrometry was used to detect the urine concentrations of 10 PAH metabolites. A generalised linear model (GLM) was used to identify predictive factors of PAH metabolites. RESULTS All PAH metabolites had a detection rate greater than 60% (67.21%-90.57%) except for 4-OH-PHE at 55.54%. The median concentrations were 0.02-0.11 µg/g Cre except for 1-OH-NAP, 2-OH-NAP, 2-OH-FLU and 9-OH-FLU (0.36-0.50 µg/g Cre). The cluster analysis identified the phenanthrene and fluorene metabolite clusters (containing no other metabolites), while naphthalene metabolites (1-OH-NAP, 2-OH-NAP) could not be clustered without other metabolites. GLM analysis identified that pregnant women with the following characteristics have high urinary concentration of PAH metabolites: overweight, in the last trimester of pregnancy, distance between their house and main traffic lines as <5 m, use fuel for cooking, passive smoking, renovated their residence for less than 3 years, middle family income and office workers. CONCLUSION The results clarified pregnant women from the economically underdeveloped area could be the victims of PAHs. In addition, PAHs present a demographic and seasonal differential distribution, which will aid in the development of targeted interventions and reduce exposure to PAHs during pregnancy.
Collapse
Affiliation(s)
- Yingkuan Tian
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Renjuan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xia Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Quan Li
- Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Juan Liao
- Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Derong Fang
- Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Linglu Wang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya Zhang
- Xishui County Maternal and Child Health Care Hospital, Zunyi, Guizhou, China
| | - Hongyu Yuan
- Xishui County People's Hospital, Zunyi, Guizhou, China
| | - Li Zhang
- Meitan County People's Hospital, Zunyi, Guizhou, China
| | - Caidie He
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Bernal K, Touma C, Erradhouani C, Boronat-Belda T, Gaillard L, Al Kassir S, Le Mentec H, Martin-Chouly C, Podechard N, Lagadic-Gossmann D, Langouet S, Brion F, Knoll-Gellida A, Babin PJ, Sovadinova I, Babica P, Andreau K, Barouki R, Vondracek J, Alonso-Magdalena P, Blanc E, Kim MJ, Coumoul X. Combinatorial pathway disruption is a powerful approach to delineate metabolic impacts of endocrine disruptors. FEBS Lett 2022; 596:3107-3123. [PMID: 35957500 DOI: 10.1002/1873-3468.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
The prevalence of metabolic diseases, such as obesity, diabetes, metabolic syndrome and chronic liver diseases among others, has been rising for several years. Epidemiology and mechanistic (in vivo, in vitro and in silico) toxicology have recently provided compelling evidence implicating the chemical environment in the pathogenesis of these diseases. In this review, we will describe the biological processes that contribute to the development of metabolic diseases targeted by metabolic disruptors, and will propose an integrated pathophysiological vision of their effects on several organs. With regard to these pathomechanisms, we will discuss the needs, and the stakes of evolving the testing and assessment of endocrine disruptors to improve the prevention and management of metabolic diseases that have become a global epidemic since the end of last century.
Collapse
Affiliation(s)
- Kévin Bernal
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Charbel Touma
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Chedi Erradhouani
- Université Paris Cité, France.,Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lucas Gaillard
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Sara Al Kassir
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Hélène Le Mentec
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Corinne Martin-Chouly
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Sophie Langouet
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - François Brion
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Anja Knoll-Gellida
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Patrick J Babin
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karine Andreau
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Robert Barouki
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Jan Vondracek
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Etienne Blanc
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Min Ji Kim
- INSERM UMR-S 1124, Paris, France.,Université Sorbonne Paris Nord, Bobigny, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| |
Collapse
|
12
|
Ou K, Song J, Zhang S, Fang L, Lin L, Lan M, Chen M, Wang C. Prenatal exposure to a mixture of PAHs causes the dysfunction of islet cells in adult male mice: Association with type 1 diabetes mellitus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113695. [PMID: 35623150 DOI: 10.1016/j.ecoenv.2022.113695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been detected throughout the human body. Whether exposure to PAHs is associated with the incidence of type 1 diabetes mellitus should be investigated. To this end, pregnant mice were exposed to mixed PAHs (5, 50, or 500 μg/kg) once every other day during gestation. The adult male offspring displayed impaired glucose tolerance and reduced serum levels of glucagon and insulin. Immunohistochemical staining revealed increased numbers of apoptotic β-cells and a reduced β-cell mass in these males. The downregulated expression of pancreatic estrogen receptor α, androgen receptor, and transcription factor PDX1 was responsible for impacting β-cell development. The relatively reduced α-cell area was associated with downregulated ARX expression. The transcription of Isn2 and Gcg in pancreatic tissue was downregulated, which indicated that the function of β-cells and α-cells was impaired. Methylation levels in the Isn2 promotor were significantly elevated in mice prenatally exposed to 500 µg/kg PAHs, which was consistent with the change in its mRNA levels. The number of macrophages infiltrating islets was significantly increased, indicating that prenatal PAH exposure might reduce islet cell numbers in an autoimmune manner. This study shows that prenatal exposure to PAHs may promote the pathogenesis of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jialin Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Siqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Lesi Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Miaolin Lan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Meng Chen
- College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
13
|
Poursafa P, Kamali Z, Fraszczyk E, Boezen HM, Vaez A, Snieder H. DNA methylation: a potential mediator between air pollution and metabolic syndrome. Clin Epigenetics 2022; 14:82. [PMID: 35773726 PMCID: PMC9245491 DOI: 10.1186/s13148-022-01301-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/01/2022] [Indexed: 01/19/2023] Open
Abstract
Given the global increase in air pollution and its crucial role in human health, as well as the steep rise in prevalence of metabolic syndrome (MetS), a better understanding of the underlying mechanisms by which environmental pollution may influence MetS is imperative. Exposure to air pollution is known to impact DNA methylation, which in turn may affect human health. This paper comprehensively reviews the evidence for the hypothesis that the effect of air pollution on the MetS is mediated by DNA methylation in blood. First, we present a summary of the impact of air pollution on metabolic dysregulation, including the components of MetS, i.e., disorders in blood glucose, lipid profile, blood pressure, and obesity. Then, we provide evidence on the relation between air pollution and endothelial dysfunction as one possible mechanism underlying the relation between air pollution and MetS. Subsequently, we review the evidence that air pollution (PM, ozone, NO2 and PAHs) influences DNA methylation. Finally, we summarize association studies between DNA methylation and MetS. Integration of current evidence supports our hypothesis that methylation may partly mediate the effect of air pollution on MetS.
Collapse
Affiliation(s)
- Parinaz Poursafa
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
14
|
Lin L, Li T, Sun M, Liang Q, Ma Y, Wang F, Duan J, Sun Z. Global association between atmospheric particulate matter and obesity: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 209:112785. [PMID: 35077718 DOI: 10.1016/j.envres.2022.112785] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Among various air pollutants, particulate matter (PM) is the most harmful and representative pollutant. Although several studies have shown a link between particulate pollution and obesity, the conclusions are still inconsistent. METHODS We conducted a systematic review and meta-analysis to pool the effect of PM exposure on obesity. Five databases (including PubMed, Web of Science, Scopus, Embase, and Cochrane) were searched for relevant studies up to Jan 2022. Adjusted risk ratio (RR) with corresponding 95% confidence interval (CI) were retrieved from individual studies and pooled with random effect models by STATA software. Besides, we tested the stability of results by Egger's test, Begg's test, funnel plot, and using the trim-and-fill method to modify the possible asymmetric funnel graph. The NTP-OHAT guidelines were followed to assess the risk of bias. Then the GRADE was used to evaluate the certainty of evidence. RESULTS 26 studies were included in this meta-analysis. 19 studies have shown that PM2.5 can increase the risk of obesity per 10 μg/m3 increment (RR: 1.159, 95% CI: 1.111-1.209), while 15 studies have indicated that PM10 increase the risk of obesity per 10 μg/m3 increment (RR: 1.092, 95% CI: 1.070-1.116). Besides, 5 other articles with maternal exposure showed that PM2.5 increases the risk of obesity in children (RR: 1.06, 95% CI: 1.02-1.11). And we explored the source of heterogeneity by subgroup analysis, which suggested associations between PM and obesity tended to vary by region, age group, participants number, etc. The analysis results showed publication bias and other biases are well controlled, but most certainties of the evidence were low, and more research is required to reduce these uncertainties. CONCLUSION Exposure to PM2.5 and PM10 with per 10 μg/m3 increment could increase the risk of obesity in the global population.
