1
|
Wang J, Li X, Bai G, Huxley R, Hu K, Yuan J, Zhou X, Zhang X, Huang K, Dong G, Wu W, Cao B, Zheng R, Wang C, Wei H, Liang Y, Yao H, Luo F, Li P, Su Z, Chen R, Chen S, Luo J, Du H, Maimaiti M, Zhang J, Yang Y, Zhu M, Zhao Q, Fu J. Long-term exposure to fine particulate matter components with obesity in children and adolescents in China: The age-sex disparities and key effect modifiers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117773. [PMID: 39864214 DOI: 10.1016/j.ecoenv.2025.117773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
Long-term fine particulate matter (PM2.5) exposure was associated with childhood obesity. However, the key PM2.5 components and whether PM2.5 effect may vary by obesity type, growth stage, sex, and individual/family characteristics have yet been examined. In this study, we investigated 213,907 Chinese children and adolescents aged 3-18 years in 2017-2019. Three-year average concentrations of PM2.5 and five major components were assigned to each participant's address. Multivariable mixed-effects model and weighted quantile sum regression were used to estimate the effect sizes of each component. Stratified analyses were performed by age and sex groups, with the interactive effects of a series of individual/family features evaluated. The odds ratio of childhood obesity was 1.28 (95 %CI: 1.15-1.43) for per interquartile range increase in PM2.5, with organic matter identified as the key contributor. General central obesity and mixed obesity were more sensitive to PM2.5 exposure than peripheral obesity. As children aged, the effect size of PM2.5 attenuated for general central obesity, remained unchanged for mixed obesity and increased for peripheral obesity. Females, children with obese parents, and those with lower levels of physical activity were more vulnerable than others. Other adverse effect modifiers for certain children included family with one child, low family income, and less sleep duration. Our findings emphasize that the influence of exposure to PM2.5 and its components on risk of obesity in children and adolescents should be considered comprehensively in developing adequate obesity prevention strategies.
Collapse
Affiliation(s)
- Jinling Wang
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xinyi Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Shandong University, Jinan, Shandong, China
| | - Guannan Bai
- Department of Child Health Care, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Rachel Huxley
- Faculty of Health, Deakin University, Melbourne, Victoria, Australia
| | - Kejia Hu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China
| | - Jinna Yuan
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xuelian Zhou
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xiaochi Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Shandong University, Jinan, Shandong, China
| | - Ke Huang
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Wei Wu
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Bingyan Cao
- Department of Endocrinology, Beijing Children's Hospital, Capital Medical University, National Medical Center for Children's health, Beijing, China
| | - Rongxiu Zheng
- Department of Pediatric, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunlin Wang
- Department of Pediatric, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiyan Wei
- Department of Endocrinology, Zhengzhou Children's Hospital, Zhengzhou, Henan, China
| | - Yan Liang
- Department of Pediatric, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Yao
- Department of Pediatric, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feihong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Pin Li
- Department of Endocrinology, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
| | - Zhe Su
- Department of Endocrinology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Ruimin Chen
- Department of Endocrinology, Children's Hospital of Fuzhou, Fuzhou, Fujian, China
| | - Shaoke Chen
- Department of Pediatric, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jingsi Luo
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Hongwei Du
- Department of Pediatric Endocrinology, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Mireguli Maimaiti
- Department of Pediatric, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianwei Zhang
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China; Department of Pediatrics, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Yu Yang
- Department of Endocrinology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Min Zhu
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Shandong University Climate Change and Health Center, Shandong University, Jinan, Shandong, China; Faculty of Health, Deakin University, Melbourne, Victoria, Australia.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Chen J, Hart JE, Fisher NDL, Yanosky JD, Roscoe C, James P, Kaufman JD, Laden F. Childhood exposure to air pollution, noise, and surrounding greenness and incident hypertension in early adulthood in a US nationwide cohort-the Growing Up Today Study (GUTS). ENVIRONMENTAL RESEARCH 2024; 263:120153. [PMID: 39414106 DOI: 10.1016/j.envres.2024.120153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Exposure to increased air pollution, noise, and reduced surrounding greenness have been suggested as potential environmental risk factors for hypertension in adults, but limited evidence exists regarding early-life exposure, particularly from prospective studies. We investigated independent and joint associations of childhood exposure to these factors with incident hypertension in early adulthood in a US nationwide cohort. Study participants were from the Growing Up Today Study (GUTS) established in 1996 (GUTSI) and 2004 (GUTSII), who were ages 9-14 (GUTSI) or 10-17 (GUTSII) at enrollment. Incident hypertension was identified by self-report on questionnaires from 2010 to 2021. We estimated residential exposures to air pollution (from spatiotemporal models), noise, and surrounding greenness throughout childhood (10-18y). We applied Cox proportional hazards models adjusted for potential confounders to assess hazard ratios (HRs) and 95% confidence intervals (CIs) associated with each interquartile range (IQR) change in exposure. We performed a quantile g-computation to assess the joint association of simultaneous exposure to the mixture. We considered potential effect modification by sex, maternal history of hypertension, overweight/obese status at age 18, urbanicity, and neighborhood socioeconomic status. Among 17,762 participants, 1530 hypertensive cases occurred during an average follow-up of 12.8 years. HRs for all exposures were small with CIs including unity. A joint HR of 1.03 (95% CI: 0.95, 1.11) was associated with a one-quartile increase across simultaneous exposure to the environmental mixture. The joint associations were stronger among non-obese participants or participants living in less advantaged neighborhoods: HRs of 1.07 (95% CI: 0.97, 1.18) and 1.08 (95% CI: 0.98, 1.18), respectively. In conclusion, we did not identify an independent or joint association between childhood exposure to air pollution, noise, and surrounding greenness and early adulthood hypertension. However, a positive joint association was suggested among non-obese participants or those living in less advantaged neighborhoods.
Collapse
Affiliation(s)
- Jie Chen
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jaime E Hart
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomi D L Fisher
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Charlotte Roscoe
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Population Sciences, Dana Faber Cancer Institute, Boston, MA, USA
| | - Peter James
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Joel D Kaufman
- Departments of Environmental and Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, WA, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Zu P, Zhang L, Zhang K, He L, Fan Y, Zhou C, Chen Y, Zhang Y, Tao R, Chen X, Zhu P. Anti-inflammatory diet mitigate cardiovascular risks due to particulate matter exposure in women during pregnancy: A perspective cohort study from China. ENVIRONMENTAL RESEARCH 2024; 263:120104. [PMID: 39368599 DOI: 10.1016/j.envres.2024.120104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Particulate matter (PM) exposure during pregnancy may increase cardiovascular risk (CVR). However, the specific time windows of exposure contributing to this association and the potential biological mechanisms underlying it remain unclear. OBJECTIVE To determine the sensitive time window for CVR related to PM exposure. We investigated whether levels of inflammatory biomarkers mediate the relationship between PM exposure and CVR, and examined the potential impact of an anti-inflammatory diet on this association. METHODS From 2015 to 2021, 9294 pregnant women from three Hefei hospitals were included. We used a 1 × 1 km satellite dataset to assess PM1, PM2.5, and PM10 exposure. High-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were measured as inflammatory biomarkers. The empirical dietary inflammatory pattern (EDIP) score, based on a validated food frequency questionnaire. The CVR score was calculated using five clinical metrics based on American Heart Association criteria. RESULTS We found a significant association between PM exposure and increased CVR score, especially during the 2nd to 8th weeks of the first trimester. For every increase of 10-μg/m3 of PM1, PM2.5, and PM10, there was an associated increase in CVR of 0.51 (95%CI: 0.21, 082), 0.25 (95% CI: 0.11 to 0.39), and 0.29 (95% CI: 0.09 to 0.37), respectively. Mediation analysis revealed that the proportion of the association between PM1, PM2.5, and PM10 exposure and CVR mediated by inflammatory biomarkers was 24.3%, 22.4%, and 20.1%, respectively. Stratified analyses showed no positive correlation between PM exposure and CVR in the anti-inflammatory diet (low EDIP) group. The β coefficients were 0.52 for PM1 (95% CI: -0.06 to 1.11), 0.31 for PM2.5 (95% CI: -0.04 to 0.79), and 0.25 for PM10 (95% CI: -0.03 to 0.54). CONCLUSIONS PM exposure, particularly during weeks 2-8 of pregnancy, correlates with CVR, partly mediated by levels of inflammatory biomarkers. An anti-inflammatory diet mitigates CVR associated with PM exposure.
Collapse
Affiliation(s)
- Ping Zu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Kun Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Liping He
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Yujie Fan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Chenxi Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Yunlong Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Tao
- Department of Gynecology and Obstetrics, Hefei First People's Hospital, Hefei, China
| | - Xianxia Chen
- Department of Obstetrics and Gynecology, Anhui Women and Child Health Care Hospital, Hefei, 230001, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Schaidhauer ACG, Costa FVD, Melo-Júnior JCFD. Air pollution generated in an industrial region: Effect on the cardiovascular health of humans and damage caused to a plant species, Piper gaudichaudianum (Piperaceae), used for biomonitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124584. [PMID: 39032548 DOI: 10.1016/j.envpol.2024.124584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Atmospheric pollution due to anthropogenic activities is a complex mixture of gasses and particulate matter (PM) that is currently one of the main causes of premature death in the world. Similarly, it is also capable of directly interfering with plant species by reducing their photosynthetic capacity and growth and killing cells. This work is about an observational study conducted in a region with two industries: a mine and an automobile parts manufacturer. Mining rocks is a source of PM in the air like that caused by other industrial activities. Twenty-five people that work or live in the industrial region cited (area A) and 25 people that live further away (area B) were selected to evaluate their vital signs and conduct a transthoracic echocardiogram. Leaves of Piper gaudichaudianum (Piperaceae), a native plant species, were also collected in both areas and evaluated in a laboratory. The PM accumulated on the leaves was evaluated using scanning electron microscopy (SEM) and inductively coupled plasma-optical emission spectrometry (ICP-OES). A statistical difference (P < 0.05) was verified for the levels of systolic blood pressure (SBP), diastolic blood pressure (DBP), and left ventricular mass index by echocardiography; the values were greater in people in area A. For the plant analysis, there was a statistical difference for all characters evaluated, chlorophyll levels, fresh mass, dry mass and leaf area were reduced, and thickness was greater in area A (P < 0.001). The PM analysis revealed a predominance of silicon, iron, and aluminum chemical elements. The present study suggests that particulate matter pollution is harmful to both humans and the flora.
