1
|
Ghasemzadeh-Hasankolaei M, Elcombe CS, Powls S, Lea RG, Sinclair KD, Padmanabhan V, Evans NP, Bellingham M. Preconceptional and in utero exposure of sheep to a real-life environmental chemical mixture disrupts key markers of energy metabolism in male offspring. J Neuroendocrinol 2024; 36:e13358. [PMID: 38087451 PMCID: PMC10841670 DOI: 10.1111/jne.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 01/12/2024]
Abstract
Over recent decades, an extensive array of anthropogenic chemicals have entered the environment and have been implicated in the increased incidence of an array of diseases, including metabolic syndrome. The ubiquitous presence of these environmental chemicals (ECs) necessitates the use of real-life exposure models to the assess cumulative risk burden to metabolic health. Sheep that graze on biosolids-treated pastures are exposed to a real-life mixture of ECs such as phthalates, per- and polyfluoroalkyl substances, heavy metals, pharmaceuticals, pesticides, and metabolites thereof, and this EC exposure can result in metabolic disorders in their offspring. Using this model, we evaluated the effects of gestational exposure to a complex EC mixture on plasma triglyceride (TG) concentrations and metabolic and epigenetic regulatory genes in tissues key to energy regulation and storage, including the hypothalamus, liver, and adipose depots of 11-month-old male offspring. Our results demonstrated a binary effect of EC exposure on gene expression particularly in the hypothalamus. Principal component analysis revealed two subsets (B-S1 [n = 6] and B-S2 [n = 4]) within the biosolids group (B, n = 10), relative to the controls (C, n = 11). Changes in body weight, TG levels, and in gene expression in the hypothalamus, and visceral and subcutaneous fat were apparent between biosolid and control and the two subgroups of biosolids animals. These findings demonstrate that gestational exposure to an EC mixture results in differential regulation of metabolic processes in adult male offspring. Binary effects on hypothalamic gene expression and altered expression of lipid metabolism genes in visceral and subcutaneous fat, coupled with phenotypic outcomes, point to differences in individual susceptibility to EC exposure that could predispose vulnerable individuals to later metabolic dysfunction.
Collapse
Affiliation(s)
- Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Chris S Elcombe
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Samantha Powls
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Evans NP, Bellingham M, Elcombe CS, Ghasemzadeh-Hasankolaei M, Lea RG, Sinclair KD, Padmanabhan V. Sexually dimorphic impact of preconceptional and gestational exposure to a real-life environmental chemical mixture (biosolids) on offspring growth dynamics and puberty in sheep. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104257. [PMID: 37659607 DOI: 10.1016/j.etap.2023.104257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Humans are ubiquitously exposed to complex mixtures of environmental chemicals (ECs). This study characterised changes in post-natal and peripubertal growth, and the activation of the reproductive axis, in male and female offspring of sheep exposed to a translationally relevant EC mixture (in biosolids), during pregnancy. Birthweight in both sexes was unaffected by gestational biosolids exposure. In contrast to females (unaffected), bodyweight in biosolids males was significantly lower than controls across the peripubertal period, however, they exhibited catch-up growth eventually surpassing controls. Despite weighing less, testosterone concentrations were elevated earlier, indicative of early puberty in the biosolids males. This contrasted with females in which the mean date of puberty (first progesterone cycle) was delayed. These results demonstrate that developmental EC-mixture exposure has sexually dimorphic effects on growth, puberty and the relationship between body size and puberty. Such programmed metabolic/reproductive effects could have significant impacts on human health and wellbeing.
