1
|
Zhang H, Tang M, Liu Q, Wu D, Sun B, Dong J, Guan L, Luo J, Zeng M. PAT exposure caused human hepatocytes apoptosis and induced mice subacute liver injury by activating oxidative stress and the ERS-associated PERK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177003. [PMID: 39433224 DOI: 10.1016/j.scitotenv.2024.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
With the widespread use of antimony compounds in synthetic materials and processing, the occupational exposure and environmental pollution caused by antimony have attracted the attention of researchers. Studies have shown that antimony compounds can cause liver damage, but the mechanism has not yet been elucidated. In this study, we used the trivalent potassium antimony tartrate (PAT) to infect L02 hepatocytes and Kunming (KM) mice to establish an antimony-induced apoptosis model of L02 cells and a subacute liver injury model of KM mice. We found that PAT exposure caused hepatocyte apoptosis and was accompanied by oxidative stress and endoplasmic reticulum stress (ERS), and the ERS-associated PERK pathway was activated. Further experimental results showed that N-acetyl-l-cysteine (NAC) pretreatment or silencing of the PERK gene in L02 cells reduced PAT-induced apoptosis. The activity of SOD and CAT in treated L02 cells was increased, the malondialdehyde content in L02 cells and liver tissues was decreased, and the content of ERS-related proteins GRP78 and CHOP, as well as the content of PERK-pathway-related proteins p-PERK/PERK, p-eif2α/eif2α and ATF4 protein were significantly reduced. Overall, PAT exposure triggered hepatocyte apoptosis and liver injury by inducing oxidative stress and activating the ERS-associated PERK pathway; however, this effect could be alleviated by NAC intervention or silencing of PERK in hepatocytes.
Collapse
Affiliation(s)
- Hualing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Meng Tang
- Center for Disease Control and Prevention, Jiulongpo District, Chongqing 400050, PR China
| | - Qin Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Die Wu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Bing Sun
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jingbang Dong
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jianlan Luo
- Institute of Geophysical & Geochemical Exploration of Hunan, Changsha 411100, PR China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
2
|
Feng B, Tang P, He S, Peng Z, Mo Y, Zhu L, Wei Q. Associations between antimony exposure and glycated hemoglobin levels in adolescents aged 12-19 years: results from the NHANES 2013-2016. Front Public Health 2024; 12:1439034. [PMID: 39484344 PMCID: PMC11524935 DOI: 10.3389/fpubh.2024.1439034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Objective This study aimed to investigate the association between antimony (Sb) exposure and glycated hemoglobin (HbA1c) levels in adolescents. Methods A cross-sectional study of 751 adolescents aged 12-19 years was conducted via the National Health and Nutrition Examination Survey (NHANES, 2013-2016). Survey-weighted linear regression and restricted cubic spline (RCS) analyses were applied to evaluate the relationship of urinary Sb exposure with HbA1c. Results A significant relationship was observed between urinary Sb concentrations and HbA1c levels (percent change: 0.93; 95% CI: 0.42, 1.45) after full adjustment. After converting urinary Sb levels to a categorical variable by tertiles (T1-T3), the highest quantile was associated with a significant increase in HbA1c (percent change: 1.45; 95% CI: 0.38, 2.53) compared to T1. The RCS models showed a monotonically increasing relationship of urinary Sb with HbA1c. Subgroup analyses revealed a sex-specific relationship between urinary Sb exposure and HbA1c with a significant positive association in males and a non-significant positive association in females. Sensitivity analyses further confirmed the relationship between urinary Sb and HbA1c, even after excluding participants who were overweight or obese (percent change: 1.58%, 95% CI: 0.88, 2.28) and those with serum cotinine levels ≥ 1 ng/mL (percent change: 1.14%, 95% CI: 0.49, 1.80). Conclusion Our findings indicated that increased Sb exposure may correlate with higher HbA1c levels, especially in male adolescents. More studies are needed to further explore and validate the potential mechanisms.
Collapse
Affiliation(s)
- Baoying Feng
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Peng Tang
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Sheng He
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, Guangxi, China
| | - Zhenren Peng
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, Guangxi, China
| | - Yan Mo
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Liqiong Zhu
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qiufen Wei
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Birth Defects Research Laboratory, Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Pediatric Disease, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
3
|
Wang X, Wu X, Ma W, Wang Q, Chen Y, Zhao X, Lu Y. Antimony exposure affects oocyte quality and early embryo development via excessive mitochondrial oxidation and dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117084. [PMID: 39305772 DOI: 10.1016/j.ecoenv.2024.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/17/2024]
Abstract
Antimony (Sb) is a metalloid, widely presents in the environment and associates with human health. In this study, we aimed to decipher whether Sb exposure is harmful to female reproduction and explore the underlying mechanisms. The ICR mice were exposed to 0, 5, 10, and 20 mg/kg acetate potassium Sb tartrate trihydrate by intraperitoneal injection for 10 days, then mouse oocytes were collected for further analysis. We first found a significant decrease in the proportion of MII-stage oocytes obtained from supernumerary ovulation in the fallopian tubes and early embryo development under Sb treatment. Then a series of tests showed Sb affects oocyte maturation by damaging the cytoskeleton of microtubule and actin. Moreover, the abnormal distribution of cortical granules and their component Ovastacin in oocytes, combined with reduced expression levels of Juno, affected sperm-oocyte binding and led to fertilization failure. Based on the sequencing results and experimental validation, it was demonstrated that Sb exposure impairs mitochondrial distribution and membrane potential, elevated levels of mitochondrial superoxide, finally caused energy supply deficits. Mitochondrial damage in oocytes after Sb exposure results in the excessive oxidative stress and early apoptosis. Taken together, these data suggest that Sb exposure decreases oocyte quality and female fertilization ability by impairing mitochondrial function and redox perturbation.
Collapse
Affiliation(s)
- Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Qingxin Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Yuqi Chen
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China.
| |
Collapse
|
4
|
Huang J, Zhang Y, King L, Wang J, Nie P, Xie Q, Chen H, Wan X, Li Z, Zhao Y, Xu H. Associations of urinary heavy metals with age at menarche, age at menopause, and reproductive lifespan: A cross-sectional study in U.S. women. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116950. [PMID: 39213750 DOI: 10.1016/j.ecoenv.2024.116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/24/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Female reproductive timing and lifespan, with a close relation to long-term health outcomes, have been altered in U.S. women over the past decades. However, epidemiologic evidence of the potential causes was lacking. On the basis of 1981 naturally postmenopausal women from the National Health and Nutrition Examination Survey 1999-2020, this study aimed to investigate the associations of urinary heavy metals with age at menarche, age at menopause, and reproductive lifespan. Multivariate generalized linear regression and addictive models were used for single metal exposure analysis, and weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models were employed for mixed exposures. In the fully adjusted model, higher urinary antimony concentration was associated with earlier age at menarche of 0.137 years, while higher concentrations of cadmium, cesium, lead, antimony, and thallium were associated with delayed age at menopause of 0.396-0.687 years. Additionally, urinary barium, cesium, lead, antimony, and thallium levels were associated with longer reproductive lifespan ranging between 0.277 and 0.713 years. Both WQS and BKMR models showed significantly positive associations of metal mixtures with age at menopause (β: 0.667, 95 % CI: 0.120-1.213) and reproductive lifespan (β: 0.686, 95 % CI: 0.092-1.280), with cadmium and lead identified as principal contributors. In conclusion, heavy metal exposures were associated with reproductive timing and lifespan of U.S. women, highlighting the need for further prevention and intervention strategies.