Collapse
Affiliation(s)
| | - Fábio Voigt da Costa
- Program of Postgraduate in Health and Environment, University of Joinville Region, Brazil
| | | |
Collapse
|
5
|
Yun M, Kim B. Effects of Scutellaria baicalensis Extract-Induced Exosomes on the Periodontal Stem Cells and Immune Cells under Fine Dust. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1396. [PMID: 39269058 PMCID: PMC11397387 DOI: 10.3390/nano14171396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
In adverse environments, fine dust is linked to a variety of health disorders, including cancers, cardiovascular, neurological, renal, reproductive, motor, systemic, and respiratory diseases. Although PM10 is associated with oral inflammation and cancer, there is limited research on biomaterials that prevent damage caused by fine dust. In this study, we evaluated the effects of biomaterials using microRNA profiling, flow cytometry, conventional PCR, immunocytochemistry, Alizarin O staining, and ELISA. Compared to SBE (Scutellaria baicalensis extract), the preventive effectiveness of SBEIEs (SBE-induced exosomes) against fine dust was approximately two times higher. Furthermore, SBEIEs promoted cellular differentiation of periodontal ligament stem cells (PDLSCs) into osteoblasts, periodontal ligament cells (PDLCs), and pulp progenitor cells (PPCs), enhancing immune modulation for oral health against fine dust. In terms of immune modulation, SBEIEs activated the secretion of cytokines such as IL-10, LL-37, and TGF-β in T cells, B cells, and macrophages, while attenuating the secretion of MCP-1 in macrophages. MicroRNA profiling revealed that significantly modulated miRNAs in SBEIEs influenced four biochemical categories: apoptosis, cellular differentiation, immune activation, and anti-inflammation. These findings suggest that SBEIEs are an optimal biomaterial for developing oral health care products. Additionally, this study proposes functional microRNA candidates for the development of pharmaceutical liposomes.
Collapse
Affiliation(s)
- Mihae Yun
- Department of Dental Hygiene, Andong Science College, Andong-si 36616, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
6
|
Zhou J, Sun W, Zhang C, Hou L, Luo Z, Jiang D, Tan B, Yuan C, Zhao D, Li J, Zhang R, Song P. Prevalence of childhood hypertension and associated factors in Zhejiang Province: a cross-sectional analysis based on random forest model and logistic regression. BMC Public Health 2024; 24:2101. [PMID: 39097727 PMCID: PMC11298091 DOI: 10.1186/s12889-024-19630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
With childhood hypertension emerging as a global public health concern, understanding its associated factors is crucial. This study investigated the prevalence and associated factors of hypertension among Chinese children. This cross-sectional investigation was conducted in Pinghu, Zhejiang province, involving 2,373 children aged 8-14 years from 12 schools. Anthropometric measurements were taken by trained staff. Blood pressure (BP) was measured in three separate occasions, with an interval of at least two weeks. Childhood hypertension was defined as systolic blood pressure (SBP) and/or diastolic blood pressure (DBP) ≥ age-, sex-, and height-specific 95th percentile, across all three visits. A self-administered questionnaire was utilized to collect demographic, socioeconomic, health behavioral, and parental information at the first visit of BP measurement. Random forest (RF) and multivariable logistic regression model were used collectively to identify associated factors. Additionally, population attributable fractions (PAFs) were calculated. The prevalence of childhood hypertension was 5.0% (95% confidence interval [CI]: 4.1-5.9%). Children with body mass index (BMI) ≥ 85th percentile were grouped into abnormal weight, and those with waist circumference (WC) > 90th percentile were sorted into central obesity. Normal weight with central obesity (NWCO, adjusted odds ratio [aOR] = 5.04, 95% CI: 1.96-12.98), abnormal weight with no central obesity (AWNCO, aOR = 4.60, 95% CI: 2.57-8.21), and abnormal weight with central obesity (AWCO, aOR = 9.94, 95% CI: 6.06-16.32) were associated with an increased risk of childhood hypertension. Childhood hypertension was attributable to AWCO mostly (PAF: 0.64, 95% CI: 0.50-0.75), followed by AWNCO (PAF: 0.34, 95% CI: 0.19-0.51), and NWCO (PAF: 0.13, 95% CI: 0.03-0.30). Our results indicated that obesity phenotype is associated with childhood hypertension, and the role of weight management could serve as potential target for intervention.
Collapse
Affiliation(s)
- Jiali Zhou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310051, China
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Weidi Sun
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310051, China
| | - Chenhao Zhang
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310051, China
| | - Leying Hou
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310051, China
| | - Zeyu Luo
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310051, China
| | - Denan Jiang
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310051, China
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, 322000, China
| | - Boren Tan
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310051, China
| | - Changzheng Yuan
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310051, China
| | - Dong Zhao
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Juanjuan Li
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China.
| | - Peige Song
- Department of Big Data in Health Science, School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310051, China.
| |
Collapse
|
7
|
Kim H, Kim B. Osteogenic Protection against Fine Dust with Erucic Acid-Induced Exosomes. J Funct Biomater 2024; 15:215. [PMID: 39194653 DOI: 10.3390/jfb15080215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Fine dust causes various disorders, including cardiovascular, neurological, renal, reproductive, motor, systemic, respiratory, and cancerous diseases. Therefore, it is essential to study functional materials to prevent these issues. This study investigated the beneficial effects of erucic acid against fine dust using methods such as miRNA profiling, quantitative PCR, flow cytometry, ELISA, and Alizarin O staining. Erucic acid effectively suppresses inflammation and upregulates osteogenic activators in fibroblasts exposed to fine dust. Additionally, erucic acid-induced exosomes (EIEs) strongly counteract the negative effects of fine dust on osteocytic differentiation and inflammation. Despite fine dust exposure, EIEs promoted osteocytic differentiation in adipose-derived stem cells (ASCs) and enhanced osteogenesis and phagocytosis in macrophages. The significant upregulation of RunX2 and BMP7 by EIEs indicates its strong role in osteocytic differentiation and protection against the effects of fine dust. EIEs also boosts immune activity and acts as an osteogenic trigger for macrophages. MicroRNA profiling revealed that EIEs dramatically upregulated miRNAs, including hsa-miRNA-1301-3p, hsa-miRNA-1908-5p, hsa-miRNA-423-5p, and hsa-miRNA-122-5p, which are associated with osteogenic differentiation and immunity. Therefore, EIEs show potential as biomaterials to prevent environment-borne diseases.
Collapse
Affiliation(s)
- Hyunjung Kim
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Boyong Kim
- EVERBIO, 131, Jukhyeon-gil, Gwanghyewon-myeon, Jincheon-gun 27809, Republic of Korea
| |
Collapse
|
8
|
Cheng T, Lou C, Jing X, Ding S, Hong H, Ding G, Shen L. Phthalate exposure and blood pressure in U.S. children aged 8-17 years (NHANES 2013-2018). Eur J Med Res 2024; 29:192. [PMID: 38528598 DOI: 10.1186/s40001-024-01785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Current evidence from epidemiologic studies suggested that phthalate metabolites might be associated with blood pressure (BP) changes. However, the special relationship between phthalate metabolites and BP changes in children has not been clearly elucidated in existing researches. OBJECTIVES We investigated the links between phthalate metabolites and various BP parameters, including systolic/diastolic BP, mean arterial pressure (MAP), and the presence of hypertension. METHODS The population sample consisted of 1036 children aged 8 to 17 years from the 2013-2018 NHANES in the United States. High performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to measure urinary concentrations of 19 phthalate metabolites. Systolic/diastolic BP were derived from the average of three valid measurements, and MAP was calculated as (systolic BP + 2 × diastolic BP)/3. Hypertension was defined as mean systolic BP and/or diastolic BP that was ≥ 95th percentile for gender, age, and height reference. Linear regression, logistic regression, and weighted quantile sum (WQS) regression models were employed to assess the associations between phthalate exposure and systolic/diastolic BP, MAP, and hypertension. RESULTS Ten of 19 phthalate metabolites including MCNP, MCOP, MECPP, MBP, MCPP, MEP, MEHHP, MiBP, MEOHP, and MBzP had detection frequencies > 85% with samples more than 1000. MCNP, MCOP, MECPP, MBP, MCPP, MEHHP, MiBP, MEOHP, and MBzP were generally negatively associated with systolic/diastolic BP and MAP, but not protective factors for hypertension. These associations were not modified by age (8-12 and 13-17 years) or sex (boys and girls). The above-mentioned associations were further confirmed by the application of the WQS analysis, and MCOP was identified as the chemical with the highest weight. CONCLUSION Phthalate metabolites were associated with modest reductions in systolic/diastolic BP, and MAP in children, while appeared not protective factors for hypertension. Given the inconsistent results among existing studies, our findings should be confirmed by other cohort studies.