Collapse
Affiliation(s)
- Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Christopher S Elcombe
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
4
|
Gao X, Wang B, Huang Y, Wu M, Li Y, Li Y, Zhu X, Wu M. Role of the Nrf2 Signaling Pathway in Ovarian Aging: Potential Mechanism and Protective Strategies. Int J Mol Sci 2023; 24:13327. [PMID: 37686132 PMCID: PMC10488162 DOI: 10.3390/ijms241713327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The ovary holds a significant role as a reproductive endocrine organ in women, and its aging process bears implications such as menopause, decreased fertility, and long-term health risks including osteoporosis, cardiovascular disorders, and cognitive decline. The phenomenon of oxidative stress is tightly linked to the aging metabolic processes. More and more studies have demonstrated that oxidative stress impacts both physiologic and pathologic ovarian aging, and the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays a crucial role in regulating the antioxidant response. Furthermore, various therapeutic approaches have been identified to ameliorate ovarian aging by modulating the Nrf2 pathway. This review summarizes the important role of the Nrf2/ Kelch-like ECH-associated protein 1 (Keap1) signaling pathway in regulating oxidative stress and influencing ovarian aging. Additionally, it highlights the therapeutic strategies aimed at targeting the Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Xiaofan Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (B.W.); (Y.H.); (M.W.); (Y.L.); (Y.L.); (X.Z.)
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Bo Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (B.W.); (Y.H.); (M.W.); (Y.L.); (Y.L.); (X.Z.)
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (B.W.); (Y.H.); (M.W.); (Y.L.); (Y.L.); (X.Z.)
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Meng Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (B.W.); (Y.H.); (M.W.); (Y.L.); (Y.L.); (X.Z.)
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Yuting Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (B.W.); (Y.H.); (M.W.); (Y.L.); (Y.L.); (X.Z.)
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Yinuo Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (B.W.); (Y.H.); (M.W.); (Y.L.); (Y.L.); (X.Z.)
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (B.W.); (Y.H.); (M.W.); (Y.L.); (Y.L.); (X.Z.)
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (X.G.); (B.W.); (Y.H.); (M.W.); (Y.L.); (Y.L.); (X.Z.)
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan 430030, China
| |
Collapse
|
5
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Padmanabhan V, Lea R, Sinclair KD, Evans NP, Bellingham M. Developmental exposure to a real-life environmental chemical mixture alters testicular transcription factor expression in neonatal and pre-pubertal rams, with morphological changes persisting into adulthood. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104152. [PMID: 37209889 PMCID: PMC10457458 DOI: 10.1016/j.etap.2023.104152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Environmental chemical (EC) exposure may be impacting male reproductive health. The translationally relevant biosolids treated pasture (BTP) sheep model was used to investigate gestational low-level EC mixture exposure on the testes of F1 male offspring. Adult rams from ewes exposed to BTP 1 month before and throughout pregnancy had more seminiferous tubules with degeneration and depletion of elongating spermatids, indicating possible "recovery" from previously reported testicular dysgenesis syndrome-like phenotype in neonatal and pre-pubertal BTP lambs. Expression of transcription factors CREB1 (neonatal) and BCL11A and FOXP2 (pre-pubertal) were significantly higher in the BTP exposed testes, with no changes seen in adults. Increased CREB1, which is crucial for testes development and regulation of steroidogenic enzymes, could be an adaptive response to gestational EC exposure to facilitate the phenotypic recovery. Overall, this demonstrates that testicular effects from gestational exposure to low-level mixtures of ECs can last into adulthood, potentially impacting fertility and fecundity.
Collapse
Affiliation(s)
- Chris S Elcombe
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | | | - Richard Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Neil P Evans
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
6
|
Elcombe CS, Monteiro A, Elcombe MR, Ghasemzadeh-Hasankolaei M, Sinclair KD, Lea R, Padmanabhan V, Evans NP, Bellingham M. Developmental exposure to real-life environmental chemical mixture programs a testicular dysgenesis syndrome-like phenotype in prepubertal lambs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103913. [PMID: 35738462 PMCID: PMC9554787 DOI: 10.1016/j.etap.2022.103913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 05/30/2023]
Abstract