Collapse
Affiliation(s)
- Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
15
|
Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, Tounouga DN, Tianyi FL, Foka AJ, Ndoadoumgue AL, Bigna JJ. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: a systematic review and modelling analysis. THE LANCET CHILD & ADOLESCENT HEALTH 2022; 6:158-170. [DOI: 10.1016/s2352-4642(21)00374-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/09/2023]
|
16
|
Kelishadi R. Metabolic syndrome burden in children and adolescents. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:138-139. [PMID: 35051407 DOI: 10.1016/s2352-4642(21)00401-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Aaseth J, Javorac D, Djordjevic AB, Bulat Z, Skalny AV, Zaitseva IP, Aschner M, Tinkov AA. The Role of Persistent Organic Pollutants in Obesity: A Review of Laboratory and Epidemiological Studies. TOXICS 2022; 10:65. [PMID: 35202251 PMCID: PMC8877532 DOI: 10.3390/toxics10020065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Persistent organic pollutants (POPs) are considered as potential obesogens that may affect adipose tissue development and functioning, thus promoting obesity. However, various POPs may have different mechanisms of action. The objective of the present review is to discuss the key mechanisms linking exposure to POPs to adipose tissue dysfunction and obesity. Laboratory data clearly demonstrate that the mechanisms associated with the interference of exposure to POPs with obesity include: (a) dysregulation of adipogenesis regulators (PPARγ and C/EBPα); (b) affinity and binding to nuclear receptors; (c) epigenetic effects; and/or (d) proinflammatory activity. Although in vivo data are generally corroborative of the in vitro results, studies in living organisms have shown that the impact of POPs on adipogenesis is affected by biological factors such as sex, age, and period of exposure. Epidemiological data demonstrate a significant association between exposure to POPs and obesity and obesity-associated metabolic disturbances (e.g., type 2 diabetes mellitus and metabolic syndrome), although the existing data are considered insufficient. In conclusion, both laboratory and epidemiological data underline the significant role of POPs as environmental obesogens. However, further studies are required to better characterize both the mechanisms and the dose/concentration-response effects of exposure to POPs in the development of obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Jan Aaseth
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, 2418 Elverum, Norway
| | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia; (D.J.); (A.B.D.); (Z.B.)
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Department of Bioelementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Irina P. Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
18
|
Huang S, Li Q, Liu H, Ma S, Long C, Li G, Yu Y. Urinary monohydroxylated polycyclic aromatic hydrocarbons in the general population from 26 provincial capital cities in China: Levels, influencing factors, and health risks. ENVIRONMENT INTERNATIONAL 2022; 160:107074. [PMID: 34995968 DOI: 10.1016/j.envint.2021.107074] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) derived from the incomplete combustion of organic materials are associated with adverse health effects. However, little is known about PAH exposure levels and their influencing factors on a large scale in developing countries. In this study, urinary monohydroxylated metabolites of PAHs (OH-PAHs), including the metabolites of naphthalene, fluorene, phenanthrene, pyrene, chrysene, and benzo[a]pyrene, were measured in 1154 samples in the general population nationwide from 26 provincial capitals in China. Concentrations of OH-PAHs ranged from 1.39 to 228 μg/L. OH-Nap, metabolite of naphthalene, was the predominant compound, accounting for 65.1% of totals. People in eastern, southwest and northeast China, such as Shanghai, Kunming, Nanning, and Changchun, suffered more PAH exposure than other regions which might associate with sampling time, living habits of the subjects, and the imbalance of economic development and energy consumption across regions. Urinary OH-PAH concentrations were associated with body mass index, gender, and age, and smoking was the main correlating factor. Inhalation and diet might be the main exposure route of human exposure to PAHs, especially for smokers by inhalation. Hazard indices showed that no subject was exposed to PAHs with potential non-carcinogenic risk. Furthermore, the carcinogenic risk was the most significant health effects, with almost all subjects having carcinogenic risk values higher than the acceptable level of 10-6. Naphthalene and phenanthrene were the main contributors. The results also suggested a possible relationship between PAH exposure and lung cancer in the Chinese population. This first nationwide study on human internal exposure to PAHs provides a large body of scientific information for governmental decision-making about associated human health and the prevention of human exposure to PAHs.
Collapse
Affiliation(s)
- Senyuan Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Qin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, PR China
| | - Hao Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Chaoyang Long
- Center for Disease Prevention and Control of Guangdong Province, Guangzhou 510430, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
19
|
Exposure to polycyclic aromatic hydrocarbon-induced oxidative stress in Shiraz, Iran: urinary levels, health risk assessment and mediation effect of MDA on the risk of metabolic syndromes. Int Arch Occup Environ Health 2022; 95:1043-1058. [PMID: 34997324 DOI: 10.1007/s00420-021-01822-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Polycyclic Aromatic Hydrocarbons (PAHs) have been identified as carcinogenic and endocrine disrupter compounds that cause Metabolic Syndrome (MetS). Oxidative stress can lead to carcinogenesis and MetS in exposed people. Therefore, the relationship between urinary metabolite of PAH (OH-PAHs) level and the oxidative stress biomarker (Malondialdehyde) effect as the mediator in increasing the risk of MetS due to PAH exposure and risk assessment was investigated in Shiraz, Iran. METHODS The first morning void urinary and blood samples were obtained from participants and analyzed. Physical examinations and anthropometric measurements were performed on the day of sampling. An automatic biochemistry analyzer was used to measure the blood cells. The participants' socio-demographic information was gathered using a questionnaire and direct interviews with participants. RESULTS The MetS prevalence was 26%. Malondialdehyde could act as a mediator between exposure to 1-HydroxyPyrene and increase in fast blood sugar, exposure to 2-HydroxyNaphthalene and increase in systolic blood pressure and exposure to 2-HydroxyFluorene and increase in SBP. Hazard quotients varied from 0.009 to 14.92 in women, and from 0.005 to 8.43 for Fluorene and Naphthalene in men, respectively. The Hazard Indexes were greater than one meaning that the non-cancer health risk related to the PAH exposure could be identified in the participants. CONCLUSION Although oxidative stress has been suggested to lead to MetS and the high HI levels obtained in the current study, future researches are essential to achieve more reliable findings and monitoring the environmental influencing factors in PAH exposure.
Collapse
|
20
|
Mirzababaei A, Daneshzad E, Moradi S, Abaj F, Mehranfar S, Asbaghi O, Clark CCT, Mirzaei K. The association between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases and blood pressure: a systematic review and meta-analysis of observational studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1712-1728. [PMID: 34699007 DOI: 10.1007/s11356-021-17091-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Although epidemiological studies have discerned the association between polycyclic aromatic hydrocarbons (PAHs) exposure and hypertension and/or cardiovascular disease in the general population, the possible mechanisms for this association are not well understood. We sought to examine the association between urinary metabolites of PAHs and cardiovascular diseases (CVDs) and blood pressure in adults, by conducting a meta-analysis of observational studies. We searched PubMed, Scopus, Embase, and Web of science, up to July 2021, for observational studies that investigated the association between urinary metabolites of PAHs and CVDs and blood pressure in adults. Nine prospective studies, including 27,280 participants, were included. Based on overall pooled results, there was a significant positive association between all types of urinary metabolites of PAH and blood pressure (OR: 1.32; 95%, CI: 1.19 to 1.48, p < 0.0001) (I2 = 62.4%, p < 0.0001). There was no significant association between any urinary metabolite of PAH and CHD (OR: 0.93; 95%, CI: 0.83 to 1.03, p = 0.174) (I2 = 0%, p = 0.653). Overall, there was a significant positive association between all urinary metabolites of PAH and CVD (OR: 1.23; 95%, CI: 1.16 to 1.30, p < 0.0001) (I2 = 59.7%, p < 0.0001). The results of the present meta-analysis suggest that different metabolites PAHs are associated with an increased risk of CVD and HTN. Further studies, including randomized clinical trials, are needed to confirm the veracity of our findings.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Sanaz Mehranfar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran.
| |
Collapse
|
21
|
Močnik M, Marčun Varda N. Obesogens in Children-An Uncharted Territory. Metabolites 2021; 11:metabo11120882. [PMID: 34940640 PMCID: PMC8708790 DOI: 10.3390/metabo11120882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022] Open
Abstract
Obesogens are exogenous chemicals belonging to the group of endocrine-disrupting chemicals and are believed to interfere in obesity development. In children, several chemicals are under investigation, most commonly bisphenol A, phthalates, perfluorinated alkyl substances, and persistent organic pollutants, including organochlorinated pesticides, tributyltin, polychlorinated biphenyls and dioxins. Several associations have been studied between chemical exposure in utero and postnatally. Current opinion among researchers indicates that the obesogen theory is very likely; however, limited published studies show inconsistent support for the obesogenic effects of most substances in children and are limited by difficulty in providing the exact mechanisms of action, nor is their mutual effect in humans known, let alone in children. Existing data indicate that we have only scratched the surface and have much more to learn about obesogens. Hopefully, in the future, more information will provide an opportunity for policy makers to take action and protect public health.
Collapse
Affiliation(s)
- Mirjam Močnik
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
- Correspondence: ; Tel.: +386-40323726
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
- Medical Faculty, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| |
Collapse
|
22
|
Haverinen E, Fernandez MF, Mustieles V, Tolonen H. Metabolic Syndrome and Endocrine Disrupting Chemicals: An Overview of Exposure and Health Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13047. [PMID: 34948652 PMCID: PMC8701112 DOI: 10.3390/ijerph182413047] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of metabolic syndrome (MetS) is causing a significant health burden among the European population. Current knowledge supports the notion that endocrine-disrupting chemicals (EDCs) interfere with human metabolism and hormonal balance, contributing to the conventionally recognized lifestyle-related MetS risk factors. This review aims to identify epidemiological studies focusing on the association between MetS or its individual components (e.g., obesity, insulin resistance, diabetes, dyslipidemia and hypertension) and eight HBM4EU priority substances (bisphenol A (BPA), per- and polyfluoroalkyl substances (PFASs), phthalates, polycyclic aromatic hydrocarbons (PAHs), pesticides and heavy metals (cadmium, arsenic and mercury)). Thus far, human biomonitoring (HBM) studies have presented evidence supporting the role of EDC exposures on the development of individual MetS components. The strength of the association varies between the components and EDCs. Current evidence on metabolic disturbances and EDCs is still limited and heterogeneous, and mainly represent studies from North America and Asia, highlighting the need for well-conducted and harmonized HBM programmes among the European population. Rigorous and ongoing HBM in combination with health monitoring can help to identify the most concerning EDC exposures, to guide future risk assessment and policy actions.