Collapse
Affiliation(s)
- Tan Cheng
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Lou
- Department of Anesthesiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Xiaoping Jing
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Sirui Ding
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifa Hong
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Ding
- Department of Pediatric Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Li Shen
- Department of Cardiothoracic Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Li Y, Yu B, Yin L, Li X, Nima Q. Long-term exposure to particulate matter is associated with elevated blood pressure: Evidence from the Chinese plateau area. J Glob Health 2024; 14:04039. [PMID: 38483442 PMCID: PMC10939114 DOI: 10.7189/jogh.14.04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Background Ambient air pollution could increase the risk of hypertension; however, evidence regarding the relationship between long-term exposure to particulate matter and elevated blood pressure in plateau areas with lower pollution levels is limited. Methods We assessed the associations of long-term exposure to particulate matter (PM, PM1, PM2.5, and PM10) with hypertension, diastolic blood pressure (DBP), systolic blood pressure (SBP) and pulse pressure (PP) in 4.235 Tibet adults, based on the baseline of the China multi-ethnic cohort study (CMEC) in Lhasa city, Tibet from 2018-19. We used logistic regression and linear regression models to evaluate the associations of ambient PM with hypertension and blood pressure, respectively. Results Long-term exposure to PM1, PM2.5, and PM10 is positively associated with hypertension, DBP, and SBP, while negatively associated with PP. Among these air pollutants, PM10 had the strongest effect on hypertension, DBP, and SBP, while PM2.5 had the strongest effect on PP. The results showed for hypertension odds ratio (OR) = 1.99; 95% confidence interval (CI) = 1.58, 2.51 per interquartile range (IQR) μg/m3 increase in PM1, OR = 1.93; 95% CI = 1.55, 2.40 per IQR μg/m3 increase in PM2.5, and OR = 2.12; 95% CI = 1.67, 2.68 per IQR μg/m3 increase in PM10. Conclusions Long-term exposure to ambient air pollution was associated with an increased risk of hypertension, elevated SBP and DBP levels, and decreased PP levels. To reduce the risk of hypertension and PP reduction, attention should be paid to air quality interventions in plateau areas with low pollution levels.
Collapse
Affiliation(s)
- Yajie Li
- Tibet Centre for Disease Control and Prevention, Lhasa, Tibet Autonomous Region, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University – Hong Kong Polytechnic University, Chengdu, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Yin
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Xianzhi Li
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Qucuo Nima
- Tibet Centre for Disease Control and Prevention, Lhasa, Tibet Autonomous Region, China
| |
Collapse
|
10
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
11
|
Na S, Park JT, Kim S, Han J, Jung S, Kwak K. Association between ambient particulate matter levels and hypertension: results from the Korean Genome and Epidemiology Study. Ann Occup Environ Med 2023; 35:e51. [PMID: 38274360 PMCID: PMC10808086 DOI: 10.35371/aoem.2023.35.e51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024] Open
Abstract
Background Recently, there has been increasing worldwide concern about outdoor air pollution, especially particulate matter (PM), which has been extensively researched for its harmful effects on the respiratory system. However, sufficient research on its effects on cardiovascular diseases, such as hypertension, remains lacking. In this study, we examine the associations between PM levels and hypertension and hypothesize that higher PM concentrations are associated with elevated blood pressure. Methods A total of 133,935 adults aged ≥ 40 years who participated in the Korean Genome and Epidemiology Study were analyzed. Multiple linear regression analyses were conducted to investigate the short- (1-14 days), medium- (1 and 3 months), and long-term (1 and 2 years) impacts of PM on blood pressure. Logistic regression analyses were conducted to evaluate the medium- and long-term effects of PM on blood pressure elevation after adjusting for sex, age, body mass index, health-related lifestyle behaviors, and geographic areas. Results Using multiple linear regression analyses, both crude and adjusted models generated positive estimates, indicating an association with increased blood pressure, with all results being statistically significant, with the exception of PM levels over the long-term period (1 and 2 years) in non-hypertensive participants. In the logistic regression analyses on non-hypertensive participants, moderate PM10 (particulate matter with diameters < 10 μm) and PM2.5 (particulate matter with diameters < 2.5 μm) levels over the long-term period and all high PM10 and PM2.5 levels were statistically significant after adjusting for various covariates. Notably, high PM2.5 levels of the 1 year exhibited the highest odds ratio of 1.23 (95% confidence interval: 1.19-1.28) after adjustment. Conclusions These findings suggest that both short- and long-term exposure to PM is associated with blood pressure elevation.
Collapse
Affiliation(s)
- Sewhan Na
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Environmental Health Sciences, Seoul National University Graduate School of Public Health, Seoul, Korea
| | - Jong-Tae Park
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Occupational and Environmental Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Environmental and Occupational Health, Korea University Graduate School of Public Health, Seoul, Korea
| | - Seungbeom Kim
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Jinwoo Han
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Saemi Jung
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kyeongmin Kwak
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Occupational and Environmental Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Environmental and Occupational Health, Korea University Graduate School of Public Health, Seoul, Korea
| |
Collapse
|
12
|
Yu LJ, Li XL, Wang YH, Zhang HY, Ruan SM, Jiang BG, Xu Q, Sun YS, Wang LP, Liu W, Yang Y, Fang LQ. Short-Term Exposure to Ambient Air Pollution and Influenza: A Multicity Study in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127010. [PMID: 38078423 PMCID: PMC10711743 DOI: 10.1289/ehp12146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Air pollution is a major risk factor for planetary health and has long been suspected of predisposing humans to respiratory diseases induced by pathogens like influenza viruses. However, epidemiological evidence remains elusive due to lack of longitudinal data from large cohorts. OBJECTIVE Our aim is to quantify the short-term association of influenza incidence with exposure to ambient air pollutants in Chinese cities. METHODS Based on air pollutant data and influenza surveillance data from 82 cities in China over a period of 5 years, we applied a two-stage time series analysis to assess the association of daily incidence of reported influenza cases with six common air pollutants [particulate matter with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ), particulate matter with aerodynamic diameter ≤ 10 μ m (PM 10 ), NO 2 , SO 2 , CO, and O 3 ], while adjusting for potential confounders including temperature, relative humidity, seasonality, and holiday effects. We built a distributed lag Poisson model for one or multiple pollutants in each individual city in the first stage and conducted a meta-analysis to pool city-specific estimates in the second stage. RESULTS A total of 3,735,934 influenza cases were reported in 82 cities from 2015 to 2019, accounting for 72.71% of the overall case number reported in the mainland of China. The time series models for each pollutant alone showed that the daily incidence of reported influenza cases was positively associated with almost all air pollutants except for ozone. The most prominent short-term associations were found for SO 2 and NO 2 with cumulative risk ratios of 1.094 [95% confidence interval (CI): 1.054, 1.136] and 1.093 (95% CI: 1.067, 1.119), respectively, for each 10 μ g / m 3 increase in the concentration at each of the lags of 1-7 d. Only NO 2 showed a significant association with the daily incidence of influenza cases in the multipollutant model that adjusts all six air pollutants together. The impact of air pollutants on influenza was generally found to be greater in children, in subtropical cities, and during cold months. DISCUSSION Increased exposure to ambient air pollutants, particularly NO 2 , is associated with a higher risk of influenza-associated illness. Policies on reducing air pollution levels may help alleviate the disease burden due to influenza infection. https://doi.org/10.1289/EHP12146.
Collapse
Affiliation(s)
- Lin-Jie Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xin-Lou Li
- Department of Medical Research, Key Laboratory of Environmental Sense Organ Stress and Health of the Ministry of Environmental Protection, PLA Strategic Support Force Medical Center, Beijing, P. R. China
| | - Yan-He Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hai-Yang Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Shi-Man Ruan
- Jinan Center for Disease Control and Prevention, Jinan, P. R. China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yan-Song Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yang Yang
- Department of Statistics, Franklin College of Arts and Science, University of Georgia, Athens, Georgia, USA
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| |
Collapse
|
13
|
Xue Y, Li J, Xu YN, Cui JS, Li Y, Lu YQ, Luo XZ, Liu DZ, Huang F, Zeng ZY, Huang RJ. Mediating effect of body fat percentage in the association between ambient particulate matter exposure and hypertension: a subset analysis of China hypertension survey. BMC Public Health 2023; 23:1897. [PMID: 37784103 PMCID: PMC10544618 DOI: 10.1186/s12889-023-16815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Hypertension caused by air pollution exposure is a growing concern in China. The association between air pollutant exposure and hypertension has been found to be potentiated by obesity, however, little is known about the processes mediating this association. This study investigated the association between fine particulate matter (aerodynamic equivalent diameter ≤ 2.5 microns, PM2.5) exposure and the prevalence of hypertension in a representative population in southern China and tested whether obesity mediated this association. METHODS A total of 14,308 adults from 48 communities/villages in southern China were selected from January 2015 to December 2015 using a stratified multistage random sampling method. Hourly PM2.5 measurements were collected from the China National Environmental Monitoring Centre. Restricted cubic splines were used to analyze the nonlinear dose-response relationship between PM2.5 exposure and hypertension risk. The mediating effect mechanism of obesity on PM2.5-associated hypertension was tested in a causal inference framework following the approach proposed by Imai and Keele. RESULTS A total of 20.7% (2966/14,308) of participants in the present study were diagnosed with hypertension. Nonlinear exposure-response analysis revealed that exposure to an annual mean PM2.5 concentration above 41.8 µg/m3 was associated with increased hypertension risk at an incremental gradient. 9.1% of the hypertension burden could be attributed to exposure to elevated annual average concentrations of PM2.5. It is noteworthy that an increased body fat percentage positively mediated 59.3% of the association between PM2.5 exposure and hypertension risk, whereas body mass index mediated 34.3% of this association. CONCLUSIONS This study suggests that a significant portion of the estimated effect of exposure to PM2.5 on the risk of hypertension appears to be attributed to its effect on alterations in body composition and the development of obesity. These findings could inform intersectoral actions in future studies to protect populations with excessive fine particle exposure from developing hypertension.