Current declines in male reproductive health may, in part, be driven by anthropogenic environmental chemical (EC) exposure. Using a biosolids treated pasture (BTP) sheep model, this study examined the effects of gestational exposure to a translationally relevant EC mixture. Testes of 8-week-old ram lambs from mothers exposed to BTP during pregnancy contained fewer germ cells and had a greater proportion of Sertoli-cell-only seminiferous tubules. This concurs with previous published data from fetuses and neonatal lambs from mothers exposed to BTP. Comparison between the testicular transcriptome of biosolids lambs and human testicular dysgenesis syndrome (TDS) patients indicated common changes in genes involved in apoptotic and mTOR signalling. Gene expression data and immunohistochemistry indicated increased HIF1α activation and nuclear localisation in Leydig cells of BTP exposed animals. As HIF1α is reported to disrupt testosterone synthesis, these results provide a potential mechanism for the pathogenesis of this testicular phenotype, and TDS in humans.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Matthew R Elcombe
- MicroMatrices Associates Ltd, Dundee Technopole, James Lindsay Place, Dundee, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Richard Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
7
|
Elcombe CS, Evans NP, Bellingham M. Critical review and analysis of literature on low dose exposure to chemical mixtures in mammalian in vivo systems. Crit Rev Toxicol 2022; 52:221-238. [PMID: 35894754 PMCID: PMC9530410 DOI: 10.1080/10408444.2022.2091423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthropogenic chemicals are ubiquitous throughout the environment. Consequentially, humans are exposed to hundreds of anthropogenic chemicals daily. Current chemical risk assessments are primarily based on testing individual chemicals in rodents at doses that are orders of magnitude higher than that of human exposure. The potential risk from exposure to mixtures of chemicals is calculated using mathematical models of mixture toxicity based on these analyses. These calculations, however, do not account for synergistic or antagonistic interactions between co-exposed chemicals. While proven examples of chemical synergy in mixtures at low doses are rare, there is increasing evidence that, through non-conformance to current mixture toxicity models, suggests synergy. This review examined the published studies that have investigated exposure to mixtures of chemicals at low doses in mammalian in vivo systems. Only seven identified studies were sufficient in design to directly examine the appropriateness of current mixture toxicity models, of which three showed responses significantly greater than additivity model predictions. While the remaining identified studies were unable to provide evidence of synergistic toxicity, it became apparent that many results of such studies were not always explicable by current mixture toxicity models. Additionally, two data gaps were identified. Firstly, there is a lack of studies where individual chemical components of a complex mixture (>10 components) are tested in parallel to the chemical mixture. Secondly, there is a lack of dose-response data for mixtures of chemicals at low doses. Such data is essential to address the appropriateness and validity of future chemical mixture toxicity models.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Xu Q, Hu L, Chen S, Fu X, Gong P, Huang Z, Miao W, Jin C, Jin Y. Parental exposure 3-methylcholanthrene disturbed the enterohepatic circulation in F1 generation of mice. CHEMOSPHERE 2022; 286:131681. [PMID: 34346331 DOI: 10.1016/j.chemosphere.2021.131681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/03/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
3-methylcholanthrene (3 MC) is an environmental compound belonging to the PAHs and is reportedly thought to be a risk factor for the prevalence of hepatic function disorder. Here, a dose of 0.5 mg/kg of 3 MC was given to 4-week-old male and female mice (F0) in their diet for 6 weeks. After exposure, then the mice were mated between different groups. The first filial (F1) generation offspring of exposed or unexposed parental mice were sacrificed at the age of 5 weeks (F1-5 W), and the potential effects on the F0 and F1 offspring were evaluated. The results showed that the total bile acids (TBAs) in the serum and feces in F0 females and female F1-5 W individuals born from female mice exposed to 3 MC decreased, while the TBAs in the liver increased. The transcriptional levels of major genes participating in synthesis, regulation, transportation and apical uptake was also altered correspondingly. In addition, the transcription of some genes related to inflammation was enhanced in these mice. Further investigation revealed that in addition to distinct changes in the mucus secretion, tight junction proteins and ion transport were induced, and antimicrobial peptides were also disrupted in the intestine of F0 mice and F1-5 W female offspring of maternal mice exposed to 3 MC. Our results suggested that exposure to 3 MC, but not male exposure, had the potential to interfere with BAs metabolism, affecting gut barrier function. Females were more seriously affected than males.