Collapse
Affiliation(s)
- Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China; Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Yiwei Zhang
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Lei King
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wang
- Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Qiqi Xie
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Hong Chen
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xinxia Wan
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zengming Li
- Jiangxi Key Laboratory of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Yan Zhao
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China.
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Soomro MH, England-Mason G, Reardon AJF, Liu J, MacDonald AM, Kinniburgh DW, Martin JW, Dewey D. Maternal exposure to bisphenols, phthalates, perfluoroalkyl acids, and trace elements and their associations with gestational diabetes mellitus in the APrON cohort. Reprod Toxicol 2024; 127:108612. [PMID: 38782143 DOI: 10.1016/j.reprotox.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The increasing global prevalence of gestational diabetes mellitus (GDM) has been hypothesized to be associated with maternal exposure to environmental chemicals. Here, among 420 women participating in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort study, we examined associations between GDM and second trimester blood or urine concentrations of endocrine disrupting chemicals (EDCs): bisphenol-A (BPA), bisphenol-S (BPS), twelve phthalate metabolites, eight perfluoroalkyl acids (PFAAs), and eleven trace elements. Fifteen (3.57%) of the women were diagnosed with GDM, and associations between the environmental chemical exposures and GDM diagnosis were examined using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. In single chemical exposure models, BPA and mercury were associated with increased odds of GDM, while a significant inverse association was observed for zinc. Double-LASSO regression analysis selected mercury (AOR: 1.51, CI: 1.12-2.02), zinc (AOR: 0.017, CI: 0.0005-0.56), and perfluoroundecanoic acid (PFUnA), a PFAAs, (AOR: 0.43, CI: 0.19-0.94) as the best predictors of GDM. The combined data for this Canadian cohort suggest that second trimester blood mercury was a robust predictor of GDM diagnosis, whereas blood zinc and PFUnA were protective factors. Research into mechanisms that underlie the associations between mercury, zinc, PFUnA, and the development of GDM is needed.
Collapse
Affiliation(s)
- Munawar Hussain Soomro
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anthony J F Reardon
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiaying Liu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - David W Kinniburgh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada; Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Analytical Chemistry and Environmental Sciences, Stockholm University, Stockholm, Sweden
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Meng C, Gu C, Cai C, He S, Lai D, Qiu Q. Associations of heavy metal exposure with diabetic retinopathy in the U.S. diabetic population: a cross-sectional study. Front Public Health 2024; 12:1401034. [PMID: 39148656 PMCID: PMC11324498 DOI: 10.3389/fpubh.2024.1401034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Background Mounting evidence suggests a correlation between heavy metals exposure and diabetes. Diabetic retinopathy (DR) is a prevalent and irreversible complication of diabetes that can result in blindness. However, studies focusing on the effects of exposure to heavy metals on DR remain scarce. Thus, this study aimed to investigate the potential correlation between heavy metals exposure and DR. Methods A total of 1,146 diabetics from the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018 were included in this study. Heavy metal levels were measured via urine testing. Weighted logistic regression, Bayesian kernel machine regression (BKMR), weighted quantile sum (WQS) regression, and restricted cubic spline (RCS) were utilized to investigate the potential relationships between exposure to 10 heavy metals and DR. Finally, subgroup analysis was conducted based on the glycemic control status. Results Among the 1,146 participants, 239 (20.86%) were diagnosed with DR. Those with DR had worse glycemic control and a higher prevalence of chronic kidney disease compared to those without DR. Moreover, both the WQS regression and BKMR models demonstrated a positive relationship between exposure to mixed heavy metals and the risk of DR. The results of weighted logistic regression revealed a positive correlation between cobalt (Co) and antimony (Sb) exposure and the risk of DR (OR = 1.489, 95%CI: 1.064-2.082, p = 0.021; OR = 1.475, 95% CI: 1.084-2.008, p = 0.014), while mercury (Hg) exposure was found to promote DR exclusively in the group with good glycemic control (OR = 1.509, 95% CI: 1.157-1.967, p = 0.003). These findings were corroborated by the results of the RCS analysis. Conclusion Heavy metal exposure is associated with an increased risk of DR, especially Sb, Co, and Hg exposure. Nevertheless, well-designed prospective studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Chunren Meng
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases, Shanghai, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases, Shanghai, China
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Chunyang Cai
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases, Shanghai, China
| | - Shuai He
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases, Shanghai, China
| | - Dongwei Lai
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases, Shanghai, China
- Department of Ophthalmology, Shigatse People's Hospital, Shigatse, Xizang, China
- High Altitude Ocular Disease Research Center of Shigatse People's Hospital and Tongren Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Wu W, Ren J, Wang J, Wang J, Yu D, Zhang Y, Zeng F, Huang B. Metalloestrogens exposure and risk of gestational diabetes mellitus: Evidence emerging from the systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 248:118321. [PMID: 38307186 DOI: 10.1016/j.envres.2024.118321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Metalloestrogens are metals and metalloid elements with estrogenic activity found everywhere. Their impact on human health is becoming more apparent as human activities increase. OBJECTIVE Our aim is to conduct a comprehensive systematic review and meta-analysis of observational studies exploring the correlation between metalloestrogens (specifically As, Sb, Cr, Cd, Cu, Se, Hg) and Gestational Diabetes Mellitus (GDM). METHODS PubMed, Web of Science, and Embase were searched to examine the link between metalloestrogens (As, Sb, Cr, Cd, Cu, Se, and Hg) and GDM until December 2023. Risk estimates were derived using random effects models. Subgroup analyses were conducted based on study countries, exposure sample, exposure assessment method, and detection methods. Sensitivity analyses and adjustments for publication bias were carried out to assess the strength of the findings. RESULTS Out of the 389 articles identified initially, 350 met our criteria and 33 were included in the meta-analysis, involving 141,175 subjects (9450 cases, 131,725 controls). Arsenic, antimony, and copper exposure exhibited a potential increase in GDM risk to some extent (As: OR = 1.28, 95 % CI [1.08, 1.52]; Sb: OR = 1.73, 95 % CI [1.13, 2.65]; Cu: OR = 1.29, 95 % CI [1.02, 1.63]), although there is a high degree of heterogeneity (As: Q = 52.93, p < 0.05, I2 = 64.1 %; Sb: Q = 31.40, p < 0.05, I2 = 80.9 %; Cu: Q = 21.14, p < 0.05, I2 = 71.6 %). Conversely, selenium, cadmium, chromium, and mercury exposure did not exhibit any association with the risk of GDM in our study. DISCUSSION Our research indicates that the existence of harmful metalloestrogens in the surroundings has a notable effect on the likelihood of GDM. Hence, we stress the significance of environmental elements in the development of GDM and the pressing need for relevant policies and measures.