Collapse
Affiliation(s)
- Elsi Haverinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00300 Helsinki, Finland;
| | - Mariana F. Fernandez
- Department of Radiology, School of Medicine, University of Granada, 18016 Granada, Spain; (M.F.F.); (V.M.)
- Center of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Consortium for Biomedical Research and Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Vicente Mustieles
- Department of Radiology, School of Medicine, University of Granada, 18016 Granada, Spain; (M.F.F.); (V.M.)
- Center of Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Consortium for Biomedical Research and Epidemiology & Public Health (CIBERESP), 28029 Madrid, Spain
| | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00300 Helsinki, Finland;
| |
Collapse
|
23
|
Shahsavani S, Fararouei M, Soveid M, Hoseini M, Dehghani M. The association between the urinary biomarkers of polycyclic aromatic hydrocarbons and risk of metabolic syndromes and blood cell levels in adults in a Middle Eastern area. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1667-1680. [PMID: 34900297 PMCID: PMC8617240 DOI: 10.1007/s40201-021-00722-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Limited studies have been published on the association between the urinary biomarkers of Polycyclic Aromatic Hydrocarbons (PAHs) and risk of Metabolic Syndromes (MetS) and blood cell levels in adults in the Middle East. The present study aimed to evaluate the exposure to PAHs and the distribution of urinary OH-PAH levels in the general population of Shiraz, Iran, as well as, the association between OH-PAHs and the prevalence of MetS and blood cell levels. METHODS In this study, 200 participants were randomly selected from the adult population, and their first-morning void urine samples were collected. RESULTS The mean concentrations of 1-OHNap, 2-OHNap, 2-OHFlu, 9-OHPhe, and 1-OHP were 639.8, 332.1, 129, 160.3, and 726.9 ng/g creatinine, respectively. The prevalence of MetS was 26% according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) criteria. The results showed that urinary OH-PAHs, especially 1-OHP, were positively and significantly associated with higher waist circumstance (p < 0.001), triglyceride level (p < 0.001), systolic blood pressure (p < 0.001), diastolic blood pressure (p < 0.001), number of white blood cells (p = 0.041) and red blood cells (p < 0.001). It also caused lower levels of High Density Lipoprotein-Cholesterol (HDL-C). In conclusion, the results emphasized the adverse health effects of PAHs on human health, including obesity, hypertension, dyslipidemia, and decreased number of blood cells. CONCLUSION Therefore, in order to identify the PAHs sources and to develop methods for decreasing the amount of emissions to the environment, broader researches are needed.
Collapse
Affiliation(s)
- Samaneh Shahsavani
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Mahmood Soveid
- Endocrinology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, P.O.Box: 111, 71645, Shiraz, Iran
| | - Mansooreh Dehghani
- Research Center for Health Sciences, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, P.O.Box: 111, 71645 Shiraz, Iran
| |
Collapse
|
24
|
Yang Z, Guo C, Li Q, Zhong Y, Ma S, Zhou J, Li X, Huang R, Yu Y. Human health risks estimations from polycyclic aromatic hydrocarbons in serum and their hydroxylated metabolites in paired urine samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117975. [PMID: 34416499 DOI: 10.1016/j.envpol.2021.117975] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are compounds with two or more benzene rings whose hydroxylated metabolites (OH-PAHs) are excreted in urine. Human PAH exposure is therefore commonly estimated based on urinary OH-PAH concentrations. However, no study has compared PAH exposure estimates based on urinary OH-PAHs to measurements of PAH levels in blood samples. Estimates of PAH exposure based solely on urinary OH-PAHs may thus be subject to substantial error. To test this hypothesis, paired measurements of parent PAHs in serum and OH-PAHs in urine samples from 480 participants in Guangzhou, a typical developed city in southern China, were used to investigate differences in the estimates of human PAH exposure obtained by sampling different biological matrices. The median PAH concentration in serum was 4.05 ng mL-1, which was lower than that of OH-PAHs in urine (8.33 ng mL-1). However, serum pyrene levels were significantly higher than urinary levels of its metabolite 1-hydroxypyrene. Concentrations of parent PAHs in serum were not significantly correlated with those of their metabolites in urine with the exception of phenanthrene, which exhibited a significant negative correlation. Over 28% of the participants had carcinogenic risk values above the acceptable cancer risk level of 10-6. Overall, estimated human exposure and health risks based on urinary 1-hydroxypyrene levels were only 13.6% of those based on serum pyrene measurements, indicating that estimates based solely on urine sampling may substantially understate health risks due to PAH exposure.
Collapse
Affiliation(s)
- Ziying Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Qin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Yi Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jinhua Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Xiaotong Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Rende Huang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
25
|
Li K, Yin R, Wang Y, Zhao D. Associations between exposure to polycyclic aromatic hydrocarbons and metabolic syndrome in U.S. adolescents: Cross-sectional results from the National Health and Nutrition Examination Survey (2003-2016) data. ENVIRONMENTAL RESEARCH 2021; 202:111747. [PMID: 34333007 DOI: 10.1016/j.envres.2021.111747] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The metabolic syndrome is a constellation of risk factors, including abdominal obesity, hypertension, dyslipidemia, and hyperglycemia. Polycyclic aromatic hydrocarbons (PAHs) constitute a group of chemicals that are formed during the incomplete combustion of coal, oil and gas, garbage, and other organic substances. In the occupational exposure population, PAHs exposure increased the prevalence ratio of metabolic syndrome. However, the effect of PAHs on prevalence of metabolic syndrome in adolescents has not been reported. Because of the propensity for childhood metabolic risk to track into adulthood, there is a great need to identify risk factors for childhood metabolic syndrome. METHOD Using data from the 2003-2016 National Health and Nutrition Examination Survey. We defined metabolic syndrome using a modified version of the National Cholesterol Education Program Adult Treatment Panel Ⅲ definition for adolescents. Weighted logistic regression was used to calculate the odds ratio and 95 % confidence intervals for each biomarker. In addition, we applied the weighted quantile sum (WQS) regressions to adolescent metabolic syndrome to reveal the multiple exposure effects and relative weights of each PAH. RESULTS Among the 827 adolescents, 183 (22.13 %) had metabolic syndrome. The levels of 2-hydroxynaphthalene (2-NAP), 2-hydroxyphenanthrene (2-PHE), 2-hydroxyfluorene (2-FLU), 1-hydroxynaphthalene (1-NAP), 3-hydroxyfluorene (3-FLU) and 1-hydroxypyrene (1-PYR) were higher in the group of adolescents with metabolic syndrome. There were positive associations between higher concentrations of 2-NAP, 2-FLU and odds of metabolic syndrome after adjustment, which odds ratios (ORs) in the 3rd tertile were 2.22 (95%CI:1.45-3.44) and 2.09 (95%CI:1.36-3.10), respectively. In subgroups analysis, the ORs between the 3 tertile concentrations of 2-NAP, 2-PHE and high fasting blood glucose (FBG) were 2.20 (95%CI:1.37-3.57) and 1.99 (95%CI:1.16-3.48). CONCLUSION The present study suggested that PAHs may be associated with odds of metabolic syndrome as well as individual metabolic syndrome components among adolescents. A cohort study should be designed to clarify the cause and effect between PAHs and metabolic syndrome in future research.
Collapse
Affiliation(s)
- Kun Li
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Ruili Yin
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Yan Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing, 101149, China.
| |
Collapse
|
26
|
Simultaneous determination of multiple isomeric hydroxylated polycyclic aromatic hydrocarbons in urine by using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184:122983. [PMID: 34655894 DOI: 10.1016/j.jchromb.2021.122983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Monitoring the level of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in urine is the key to exploring human metabolic changes and comprehensive potential toxicity of PAHs. The OH-PAHs with isomeric structure have different biological functions, indicating that their quantification is indispensable. However, the quantitation method is still dissatisfactory due to the poor separation of these isomeric OH-PAHs. The current study established a ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS) method to complete the simultaneous determination of 17 OH-PAHs, including two naphthalene metabolites (1-hydroxynaphthalene, 2-hydroxynaphthalene), two fluorene metabolites (2-hydroxyfluorene, 3-hydroxyfluorene), five phenanthrene metabolites (1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, 4-hydroxyphenanthrene, 9-hydroxyphenanthrene), a pyrene metabolite (1-hydroxypyrene), five chrysene metabolites (1-hydroxychrysene, 2-hydroxychrysene, 3-hydroxychrysene, 4-hydroxychrysene, 6-hydroxychrysene) and two benzo[a]pyrene metabolites (3-hydroxybenzo[a]pyrene, 9-hydroxybenzo[a]pyrene). The method validation results showed good selectivity, linearity (r2 > 0.999), inter-day and intra-day precision (relative standard deviation (RSD) < 5.5% and RSD < 6.3%), stability (RSD < 19.3%), matrix effect (-8.3%-11.5%) and recovery (65.9%-116.2%). This method is convenient, sensitive and efficient, saving expensive materials and complicated derivatization procedures. The practical applicability of developed approach was also tested in urine samples to identify potential biomarkers of PAHs exposure in humans, and a great compromise was obtained between recoveries and extract convenience. The developed approach may be widely utilized for specific determination of OH-PAHs with isomer structure in urine samples. It is expected that the application of this method may provide powerful references for PAHs exposure assessment.