Collapse
Affiliation(s)
- Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Siqi Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xiaoyong Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Ping Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Zeyao Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Wenyu Miao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
9
|
Raj A, Yadav A, Arya S, Sirohi R, Kumar S, Rawat AP, Thakur RS, Patel DK, Bahadur L, Pandey A. Preparation, characterization and agri applications of biochar produced by pyrolysis of sewage sludge at different temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148722. [PMID: 34247088 DOI: 10.1016/j.scitotenv.2021.148722] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Sewage sludge (SS) is an abundantly available feedstock, which is generally considered as potential threat to human health and environment. Its utilization in any process would be of great help for environmental sustainability. Accordingly, this work aimed to prepare and characterize the sewage sludge biochar (SSB) at temperatures, i.e. (500, 450, 400, and 350 °C), and further analyze the available nutrients and contaminants as well as agri application potential. The results indicated that the total nitrogen (TN), electrical conductivity (EC), and total organic carbon (TOC) content in SSBs decreased with increasing pyrolysis temperature. The overall concentration of polycyclic aromatic hydrocarbons (PAHs) in SSBs was substantially lower (1.8-9.7-fold depending on pyrolysis temperature) than in SS. Pyrolysis of SS enriched the heavy metals content in SSBs and the relative enrichment factor (RE) factor varied between 1.1 and 2.1 depending on the pyrolysis temperature. Furthermore, compared to SS, the leaching rate of heavy metals was significantly decreased in SSBs (1.1-100-fold depending on the pyrolysis temperature) and the pyrolysis temperature of 400-450 °C prevented the Ni, Pb, Cr, and Zn leaching in SSB. The total PAH and heavy metals content in biochars were below the control standard for land application. Finally, testing of the growth-promoting effect of biochar extracts on fenugreek plants revealed that SSB prepared at 350 °C significantly stimulated the root and shoot length of 5-days old seedlings. This study provides important data for potential environmental risks of SSB applications.
Collapse
Affiliation(s)
- Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| | - Ashutosh Yadav
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India
| | - Shashi Arya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Waste Reprocessing Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440 020, Maharashtra, India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Sunil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Abhay Prakash Rawat
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India
| | - Ravindra Singh Thakur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India
| | - Lal Bahadur
- Soil Science Laboratory, CSIR-National Botanical Research Institute, Lucknow 226 001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
10
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Evans NP, Bellingham M. Morphological and transcriptomic alterations in neonatal lamb testes following developmental exposure to low-level environmental chemical mixture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103670. [PMID: 33964400 PMCID: PMC8316325 DOI: 10.1016/j.etap.2021.103670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 05/29/2023]
Abstract
Exposure to anthropogenic environmental chemical mixtures could be contributing to the decline in male reproductive health. This study used the biosolid treated pasture (BTP) sheep model to assess the effects of exposure to low-dose chemical mixtures. Maternal BTP exposure was associated with lower plasma testosterone concentrations, a greater proportion of Sertoli cell-only seminiferous tubules, and fewer gonocytes in the testes of neonatal offspring. Transcriptome analysis highlighted changes in testicular mTOR signalling, including lower expression of two mTOR complex components. Transcriptomic hierarchical analysis relative to the phenotypic severity demonstrated distinct differential responses to maternal BTP exposure during pregnancy. Transcriptome analysis between phenotypically normal and abnormal BTP lambs demonstrated separate responses within the cAMP and PI3K signalling pathways towards CREB. Together, the results provide a potential mechanistic explanation for adverse effects. Exposure could lower gonocyte numbers through mTOR mediated autophagy, but CREB mediated survival factors may act to increase germ cell survival.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
11
|
Brisolara KB, Gentile B, Puszykowski K, Bourgeois J. Residuals, sludge, and biosolids: Advancements in the field. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1541-1551. [PMID: 32668078 DOI: 10.1002/wer.1402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Advancements in the field of residuals, sludge, and biosolids have been made in 2019. This review outlines the major contributions of researchers that have been published in peer-reviewed journals and conference proceedings throughout 2019 and includes brief summaries from over 125 articles. The review is organized in sections including life cycle and risk assessments; characteristics, quality, and measurement including micropollutants, nanoparticles, pathogens, and metals; sludge treatment technologies including dewatering, digestion, composting, and wetlands; disposal and reuse including adsorbents, land application and agricultural uses, nutrient recovery, and innovative uses; odor and air emissions; and energy issues.