Collapse
Affiliation(s)
- Wanxin Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junjie Ren
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Juan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiamei Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Deshui Yu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Zhang
- School of Biology and Food Engineering, Hefei Normal University, Hefei, 230092, Anhui, China.
| | - Fa Zeng
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518109, Guangdong, China.
| | - Binbin Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, MOE Key Laboratory of Population Health Across Life Cycle, NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Li L, Xu J, Zhang W, Wang Z, Liu S, Jin L, Wang Q, Wu S, Shang X, Guo X, Huang Q, Deng F. Associations between multiple metals during early pregnancy and gestational diabetes mellitus under four statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96689-96700. [PMID: 37578585 DOI: 10.1007/s11356-023-29121-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy. Metal exposure is an emerging factor affecting the risk of GDM. However, the effects of metal mixture on GDM and key metals within the mixture remain unclear. This study was aimed at investigating the association between metal mixture during early pregnancy and the risk of GDM using four statistical methods and further at identifying the key metals within the mixture associated with GDM. A nested case-control study including 128 GDM cases and 318 controls was conducted in Beijing, China. Urine samples were collected before 13 gestational weeks and the concentrations of 13 metals were measured. Single-metal analysis (unconditional logistic regression) and mixture analyses (Bayesian kernel machine regression (BKMR), quantile g-computation, and elastic-net regression (ENET) models) were applied to estimate the associations between exposure to multiple metals and GDM. Single-metal analysis showed that Ni was associated with lower risk of GDM, while positive associations of Sr and Sb with GDM were observed. Compared with the lowest quartile of Ni, the ORs of GDM in the highest quartiles were 0.49 (95% CI 0.24, 0.98). In mixture analyses, Ni and Mg showed negative associations with GDM, while Co and Sb were positively associated with GDM in BKMR and quantile g-computation models. No significant joint effect of metal mixture on GDM was observed. However, interestingly, Ni was identified as a key metal within the mixture associated with decreased risk of GDM by all three mixture methods. Our study emphasized that metal exposure during early pregnancy was associated with GDM, and Ni might have important association with decreased GDM risk.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jialin Xu
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
9
|
Winter M, Lessmann F, Harth V. A method for reliable quantification of mercury in occupational and environmental medical urine samples by inductively coupled plasma mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2030-2038. [PMID: 37060114 DOI: 10.1039/d2ay02051c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Over the last years, inductively coupled plasma mass spectrometry (ICP-MS) has been applied as a method for human-biomonitoring of metals in the concentration range of occupational and environmental medicine. In large scale routine monitoring, the determination of mercury (Hg) by ICP-MS remains challenging due to several reasons. Amongst others, stability of dissolved Hg and avoiding memory effects are the key facts for reliable quantification. To address these issues, we developed a robust approach for biomonitoring of mercury in human urine samples by ICP-MS. Using a solution containing HNO3, HCl and thiourea, prepared samples and calibrators were stabilized for up to 72 h. A rinse time of only 30 seconds efficiently prevented contamination of consecutive samples with Hg concentrations up to 30 μg L-1, hence significantly reducing acquisition times compared to published methods. Recovery experiments revealed iridium as an ideal internal standard to compensate matrix effects independently from creatinine concentration. Recoveries of 95.0-104.0% were obtained for Hg levels covering the range of biomonitoring guidance values established by the German Human-Biomonitoring Commission. Excellent intra-day precision and inter-day precision of ≤3.0% for two different Hg levels were achieved. The detection and quantification limit accounted for 21.7 ng L-1 and 65.6 ng L-1, respectively, enabling reliable quantification even in the range of environmental background exposures. Additionally, the method was externally validated by successful participation in the inter-laboratory comparison program G-EQUAS. With the developed method, we hence provide a sensitive and robust tool for mercury exposure assessments in future large scale human-biomonitoring studies.
Collapse
Affiliation(s)
- Martin Winter
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Centre Hamburg-Eppendorf (UKE), Marckmannstraße 129b, Haus 3, 20539, Hamburg, Germany.
| | - Frederik Lessmann
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Centre Hamburg-Eppendorf (UKE), Marckmannstraße 129b, Haus 3, 20539, Hamburg, Germany.
| | - Volker Harth
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Centre Hamburg-Eppendorf (UKE), Marckmannstraße 129b, Haus 3, 20539, Hamburg, Germany.
| |
Collapse
|
10
|
Cao X, Wu M, Zhang G, Lin L, Tu M, Xiao D, Zhong C, Zhang H, Yang S, Liu J, Zhang X, Chen X, Wang X, Zhang Y, Xu S, Zhou X, Yang X, Hao L, Yang N. Longitudinal plasma magnesium status during pregnancy and the risk of gestational diabetes mellitus: a prospective cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65392-65400. [PMID: 37084048 DOI: 10.1007/s11356-023-26855-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Emerging evidence has shown that magnesium (Mg) was associated with type 2 diabetes while few focused on abnormal glucose metabolism during pregnancy. The study is aimed at investigating the association between longitudinal changes in plasma Mg during pregnancy and subsequent risk of gestational diabetes (GDM) and exploring the possible influence of iron supplementation on the changes of plasma Mg levels. One thousand seven hundred fifty-six pregnant women from Tongji Maternal and Child Health Cohort (TMCHC) were involved. Blood samples were collected at gestational weeks 17.0 ± 0.9 and later 26.2 ± 1.4. Plasma Mg was measured by inductively coupled plasma mass spectrometry (ICP-MS) with decline rates calculated. Information on general characteristics and iron supplementation was collected by questionnaires. Oral glucose tolerance test (OGTT) was conducted at 24-28 gestational weeks to diagnose GDM. Poisson regression with robust error variance was used to estimate relative risks (RR) of GDM. Median concentrations of plasma Mg were 0.69 mmol/L and 0.63 mmol/L respectively at two collections. The prevalence of hypomagnesemia at the first collection was 73% and associated with a 1.59 (95%CI: 1.07, 2.37) fold risk of GDM. Adjusted RRs were 1.74 (95%CI: 1.06, 2.83) and 2.44 (95%CI: 1.54, 3.85) for women with hypomagnesemia and followed more tertile (T2 and T3 vs. T1) of Mg decrement. Iron supplementation above 30 mg/day was found associated with more Mg decrement (25.5% and 27.5% in T2 and T3 vs. 19.5% in T1). In conclusion, hypomagnesemia during pregnancy is prevalent and associated with increased GDM risk, especially in women followed by more plasma Mg decrement during pregnancy. High-dose iron supplementation may involve more plasma Mg decrement.