Collapse
|
27
|
Aminiyan MM, Kalantzi OI, Etesami H, Khamoshi SE, Hajiali Begloo R, Aminiyan FM. Occurrence and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dust of an emerging industrial city in Iran: implications for human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63359-63376. [PMID: 34231139 DOI: 10.1007/s11356-021-14839-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) bounded to street dust are a severe environmental and human health danger. This study provides preliminary information on the abundance of PAHs in street dust from Rafsanjan city, Iran, where industrial emissions are high and data are lacking. Seventy street dust samples were collected from streets with different traffic loads. The United States Environmental Protection Agency (USEPA) Standard Methods 8270D and 3550C were used for the measurement of PAHs using GC mass spectroscopy. The total concentration of PAHs was 1443 ng g-1, with a range of 1380-1550 ng g-1. Additionally, the concentration of carcinogenic PAHs (∑carcPAHs) ranged from 729.5 to 889.4 ng g-1, with a mean value of 798.1 ng g-1. Pyrene was the most abundant PAH, with an average concentration of 257 ng g-1. Source identification analyses showed that vehicle emissions along with incomplete combustion and petroleum were the main sources of PAHs. The ecological risk status of the studied area was moderate. Spatial distribution mapping revealed that the streets around the city center and oil company had higher PAH levels than the other sectors of Rafsanjan. The results indicated that dermal contact and ingestion of contaminated particles were the most important pathways compared to inhalation. The mean incremental lifetime cancer risk (ILCR) was 1.4 × 10-3 and 1.3 × 10-3 for children and adults, respectively. This implies potentially adverse health effects in exposed individuals. The mutagenic risk for both subpopulations was approximately 18 times greater than the one recommended by USEPA. Our findings suggest that children are subjected to a higher carcinogenic and mutagenic risk of PAHs, especially dibenzo[a,h]anthracene (DahA), bounded to street dust of Rafsanjan. Our study highlights the need for the development of emission monitoring and control scenarios.
Collapse
Affiliation(s)
- Milad Mirzaei Aminiyan
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | | | - Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Seyyed Erfan Khamoshi
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Raziyeh Hajiali Begloo
- School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Mirzaei Aminiyan
- Civil Engineering Department, College of Engineering, Vali-e-Asr Rafsanjan University, Rafsanjan, Iran
| |
Collapse
|
28
|
Nie X, Mu G, Yang S, Ye Z, Wang M, Wang D, Ma J, Guo Y, Wang B, Dai W, Chen W. The methylation of the AMER3 gene mediates the negative association between urinary polycyclic aromatic hydrocarbon metabolites and fasting plasma glucose in non-smokers: A new clue for the development of hypoglycemic agents. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126548. [PMID: 34328084 DOI: 10.1016/j.jhazmat.2021.126548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been reported to cause various health damages. However, some PAH derivatives are still used as agents, and some of them have hypoglycemic effects. Till now, few studies explored the relationship between urinary PAH metabolites and fasting plasma glucose (FPG). In this study, A total of 2682 non-smokers in the second follow-up of the Wuhan-Zhuhai cohort were included to explore the relationship between urinary PAH metabolites and FPG. FPG related epigenome-wide association study (EWAS) was conducted among 212 never smokers, and the mediation analysis was performed to find potential mediator cytosine-phosphoguanine (CpG) sites in the above relationship. The concentration of total urinary PAH metabolites was 3.60 (2.37, 5.85) μg/mmol Cr. The urinary PAH metabolites were negatively associated with FPG. Each 1-U increase in ln-transformed levels of 1-hydroxynaphthalene, 4-hydroxyphenanthrene, 9-hydroxyphenanthrene, or 2- hydroxyphenanthrene was associated with 0.008-, 0.007-, 0.010-, or 0.010- unit decreased in ln-transformed levels of FPG, respectively (all p < 0.05). We found 28 new CpG sites related to FPG (FDR <0.05) through EWAS. Mediation analysis found that cg11350141 on AMER3 mediated 41.91% of the negative association of total urinary PAH metabolites with FPG. These results provide a new clue for the development of hypoglycemic agents.
Collapse
Affiliation(s)
- Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanjun Guo
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wencan Dai
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong 519060, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
29
|
Ma S, Zeng Z, Lin M, Tang J, Yang Y, Yu Y, Li G, An T. PAHs and their hydroxylated metabolites in the human fingernails from e-waste dismantlers: Implications for human non-invasive biomonitoring and exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117059. [PMID: 33845288 DOI: 10.1016/j.envpol.2021.117059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Non-invasive human biomonitoring methods using hair and fingernails as matrices are widely used to assess the exposure of organic contaminants. In this work, a total of 72 human fingernails were collected from workers and near-by residents from a typical electronic waste (e-waste) dismantling site, and were analyzed for human exposure to polycyclic aromatic hydrocarbons (PAHs) and their mono-hydroxyl metabolites (OH-PAHs). The concentrations of PAHs and OH-PAHs were obtained as 7.97-551 and 39.5-3280 ng/g for e-waste workers (EW workers), 7.05-431 and 27.3-3320 ng/g for non-EW workers, 7.93-289 and 124-779 ng/g for adult residents, and 8.88-1280 and 181-293 ng/g for child residents, respectively. The composition profiles of PAHs in the human fingernails of the four groups were similar, with isomers of Phe, Pyr and Fluo being the predominated congeners, while 2-OH-Nap accounted for more than 70% of the total OH-PAHs. These contaminants were found most in the fingernails of EW workers, followed by non-EW workers, adult residents, and child residents, indicating e-waste dismantling activities are the major sources of PAH exposure. However, significantly higher levels of PAHs with 4-6 rings were observed only in workers as opposed to the residents, and a significant correlation between 3-OH-Flu (p < 0.05) and 2-OH-Phe (p < 0.01) in the fingernails and urine was observed, but no significant correlation was found between the concentration of OH-PAHs in matched hair and fingernail samples. In addition, the levels of PAHs in fingernails increased with the age of EW workers. This is the first study to explore the accumulation and distribution of PAHs and OH-PAHs in human fingernails, which would provide valuable insight into non-invasive biomonitoring and health risk assessment of PAHs.
Collapse
Affiliation(s)
- Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China
| | - Zihuan Zeng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Fernández SF, Pardo O, Hernández CS, Garlito B, Yusà V. Children's exposure to polycyclic aromatic hydrocarbons in the Valencian Region (Spain): Urinary levels, predictors of exposure and risk assessment. ENVIRONMENT INTERNATIONAL 2021; 153:106535. [PMID: 33831740 DOI: 10.1016/j.envint.2021.106535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 05/25/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pollutants that are released into the environment during incomplete combustion of organic matter and which can have a negative effect on human health. PAHs enter the human body mostly through ingestion of food or inhalation of tobacco smoke. The purpose of the present study is to evaluate the internal levels of PAHs that children living in the Valencian Region (Spain) are exposed to. In total, we measured eleven biomarkers of exposure to naphthalene, fluorene, phenanthrene, pyrene, and benzo(a)pyrene in the urine of 566 children aged 5-12. The analytical method was based on a liquid-liquid extraction of the PAH metabolites from the urine samples, followed by their determination by liquid chromatography coupled to tandem mass spectrometry. In addition, we used a questionnaire to collect the socio-demographic characteristics and 72 h dietary recall information of the participants in our study. Overall, we detected PAH metabolites in more than 78% of the children, with the exception of 3-hydroxyfluorene and 3-hydroxybenzo(a)pyrene, which were found in less than 37% of the analyzed samples. The most abundant biomarker found was 2-hydroxynaphthalene, with a geometric mean of 10 ng·ml-1. Reference values (RV95) ranging from 0.11 (4-hydroxyphenanthrene) to 53 ng·ml-1 (2-hydroxynaphthalene) in urine of Spanish children were derived from the present study. According to the statistical analysis, the factors that were significantly associated with the internal exposure to PAHs were province of residence, body mass index (BMI), children's age, consumption of plastic-wrapped food, and dietary habits. The estimated daily intakes in geometric mean terms ranged from 5 (fluorene) to 204 ng·kg-bw-1·day-1 (naphthalene). Risk assessment calculations showed higher hazard quotients and hazard indexes for children aged 5-8 than those aged 9-12, but all were below 1. In conclusion, no potential non-cancer health risk due to PAH exposure was observed in children living in Spain.
Collapse
Affiliation(s)
- Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of València Doctor, Moliner 50, 46100 Burjassot, Spain
| | - Olga Pardo
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, University of València Doctor, Moliner 50, 46100 Burjassot, Spain.
| | - Cristina S Hernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of València Doctor, Moliner 50, 46100 Burjassot, Spain
| | - Borja Garlito
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain
| | - Vicent Yusà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020 València, Spain; Department of Analytical Chemistry, University of València Doctor, Moliner 50, 46100 Burjassot, Spain; Public Health Laboratory of València Av. Catalunya, 21, 46020 València, Spain
| |
Collapse
|
31
|
Guzzolino E, Milella MS, Forini F, Borsò M, Rutigliano G, Gorini F, Zucchi R, Saba A, Bianchi F, Iervasi G, Pitto L. Thyroid disrupting effects of low-dose dibenzothiophene and cadmium in single or concurrent exposure: New evidence from a translational zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144703. [PMID: 33486188 DOI: 10.1016/j.scitotenv.2020.144703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Thyroid hormones (THs) are major regulators of biological processes essential for correct development and energy homeostasis. Although thyroid disruptors can deeply affect human health, the impact of exogenous chemicals and in particular mixture of chemicals on different aspects of thyroid development and metabolism is not yet fully understood. In this study we have used the highly versatile zebrafish model to assess the thyroid axis disrupting effects of cadmium (Cd) and dibenzothiophene (DBT), two environmental endocrine disruptors found to be significantly correlated in epidemiological co-exposure studies. Zebrafish embryos (5hpf) were exposed to low concentrations of Cd (from 0.05 to 2 μM) and DBT (from 0.05 to 1 μM) and to mixtures of them. A multilevel assessment of the pollutant effects has been obtained by combining in vivo morphological analyses allowed by the use of transgenic fluorescent lines with liquid chromatography mass spectrometry determination of TH levels and quantification of the expression levels of key genes involved in the Hypothalamic-Pituitary-Thyroid Axis (HPTA) and TH metabolism. Our results underscore for the first time an important synergistic toxic effect of these pollutants on embryonic development and thyroid morphology highlighting differences in the mechanisms through which they can adversely impact on multiple physiological processes of the HPTA and TH disposal influencing also heart geometry and function.