Collapse
Affiliation(s)
- Kari B Brisolara
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Bailey Gentile
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Kate Puszykowski
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - John Bourgeois
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
12
|
Zhou Z, Liu J, Zeng H, Zhang T, Chen X. How does soil pollution risk perception affect farmers' pro-environmental behavior? The role of income level. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110806. [PMID: 32507737 DOI: 10.1016/j.jenvman.2020.110806] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 05/28/2023]
Abstract
Soil pollution is a serious environmental issue in China. As a key subject of agricultural practices, promoting Chinese farmers' Pro-Environmental Behavior (PEB) through increasing their soil pollution risk perception is an important means for soil protection, agricultural transformation and ecological development. In this study, we distinguish four dimensions of soil pollution risk perception: fact perception (FP), loss perception (LP), cause perception (CP) and response behavior ability perception (RBAP). We conceptualize a model that depicts the relationships between the four dimensions of Chinese farmers' soil pollution risk perception and their PEB and the moderating effect of farms' household income level on these relationships. Using a questionnaire survey to collect empirical data, we find: first, the four dimensions of Chinese farmers' soil pollution risk perception have positive effects on their PEB; second, Chinese farmers' household income level positively moderates the relationships between their FP, LP and CP and their PEB but its moderating effect on the relationship between their RBAP and their PEB is not significant. Relevant theory and policy implications for environmental management are discussed in the paper.
Collapse
Affiliation(s)
- Zhifang Zhou
- School of Business, Central South University, China
| | - Jinhao Liu
- School of Business, Central South University, China
| | | | - Tao Zhang
- Institute for Innovation and Entrepreneurship, Loughborough University London, UK.
| | | |
Collapse
|
13
|
Tomczyk B, Siatecka A, Gao Y, Ok YS, Bogusz A, Oleszczuk P. The convertion of sewage sludge to biochar as a sustainable tool of PAHs exposure reduction during agricultural utilization of sewage sludges. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122416. [PMID: 32193106 DOI: 10.1016/j.jhazmat.2020.122416] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
There is a discussion in the literature whether PAHs introduced with biochar are safe and whether they are persistent in the environment. The persistence of PAHs (Ctot - total and Cfree - freely dissolved) in sewage sludge (SSL) or SSL-derived biochar-amended soils was investigated. Biochar were produced at 500, 600 and 700 °C. We also compared the persistence of PAHs in these experimental treatments depending on the plants cultivated (grass, clover and thale cress). We showed that the Ctot PAHs in the biochar-amended soils exhibited higher persistence than in the SSL-amended soil. The opposite trend was observed for Cfree PAHs. A higher reduction of Cfree PAHs was noted in the biochar-amended soils than in SSL-amended soil. The persistence of both Cfree and Ctot PAHs clearly varied between the biochars produced at different temperatures. It should be stated that despite that for biochar the persistence of Ctot PAHs is higher compared to SSL-amended soils, an opposite trend is observed for the fraction of Cfree (which is directly responsible for the toxic effect), and this entails a lower risk to the environment (lower mobility and bioavailability). The plants had a significant impact on Ctot PAHs content depending on the number of PAH rings.
Collapse
Affiliation(s)
- Beata Tomczyk
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, Krucza 5/11D, 00-548 Warszawa, Poland
| | - Anna Siatecka
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources 8 and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, Krucza 5/11D, 00-548 Warszawa, Poland
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
14
|
Viguié C, Chaillou E, Gayrard V, Picard-Hagen N, Fowler PA. Toward a better understanding of the effects of endocrine disrupting compounds on health: Human-relevant case studies from sheep models. Mol Cell Endocrinol 2020; 505:110711. [PMID: 31954824 DOI: 10.1016/j.mce.2020.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
There are many challenges to overcome in order to properly understand both the exposure to, and effects of, endocrine disruptors (EDs). This is particularly true with respect to fetal life where ED exposures are a major issue requiring toxicokinetic studies of materno-fetal exchange and identification of pathophysiological consequences. The sheep, a large, monotocous, species, is very suitable for in utero fetal catheterization allowing a modelling approach predictive of human fetal exposure. Predicting adverse effects of EDs on human health is frequently impeded by the wide interspecies differences in the regulation of endocrine functions and their effects on biological processes. Because of its similarity to humans as regards gestational and thyroid physiologies and brain ontogeny, the sheep constitutes a highly appropriate model to move one step further on thyroid disruptor hazard assessment. As a grazing animal, the sheep has also proven to be useful in the evaluation of the consequences of chronic environmental exposure to "real-life" complex mixtures at different stages of the reproductive life cycle.