Collapse
Affiliation(s)
- Yan Xue
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Jin Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Yu-Nan Xu
- Department of Medical Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Sheng Cui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Yao-Qiong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Xiao-Zhi Luo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - De-Zhao Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.
| | - Zhi-Yu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.
| | - Rong-Jie Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China.
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China.
| |
Collapse
|
14
|
Faridi S, Allen RW, Brook RD, Yousefian F, Hassanvand MS, Carlsten C. An updated systematic review and meta-analysis on portable air cleaners and blood pressure: Recommendations for users and manufacturers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115227. [PMID: 37421892 DOI: 10.1016/j.ecoenv.2023.115227] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Fine particulate matter (PM2.5) air pollution is a leading contributor to the global burden of cardiovascular disease (CVD). One important underlying mechanism is an increase in blood pressure (BP). A growing number of studies have reported a beneficial effect of portable air cleaners (PACs) on systolic and diastolic BP; SBP and DBP. We conducted an updated systematic review and meta-analysis of studies using true versus sham mode filtration reporting the effects on BP. Of 214 articles identified up to February 5, 2023, seventeen (from China, USA, Canada, South Korea and Denmark) enrolling approximately 880 participants (484 female) met the inclusion criteria for meta-analyses. Aside from studies conducted in China, research on PACs and BP has been conducted in relatively low pollution settings. Mean indoor PM2.5 concentrations during the active and sham mode purification were 15.9 and 41.2 µg/m3, respectively. The mean efficiency of PACs against indoor PM2.5 was 59.8 % (ranging from 23 % to 82 %). True mode filtration was associated with a pooled mean difference of - 2.35 mmHg (95 % confidence interval [CI]: - 4.5, - 0.2) and - 0.81 mmHg (95 % CI: - 1.86, 0.24) in SBP and DBP, respectively. After removing the studies with high risk of bias, the magnitude of the pooled benefits on SBP and DBP increased to - 3.62 mmHg (95 % CI: - 6.69, - 0.56) and - 1.35 mmHg (95 % CI: - 2.29, - 0.41), respectively. However, there are several barriers to the use of PACs, specifically in low- and middle-income countries (LMICs), such as the initial purchase cost and filter replacements. There may be several avenues to help overcome these economic burdens and improve cost effectiveness, such as implementing government or other subsidized programs to distribute PACs targeting vulnerable and higher-risk individuals. We propose that environmental health researchers and healthcare providers should be better trained to educate the public regarding the use of PACs to reduce the impacts of PM2.5 on cardiometabolic diseases globally.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Ryan W Allen
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Christopher Carlsten
- Air Pollution Exposure Lab and Legacy for Airway Health, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, Canada.
| |
Collapse
|
15
|
Wu J, Li S, Duan J, Li Y, Wang J, Deng P, Meng C, Wang W, Yuan H, Lu Y, Shen M, Zhao Q. Association of joint exposure to various ambient air pollutants during adolescence with blood pressure in young adulthood. J Clin Hypertens (Greenwich) 2023; 25:708-714. [PMID: 37409562 PMCID: PMC10423767 DOI: 10.1111/jch.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023]
Abstract
The association of various air pollutants exposure during adolescence with blood pressure (BP) in young adulthood is uncertain. We intended to evaluate the long-term association of individual and joint air pollutants exposure during adolescence with BP in young adulthood. This cross-sectional study of incoming students was conducted in five geographically disperse universities in China during September and October 2018. Mean concentrations of particulate matter with diameters ≤2.5 μm (PM2.5 ), ≤10 μm (PM10 ), nitrogen dioxides (NO2 ), carbon monoxide (CO), sulfur dioxide (SO2 ), and ozone (O3 ) at participants' residential addresses during 2013-2018 were collected from the Chinese Air Quality Reanalysis dataset. Generalized linear mixed models (GLM) and quantile g-computation (QgC) models were utilized to estimate the association between individual and joint air pollutants exposure and systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP). A total of 16,242 participants were included in the analysis. The GLM analyses showed that PM2.5 , PM10 , NO2 , CO, and SO2 were significantly positively associated with SBP and PP, while O3 was positively associated with DBP. The QgC analyses indicated that long-term exposure to a mixture of the six air pollutants had a significant positive joint association with SBP and PP. In conclusion, air pollutant co-exposure during adolescence may influence BP in young adulthood. The findings of this study emphasized the impacts of multiple air pollutants interactions on potential health and the need of minimizing pollution exposures in the environment.
Collapse
Affiliation(s)
- Jingjing Wu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info‐physicsCentral South UniversityChangshaChina
| | - Jingwen Duan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yalan Li
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Peizhi Deng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Changjiang Meng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wei Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hong Yuan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Yao Lu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
- School of Life Course SciencesKing's College LondonLondonUK
| | - Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public HealthCentral South UniversityChangshaChina
| | - Qiuping Zhao
- Fuwai Central China Cardiovascular HospitalHeart Center of Henan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
16
|
Tan J, Chen N, Bai J, Yan P, Ma X, Ren M, Maitland E, Nicholas S, Cheng W, Leng X, Chen C, Wang J. Ambient air pollution and the health-related quality of life of older adults: Evidence from Shandong China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117619. [PMID: 36924708 DOI: 10.1016/j.jenvman.2023.117619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Ambient air pollution is a major public health concern impacting all aspects of human health. There is a lack of studies on the impact of ambient air pollution on health-related quality of life (HRQoL) of older Chinese adults. Our study answers two questions: How concentrations of ambient air pollutants are associated with HRQoL among older adults in China and, second, what are the possible mechanisms through which ambient air pollution affects HRQoL. From the 2018 National Health Service Survey, we sampled 5717 aged 65 years or older residents for the eastern province of Shandong, China. Data on individual exposures to PM2.5 and PM10 (particulate matter with diameter less than or equal to 2.5 μm and 10 μm) and sulfur dioxide (SO2) were collected from the ChinaHighAirPollutants (CHAP) datasets. Mixed-effects Tobit regression models and mixed-effects ordered Probit regression models were employed to examine the associations of long-term exposure to ambient air pollution with the European Quality of Life 5 Dimensions 3 Level Version (EQ-5D-3L) scale comprising mobility, self-care, usual activities, pain/discomfort, and anxiety/depression. Socioeconomic, demographic and behavioral factors relating to HRQoL were also examined. The results show that for each 1 μg/m3 increase, EQ-5D-3L scores fell 0.002 for PM2.5; 0.001 for PM10 and 0.002 for SO2. Long term exposure to PM2.5, PM10 and SO2 were also associated with increased prevalence of pain/discomfort and anxiety/depression. The reduced HRQoL effects of ambient air pollution were exacerbated by higher socioeconomic status (affluent, urban and higher level of education). Our findings suggested that HRQoL of older Chinese adults was not only associated with demographic, socioeconomic, and health-related factors, but also negatively correlated with air pollution, especially through increased pain/discomfort and anxiety/depression. The paper proposes policy recommendations.
Collapse
Affiliation(s)
- Jialong Tan
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| | - Nuo Chen
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| | - Jing Bai
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| | - Peizhe Yan
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| | - Xinyu Ma
- Economics and Management School, Wuhan University, Wuhan, China
| | - Meiling Ren
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| | - Elizabeth Maitland
- School of Management, University of Liverpool, Liverpool, England, United Kingdom
| | - Stephen Nicholas
- Australian National Institute of Management and Commerce, Australian Technology Park, Sydney, New South Wales, Australia; Newcastle Business School, University of Newcastle, Newcastle, New South Wales, Australia
| | - Wenjing Cheng
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| | - Xue Leng
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China
| | - Chen Chen
- School of Public Health, Wuhan University, Wuhan, China.