Collapse
Affiliation(s)
- E Guzzolino
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - M S Milella
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - F Forini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - M Borsò
- Department of Pathology, University of Pisa, Pisa, Italy
| | - G Rutigliano
- Department of Pathology, University of Pisa, Pisa, Italy
| | - F Gorini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - R Zucchi
- Department of Pathology, University of Pisa, Pisa, Italy
| | - A Saba
- Department of Pathology, University of Pisa, Pisa, Italy
| | - F Bianchi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - G Iervasi
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - L Pitto
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| |
Collapse
|
32
|
Relationship of Urinary Phthalate Metabolites with Cardiometabolic Risk Factors and Oxidative Stress Markers in Children and Adolescents. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:5514073. [PMID: 33995534 PMCID: PMC8096563 DOI: 10.1155/2021/5514073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
Introduction Studies have proved that exposure of adults to phthalates might be related to cardiometabolic risk factors and changes in markers of oxidative stress. Such studies conducted on school-age children and adolescents are limited and fail to assess the simultaneous effect of phthalates on these risk factors and oxidative stress markers. Therefore, it was attempted to identify the relationship of urinary phthalate metabolites with cardiometabolic risk factors and oxidative stress markers in children and adolescents. Methods. In this cross-sectional study, 108 children and adolescents, living in Isfahan industrial city of Iran, were examined. Urine samples taken from the participants were analyzed for mono-butyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-exohexyl) phthalate (MEOHP), and mono-methyl phthalate (MMP). Results Results showed that, among phthalate metabolites, MBP had the highest concentration, followed by MBzP, MEOHP, MEHHP, MEHP, and MMP. Concentrations of these metabolites had a significant relationship with some of the cardiometabolic risk factors including systolic blood pressure (SBP), fasting blood sugar (FBS), and triglycerides (TG) (p < 0.05). Furthermore, the crude and adjusted linear regression models indicated the significant association of phthalate metabolites with superoxide dismutase (SOD), malondialdehyde (MDA), and homeostasis model assessment of insulin resistance (HOMA-IR) (p < 0.05). Conclusion Although urinary phthalate concentrations could not exactly reflect the long-term exposure level in the studied age groups, the consumption of phthalate-free products during childhood and adolescent development shall be assumed helpful in maintaining a healthy lifestyle. To confirm these findings and develop effective intervention strategies, it would be necessary to perform longitudinal studies on diverse population.
Collapse
|
33
|
Mann JK, Lutzker L, Holm SM, Margolis HG, Neophytou AM, Eisen EA, Costello S, Tyner T, Holland N, Tindula G, Prunicki M, Nadeau K, Noth EM, Lurmann F, Hammond SK, Balmes JR. Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children. ENVIRONMENTAL RESEARCH 2021; 195:110870. [PMID: 33587949 PMCID: PMC8520413 DOI: 10.1016/j.envres.2021.110870] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/30/2020] [Accepted: 02/07/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Metabolic syndrome increases the risk of cardiovascular disease in adults. Antecedents likely begin in childhood and whether childhood exposure to air pollution plays a contributory role is not well understood. OBJECTIVES To assess whether children's exposure to air pollution is associated with markers of risk for metabolic syndrome and oxidative stress, a hypothesized mediator of air pollution-related health effects. METHODS We studied 299 children (ages 6-8) living in the Fresno, CA area. At a study center visit, questionnaire and biomarker data were collected. Outcomes included hemoglobin A1c (HbA1c), urinary 8-isoprostane, systolic blood pressure (SBP), and BMI. Individual-level exposure estimates for a set of four pollutants that are constituents of traffic-related air pollution (TRAP) - the sum of 4-, 5-, and 6-ring polycyclic aromatic hydrocarbon compounds (PAH456), NO2, elemental carbon, and fine particulate matter (PM2.5) - were modeled at the primary residential location for 1-day lag, and 1-week, 1-month, 3-month, 6-month, and 1-year averages prior to each participant's visit date. Generalized additive models were used to estimate associations between each air pollutant exposure and outcome. RESULTS The study population was 53% male, 80% Latinx, 11% Black and largely low-income (6% were White and 3% were Asian/Pacific Islander). HbA1c percentage was associated with longer-term increases in TRAP; for example a 4.42 ng/m3 increase in 6-month average PAH456 was associated with a 0.07% increase (95% CI: 0.01, 0.14) and a 3.62 μg/m3 increase in 6-month average PM2.5 was associated with a 0.06% increase (95% CI: 0.01, 0.10). The influence of air pollutants on blood pressure was strongest at 3 months; for example, a 6.2 ppb increase in 3-month average NO2 was associated with a 9.4 mmHg increase in SBP (95% CI: 2.8, 15.9). TRAP concentrations were not significantly associated with anthropometric or adipokine measures. Short-term TRAP exposure averages were significantly associated with creatinine-adjusted urinary 8-isoprostane. DISCUSSION Our results suggest that both short- and longer-term estimated individual-level outdoor residential exposures to several traffic-related air pollutants, including ambient PAHs, are associated with biomarkers of risk for metabolic syndrome and oxidative stress in children.
Collapse
Affiliation(s)
- Jennifer K Mann
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Liza Lutzker
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Stephanie M Holm
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Helene G Margolis
- Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Andreas M Neophytou
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sadie Costello
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Tim Tyner
- University of California, San Francisco-Fresno, Fresno, CA, USA; Central California Asthma Collaborative, USA
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Gwen Tindula
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Mary Prunicki
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Palo Alto, CA, USA
| | - Elizabeth M Noth
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - S Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - John R Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Sopian NA, Jalaludin J, Abu Bakar S, Hamedon TR, Latif MT. Exposure to Particulate PAHs on Potential Genotoxicity and Cancer Risk among School Children Living Near the Petrochemical Industry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052575. [PMID: 33806616 PMCID: PMC7967639 DOI: 10.3390/ijerph18052575] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023]
Abstract
This study aimed to assess the association of exposure to particle-bound (PM2.5) polycyclic aromatic hydrocarbons (PAHs) with potential genotoxicity and cancer risk among children living near the petrochemical industry and comparative populations in Malaysia. PM2.5 samples were collected using a low-volume sampler for 24 h at three primary schools located within 5 km of the industrial area and three comparative schools more than 20 km away from any industrial activity. A gas chromatography-mass spectrometer was used to determine the analysis of 16 United States Environmental Protection Agency (USEPA) priority PAHs. A total of 205 children were randomly selected to assess the DNA damage in buccal cells, employing the comet assay. Total PAHs measured in exposed and comparative schools varied, respectively, from 61.60 to 64.64 ng m-3 and from 5.93 to 35.06 ng m-3. The PAH emission in exposed schools was contributed mainly by traffic and industrial emissions, dependent on the source apportionment. The 95th percentiles of the incremental lifetime cancer risk estimated using Monte Carlo simulation revealed that the inhalation risk for the exposed children and comparative populations was 2.22 × 10-6 and 2.95 × 10-7, respectively. The degree of DNA injury was substantially more severe among the exposed children relative to the comparative community. This study reveals that higher exposure to PAHs increases the risk of genotoxic effects and cancer among children.
Collapse
Affiliation(s)
- Nor Ashikin Sopian
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Correspondence: ; Tel.: +603-97692401
| | - Suhaili Abu Bakar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Titi Rahmawati Hamedon
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
35
|
Li X, Zhong Y, He W, Huang S, Li Q, Guo C, Ma S, Li G, Yu Y. Co-exposure and health risks of parabens, bisphenols, triclosan, phthalate metabolites and hydroxyl polycyclic aromatic hydrocarbons based on simultaneous detection in urine samples from guangzhou, south China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115990. [PMID: 33199068 DOI: 10.1016/j.envpol.2020.115990] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and certain ingredients in personal care products, such as parabens, bisphenols, triclosan and phthalate metabolites, have become ubiquitous in the world. Concerns of human exposure to these pollutants have increased during recent years because of various adverse health effects of these chemicals. Multiple compounds including parabens, bisphenols, triclosan, phthalate metabolites (mPAEs) and hydroxyl PAHs (OH-PAHs) in urine samples from Guangzhou were determined simultaneously to identify the human exposure pathways without external exposure data combined with data analysis, and the toxicants posed the highest risk to human health were screened in the present study. The detection frequencies for the chemicals exceeded 90%. Among the contaminants, mPAEs showed the highest concentrations, followed by OH-PAHs, with triclosan present at the lowest concentrations. Mono-n-butyl phthalate, methylparaben, bisphenol A, and hydroxynaphthalene represented the most abundant mPAE, parabens, bisphenol, and OH-PAH compounds, respectively. The present PAHs are mainly exposed to human through inhalation, while the chemicals added to personal care products are mainly exposed to human through oral intake and dermal contact. The urine samples from suburban subjects showed significantly higher OH-PAH levels than the urine samples from urban subjects, and females had lower OH-PAH levels than males. Urinary concentrations of the analyzed contaminants were significantly correlated with age, body mass index, residence time, as well as the frequencies of alcohol consumption and swimming. Risk assessments based on Monte Carlo simulation indicated that approximately 30% of the subjects suffered non-carcinogenic risks from mPAEs and OH-PAHs, with mPAEs accounting for 89% of the total risk.