Collapse
Affiliation(s)
- Xiyu Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Meng Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Lixia Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Menghan Tu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Daxiang Xiao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Siyu Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Jin Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiaoyi Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Shangzhi Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xuezhen Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
11
|
Tan Y, El-Kersh K, Watson SE, Wintergerst KA, Huang J, Cai L. Cardiovascular Effects of Environmental Metal Antimony: Redox Dyshomeostasis as the Key Pathogenic Driver. Antioxid Redox Signal 2023; 38:803-823. [PMID: 36424825 PMCID: PMC10402706 DOI: 10.1089/ars.2022.0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Significance: Cardiovascular diseases (CVDs) are the leading cause of death worldwide, which may be due to sedentary lifestyles with less physical activity and over nutrition as well as an increase in the aging population; however, the contribution of pollutants, environmental chemicals, and nonessential metals to the increased and persistent CVDs needs more attention and investigation. Among environmental contaminant nonessential metals, antimony has been less addressed. Recent Advances: Among environmental contaminant nonessential metals, several metals such as lead, arsenic, and cadmium have been associated with the increased risk of CVDs. Antimony has been less addressed, but its potential link to CVDs is being gradually recognized. Critical Issues: Several epidemiological studies have revealed the significant deleterious effects of antimony on the cardiovascular system in the absence or presence of other nonessential metals. There has been less focus on whether antimony alone can contribute to the pathogenesis of CVDs and the proposed mechanisms of such possible effects. This review addresses this gap in knowledge by presenting the current available evidence that highlights the potential role of antimony in the pathogenesis of CVDs, most likely via antimony-mediated redox dyshomeostasis. Future Directions: More direct evidence from preclinical and mechanistic studies is urgently needed to evaluate the possible roles of antimony in mitochondrial dysfunction and epigenetic regulation in CVDs. Antioxid. Redox Signal. 38, 803-823.
Collapse
Affiliation(s)
- Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
| | - Karim El-Kersh
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sara E. Watson
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
| | - Kupper A. Wintergerst
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jiapeng Huang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Radiation Oncology; University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Xu P, Lai S, Wu L, Chen W, Chen Y, Xu D, Xiang J, Cheng P, Chen Z, Wang X, Lou X, Tang J. Insights into the health status of the general population living near an electroplating industry zone: metal elevations and renal impairment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31905-31915. [PMID: 36459323 DOI: 10.1007/s11356-022-24411-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
A cross-sectional study was conducted in 2016 in Zhejiang Province, China, to evaluate the body burdens of metals and metalloids associated with renal dysfunction in populations living near electroplating industries. We recruited 236 subjects and performed physical examinations, determined the blood and urinary levels of arsenic (As), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), and selenium (Se) by an inductively coupled plasma mass spectrometer (ICP-MS), and measured three renal impairment biomarkers, namely nacetyl-β-D-glucosaminidase (NAG), retinol-binding protein (RBP), and β2-microglobulin (BMG). The proportion of abnormal nasal symptoms in the exposure group (10.1%) was much higher than in the control group (0; p < 0.05). The blood and urinary levels of As, Cd, and Se in the exposure group were significantly higher than those in the control group (p < 0.05). The blood levels of Mn and Pb, as well as the urinary levels of Cr and Ni, were significantly higher in the exposure group than in the control group (p < 0.05). The exposure group demonstrated higher levels of NAG, RBP, and BMG than the control group (0.51 vs. 0.14 mg/g creatinine, 12.79 vs. 9.26 IU/g creatinine, and 1.39 vs. 0.78 mg/g creatinine, respectively; p < 0.05). Urinary BMG was positively correlated with urinary Cd levels (r = 0.223, p < 0.05), while urinary RBP was correlated with blood Cd levels (r = 0.151, p < 0.05) and urinary Cd, Cr, Ni, and Se levels (r = 0.220, 0.303, 0.162, and 0.306, respectively; p < 0.05). In conclusion, our study indicated that a population living in the vicinity of electroplating industries had high body burdens of certain metals and metalloids associated with non-negligible renal dysfunction.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Shiming Lai
- Quzhou Center for Disease Control and Prevention, 154 Xi'an Road, Xin'an District, Quzhou, 324003, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Weizhong Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| |
Collapse
|
13
|
Wei L, Chen X, Huang H, Zhang R, Shen S, Duan W, Su L, Yu H, Christiani DC, Wei Y, Chen F. Novel trace elements detected in multiple stages of pregnancy impact neonatal birth weight by affecting gestational age. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114475. [PMID: 38321690 DOI: 10.1016/j.ecoenv.2022.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
Prenatal exposure to elements may be associated with birth weight via shortening of gestation. This study aimed to determine if prenatal exposure is associated with birth weight, and to explore the potential mediating role of gestational age in the association. Within an established Bangladesh prospective birth cohort (2008-2011), we analyzed the concentrations of 15 elements in maternal serum samples collected during the first (n = 780) and second (n = 610) trimesters using inductively coupled plasma mass spectrometry. Mediation analyses explored the relationships between these elements, gestational age, and birth weight. Serum concentrations of cobalt (Co) (first trimester: b = 56.5; 95% confidence interval [CI]: 13.5-99.0; false discovery rate [FDR]-q = 0.035; second trimester: b = 73.3; 95% CI: 20.4-130.2; FDR-q = 0.037) and antimony (Sb) in both trimesters (first trimester:b = 92.1; 95% CI: 66.0-118.9; FDR-q < 0.001; second trimester: b = 93.3; 95% CI: 67.3-118.4; FDR-q < 0.001), and strontium (Sr) in the first trimester (b = 142.4; 95% CI: 41.6-247.9; FDR-q = 0.035) were positively associated with birth weight, while negative associations were observed for barium (Ba) (first trimester: b = -154.8; 95% CI: -217.9 to 91.8; FDR-q <0.001; second trimester: b = -26.7; 95% CI: -44.9 to 10.2; FDR-q < 0.001). These elements act partially by affecting gestation age and appear to have heightened impact among smaller infants. Further research is needed to determine the biological underpinnings of these effects, which may inform strategies to avert low birth weight.