Collapse
Affiliation(s)
- Catherine Viguié
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France.
| | - Elodie Chaillou
- PRC, INRAE Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Véronique Gayrard
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300, Toulouse, France
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
15
|
Johansson HKL, Svingen T, Boberg J, Fowler PA, Stead D, Vinggaard AM, Filis P. Calretinin is a novel candidate marker for adverse ovarian effects of early life exposure to mixtures of endocrine disruptors in the rat. Arch Toxicol 2020; 94:1241-1250. [PMID: 32221642 PMCID: PMC7225203 DOI: 10.1007/s00204-020-02697-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/02/2020] [Indexed: 01/14/2023]
Abstract
Disruption of sensitive stages of ovary development during fetal and perinatal life can have severe and life-long consequences for a woman’s reproductive life. Exposure to endocrine disrupting chemicals may affect ovarian development, leading to subsequent reproductive disorders. Here, we investigated the effect of early life exposure to defined mixtures of human-relevant endocrine disrupting chemicals on the rat ovary. We aimed to identify molecular events involved in pathogenesis of ovarian dysgenesis syndrome that have potential for future adverse outcome pathway development. We therefore focused on the ovarian proteome. Rats were exposed to a mixture of phthalates, pesticides, UV-filters, bisphenol A, butyl-paraben, and paracetamol during gestation and lactation. The chemicals were tested together or in subgroups of chemicals with anti-androgenic or estrogenic potentials at doses 450-times human exposure. Paracetamol was tested separately, at a dose of 360 mg/kg. Using shotgun proteomics on ovaries from pup day 17 offspring, we observed exposure effects on the proteomes. Nine proteins were affected in more than one exposure group and of these, we conclude that calretinin is a potential key event biomarker of early endocrine disruption in the ovary.
Collapse
Affiliation(s)
- Hanna Katarina Lilith Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - David Stead
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
16
|
Chen N, Shan Q, Qi Y, Liu W, Tan X, Gu J. Transcriptome analysis in normal human liver cells exposed to 2, 3, 3', 4, 4', 5 - Hexachlorobiphenyl (PCB 156). CHEMOSPHERE 2020; 239:124747. [PMID: 31514003 DOI: 10.1016/j.chemosphere.2019.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/31/2019] [Accepted: 09/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUNDS Polychlorinated biphenyls are persistent environmental pollutants associated with the onset of non-alcoholic fatty liver disease in humans, but there is limited information on the underlying mechanism. In the present study, we investigated the alterations in gene expression profiles in normal human liver cells L-02 following exposure to 2, 3, 3', 4, 4', 5 - hexachlorobiphenyl (PCB 156), a potent compound that may induce non-alcoholic fatty liver disease. METHODS The L-02 cells were exposed to PCB 156 for 72 h and the contents of intracellular triacylglyceride and total cholesterol were subsequently measured. Microarray analysis of mRNAs and long non-coding RNAs (lncRNAs) in the cells was also performed after 3.4 μM PCB 156 treatment. RESULTS Exposure to PCB 156 (3.4 μM, 72 h) resulted in significant increases of triacylglyceride and total cholesterol concentrations in L-02 cells. Microarray analysis identified 222 differentially expressed mRNAs and 628 differentially expressed lncRNAs. Gene Ontology and pathway analyses associated the differentially expressed mRNAs with metabolic and inflammatory processes. Moreover, lncRNA-mRNA co-expression network revealed 36 network pairs comprising 10 differentially expressed mRNAs and 34 dysregulated lncRNAs. The results of bioinformatics analysis further indicated that dysregulated lncRNA NONHSAT174696, lncRNA NONHSAT179219, and lncRNA NONHSAT161887, as the regulators of EDAR, CYP1B1, and ALDH3A1 respectively, played an important role in the PCB 156-induced lipid metabolism disorder. CONCLUSION Our findings provide an overview of differentially expressed mRNAs and lncRNAs in L-02 cells exposed to PCB 156, and contribute to the field of polychlorinated biphenyl-induced non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China; State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yu Qi
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaojun Tan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|