Collapse
Affiliation(s)
- Xiaojing Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminant Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yi Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Weiyun He
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Senyuan Huang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminant Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Qin Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, PR China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminant Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminant Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminant Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
36
|
Li Z, Zhang X, Fu Y, Xu Y, Chen J, Lu S. Backward modeling of urinary test reliability for assessing PAH health risks: An approximation solution for naphthalene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116522. [PMID: 33493761 DOI: 10.1016/j.envpol.2021.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Urine sample tests are one of the most common methods of estimating human exposure to polycyclic aromatic hydrocarbons (PAHs) and assessing population health risks. To evaluate the reliability of the urine test and the impact of other PAH elimination routes on the health risk estimated by this test, we proposed a backward modeling framework integrating other common elimination routes of PAH metabolites to calculate the overall intake rate of the parent PAH based on the levels of corresponding main metabolites in urine. Due to limited biotransformation data, we selected naphthalene as an example to evaluate model performance and collected urine samples from 234 random adults in Shenzhen. The overall intake rates of naphthalene were then simulated and compared to current literature data. The simulated intake rates of naphthalene ranged from 3.70 × 10-3 mg d-1 to 1.95 mg d-1 and followed a lognormal distribution with a median value of 6.51 × 10-2 mg d-1. The results indicated that, if naphthalene exposure occurred only via food for the population of Shenzhen, the literature data fell within the most frequent interval [3.70 × 10-3, 4.45 × 10-2] but were lower than the simulated median value. However, if other exposure routes were considered, the allocation factor-adjusted literature data were close to the simulated median values. In addition, under normal physiological conditions, the simulated results were more sensitive to 1-hydroxynaphthalene (1-OHN) and 2-hydroxynaphthalene (2-OHN) levels in urine than other biometric variables, which is due to the limited load of 1-OHN and 2-OHN in human elimination routes. Furthermore, the suggested safety levels of 1-OHN and 2-OHN in urine to protect 99% of the general population of Shenzhen were 6.40 × 10-6 and 3.75 × 10-5 mg L-1, which could be used as regulatory indicators based on the high reliability of the model.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Yisha Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Yupeng Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| | - Jinru Chen
- Songgang Preventive Health Center of Baoan District, Guangdong, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
37
|
Cheng M, Zhou Y, Wang B, Mu G, Ma J, Zhou M, Wang D, Yang M, Cao L, Xie L, Wang X, Nie X, Yu L, Yuan J, Chen W. IL-22: A potential mediator of associations between urinary polycyclic aromatic hydrocarbon metabolites with fasting plasma glucose and type 2 diabetes. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123278. [PMID: 32634658 DOI: 10.1016/j.jhazmat.2020.123278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Previous studies found that exposure to polycyclic aromatic hydrocarbons (PAHs) was associated with type 2 diabetes (T2D) prevalence. However, the potential mechanism is still unclear. In this study, we investigated 3031 Chinese urban adults to discover the relationship between PAH exposure and plasma Interleukin-22 (IL-22) and potential role of IL-22 in the association between PAH and fasting plasma glucose (FPG) or risk of T2D. After adjustment for potential confounders, significant dose-response relationships were observed between several urinary PAH metabolites with FPG and the prevalence of T2D. Each 1-U increase in ln-transformed value of 2-hydroxynaphthalene (2-OHNa), 2-hydroxyphenanthrene (2-OHPh), 3-hydroxyphenanthrene (3-OHPh), 4-hydroxyphenanthrene (4-OHPh), 9-hydroxyphenanthrene (9-OHPh), 1-hydroxypyrene (1-OHP) or total PAH metabolites was significantly associated with a 0.053, 0.026, 0.037, 0.045, 0.051, 0.041 or 0.047 unit decrease in IL-22 level, respectively. In addition, plasma IL-22 level was negatively associated with FPG and prevalence of T2D in a dose-dependent manner. Mediation analysis showed that IL-22 mediated 8.48 %, 3.87 %, 6.64 %, 6.47 %, and 8.67 % of the associations between urinary 2-OHNa, 1-OHPh, 3-OHPh, 4-OHPh, and 9-OHPh with the prevalence of T2D, respectively. These results indicated that urinary PAHs metabolites were inversely associated with plasma levels of IL-22, but positively related to FPG and the T2D prevalence. Downregulation of IL-22 might play a significant role in mediating PAHs exposure-associated risk increasement of T2D.
Collapse
Affiliation(s)
- Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuquan Nie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - LingLing Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
38
|
Urbancova K, Dvorakova D, Gramblicka T, Sram RJ, Hajslova J, Pulkrabova J. Comparison of polycyclic aromatic hydrocarbon metabolite concentrations in urine of mothers and their newborns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138116. [PMID: 32222511 DOI: 10.1016/j.scitotenv.2020.138116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants produced during incomplete combustion of organic matter. Humans can be exposed to them via several pathways (inhalation, digestion, dermal exposure). The aim of this study was to assess the concentration of 11 monohydroxylated metabolites of PAHs (OH-PAHs) in 660 urine samples collected from mothers and their newborns residing in two localities of the Czech Republic - Most and Ceske Budejovice - in 2016 and 2017. After enzymatic hydrolysis, the target analytes were extracted from the urine samples using liquid-liquid extraction, with extraction solvent ethyl acetate and a clean-up step using dispersive solid-phase extraction (d-SPE) with the Z-Sep sorbent. For identification and quantification, ultra-high performance liquid chromatography coupled with tandem mass spectrometry was applied. 2-OH-NAP was the compound present in all of the measured samples and it was also the compound at the highest concentration in both mothers' and newborns' urine samples (median concentration 5.15 μg/g creatinine and 3.58 μg/g creatinine). The total concentrations of OH-PAHs in urine samples collected from mothers were 2 times higher compared to their children. The most contaminated samples were collected in Most in the period October 2016-March 2017 from both mothers (12.59 μg/g creatinine) and their newborns (8.29 μg/g creatinine). The concentrations of OH-PAHs in urine samples, which were collected from both mothers and their newborns as presented in this study, are comparable with those found in our previous study between 2013 and 2014. In addition, they are slightly lower or comparable to other studies from Poland, USA, Germany, China, and Australia. The results might indicate that the population in the previously highly air-polluted mining districts carries some long-term changes (maybe existing changes in genetic information), which also affect the metabolism of PAHs. It could be related to the long-lasting effect, and thus corresponding to the shortened life expectancy.
Collapse
Affiliation(s)
- Katerina Urbancova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Tomas Gramblicka
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Radim J Sram
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic; Institute of Experimental Medicine Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Hajslova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
39
|
Cheng Z, Huo X, Dai Y, Lu X, Hylkema MN, Xu X. Elevated expression of AhR and NLRP3 link polycyclic aromatic hydrocarbon exposure to cytokine storm in preschool children. ENVIRONMENT INTERNATIONAL 2020; 139:105720. [PMID: 32289583 DOI: 10.1016/j.envint.2020.105720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs), as a group of persistent organic pollutants, are linked to impaired immune function and low-grade inflammation in adults and children. However, the potential of PAHs to lead to a cytokine storm associated with AhR (aryl hydrocarbon receptor) and NLRP3 (NLR family pyrin domain containing 3) in humans has been poorly studied. OBJECTIVES We aimed to investigate the associations between PAH exposure, AhR and NLRP3 expression, and cytokines associated with a cytokine storm in healthy preschoolers. METHODS Basic demographic surveys and physical examinations were conducted on 248 preschoolers from an electronic waste (e-waste) recycling area (Guiyu, n = 121) and a reference area (Haojiang, n = 127). Ten urinary PAH metabolite (OH-PAH) concentrations were measured. We also measured the expression levels of AhR and NLRP3 and seventeen serum cytokine levels. RESULTS The concentrations of multiple OH-PAHs were significantly higher in the exposed group than those in the reference group, especially 1-hydroxynaphthalene (1-OH-Nap) and 2-hydroxynaphthalene (2-OH-Nap). PAH exposure was closely related to a child's living environment and hygiene habits. Expression levels of AhR and NLRP3 were significantly higher in the exposed group than in the reference group. Similarly, serum IL-1β, IL-4, IL-5, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-22, IL-23, and IFN-γ levels were notably higher in the e-waste-exposed children than in the reference children. After adjusting for age, gender, BMI, family income, parental education level, and second-hand smoke exposure, we found that increased PAH exposure was associated with higher AhR and NLRP3 expression and elevated IL-4, IL-10, IL-12p70, IL-18, IL-22, IL-23, TNF-α, and IFN-γ levels. The associations between PAH exposure and IL-1β, IL-18, IFN-γ, and TNF-β were mediated by NLRP3 expression, and the relationships between PAH exposure and IL-4, IL-10, IL-12p70, IL-22, IL-23, and TNF-α were mediated by AhR expression. CONCLUSIONS Our findings suggest that the association between PAH exposure and a cytokine storm may be mediated by AhR and NLRP3 expression among preschoolers.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
40
|
Li J, Fan H, Liu K, Li X, Fan D, Lu X, Xia Y, Cao Y, Xiao C. Associations of urinary polycyclic aromatic hydrocarbons with albuminuria in U.S. adults, NHANES 2003-2014. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110445. [PMID: 32203772 DOI: 10.1016/j.ecoenv.2020.110445] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) exposure has been shown to be a risk factor for many diseases. However, studies on the association between PAHs exposure and kidney disease are limited. The aim of this study was to explore the association between urinary PAHs and albuminuria based on a national representative sample from the general U.S. METHOD The data utilized were extracted from the 2003-2014 National Health and Nutrition Examination Survey (NHANES). Eight urinary PAHs were detected as PAH metabolites (OH-PAHs). Multivariable logistic regression analyses were applied to examine the association between urinary OH-PAHs and urinary albumin-creatinine ratio (ACR). All models were adjusted for confounding demographic, anthropometric and lifestyle factors. RESULT A total of 8149 NHANES (2003-2014) participants with complete data were eligible. Compared with the lowest quartile, an increased prevalence of high ACR level (>3 mg/mmol) was observed in the participants with the highest quartile of 2-hydroxynaphthalene [OR (95% CI), 1.56 (1.28-1.90), P < 0.001], 3-hydroxyfluorene [OR (95% CI), 1.29 (1.06-1.58), P = 0.011] and 2-hydroxyfluorene [OR (95% CI), 1.47 (1.20-1.80), P < 0.001] levels after adjusting for confounding factors. In subgroup analysis, significantly high OH-PAHs leveland a strong relationship between OH-PAHs and ACR were observed in current smokers in the adjusted model. CONCLUSION High levels of urinary OH-PAHs were positively associated with high levels of ACR in the U.S. POPULATION Our finding provided evidence that PAHs exposure might potentially be related to albuminuria and therefore might have implications for environmental governance and prevention/treatment of this condition.