Collapse
Affiliation(s)
- Liangmin Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hui Huang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Sipeng Shen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiwei Duan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Hao Yu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - David C Christiani
- China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yongyue Wei
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China; China International Cooperation Center for Environment and Human Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
14
|
Tang P, He W, Shao Y, Liu B, Huang H, Liang J, Liao Q, Tang Y, Mo M, Zhou Y, Li H, Huang D, Liu S, Zeng X, Qiu X. Associations between prenatal multiple plasma metal exposure and newborn telomere length: Effect modification by maternal age and infant sex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120451. [PMID: 36270567 DOI: 10.1016/j.envpol.2022.120451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Exposure to metals during pregnancy may affect maternal and infant health. However, studies on the combined effects of metals on the telomere length (TL) of newborns are limited. A prospective cohort study was conducted among 1313 mother-newborn pairs in the Guangxi Zhuang Birth Cohort. The concentrations of metals in maternal plasma during the first trimester were measured using inductively coupled plasma-mass spectrometry. We explored the associations between nine plasma metals and newborn TL using generalized linear models (GLMs), principal component analysis (PCA), quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR). The GLMs revealed the inverse association between plasma arsenic (percent change, -5.56%; 95% CI: -7.69%, -3.38%) and barium concentrations (-9.84%; 95% CI: -13.81%, -5.68%) and newborn TL. Lead levels were related to significant decreases in newborn TL only in females. The PCA revealed a negative association between the PC3 and newborn TL (-4.52%; 95% CI: -6.34%, -2.68%). In the BKMR, the joint effect of metals was negatively associated with newborn TL. Qgcomp indicated that each one-tertile increase in metal mixture levels was associated with shorter newborn TL (-9.39%; 95% CI: -14.32%, -4.18%). The single and joint effects of multiple metals were more pronounced among pregnant women carrying female fetuses and among pregnant women <28 years of age. The finding suggests that prenatal exposure to arsenic, barium, antimony, and lead and mixed metals may shorten newborn TLs. The relationship between metal exposures and newborn TL may exhibit heterogeneities according to infant sex and maternal age.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wanting He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Tang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Zhou
- School of Public Health, Xiangnan University, Chenzhou, 423000, China
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
15
|
Zhong C, Chen R, Zhou X, Zhang Y, Liu C, Huang L, Li Q, Xu S, Chen X, Xiong T, Wang W, Gao Q, Zhang H, Wu Y, Hong M, Wu J, Cui W, Li X, Wang W, Lin L, Wang H, Gao D, Li N, Li D, Zhang G, Wang X, Zhang X, Wu M, Yang S, Cao X, Tan T, Tu M, Guo J, Hu W, Zhu W, Xiao D, Gong L, Zhang H, Liu J, Yang S, Wei S, Xiao M, Sun G, Xiong G, Ni Z, Wang J, Jin Z, Yang X, Hao L, Yang H, Yang N. Cohort Profile: The Tongji Maternal and Child Health Cohort (TMCHC). Int J Epidemiol 2022; 52:e152-e161. [PMID: 36343093 DOI: 10.1093/ije/dyac209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Renjuan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xuezhen Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Li Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Qian Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Shangzhi Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Ting Xiong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Weiye Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Qin Gao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Hongmin Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yuanjue Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Miao Hong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Jiangyue Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Wenli Cui
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiating Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Weiming Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Lixia Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Huanzhuo Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Duan Gao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Nan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - De Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Guofu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiaoyi Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Meng Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Sen Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiyu Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Tianqi Tan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Menghan Tu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Jingrong Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Wenqi Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Wenwen Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Daxiang Xiao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Lin Gong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Jin Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Siyu Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Mei Xiao
- Department of Obstetrics, Hubei Maternal and Child Health Hospital , Wuhan, China
- Department of Integrated Traditional and Western Medicine, Hubei Maternal and Child Health Hospital , Wuhan, China
| | - Guoqiang Sun
- Department of Obstetrics, Hubei Maternal and Child Health Hospital , Wuhan, China
- Department of Integrated Traditional and Western Medicine, Hubei Maternal and Child Health Hospital , Wuhan, China
| | - Guoping Xiong
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan , Wuhan, China
| | - Zemin Ni
- Jiang'an Maternal and Child Health Hospital , Wuhan, China
| | - Jing Wang
- Jiang'an Maternal and Child Health Hospital , Wuhan, China
| | - Zhichun Jin
- Department of Obstetrics, Hubei Maternal and Child Health Hospital , Wuhan, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Hongying Yang
- Institute of Health Education, Hubei Provincial Center for Disease Control and Prevention , Wuhan, China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
16
|
Chen X, Huang L, Li Q, Zhang X, Wang X, Sun G, Yi N, Xiong G, Yang X, Hao L, Yang H, Yang N. Effect of maternal thallium exposure in early pregnancy on the risk of preterm birth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49966-49975. [PMID: 35220538 DOI: 10.1007/s11356-022-19332-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Human activities have significantly increased the release of thallium (Tl) to the environment. However, the study of the relationship between maternal Tl exposure during pregnancy and the risk of preterm birth (PTB) is scarce so far. We aimed to investigate the association between Tl exposure in early pregnancy and the risk of PTB. A total of 2104 pregnant women from the Tongji Maternal and Child Health Cohort (TMCHC) in Wuhan, China were enrolled in the analysis. We collected the urine samples in early pregnancy (< 20 weeks) and inductively coupled plasma mass spectrometry (ICP-MS) was used to detect urinary Tl levels. The association between Tl levels and the risk of PTB was evaluated by an unconditional logistic regression. The median and geometric mean values of Tl levels were 0.35 μg/L (0.47 μg/g creatinine) and 0.33 μg/L (0.47 μg/g creatinine), respectively. Compared with the lowest tertile of Tl levels (≤ 0.37 μg/g creatinine), the highest tertile (> 0.57 μg/g creatinine) was associated with an increased risk of PTB with an adjusted odds ratio (OR) of 2.11 (95% confidence interval (CI): 1.08, 4.12). Stratified analyses showed an elevated risk of PTB related to the highest tertile of Tl levels for male newborns. After excluding women with miss covariate information, gestational diabetes mellitus, pregnancy-induced hypertension, reporting fish intake, or exposed to smoke, the association remained stable. Our results suggested that maternal Tl exposure during early pregnancy was positively associated with the risk of PTB, and Tl exposure may have a sex-specific effect on PTB.
Collapse
Affiliation(s)
- Xi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Li Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Qian Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Xu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Xiaoyi Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Guoqiang Sun
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Nianhua Yi
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, People's Republic of China
| | - Guoping Xiong
- The Central Hospital of Wuhan, Wuhan, Hubei, 430013, People's Republic of China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Hongying Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, People's Republic of China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
17
|
Periferakis A, Caruntu A, Periferakis AT, Scheau AE, Badarau IA, Caruntu C, Scheau C. Availability, Toxicology and Medical Significance of Antimony. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084669. [PMID: 35457536 PMCID: PMC9030621 DOI: 10.3390/ijerph19084669] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/10/2022] [Indexed: 01/01/2023]
Abstract
Antimony has been known and used since ancient times, but its applications have increased significantly during the last two centuries. Aside from its few medical applications, it also has industrial applications, acting as a flame retardant and a catalyst. Geologically, native antimony is rare, and it is mostly found in sulfide ores. The main ore minerals of antimony are antimonite and jamesonite. The extensive mining and use of antimony have led to its introduction into the biosphere, where it can be hazardous, depending on its bioavailability and absorption. Detailed studies exist both from active and abandoned mining sites, and from urban settings, which document the environmental impact of antimony pollution and its impact on human physiology. Despite its evident and pronounced toxicity, it has also been used in some drugs, initially tartar emetics and subsequently antimonials. The latter are used to treat tropical diseases and their therapeutic potential for leishmaniasis means that they will not be soon phased out, despite the fact the antimonial resistance is beginning to be documented. The mechanisms by which antimony is introduced into human cells and subsequently excreted are still the subject of research; their elucidation will enable us to better understand antimony toxicity and, hopefully, to improve the nature and delivery method of antimonial drugs.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence: (A.C.); (C.S.)