| | - Jian Wang
- Dong Fureng Institute of Economic and Social Development, Wuhan University, Wuhan, China; Center for Health Economics and Management at the School of Economics and Management, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Abstract
As the world's population becomes increasingly urbanized, there is growing concern about the impact of urban environments on cardiovascular health. Urban residents are exposed to a variety of adverse environmental exposures throughout their lives, including air pollution, built environment, and lack of green space, which may contribute to the development of early cardiovascular disease and related risk factors. While epidemiological studies have examined the role of a few environmental factors with early cardiovascular disease, the relationship with the broader environment remains poorly defined. In this article, we provide a brief overview of studies that have examined the impact of the environment including the built physical environment, discuss current challenges in the field, and suggest potential directions for future research. Additionally, we highlight the clinical implications of these findings and propose multilevel interventions to promote cardiovascular health among children and young adults.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Robert D Brook
- Division of Cardiovascular Diseases, Department of Internal Medicine, Wayne State University, Detroit, MI, USA
| | - Yuanfei Li
- Department of Sociology, University at Albany, State University of New York, Albany, NY, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, University Hospitals Harrington Heart and Vascular Institute, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Zhang Y, Chen S, Chen L, Wu Y, Wei J, Ma T, Chen M, Ma Q, Liu J, Wang X, Xing Y, Wu L, Li W, Liu X, Guo X, Ma J, Dong Y, Zhang J. Association of SO 2/CO exposure and greenness with high blood pressure in children and adolescents: A longitudinal study in China. Front Public Health 2023; 11:1097510. [PMID: 37304113 PMCID: PMC10248062 DOI: 10.3389/fpubh.2023.1097510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction We aimed to investigate the association between greenness around schools, long-term gaseous air pollution exposure (SO2 and CO), and blood pressure in children and adolescents. Methods From 2006 to 2018, a total of 219,956 Chinese children and adolescents aged 7-17 years in Beijing and Zhongshan were included in this longitudinal study. Annual average concentrations of SO2 and CO and the mean values of normalized difference vegetation index around schools were calculated. We used the generalized estimation equation model, restricted cubic spline model, and Cox model to analyze the health effects. Results Among all the subjects, 52,515 had the first onset of HBP. During the follow-up, HBP's cumulative incidence and incidence density were 23.88% and 7.72 per 100 person-year respectively. Exposures to SO2 and CO were significantly associated with SBP [β = 1.30, 95% CI: (1.26, 1.34) and 0.78 (0.75, 0.81)], DBP [β = 0.81 (0.79, 0.84) and 0.46 (0.44, 0.48)] and HBP [HR = 1.58 (1.57, 1.60) and 1.42 (1.41, 1.43)]. The risks of HBP attributed to SO2 and CO pollution would be higher in school-aged children in the low greenness group: the attributable fractions (AFs) were 26.31% and 20.04%, but only 13.90% and 17.81% in the higher greenness group. The AFs were also higher for normal-BMI children and adolescents in the low greenness group (AFs = 30.90% and 22.64%, but 14.41% and 18.65% in the high greenness group), while the AFs were not as high as expected for obese children in the low greenness group (AFs = 10.64% and 8.61%), nor was it significantly lower in the high greenness group (AFs = 9.60% and 10.72%). Discussion Greenness could alleviate the damage effects of SO2/CO exposure on the risks of HBP among children and adolescents, and the benefit is BMI sensitivity. It might offer insights for policymakers in making effective official interventions to prevent and control the prevalence of childhood HBP and the future disease burden caused by air pollution.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Shuo Chen
- Beijing Physical Examination Center, Beijing, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yu Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Xinxin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Weiming Li
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jingbo Zhang
- Beijing Physical Examination Center, Beijing, China
| |
Collapse
|
19
|
Liu Y, Li Y, Xu H, Zhao X, Zhu Y, Zhao B, Yao Q, Duan H, Guo C, Li Y. Pre- and postnatal particulate matter exposure and blood pressure in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 223:115373. [PMID: 36731599 DOI: 10.1016/j.envres.2023.115373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Early life is a susceptible period of air pollution-related adverse health effects. Hypertension in children might be life-threatening without prevention or treatment. Nevertheless, the causative association between environmental factors and childhood hypertension was limited. In the light of particulate matter (PM) as an environmental risk factor for cardiovascular diseases, this study investigated the association of pre- and postnatal PM exposure with blood pressure (BP) and hypertension among children and adolescents. METHOD Four electronic databases were searched for related epidemiological studies published up to September 13, 2022. Stata 14.0 was applied to examine the heterogeneity among the studies and evaluate the combined effect sizes per 10 μg/m3 increase of PM by selecting the corresponding models. Besides, subgroup analysis, sensitivity analysis, and publication bias test were also conducted. RESULTS Prenatal PM2.5 exposure was correlated with increased diastolic blood pressure (DBP) in offspring [1.14 mmHg (95% CI: 0.12, 2.17)]. For short-term postnatal exposure effects, PM2.5 (7-day average) was significantly associated with systolic blood pressure (SBP) [0.20 mmHg (95% CI: 0.16, 0.23)] and DBP [0.49 mmHg (95% CI: 0.45, 0.53)]; and also, PM10 (7-day average) was significantly associated with SBP [0.14 mmHg (95% CI: 0.12, 0.16)]. For long-term postnatal exposure effects, positive associations were manifested in SBP with PM2.5 [β = 0.44, 95% CI: 0.40, 0.48] and PM10 [β = 0.35, 95% CI: 0.19, 0.51]; DBP with PM1 [β = 0.45, 95% CI: 0.42, 0.49], PM2.5 [β = 0.31, 95% CI: 0.27, 0.35] and PM10 [β = 0.32, 95% CI: 0.19, 0.45]; and hypertension with PM1 [OR = 1.43, 95% CI: 1.40, 1.46], PM2.5 [OR = 1.65, 95% CI: 1.29, 2.11] and PM10 [OR = 1.26, 95% CI: 1.09, 1.45]. CONCLUSION Both prenatal and postnatal exposure to PM can increase BP, contributing to a higher prevalence of hypertension in children and adolescents.
Collapse
Affiliation(s)
- Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yawen Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qing Yao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
20
|
Zheng H, Cheng J, Ho HC, Zhu B, Ding Z, Du W, Wang X, Yu Y, Fei J, Xu Z, Zhou J, Yang J. Evaluating the short-term effect of ambient temperature on non-fatal outdoor falls and road traffic injuries among children and adolescents in China: a time-stratified case-crossover study. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:105. [PMID: 37033401 PMCID: PMC10067518 DOI: 10.1007/s11783-023-1705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Although studies have suggested that non-optimal temperatures may increase the risk of injury, epidemiological studies focusing on the association between temperature and non-fatal injury among children and adolescents are limited. Therefore, we investigated the short-term effect of ambient temperature on non-fatal falls and road traffic injuries (RTIs) among students across Jiangsu Province, China. Meteorological data and records of non-fatal outdoor injuries due to falls and RTIs among students aged 6-17 were collected during 2018-2020. We performed a time-stratified case-crossover analysis with a distributed lag nonlinear model to examine the effect of ambient temperature on the risk of injury. Individual meteorological exposure was estimated based on the address of the selected school. We also performed stratified analyses by sex, age, and area. A total of 57322 and 5455 cases of falls and RTIs were collected, respectively. We observed inverted U-shaped curves for temperature-injury associations, with maximum risk temperatures at 18 °C (48th of daily mean temperature distribution) for falls and 22 °C (67th of daily mean temperature distribution) for RTIs. The corresponding odds ratios (95% confidence intervals) were 2.193 (2.011, 2.391) and 3.038 (1.988, 4.644) for falls and RTIs, respectively. Notably, there was a significant age-dependent trend in which the temperature effect on falls was greater in older students (P-trend < 0.05). This study suggests a significant association between ambient temperature and students' outdoor falls and RTIs. Our findings may help advance tailored strategies to reduce the incidence of outdoor falls and RTIs in children and adolescents. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11783-023-1705-1 and is accessible for authorized users.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032 China
| | - Hung Chak Ho
- Department of Anaesthesiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, 999077 China
| | - Baoli Zhu
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Zhen Ding
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Wencong Du
- Department of Noncommunicable Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Xin Wang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Yang Yu
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Juan Fei
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Zhiwei Xu
- School of Public Health, University of Queensland, Queensland, 4006 Australia
| | - Jinyi Zhou
- Department of Noncommunicable Diseases, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Jie Yang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| |
Collapse
|
21
|
Niu Z, Duan Z, Yu H, Xue L, Liu F, Yu D, Zhang K, Han D, Wen W, Xiang H, Qin W. Association between long-term exposure to ambient particulate matter and blood pressure, hypertension: an updated systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:268-283. [PMID: 34983264 DOI: 10.1080/09603123.2021.2022106] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Evidence of more recent studies should be updated to evaluate the effect of long-term exposure to particulate matter (PM) on blood pressure and hypertension. Studies of long-term effects of PM1, PM2.5 and PM10 on blood pressure (SBP, DBP, MAP), hypertension were searched in Pubmed, Web of Science and Embase before May, 2021. Meta-analysis of 41 studies showed that exposure to PM1, PM2.5 was associated with SBP (1.76 mmHg (95%CI:0.71, 2.80) and 0.63 mmHg (95%CI:0.40, 0.85), per 10 μg/m3 increase in PM), all three air pollutants (PM1, PM2.5, PM10) was associated with DBP (1.16 mmHg (95%CI:0.34, 1.99), 0.31 mmHg (95%CI:0.16, 0.47), 1.17 mmHg (95%CI:0.24, 2.09), respectively. As for hypertension, PM1, PM2.5 and PM10 were all significantly associated with higher risk of hypertension (OR=1.27 (95%CI:1.06, 1.52), 1.15 (95%CI:1.10, 1.20) and 1.11 (95%CI:1.07, 1.16). In conclusion, our study indicated a positive association between long-term exposure to particulate matter and increased blood pressure, hypertension.
Collapse
Affiliation(s)
- Zhiping Niu
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Jiangxi, China
| | - Hongmei Yu
- Pukou District Center for Disease Control and Prevention, Nanjing, China
| | - Lina Xue
- Department of Medical Affairs, Tangdu Hospital, the Fourth Military Medical University, Xi'an, China
| | - Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Dong Yu
- Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Zhao Y, Guo Q, Zhao J, Bian M, Qian L, Shao J, Wang Q, Duan X. Long-term exposure to fine particulate matter modifies the association between physical activity and the risk of hypertension. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43690-43701. [PMID: 36658317 DOI: 10.1007/s11356-023-25256-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The trade-off between the potentially detrimental effects of fine particulate matter (PM2.5) and the benefits of physical activity (PA) is unclear. We aimed to explore the independent and interaction effects between long-term PM2.5 exposure and PA on blood pressure (BP) and hypertension. A total of 8704 adults (≥45 years) without hypertension at baseline in a nationwide cohort of the China Health and Retirement Longitudinal Study (CHARLS) were followed from 2011 to 2015. The participants were selected using a four-stage, stratified, and cluster sampling procedure. The annual PM2.5 concentrations at the residential address were estimated from a two-stage machine learning model with a 10 km × 10 km resolution. A standard questionnaire collected information on PA and potential confounders, and metabolic equivalents (MET·h/wk), which combined frequency, intensity, and duration information, were used to assess PA levels. We adopted mixed-effects regression models to explore the independent and interaction effects between long-term PM2.5 exposure and PA on BP and risk of hypertension. Systolic blood pressure (SBP) decreased by -0.84 mmHg (95% CI: -1.34, -0.34) per an IQR (interquartile range, 175.5 MET·h/wk) increase in PA, and diastolic blood pressure (DBP) decreased by -0.42 mmHg (95% CI: -0.76, -0.07). Each IQR (36.1 μg/m3) increment in PM2.5 was associated with 0.48 mmHg (95% CI: -0.24, 1.20) in SBP and -0.02 mmHg (95% CI: -0.44, 0.39) in DBP. PM2.5 showed an elevated effect with risks of hypertension (odds ratio, OR = 1.01; 95% CI: 1.00, 1.03), while PA showed the inverse result (OR = 0.98; 95% CI: 0.97, 0.99). Interaction analyses indicated PA maintained the beneficial effects on BP, but the negative association was attenuated, accompanied by the increase of PM2.5. PA decreased the BP and hypertension risks, while PM2.5 showed the opposite results. PM2.5 attenuated the beneficial effects of PA on BP and modified the association between PA and the risk of hypertension.