Collapse
Affiliation(s)
- Jiang Li
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huizhen Fan
- Department of Gastroenterology, People's Hospital of Yichun City, Jiangxi, Yichun, 336000, China
| | - Kunpeng Liu
- Department of Anesthesiology, Peking University International Hospital, Beijing, China
| | - Xiaoya Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Danping Fan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiangchen Lu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Ya Xia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Yongtong Cao
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Cheng Xiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
41
|
Peng M, Lu S, Yu Y, Liu S, Zhao Y, Li C, Ma S. Urinary monohydroxylated polycyclic aromatic hydrocarbons in primiparas from Shenzhen, South China: Levels, risk factors, and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113854. [PMID: 31918135 DOI: 10.1016/j.envpol.2019.113854] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The main objectives of the present study were to investigate urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in 77 primiparas who live in Shenzhen, Guangdong Province, China, and their association with 8-hydroxy-2'-deoxyguanosine (8-OHdG) and human health risks. High detection frequencies of OH-PAHs demonstrated the wide occurrence of chemicals in the human exposure to PAHs. The urinary concentrations of Σ7OH-PAHs ranged from 1.37 to 45.5 ng/mL, and the median concentrations of 1-hydroxynaphthalene (1-OHN), 2-hydroxynaphthalene (2-OHN), 2-hydoxyfluorene (2-OHF), ΣOHPhe (the sum of 1-, 2+ 3-hydroxyphenanthrene), and 1-hydroxypyrene (1-OHP) were 3.00, 2.58, 0.31, 0.44, and 0.51 ng/mL, respectively. In the sum concentration of seven OH-PAHs, 1-OHN accounted for the largest proportion (43.7% of Σ7OH-PAHs), followed by 2-OHN (37.1%), 2-OHF (4.94%), 1-OHP (8.01%), 1-OHPhe (4.79%), and 2+3-OHPhe (1.46%). The present results showed that vehicle exhaust and petrochemical emission are the main sources of PAHs in primiparas in Shenzhen, and inhalation is the most important exposure route. The living conditions have a significant influence on human exposure to PAHs. The concentrations of 8-OHdG were positively correlated with OH-PAH concentrations in urine because evidence suggested that urinary 8-OHdG levels can be considered as a biomarker of oxidative DNA damage. Hazard quotient was used to assess the human health risks from exposure to single compound, and hazard index was used to assess the cumulative risks of the compounds, which demonstrated that the exposure risks from PAHs in primiparas were relatively low.
Collapse
Affiliation(s)
- Mengmeng Peng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yingxin Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Shengtao Ma
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
42
|
Pang Y, Huang Y, Li W, Yang N, Shen X. Electrochemical Detection of Three Monohydroxylated Polycyclic Aromatic Hydrocarbons Using Electroreduced Graphene Oxide Modified Screen‐printed Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.201900692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yue‐Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| | - Yu‐Ying Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| | - Wan‐Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| | - Nian‐Ci Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| | - Xiao‐Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan University Wuxi 214122 P.R. China
| |
Collapse
|
43
|
Oliveira M, Costa S, Vaz J, Fernandes A, Slezakova K, Delerue-Matos C, Teixeira JP, Carmo Pereira M, Morais S. Firefighters exposure to fire emissions: Impact on levels of biomarkers of exposure to polycyclic aromatic hydrocarbons and genotoxic/oxidative-effects. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121179. [PMID: 31522064 DOI: 10.1016/j.jhazmat.2019.121179] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Firefighters represent one of the riskiest occupations, yet due to the logistic reasons, the respective exposure assessment is one of the most challenging. Thus, this work assessed the impact of firefighting activities on levels of urinary monohydroxyl-polycyclic aromatic hydrocarbons (OHPAHs; 1-hydroxynaphthalene, 1-hydroxyacenaphthene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, 3-hydroxybenzo(a)pyrene) and genotoxic/oxidative-effect biomarkers (basal DNA and oxidative DNA damage) of firefighters from eight firehouses. Cardiac frequency, blood pressure and arterial oxygen saturation were also monitored. OHPAHs were determined by liquid-chromatography with fluorescence detection, while genotoxic/oxidative-effect biomarkers were assessed by the comet assay. Concentrations of total OHPAHs were up to 340% higher (p ≤ 0.05) in (non-smoking and smoking) exposed workers than in control subjects (non-smoking and non-exposed to combat activities); the highest increments were observed for 1-hydroxynaphthalene and 1-hydroxyacenaphthene (82-88% of ∑OHPAHs), and for 2-hydroxyfluorene (5-15%). Levels of biomarker for oxidative stress were increased in non-smoking exposed workers than in control group (316%; p ≤ 0.001); inconclusive results were found for DNA damage. Positive correlations were found between the cardiac frequency, ∑OHPAHs and the oxidative DNA damage of non-smoking (non-exposed and exposed) firefighters. Evidences were raised regarding the simultaneous use of these biomarkers for the surveillance of firefighters' health and to better estimate the potential short-term health risks.
Collapse
Affiliation(s)
- Marta Oliveira
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Solange Costa
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - Josiana Vaz
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Adília Fernandes
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Klara Slezakova
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal; LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit - Instituto de Saúde Pública da Universidade do Porto, Rua das Taipas 135, 4050-600, Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
44
|
Association of urinary polycyclic aromatic hydrocarbons and obesity in children aged 3-18: Canadian Health Measures Survey 2009-2015. J Dev Orig Health Dis 2019; 11:623-631. [PMID: 31806062 DOI: 10.1017/s2040174419000825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) may contribute to obesity. Childhood obesity is a strong predictor of adult obesity and morbidity; however, the relationship between PAHs and obesity in young children (e.g., aged 3-5) has not been studied. We examined the association between urinary PAH metabolites and measures of obesity in children. We analyzed data from 3667 children aged 3-18 years who participated in the Canadian Health Measures Survey (CHMS, 2009-2015). We ran separate multivariable linear models to estimate the association between quartiles of PAH metabolites and each of body mass index (BMI) percentile, waist circumference (WC), and waist-to-height ratio (WHtR) in the total population, as well as in the age subgroups 3-5, 6-11, and 12-18, adjusting for age, sex, ethnicity, education, income quintile, diet, creatinine, and exposure to environmental tobacco smoke. A multinomial logistic regression model estimated adjusted odds ratios for risk of central obesity. BMI, WC, and WHtR were positively associated with total PAH and naphthalene metabolites in the total population aged 3-18 and in age groups 6-11 and 12-18. In 3-5 year olds, WHtR, but not BMI, was significantly associated with total PAH, naphthalene, and phenanthrene metabolites. Overall, those in the highest quartile for naphthalene or total PAH metabolites had three times greater odds of having central obesity compared with those in the lowest quartile. Urinary PAH metabolites are associated with WHtR, an indicator of central obesity and predictor of health risks associated with obesity, in children as young as 3-5.