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.P.); (A.-T.P.); (I.A.B.); (C.C.)
- Correspondence: (A.C.); (C.S.)
| |
Collapse
|
18
|
Lu Y, Zhang Y, Guan Q, Xu L, Zhao S, Duan J, Wang Y, Xia Y, Xu Q. Exposure to multiple trace elements and miscarriage during early pregnancy: A mixtures approach. ENVIRONMENT INTERNATIONAL 2022; 162:107161. [PMID: 35219936 DOI: 10.1016/j.envint.2022.107161] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to some conventional trace elements has been found to be associated with miscarriage; however, evidence for combined exposure is inconclusive. Therefore, it is important to explore the joint associations between toxic and essential trace elements and miscarriage. METHODS This cross-sectional study measured a wide range of element levels in the whole blood of pregnant women by using inductively coupled plasma mass spectrometry. The associations between individual elements and miscarriage were appraised using logistic regression model. Multi-exposure models, including Bayesian kernel machine regression (BKMR) and weighted quantile sum regression (WQS), were used to explore the mixed exposure to elements. Furthermore, grouped weighted quantile sum (GWQS) considered multiple elements with different magnitudes and directions of associations. RESULTS In logistic regression, the odds ratios (ORs) with a 95% confidence interval (CI) in the highest quartiles were 5.45 (2.00, 15.91) for barium, 0.28 (0.09, 0.76) for copper, and 0.32 (0.12, 0.83) for rubidium. These exposure-outcome associations were confirmed and supplemented by BKMR, which indicated a positive association for barium and negative associations for copper and rubidium. In WQS, a positive association was found between mixed elements and miscarriage (OR: 1.71; 95% CI: 1.07, 2.78), in which barium (75.7%) was the highest weighted element. The results of GWQS showed that the toxic trace element group dominated by barium was significantly associated with increased ORs (OR: 2.71; 95% CI: 1.74, 4.38). Additionally, a negative association was observed between the essential trace element group and miscarriage (OR: 0.32; 95% CI: 0.18, 0.54), with rubidium contributing the most to the result. CONCLUSIONS As a toxic trace element, barium was positively associated with miscarriage both by individual and multiple evaluations, while essential trace elements, particularly rubidium and copper, exhibited negative associations. Our findings provide significant evidence for exploring the effects of trace elements on miscarriage.
Collapse
Affiliation(s)
- Yingying Lu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lu Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Shuangshuang Zhao
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jiawei Duan
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Qing Xu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Lai Z, He M, Lin C, Ouyang W, Liu X. Interactions of antimony with biomolecules and its effects on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113317. [PMID: 35182796 DOI: 10.1016/j.ecoenv.2022.113317] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb) pollution has increased health risks to humans as a result of extensive application in diverse fields. Exposure to different levels of Sb and its compounds will directly or indirectly affect the normal function of the human body, whereas limited human health data and simulation studies delay the understanding of this element. In this review, we summarize current research on the effects of Sb on human health from different perspectives. First, the exposure pathways, concentration and excretion of Sb in humans are briefly introduced, and several studies have revealed that human exposure to high levels of Sb will cause higher concentrations in body tissues. Second, interactions between Sb and biomolecules or other nonbiomolecules affected biochemical processes such as gene expression and hormone secretion, which are vital for causing and understanding health effects and mechanisms. Finally, we discuss the different health effects of Sb at the biological level from small molecules to individual. In conclusion, exposure to high levels of Sb compounds will increase the risk of disease by affecting different cell signaling pathways. In addition, the appropriate form and dose of Sb contribute to inhibit the development of specific diseases. Key challenges and gaps in toxicity or benefit effects and mechanisms that still hinder risk assessment of human health are also identified in this review. Systematic studies on the relationships between the biochemical process of Sb and human health are needed.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
20
|
Lum JTS, Chan YN, Leung KSY. Current applications and future perspectives on elemental analysis of non-invasive samples for human biomonitoring. Talanta 2021; 234:122683. [PMID: 34364482 DOI: 10.1016/j.talanta.2021.122683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/09/2022]
Abstract
Humans are continuously exposed to numerous environmental pollutants including potentially toxic elements. Essential elements play an important role in human health. Abnormal elemental levels in the body, in different forms that existed, have been reported to be correlated with different diseases and environmental exposure. Blood is the conventional biological sample used in human biomonitoring. However, blood samples can only reflect short-term exposure and require invasive sampling, which poses infection risk to individuals. In recent years, the number of research evaluating the effectiveness of non-invasive samples (hair, nails, urine, meconium, breast milk, placenta, cord blood, saliva and teeth) for human biomonitoring is increasing. These samples can be collected easily and provide extra information in addition to blood analysis. Yet, the correlation between the elemental concentration in non-invasive samples and in blood is not well established, which hinders the application of those samples in routine human biomonitoring. This review aims at providing a fundamental overview of analytical methods of non-invasive samples in human biomonitoring. The content covers the sample collection and pretreatment, sample preparation and instrumental analysis. The technical discussions are separated into solution analysis and solid analysis. In the last section, the authors highlight some of the perspectives on the future of elemental analysis in human biomonitoring.
Collapse
Affiliation(s)
- Judy Tsz-Shan Lum
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Yun-Nam Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
21
|
Vigeh M, Yunesian M, Matsukawa T, Shamsipour M, Jeddi MZ, Rastkari N, Hassanvand MS, Shariat M, Kashani H, Pirjani R, Effatpanah M, Shirazi M, Shariatpanahi G, Ohtani K, Yokoyama K. Prenatal blood levels of some toxic metals and the risk of spontaneous abortion. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:357-363. [PMID: 34150240 PMCID: PMC8172701 DOI: 10.1007/s40201-020-00608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/29/2020] [Indexed: 05/19/2023]
Abstract
High-level toxic metal exposure has become rare in the recent years. Although, it has not known whether relatively lower exposure may adversely affect human reproductive system. Spontaneous abortion (SA) is a serious reproductive problem, which, in many cases, the cause(s) is not clearly understood. To assess the relationship between prenatal blood level of metals and SA risk, we compared blood concentration of some heavy metals in samples taken from mothers recruited in Tehran Environment and Neurodevelopmental Defects (TEND) study conducted on apparently healthy pregnant women in Tehran, Iran who subsequently experienced spontaneous abortion with mothers who their pregnancy ended to live births. During early gestation, 206 women were enrolled to the survey and followed up till fetal abortion or baby deliveries occur. Blood metal concentrations were measured using an inductively coupled plasma mass spectrometer. The mean blood levels of lead, antimony, and nickel were higher in SA than ongoing pregnancy; however, this difference was not statistically significant. When adjusted for covariates, the logistic regression analysis showed significant association between maternal age and the risk of SA in all models. Among toxic metals only antimony had a noticeable positive relation with the risk of SA (OR: 1.65, 95% CI:1.08-2.52, P value: 0.02). Pearson's correlation coefficient showed significant (P < 0.05) positive correlations among prenatal blood metals levels, except for nickel. Although the present study failed to provide strong evidence for the effects of toxic metals on the occurrence of SA at the relatively low-levels, these metals should be avoided in women who plan pregnancy and/or during the early stages of gestation to prevent the chance of adverse effects.