Collapse
Affiliation(s)
- Yuchen Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qian Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiahao Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengyao Bian
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liqianxin Qian
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Shao
- National Institute of Sports Medicine, General Administration of Sport of China, Beijing, 100029, China
| | - Qirong Wang
- National Institute of Sports Medicine, General Administration of Sport of China, Beijing, 100029, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
23
|
Li J, Song Y, Shi L, Jiang J, Wan X, Wang Y, Ma Y, Dong Y, Zou Z, Ma J. Long-term effects of ambient PM 2.5 constituents on metabolic syndrome in Chinese children and adolescents. ENVIRONMENTAL RESEARCH 2023; 220:115238. [PMID: 36621550 DOI: 10.1016/j.envres.2023.115238] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Metabolic syndrome (MetS) is considered a main public health issue as it remarkably adds the risk of cardiovascular disease, leading to a heavy burden of disease. There is growing evidence linking fine particulate matter (PM2.5) exposure to MetS. However, the influences of PM2.5 constituents, especially in children and adolescents, remain unclear. Our study was according to a national analysis among Chinese children and adolescents to examine the associations between long-term exposure to PM2.5 main constituents and MetS. A total of 10,066 children and adolescents aged 10-18 years were recruited in 7 provinces in China, with blood tests, health exams, and questionnaire surveys. We estimated long-term exposures to PM2.5 mass and its five constituents, containing black carbon (BC), organic matter (OM), inorganic nitrate (NO3-), sulfate (SO42-), and soil particles (SOIL) from multi-source data fusion models. Mixed-effects logistic regression models were used with the adjustment of a variety of covariates. In the surveyed populations, 2.9% were classified as MetS. From the single-pollutant models, we discovered that long-term exposures to PM2.5 mass, BC, OM, NO3-, as well as SO42-, were significantly associated with the prevalence of MetS, with odds ratios (ORs) per 1 μg/m3 that were 1.02 (95% confidence interval (CI): 1.01, 1.03) for PM2.5 mass, 1.24 (95% CI: 1.14, 1.35) for BC, 1.07 (95% CI: 1.04, 1.11) for OM, 1.09 (95% CI: 1.04, 1.13) for NO3-, and 1.14 (95% CI:1.04, 1.24) for SO42-. The influence of BC on the prevalence of MetS was robust in both the multi-pollutant model and the PM2.5-constituent joint model. The paper indicates long-term exposure to PM2.5 mass and specific PM2.5 constituents, particularly for BC, was significantly associated with a higher MetS prevalence among children and adolescents in China. Our results highlight the significance of establishing further regulations on PM2.5 constituents.
Collapse
Affiliation(s)
- Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Jun Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Xiaoyu Wan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yinghua Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China.
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
24
|
Karamanos A, Lu Y, Mudway IS, Ayis S, Kelly FJ, Beevers SD, Dajnak D, Fecht D, Elia C, Tandon S, Webb AJ, Grande AJ, Molaodi OR, Maynard MJ, Cruickshank JK, Harding S. Associations between air pollutants and blood pressure in an ethnically diverse cohort of adolescents in London, England. PLoS One 2023; 18:e0279719. [PMID: 36753491 PMCID: PMC9907839 DOI: 10.1371/journal.pone.0279719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/13/2022] [Indexed: 02/09/2023] Open
Abstract
Longitudinal evidence on the association between air pollution and blood pressure (BP) in adolescence is scarce. We explored this association in an ethnically diverse cohort of schoolchildren. Sex-stratified, linear random-effects modelling was used to examine how modelled residential exposure to annual average nitrogen dioxide (NO2), particulate matter (PM2.5, PM10) and ozone (O3), measures in μg/m3, associated with blood pressure. Estimates were based on 3,284 adolescents; 80% from ethnic minority groups, recruited from 51 schools, and followed up from 11-13 to 14-16 years old. Ethnic minorities were exposed to higher modelled annual average concentrations of pollution at residential postcode level than their White UK peers. A two-pollutant model (NO2 & PM2.5), adjusted for ethnicity, age, anthropometry, and pubertal status, highlighted associations with systolic, but not diastolic BP. A μg/m3 increase in NO2 was associated with a 0.30 mmHg (95% CI 0.18 to 0.40) decrease in systolic BP for girls and 0.19 mmHg (95% CI 0.07 to 0.31) decrease in systolic BP for boys. In contrast, a 1 μg/m3 increase in PM2.5 was associated with 1.34 mmHg (95% CI 0.85 to 1.82) increase in systolic BP for girls and 0.57 mmHg (95% CI 0.04 to 1.03) increase in systolic BP for boys. Associations did not vary by ethnicity, body size or socio-economic advantage. Associations were robust to adjustments for noise levels and lung function at 11-13 years. In summary, higher ambient levels of NO2 were associated with lower and PM2.5 with higher systolic BP across adolescence, with stronger associations for girls.
Collapse
Affiliation(s)
- A. Karamanos
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - Y. Lu
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
- Clinical Research Center of The Third Xiangya Hospital, Central South University, Changsha, China
| | - I. S. Mudway
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - S. Ayis
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| | - F. J. Kelly
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - S. D. Beevers
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - D. Dajnak
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - D. Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - C. Elia
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - S. Tandon
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| | - A. J. Webb
- Faculty of Life Sciences & Medicine, Department of Clinical Pharmacology, King’s College London BHF Centre of Excellence, School of Cardiovascular Medicine and Sciences, King’s College, London, United Kingdom
| | - A. J. Grande
- Curso de Medicina, Universidade Estadual do Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - O. R. Molaodi
- MRC/CSO Social and Public Health Sciences Unit, Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland
| | - M. J. Maynard
- School of Clinical & Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - J. K. Cruickshank
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
| | - S. Harding
- School of Life Course/Nutritional Sciences, King’s College London, London, United Kingdom
- Faculty of Life Sciences & Medicine, Department of Population Health Sciences, School of Population Health & Environmental Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
25
|
Tandon S, Grande AJ, Karamanos A, Cruickshank JK, Roever L, Mudway IS, Kelly FJ, Ayis S, Harding S. Association of Ambient Air Pollution with Blood Pressure in Adolescence: A Systematic-review and Meta-analysis. Curr Probl Cardiol 2023; 48:101460. [PMID: 36265590 DOI: 10.1016/j.cpcardiol.2022.101460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 01/04/2023]
Abstract
We systematically reviewed the association of ambient air pollution with blood pressure (BP) as a primary outcome in adolescents (10-19 years). Five databases (Ovid Medline, Ovid Embase, Web of Science, The Cochrane Library, and LILACS) were searched for relevant articles published up to August 2022. Meta-analyses were conducted using STATA v17 (Protocol - OSF Registries https://doi.org/10.17605/OSF.IO/96G5Q). Eight studies (5 cohort, 3 cross-sectional) with approximately 15,000 adolescents were included. Data from 6 studies were suitable for inclusion in the meta-analyses. In sub-group analyses, non-significant positive associations were observed for cohort studies assessing long-term exposure to PM10, PM2.5, and NO2 on systolic and diastolic BP. At age 12 years old (3702 adolescents), we found significant positive associations for long-term exposure to PM2.5(β=5.33 (1.56, 9.09) mmHg) and PM10 (β=2.47 (0.10, 4.85) mmHg) on diastolic BP. Significant positive associations were observed (3,592 adolescents) for long-term exposure to PM10(β=0.34 (0.19, 0.50) mmHg) and NO2 on diastolic BP (β=0.40 (0.09, 0.71) mmHg), and PM10 on systolic BP (β=0.48 (0.19, 0.77) mmHg). The overall quality of evidence analysed was graded as "low/very low." Insufficient data for short-term exposures to PM2.5, PM10, NO2, CO on BP led to their exclusion from the meta-analysis. Inconsistent associations were reported for gender-stratified results. The evidence, though of low-quality and limited, indicated that ambient air pollution was positively associated with adolescent BP. Future studies need improved measures of air pollutant exposures, consideration of gender and socio-economic circumstances on the observed pollution effects, as well as adjustment for other potential confounding factors.
Collapse
Affiliation(s)
- Saniya Tandon
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Antonio Jose Grande
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom; Curso de Medicina, Universidade Estadual do Mato Grosso do Sul, Campo Grande, Brazil
| | - Alexis Karamanos
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - John Kennedy Cruickshank
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlandia, Uberlândia, Brazil
| | - Ian Stanley Mudway
- MRC Centre for Environment and Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Frank James Kelly
- MRC Centre for Environment and Health, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, United Kingdom
| | - Salma Ayis
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Seeromanie Harding
- School of Life Course and Population Health, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
26
|
Guo C, Chang LY, Bo Y, Lin C, Lau AKH, Tam T, Lao XQ. Life-course exposure to ambient fine particulate matter and hypertension in adulthood: a longitudinal cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:788-797. [PMID: 35904742 DOI: 10.1007/s11356-022-22272-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
PM2.5-hypertension association were well documented in adults, while the effects of life-course exposure to PM2.5 on adulthood hypertension remained unclear. This study aimed to investigate the associations between life-course exposure to ambient PM2.5 and incident hypertension in adulthood in Asia. We included 4272 participants with 17,814 medical visits from two open cohorts in Taiwan and Hong Kong between 2000 and 2018. We used a satellite-based model to assess 2-year average PM2.5 exposure at a resolution of 1 km2. A linear mixed model was used to examine the association with blood pressure. A Cox regression model with time-dependent covariates was used to examine the overall association with the development of hypertension in adulthood. Life-course mixed models were used to examine the effects of PM2.5 exposure at different life stages on blood pressure and hypertension. For every 10 μg/m3 increase in PM2.5, the overall risk of adulthood hypertension increased by 40% (95% confidence interval [CI] 8-80%). The health effects of PM2.5 exposure at different life-stages on incident hypertension were generally independent of each other. In critical model, the risk of developing hypertension increased 23%, 27%, and 55% for each 10 μg/m3 increase in PM2.5 exposure during school age, adolescence, and adulthood, respectively. Similar associations were found between life-course PM2.5 exposure and blood pressure. Association between PM2.5 and adulthood hypertension can be traced back to childhood. Our study suggests that life-course control of air pollution exposure should be implemented to alleviate the huge burden of adulthood hypertension.