Collapse
|
45
|
Dai Y, Huo X, Cheng Z, Wang Q, Zhang Y, Xu X. Alterations in platelet indices link polycyclic aromatic hydrocarbons toxicity to low-grade inflammation in preschool children. ENVIRONMENT INTERNATIONAL 2019; 131:105043. [PMID: 31352259 DOI: 10.1016/j.envint.2019.105043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Environmental exposure to carcinogenic polycyclic aromatic hydrocarbons (PAHs) can disturb the immune response. However, the effect of PAHs on low-grade inflammation related to platelets in humans is unknown. OBJECTIVES We investigated the association of PAH exposure with low-grade inflammation and platelet parameters in healthy preschoolers. METHODS The present study recruited 239 participants, aged 2-7 years, from an electronic-waste (e-waste)-exposed (n = 118) and a reference (n = 121) area. We measured ten urinary PAH metabolites, four types of immune cells and cytokines, and seven platelet parameters, and compared their differences between children from the two groups. Spearman correlation analysis was performed to explore the potential risk factors for PAH exposure and the associations between urinary monohydroxylated PAHs (OH-PAHs) and biological parameters. Associations between urinary PAH metabolites and platelet indices were analyzed using quantile regression models. Mediation analysis was used to understand the relationship between urinary total hydroxynaphthalene (ΣOHNa) and interleukin (IL)-1β through seven platelet indices, as mediator variables. RESULTS We found higher urinary monohydroxylated PAH (OH-PAH) concentrations, especially 1-hydroxynaphthalene (1-OHNa) and 2-hydroxynaphthalene (2-OHNa), in children from the e-waste-exposed group than in the reference group. These were closely associated with child personal habits and family environment. A decreased lymphocyte ratio and increased pro-inflammatory cytokines, such as gamma interferon-inducible protein (IP)-10 and IL-1β, were found in the e-waste-exposed children. After adjustment for confounding factors, significantly negative correlations were found between levels of mean platelet volume (MPV), platelet distribution width (PDW), platelet-large cell ratio (P-LCR) and ratio of mean platelet volume to platelet count (MPVP) and OH-PAHs. In addition, ΣOHNa was positively associated with IL-1β mediated through MPV, PDW, P-LCR, and ratio of platelet count to lymphocyte count (PLR). CONCLUSIONS Platelet indices were significantly associated with the changes in urinary OH-PAH levels, which may can be regarded as effective biomarkers of low-grade inflammation resulting from low PAH exposure in healthy children.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangzhou and Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
46
|
Mansouri V, Ebrahimpour K, Poursafa P, Riahi R, Shoshtari-Yeganeh B, Hystad P, Kelishadi R. Exposure to phthalates and bisphenol A is associated with higher risk of cardiometabolic impairment in normal weight children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18604-18614. [PMID: 31055746 DOI: 10.1007/s11356-019-05123-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Some obese individuals have normal metabolic profile, and some normal-weight persons have impaired metabolic status. Our hypothesis was that one of the potential underlying factors for such differences in cardiometabolic profiles might be the exposure to some environmental chemicals. This study aimed to investigate the association of serum bisphenol A (BPA) and phthalate metabolites with cardiometabolic risk factors in children and adolescents independent of their weight status. This case-control study was conducted on a subsample of 320 participants of a national school-based surveillance program in Iran. We measured serum BPA and phthalate metabolites by gas chromatography mass spectrophotometry. We compared them in children and adolescents with and without excess weight and those with and without cardiometabolic risk factors (80 in each group). We categorized the concentrations of chemicals to tertiles and then we applied logistic regression models after adjustment for potential confounding factors. The concentrations of BPA and some metabolites of phthalates were significantly different in the four groups studied. MEHP concentration was associated with higher odds ratio of cardiometabolic risk factors in participants with normal weight (OR, 95% CI 2.82, 1.001-7.91) and those with excess weight (OR, 95% CI 3.15, 1.27-7.83). MBP concentration increased the odds ratio of cardiometabolic risk factors only in normal weight children and adolescents (OR, 95% CI 6.59, 2.33-18.59, P < 0.001). In participants without cardiometabolic risk factor, MMP and MEHHP were significantly associated with increased risk of excess weight (OR, 95% CI 5.90, 1.21-28.75 and 7.82, 1.5-41.8, respectively). This study showed that the association of BPA and phthalate with cardiometabolic risk factors is independent of the weight status. Our findings suggest that the metabolic impairment in some normal weight children and normal metabolic profile of some obese children can be, in part, related to exposure to these environmental chemicals. Graphical abstract.
Collapse
Affiliation(s)
- Vahid Mansouri
- Medical Student, Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Health Engineering Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environment Health Engineering Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Riahi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Health Engineering Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Roya Kelishadi
- Department of Pediatrics, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Hezarjerib Ave, Isfahan, Iran.
| |
Collapse
|
47
|
Amin MM, Ebrahim K, Hashemi M, Shoshtari-Yeganeh B, Rafiei N, Mansourian M, Kelishadi R. Association of exposure to Bisphenol A with obesity and cardiometabolic risk factors in children and adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2019; 29:94-106. [PMID: 30203985 DOI: 10.1080/09603123.2018.1515896] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, the association of exposure to Bisphenol A (BPA) with obesity and cardiometabolic risk factors was investigated on 132 children and adolescents aged 6-18 years living in Isfahan, Iran. Potential contributors to BPA exposure were assessed by a questionnaire. Total BPA was detected in urine samples of all participants without significant difference in boys and girls. The mean body mass index (BMI) and waist circumference (WC) increased significantly across the BPA tertiles (p for trend = < 0.001). Similar trend was documented for systolic blood pressure (SBP) and diastolic blood pressure (DBP) as well as fasting blood sugar. The risk of obesity was 12.48 times higher in participants in the third tertile of BPA than in others (95% CI: 3.36-46.39, p < 0.001). The current study showed significant association between BPA exposure with obesity and some cardiometabolic risk factors in children and adolescents, however, further longitudinal studies are necessary to evaluate the clinical effects of this finding. Abbreviations: BMI: Body Mass Index; BPA: Bisphenol A; BSTFA: N, O-Bistrifluoroacetamide; CDC: Centers for Disease Control and Prevention; CI: Circumference Interval; DBP: Diastolic Blood Pressure; DLLME: Dispersive liquid-liquid microextraction method; FBS: Fasting Blood Glucose; HDL: high-density lipoprotein cholesterol were; LDL: low-density lipoprotein cholesterol; OR: Odd Ratio; PA: Physical Activity; SBP: Systolic Blood Pressure; TC: total cholesterol; TG: triglycerides; WC: Waist Circumference.
Collapse
Affiliation(s)
- Mohammad Mehdi Amin
- a Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease , Isfahan University of Medical Sciences , Isfahan , Iran
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Karim Ebrahim
- a Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease , Isfahan University of Medical Sciences , Isfahan , Iran
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Majid Hashemi
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
- c Student Research Committee , Isfahan University of Medical Sciences , Isfahan , Iran
- d Environmental Health engineering, school of health , Kerman university of medical sciences , Kerman , Iran
| | - Bahareh Shoshtari-Yeganeh
- a Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease , Isfahan University of Medical Sciences , Isfahan , Iran
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Nasim Rafiei
- a Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease , Isfahan University of Medical Sciences , Isfahan , Iran
- b Department of Environmental Health Engineering, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Marjan Mansourian
- e Department of Biostatistics and Epidemiology, School of Health , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Roya Kelishadi
- f Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease , Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
48
|
Guo Y, Cao L, Zhou Y, Xiao L, Zhang X, Yuan J, Chen W. Cardiometabolic traits mediated the relationship from urinary polycyclic aromatic hydrocarbons metabolites to heart rate variability reduction: A community-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:28-36. [PMID: 30172123 DOI: 10.1016/j.envpol.2018.08.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 07/27/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) exposure was related with metabolic syndrome (MetS) and heart rate variability (HRV) reduction, and HRV was also affected by cardiometabolic traits. However, the role of cardiometabolic traits in the associations from PAHs exposures to HRV was largely unknown. We conducted this study to investigate whether the relationship between PAHs exposure and HRV reduction was mediated by cardiometabolic traits. Levels of urinary polycyclic aromatic hydrocarbons metabolites (OH-PAHs), 10min-HRV, and metabolic traits were accurately measured for 2476 participants from Wuhan-Zhuhai (WHZH) cohort. Single mediator and multiple mediator models were used to evaluate the mediation effects of cadiometabolic traits. The concentrations of ΣOH-PAHs ranged from 4.20 to 8.63 mg/mmol Cr. When compared with the lowest tertile, ΣOH-PAHs in the highest tertile were significantly related with 20% (95% confidence interval [95%CI]:1%, 40%), 35% (95%CI: 14%, 56%), 22% (95%CI: 1%, 44%), and 38% (95%CI: 9%, 68%) decreases in very low frequency (VLF), low frequency (LF), high frequency (HF), and total power (TP) for participants with MetS, respectively. No statistically significant associations between ΣOH-PAHs and HRV indices were observed for participants without MetS. Similar results were found when we investigated the relationships between OH-PAHs and HRV indices by three groups of OH-PAHs (including total hydroxynaphthalene [ΣOHNa], total hydroxy fluorene [ΣOHFlu], and total hydroxyphenanthrene [ΣOHPh] metabolites). Further, mediation analysis suggested that cardiometabolic traits, including fasting glucose (GLU), high density lipoprotein (HDL), and blood pressure partially mediated the relationship from ΣOH-PAHs to HRV reduction. GLU was the strongest mediator, with mediation percentages of 15.70% for VLF, 14.70% for LF, 43.03% for HF, and 5.61% for TP. Our study found that the relationships between OH-PAHs and HRV reduction differed among participants with and without MetS, and these relationships were found to be partially mediated by cardiometabolic traits, especially fasting glucose. Further studies are encouraged to validate our findings and investigate potential mechanisms.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health in Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health in Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health in Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Xiao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health in Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health in Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health in Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health in Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|