Collapse
Affiliation(s)
- Mohsen Vigeh
- Maternal, Fetal and Neonatal Research Center, Family Health Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Tokyo, Japan
- Occupational Epidemiology, National Institute of Occupational Safety and Health, Kanagawa, Japan
| | - Masud Yunesian
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Takehise Matsukawa
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zare Jeddi
- Division of Toxicology, Wageningen University & Research, Stippeneng 4, 6708 E Wageningen, the Netherlands
| | - Noushin Rastkari
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mamak Shariat
- Maternal, Fetal and Neonatal Research Center, Family Health Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihaneh Pirjani
- Obstetrics and Gynecology Department, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahboobeh Shirazi
- Maternal, Fetal and Neonatal Research Center, Family Health Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Katsumi Ohtani
- Occupational Epidemiology, National Institute of Occupational Safety and Health, Kanagawa, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Onat T, Demir Caltekin M, Turksoy VA, Baser E, Aydogan Kirmizi D, Kara M, Yalvac ES. The Relationship Between Heavy Metal Exposure, Trace Element Level, and Monocyte to HDL Cholesterol Ratio with Gestational Diabetes Mellitus. Biol Trace Elem Res 2021; 199:1306-1315. [PMID: 33219922 DOI: 10.1007/s12011-020-02499-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study is to assess the levels of heavy metals (cadmium, lead, antimony, mercury, and arsenic), which are also called endocrine-disrupting chemicals, and trace elements (chromium-III, chromium-VI, zinc, copper, and selenium) vs. monocyte to HDL ratio among pregnant women with gestational diabetes mellitus (GDM). A total of 112 pregnant women (60 with GDM and 52 healthy women) were included in this case-control study. Analysis of heavy metals and trace elements were performed in inductively coupled plasma mass spectrometer. Heavy metals (cadmium, lead, antimony, mercury, and arsenic), trace elements (chromium-III, chromium-VI, zinc, copper, and selenium), and metabolic parameters were assessed in both groups. It was determined that the levels of cadmium, lead, antimony, and copper were higher (p < 0.05) and levels of chromium-III, zinc, and selenium were lower (p < 0.05) among the GDM group compared to the control group, whereas there was a statistically insignificant difference between the two groups, regarding the levels of copper, mercury, and arsenic (p > 0.05). Moreover, the monocyte to HDL ratio was higher in the GDM group (p < 0.05), and the insulin resistance was significantly higher as well (p < 0.05). The results of our study demonstrated that environmental factors could be effective in the etiology of GDM. Toxic heavy metals, through inducing Cu, OS, and chronic inflammation, and other trace elements, either directly by impacting insulin secretion or through weakening the body's antioxidant defense system, could play a role in the occurrence of GDM.
Collapse
Affiliation(s)
- Taylan Onat
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey.
| | - Melike Demir Caltekin
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Vugar Ali Turksoy
- Department of Public Health Yozgat, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Emre Baser
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Demet Aydogan Kirmizi
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| | - Mustafa Kara
- Department of Obstetrics & Gynecology, Kirsehir Ahi Evran University Faculty of Medicine, Kirsehir, Turkey
| | - Ethem Serdar Yalvac
- Department of Obstetrics & Gynecology, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| |
Collapse
|
23
|
Zhi Y, Lu C, Zhu G, Li Z, Zhu P, Liu Y, Shi W, Su L, Jiang J, Qu J, Zhao X. Positive regulation of the CREB phosphorylation via JNK-dependent pathway prevents antimony-induced neuronal apoptosis in PC12 cell and mice brain. Neurotoxicology 2020; 81:101-108. [PMID: 32920012 DOI: 10.1016/j.neuro.2020.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023]
Abstract
Antimony (Sb) is a potentially toxic chemical element abundantly found in the environment. We previously reported that Sb promoted neuronal deathvia reactive oxygen species-dependent autophagy. Here, we assessed the role of cyclic adenosine monophosphate response element-binding protein (CREB) in Sb-induced neuronal damage. We found that Sb treatment induced CREB phosphorylation and neuronal apoptosis both in vitro and in vivo. Interestingly, inhibition of CREB's transcriptional activity with 666-15 dramatically enhanced apoptosis in PC12 cells by downregulating B-cell lymphoma 2 (Bcl-2). Additionally, Sb activated ERK, JNK, and p38 signaling ; however, only JNK promoted CREB phosphorylation. In conclusion, our findings suggest that CREB phosphorylation by JNK attenuates Sb-induced neuronal apoptosis via Bcl-2 upregulation. These data suggest that JNK-dependent CREB activation prevents neurons from Sb-induced apoptosis and guides the development of novel strategies to prevent Sb-induced neurotoxicity.
Collapse
Affiliation(s)
- Ye Zhi
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Chunhua Lu
- Departmentof Occupational Health and Occupational Diseases, Nantong Center for Disease Control and Prevention, Nangtong, 226007, China
| | - Ganlin Zhu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Zhijie Li
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Piaoyu Zhu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Yuting Liu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Weiwei Shi
- Nantong Hospital of Traditional Chinese Medicine, Nantong, 226001, China
| | - Liling Su
- Department of Clinical Medicine, Jiangxi Medical College, Shangrao, China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| | - Jianhua Qu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| |
Collapse
|
24
|
Baser E, Kırmızı DA, Turksoy VA, Onat T, Çaltekin MD, Kara M, Yalvac ES. Environmental Exposures in the Etiology of Abortion: Placental Toxic and Trace Element Levels. Z Geburtshilfe Neonatol 2020; 224:339-347. [PMID: 33063300 DOI: 10.1055/a-1263-1698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Intensive research has been conducted on the effects of toxic and trace elements on pregnancy. Previous studies indicated a possible relationship between placental levels of these elements and first-trimester abortion; however, their effects on the further gestational weeks are not clear. This study aimed to investigate the effect of changes in the levels of placental trace and toxic elements on second-trimester abortion. METHODS The patient group consisted of 30 women with missed abortion. The control group comprised 60 healthy term and singleton pregnant women who gave birth. Placental samples were obtained from the patients and the healthy controls, and the concentrations of placental elements were measured using inductively coupled plasma mass spectrometry. RESULTS In the abortion group, placental arsenic, cadmium, mercury, lead, antimony, tin, cobalt, manganese, and selenium levels were significantly higher than those of the control group (p<0.05). Antimony was determined as an independent predictor with an odds ratio of 6.1 in toxic elements (p=0.025), and selenium was determined as an independent predictor with an odds ratio of 2.3 in trace elements (p=0.015). CONCLUSION The changes in trace element and toxic element levels, especially an increase in antimony and selenium, in placental tissue due to environmental exposure may play an important role in second-trimester abortion.