Collapse
Affiliation(s)
- Cui Guo
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ly-Yun Chang
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | - Yacong Bo
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
27
|
Zhang J, Zhang F, Xin C, Duan Z, Wei J, Zhang X, Han S, Niu Z. Associations of long-term exposure to air pollution, physical activity with blood pressure and prevalence of hypertension: the China Health and Retirement Longitudinal Study. Front Public Health 2023; 11:1137118. [PMID: 37206865 PMCID: PMC10189054 DOI: 10.3389/fpubh.2023.1137118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Background Long-term exposure to air pollution and physical activity (PA) are linked to blood pressure and hypertension. However, the joint effect of air pollution and PA on blood pressure and hypertension are still unknown in Chinese middle-aged and older adults. Methods A total of 14,622 middle-aged and older adults from the China Health and Retirement Longitudinal Study wave 3 were included in this study. Ambient air pollution [particulate matter with diameter ≤ 2.5 μm (PM2.5), or ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbonic oxide (CO)] were estimated using satellite-based spatiotemporal models. PA was investigated using International Physical Activity Questionnaire. Generalized linear models were used to examine the associations of air pollution, PA score with blood pressure [systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP)], and the prevalence of hypertension. Subgroup analysis was conducted to investigate the effects of air pollution on blood pressure and the prevalence of hypertension in different PA groups. Results The results showed that for each inter-quartile range (IQR) increase in PM2.5 (25.45 μg/m3), PM10 (40.56 μg/m3), SO2 (18.61 μg/m3), NO2 (11.16 μg/m3), CO (0.42 mg/m3) and PA score (161.3 MET/h-week), the adjusted odd ratio (OR) of hypertension was 1.207 (95% confidence interval (CI): 1.137, 1.281), 1.189 (95%CI: 1.122, 1.260), 1.186 (95%CI: 1.112, 1.266), 1.186 (95%CI: 1.116, 1.260), 1.288 (95%CI: 1.223, 1.357), 0.948 (95%CI: 0.899, 0.999), respectively. Long-term exposure to PM2.5, PM10, SO2, NO2, and CO was associated with increased SBP, DBP, and MAP levels. For example, each IQR increase in PM2.5 was associated with 1.20 mmHg (95%CI: 0.69, 1.72) change in SBP, 0.66 mmHg (95%CI: 0.36, 0.97) change in DBP, and 0.84 mmHg (95%CI: 0.49, 1.19) change in MAP levels, respectively. Each IQR increase in PA score was associated with -0.56 mmHg (95%CI: -1.03, -0.09) change in SBP, -0.32 mmHg (95%CI: -0.59, -0.05) change in DBP, and -0.33 mmHg (95%CI: -0.64, -0.02) change in MAP levels, respectively. Subgroup analysis found that the estimated effects in the sufficient PA group were lower than that in the insufficient PA group. Conclusion Long-term exposure to air pollutants is associated with increased blood pressure and hypertension risk, while high-level PA is associated with decreased blood pressure and hypertension risk. Strengthening PA might attenuate the adverse effects of air pollution on blood pressure and hypertension risk.
Collapse
Affiliation(s)
- Jinglong Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fen Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chao Xin
- PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhizhou Duan
- Preventive Health Service, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, United States
| | - Xi Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Shichao Han
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- *Correspondence: Shichao Han, ; Zhiping Niu,
| | - Zhiping Niu
- Department of Urology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- *Correspondence: Shichao Han, ; Zhiping Niu,
| |
Collapse
|
28
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
29
|
Kwak JH, Kim HJ. The Association between Air Pollutants Exposure with Pre- and Hypertension by Vitamin C Intakes in Korean Adults: A Cross-Sectional Study from the 2013-2016 Korea National Health and Nutrition Examination. J Nutr Health Aging 2023; 27:21-29. [PMID: 36651483 DOI: 10.1007/s12603-022-1872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Oxidative stress and systemic inflammation are the main pathways by which air pollutants cause hypertension (HTN). Vitamin C intake may reduce the risk of HTN caused by air pollutants. This study aimed to investigate the association between air pollutants and pre-HTN and HTN in Korean adults and whether these associations were modified by vitamin C intake, using data from the 2013-2016 Korean National Health and Nutrition Examination Survey (KNHANES). DESIGN Cross-sectional study. SETTING This study used data from the KNHANES VI (2013-2015) and VII (2016) along with the data from the annual air pollution report of the Ministry of Environment. PARTICIPANTS We included 11,866 adults who had responded to a semi-food frequency questionnaire. MEASUREMENTS We used survey logistic regression models to evaluate the association of ambient PM10, SO2, NO2, CO, and O3 with pre-HTN and HTN according to vitamin C intake. RESULTS After adjusting for potential covariates, exposure to ambient PM10, SO2, NO2, and CO was significantly associated with a high prevalence of pre-HTN and HTN, whereas exposure to O3 was significantly associated with a low prevalence of pre-HTN and HTN. In particular, as the air pollutant scores increased (severe air pollution), the prevalence of pre-HTN and HTN increased in a dose-dependent manner (highest score vs. lowest score, OR=1.85, 95% CI=1.39-2.46, p for trend <.0001). However, these associations were found to be pronounced in adults with low vitamin C intake (highest score vs. lowest score, OR=2.30, 95% CI=1.50-3.54, p for trend <.0001), whereas the statistical significance disappeared for adults with high vitamin C intake (highest score vs. lowest score, OR=1.40, 95% CI=0.93-2.12, p for trend=0.007). CONCLUSION Exposure to air pollutants such as PM10, SO2, NO2, and CO may increase the prevalence of pre-HTN and HTN among Korean adults. In addition, a high intake of vitamin C may help prevent pre-HTN and HTN caused by air pollutants.
Collapse
Affiliation(s)
- Jung Hyun Kwak
- Hyun Ja Kim, Department of Food and Nutrition, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung-si, Gangwon-do 25457, Republic of Korea. Tel.: +82-33-640-2967, Fax: +82-33-640-2330, E-mail:
| | | |
Collapse
|
30
|
Zhao H, Wu M, Du Y, Zhang F, Li J. Relationship between Built-Up Environment, Air Pollution, Activity Frequency and Prevalence of Hypertension-An Empirical Analysis from the Main City of Lanzhou. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:743. [PMID: 36613066 PMCID: PMC9819356 DOI: 10.3390/ijerph20010743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
In the process of promoting the strategy of a healthy China, the built environment, as a carrier of human activities, can effectively influence the health level of residents in the light of its functional types. Based on the POI data of four main urban areas in Lanzhou, this paper classifies the built environment in terms of function into four types. The association between different types of built environments and the prevalence of hypertension was investigated by using the community as the study scale, and activity frequency, air pollution and green space were used as mediating variables to investigate whether they could mediate the relationship between built environments and hypertension. The results indicate that communities with a high concentration of commercial service facilities, road and traffic facilities and industrial facilities have a relatively high prevalence of hypertension. By determining the direct, indirect and overall effects of different functional types of built environment on the prevalence of hypertension, it was learned that the construction of public management and service facilities can effectively mitigate the negative effects of hypertension in the surrounding residents. The results of the study contribute to the rational planning of the structure of the built environment, which is beneficial for optimizing the urban structure and preventing and controlling chronic diseases such as hypertension.
Collapse
Affiliation(s)
- Haili Zhao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China
| | - Minghui Wu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China
| | - Yuhan Du
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China
| | - Fang Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China
| | - Jialiang Li
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730070, China
| |
Collapse
|
31
|
Yan M, Hou F, Xu J, Liu H, Liu H, Zhang Y, Liu H, Lu C, Yu P, Wei J, Tang NJ. The impact of prolonged exposure to air pollution on the incidence of chronic non-communicable disease based on a cohort in Tianjin. ENVIRONMENTAL RESEARCH 2022; 215:114251. [PMID: 36063911 DOI: 10.1016/j.envres.2022.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Evidence on the associations of prolonged ambient pollutants exposure with chronic non-communicable diseases among middle-aged and elderly residents is still limited. This prospective cohort study intends to investigate the long-term effects of ambient pollution on hypertension and diabetes incidence among relatively older residents in China. Individual particulate matter exposure levels were estimated by satellite-based model. Individual gaseous pollutants exposure levels were estimated by Inverse Distance Weighted model. A Cox regression model was employed to assess the risks of hypertension and diabetes morbidity linked to air pollutants exposures. The cross-product term of ambient pollutants exposure and covariates was further added into the regression model to test whether covariates would modify these air pollution-morbidity associations. During the period from 2014 to 2018, a total of 97,982 subjects completed follow-up. 12,371 incidents of hypertension and 2034 of diabetes occurred. In the multi-covariates model, the hazard ratios (HR) and 95% confidence interval (CI) were 1.49 (1.45-1.52), 1.28 (1.26-1.30), 1.17 (1.15-1.18), 1.21 (1.17-1.25) and 1.33 (1.31-1.35) for hypertension morbidity per 10 μg/m3 increment in PM1, PM2.5, PM10, NO2 and SO2, respectively. For diabetes onsets, the HR (95% CI) were 1.17 (1.11-1.23), 1.09 (1.04-1.13), 1.06 (1.02-1.09), 1.02 (0.95-1.10), and 1.24 (1.19-1.29), respectively. In addition, for hypertension analyses, the effect estimates were more pronounced in the participants with age <60 years old, BMI ≥24 kg/m2, and frequent alcohol drinking. These findings provided the evidence on elevated risks of morbidity of hypertension and diabetes associated with prolonged ambient pollutants exposure at relatively high levels.