Collapse
Affiliation(s)
- Emre Baser
- Yozgat Bozok University, Faculty of Medicine, Department of Obstetrics and Gynecology, Yozgat, Turkey
| | - Demet Aydogan Kırmızı
- Yozgat Bozok University, Faculty of Medicine, Department of Obstetrics and Gynecology, Yozgat, Turkey
| | - Vugar Ali Turksoy
- Yozgat Bozok University, Faculty of Medicine, Department of Public Health, Yozgat, Turkey
| | - Taylan Onat
- Yozgat Bozok University, Faculty of Medicine, Department of Obstetrics and Gynecology, Yozgat, Turkey
| | - Melike Demir Çaltekin
- Yozgat Bozok University, Faculty of Medicine, Department of Obstetrics and Gynecology, Yozgat, Turkey
| | - Mustafa Kara
- Ahi Evran University Training and Research Hospital, Department of Obstetrics and Gynecology, Kırşehir, Turkey
| | - Ethem Serdar Yalvac
- Yozgat Bozok University, Faculty of Medicine, Department of Obstetrics and Gynecology, Yozgat, Turkey
| |
Collapse
|
25
|
Zhang Q, Li X, Liu X, Dong M, Xiao J, Wang J, Zhou M, Wang Y, Ning D, Ma W, Zhu W, Liu T, Zhang B. Association between maternal antimony exposure and risk of gestational diabetes mellitus: A birth cohort study. CHEMOSPHERE 2020; 246:125732. [PMID: 31927364 DOI: 10.1016/j.chemosphere.2019.125732] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND A small number of epidemiological studies have suggested the association of antimony (Sb) exposure with type 2 diabetes risk. However, little is known about the relationship between Sb exposure during pregnancy and risk of gestational diabetes mellitus (GDM). OBJECTIVES To investigate the associations of urinary Sb concentrations with GDM risk and blood glucose levels in pregnant women. METHODS We analyzed the baseline data of 1789 pregnant women enrolled in the Birth Cohort Study on Prenatal Environments and Offspring Health (PEOH) in Guangzhou, China. Sb concentrations in urine were measured by inductively coupled plasma mass spectrometry (ICP-MS). Logistic regression and analysis of covariance were used to evaluate associations of Sb exposure with GDM risk and blood glucose levels. RESULTS A total of 437 (24.4%) women were diagnosed with GDM. The relative risk of GDM for women in the highest quartile of creatinine-corrected Sb (CC-Sb) concentrations was 1.55 [RR (95% CI) = 1.55 (1.12, 2.15), p-trend = 0.005], compared with women in the lowest quartile. Moreover, the women in the top quartile of CC-Sb levels had a 5.2% higher 1 h blood glucose and a 4.2% higher 2 h blood glucose than those in the bottom quartile. We also found an interactive effect between maternal age and CC-Sb on the risk of GDM (p-interaction < 0.001). CONCLUSION This study suggested significant positive associations of Sb exposure with increased GDM risk and impaired blood glucose homeostasis in pregnant women, and the Sb-GDM association might be modified by maternal age.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xiaona Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xin Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, Guangdong, China
| | - Moran Dong
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, Guangdong, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, Guangdong, China
| | - Jing Wang
- Institute of Public Health Service Testing, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, Guangdong, China
| | - Mengya Zhou
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yiding Wang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dan Ning
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, Guangdong, China
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, Guangdong, China
| | - Wei Zhu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, Guangdong, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, Guangdong, China.
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
26
|
Wang X, Gao D, Zhang G, Zhang X, Li Q, Gao Q, Chen R, Xu S, Huang L, Zhang Y, Lin L, Zhong C, Chen X, Sun G, Song Y, Yang X, Hao L, Yang H, Yang L, Yang N. Exposure to multiple metals in early pregnancy and gestational diabetes mellitus: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2020; 135:105370. [PMID: 31864020 DOI: 10.1016/j.envint.2019.105370] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND A growing number of epidemiologic studies have estimated associations between type 2 diabetes mellitus and exposure to metals. However, studies on the associations of internal assessments of metal exposure and gestational diabetes mellitus (GDM) are limited in scope and have inconsistent outcomes. OBJECTIVES This investigation aimed to explore the associations between urinary nickel (Ni), arsenic (As), cadmium (Cd), antimony (Sb), cobalt (Co), or vanadium (V) in early pregnancy and the subsequent risk of GDM in Chinese pregnant women. METHODS The study population included 2090 women with singleton pregnancy from the Tongji Maternal and Child Health Cohort (TMCHC). Urine samples were collected before 20 gestational weeks, and an oral glucose tolerance test (OGTT) was conducted at 24-28 gestational weeks to diagnose GDM. The concentrations of urinary metals were measured using inductively coupled plasma mass spectrometry (ICP-MS) and were corrected for urinary creatinine. The associations between the risk of GDM and urinary metals were assessed using Poisson regression with a robust error variance with generalized estimating equations (GEE) models and Bayesian kernel machine regression (BKMR). RESULTS A total of 241 participants (11.53%) were diagnosed with GDM. Five metals (Ni, As, Sb, Co, and V) were found significantly and positively associated with GDM based on single-metal models. In multiple-metal models, for each unit increase of ln-transformed urinary Ni or Sb, the risk of GDM increased 18% [relative risk (RR):1.18, 95%confidence interval (CI): 1.00, 1.38 or RR: 1.18, 95%CI: 1.00, 1.39, respectively]. The BKMR analysis revealed a statistically significant and positive joint effect of the six metals on the risk of GDM, when the urinary levels of the six metals were all above the 55th percentile, compared to the median levels. The effect of metal Ni was significant when the concentrations of the other metals were all fixed at their 25th percentile, and metal Sb displayed a significant and positive effect when all the other metals were fixed at 25th, 50th, and 75th percentiles. CONCLUSIONS To the best of our knowledge, this study is the first to demonstrate that increased concentrations of urinary Ni in early pregnancy are associated with an elevated risk of GDM, either evaluated individually or as a metal mixture. All six metals mixed exposure was positively associated with the risk of GDM, while Sb and Ni were demonstrated more important effects than the other four metals in the mixture.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Duan Gao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Guofu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; School of Public Health, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Xu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qian Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qin Gao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Renjuan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shangzhi Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Li Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Lixia Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Guoqiang Sun
- Obstetrics Department, Maternal and Child Health Care Hospital of Hubei Province, Wuhan 430070, Hubei, China
| | - Yang Song
- Medical College, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Hongying Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, Hubei, China
| | - Lei Yang
- Medical College, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|