Collapse
Affiliation(s)
- Mengfan Yan
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Fang Hou
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Jiahui Xu
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Huanyu Liu
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Hongyan Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Yourui Zhang
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Hao Liu
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Chunlan Lu
- Community Health Service Center, Jiefang Road, Tanggu Street, Binhai New District, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20742, United States.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health Science, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
32
|
Zhang Q, Meng X, Shi S, Kan L, Chen R, Kan H. Overview of particulate air pollution and human health in China: Evidence, challenges, and opportunities. Innovation (N Y) 2022; 3:100312. [PMID: 36160941 PMCID: PMC9490194 DOI: 10.1016/j.xinn.2022.100312] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ambient particulate matter (PM) pollution in China continues to be a major public health challenge. With the release of the new WHO air quality guidelines in 2021, there is an urgent need for China to contemplate a revision of air quality standards (AQS). In the recent decade, there has been an increase in epidemiological studies on PM in China. A comprehensive evaluation of such epidemiological evidence among the Chinese population is central for revision of the AQS in China and in other developing countries with similar air pollution problems. We thus conducted a systematic review on the epidemiological literature of PM published in the recent decade. In summary, we identified the following: (1) short-term and long-term PM exposure increase mortality and morbidity risk without a discernible threshold, suggesting the necessity for continuous improvement in air quality; (2) the magnitude of long-term associations with mortality observed in China are comparable with those in developed countries, whereas the magnitude of short-term associations are appreciably smaller; (3) governmental clean air policies and personalized mitigation measures are potentially effective in protecting public and individual health, but need to be validated using mortality or morbidity outcomes; (4) particles of smaller size range and those originating from fossil fuel combustion appear to show larger relative health risks; and (5) molecular epidemiological studies provide evidence for the biological plausibility and mechanisms underlying the hazardous effects of PM. This updated review may serve as an epidemiological basis for China’s AQS revision and proposes several perspectives in designing future health studies. Acute effects of PM are smaller in China compared with developed countries Health effects caused by PM depend on particle composition, source, and size There are no thresholds for the health effects of PM Mechanistic studies support the biological plausibility of PM’s health effects
Collapse
Affiliation(s)
- Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Su Shi
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lena Kan
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, MD 21205, USA
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.,Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
33
|
Jiang J, Xiang Z, Liu F, Li N, Mao S, Xie B, Xiang H. Associations of residential greenness with obesity and BMI level among Chinese rural population: findings from the Henan Rural Cohort Study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74294-74305. [PMID: 35635662 DOI: 10.1007/s11356-022-20268-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
In recent years, increasing evidence supports the notion that obesity risk is affected by residential greenness. However, limited studies have been established in low- and middle-income countries, especially in China. The study aimed to evaluate the associations of residential greenness with obesity and body mass index (BMI) level in Chinese rural-dwelling adults. A total of 39,259 adults from the Henan Rural Cohort Study (HRCS) were included in the analyses. According to the guideline for prevention and control of overweight and obesity in Chinese adults, obesity was defined as BMI ≥ 28 kg/m2. Residential greenness was measured by satellite-based normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Generalized linear mixed models were used to study the associations between exposure to residential greenness with obesity and BMI level. Higher residential greenness was significantly correlated with lower odds of obesity and BMI level. For example, in the full-adjusted analyses, an interquartile range (IQR) increase in EVI500-m was linked with reduced odds of obesity (OR = 0.77, 95%CI 0.72-0.82) and BMI level (β = - 0.41 kg/m2, 95%CI - 0.48 to - 0.33 kg/m2). Mediation analyses showed air pollution and physical activity could be potential mediators in these associations. Besides, we found that the association of NDVI500-m with BMI was stronger in females and low-income populations. Higher residential greenness was associated with a lower prevalence of obesity and BMI level, particularly among females and the low-income population. These relationships were partially mediated by reducing air pollution and increasing physical activity.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, 430071, Hubei, China
- Global Health Institute, Wuhan University, Wuhan, 430071, Hubei, China
| | - Zixi Xiang
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, 430071, Hubei, China
- Global Health Institute, Wuhan University, Wuhan, 430071, Hubei, China
| | - Feifei Liu
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, 430071, Hubei, China
- Global Health Institute, Wuhan University, Wuhan, 430071, Hubei, China
| | - Na Li
- Department of Global Health, School of Public Health, Peking University, Beijing, 100871, China
| | - Shuyuan Mao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bo Xie
- School of Urban Design, Wuhan University, Wuhan, 430072, Hubei, China
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, Wuhan, 430071, Hubei, China.
- Global Health Institute, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
34
|
Li B, Cao H, Liu K, Xia J, Sun Y, Peng W, Xie Y, Guo C, Liu X, Wen F, Zhang F, Shan G, Zhang L. Associations of long-term ambient air pollution and traffic-related pollution with blood pressure and hypertension defined by the different guidelines worldwide: the CHCN-BTH study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63057-63070. [PMID: 35449329 DOI: 10.1007/s11356-022-20227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The assessment of the generalization of the strict hypertension definition in the 2017 ACC/AHA Hypertension Guideline from environmental condition remains sparse. The aims of this study are to investigate and compare the associations of ambient air pollution and traffic-related pollution (TRP) with hypertension defined by the different criteria. A total of 32,135 participants were recruited from the baseline survey of the CHCN-BTH in 2017. We defined hypertension as SBP/DBP ≥ 140/90 mmHg according to the hypertension guidelines in China, Japan, Europe and ISH (traditional criteria) and defined as SBP/DBP ≥ 130/80 mmHg according to the 2017 ACC/AHA Hypertension Guideline (strict criteria). A two-level generalized linear mixed models were applied to investigate the associations of air pollutants (i.e. PM2.5, SO2, NO2) and TRP with blood pressure (BP) measures and hypertension. Stratified analyses and two-pollutant models were also performed. The stronger associations of air pollutants were found in the hypertension defined by the strict criteria than that defined by the traditional criteria. The ORs per an IQR increase in PM2.5 were 1.17 (95% CI: 1.09, 1.25) for the strict criteria and 1.14 (95% CI: 1.06, 1.23) for the traditional criteria. The similar conditions were also observed for TRP. The above results were robust in both stratified analyses and two-pollutant models. Our study assessed the significance of the hypertension defined by the strict criteria from environmental aspect and called attention to the more adverse effects of air pollution and TRP on the earlier stage of hypertension.
Collapse
Affiliation(s)
- Bingxiao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Juan Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yanyan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Wenjuan Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yunyi Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xiaohui Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fuyuan Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Fengxu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No. 10, Xi Toutiao You Anmenwai, Fengtai District, Beijing, China.
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China.
| |
Collapse
|
35
|
Dong Y, Chen M, Sun B, Li Y, Gao D, Wen B, Song Y, Ma J. Trends in associations between socioeconomic development and urban-rural disparity with high blood pressure in Chinese children and adolescents over two decades. J Hum Hypertens 2022; 36:866-874. [PMID: 34354252 DOI: 10.1038/s41371-021-00592-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/09/2022]
Abstract
This study aimed to assess the association between the trend of urban-rural disparity in high blood pressure (HBP) in Chinese children and adolescents and socioeconomic development. Data on 1,054,602 students aged 7-18 years were obtained from five successive national surveys administered in 29 Chinese provinces in 1995, 2000, 2005, 2010, and 2014. HBP was defined as average measured systolic BP and/or diastolic BP equal to or more than 95th percentile. The socioeconomic indicators at the provincial-level included gross domestic product (GDP) per capita, the Engel coefficient, and urbanization rates. From 1995 to 2014, HBP prevalence in Chinese children and adolescents fluctuated between 6.9% and 9.2%. Rural areas had a higher prevalence of HBP than urban areas, with a diminishing trend in urban-rural disparity from 1995 to 2010 with a reduced OR from 1.45 (95% CI: 1.40-150) in 1995 to 1.09 (1.05-1.12) in 2010, whereas a widening gap in 2014 with OR of 1.23 (1.19-1.26)). A positive association existed between the improvement of socioeconomic indicators and the increase in HBP, which was demonstrated obviously by the Engel coefficient strata. The increases in the urbanization rates were accompanied by a greater increase of HBP in urban than in rural areas. The large urban-rural disparity suggests a priority of HBP control in rural children due to their current and future HBP and cardiovascular disease risks. Socioeconomic development could affect the urban-rural disparity in HBP risk, reflecting the importance of effective policy responses for preventing HBP by avoiding unhealthy lifestyles brought about by rapid economic development.
Collapse
Affiliation(s)
- Yanhui Dong
- Institute of Child and Adolescent Health & School of Public Health, Peking University, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health & School of Public Health, Peking University, Beijing, China
| | - Binbin Sun
- Institute of Population Research, Peking University/KU-APEC Health Science Academy, Beijing, China
| | - Yanhui Li
- Institute of Child and Adolescent Health & School of Public Health, Peking University, Beijing, China
| | - Di Gao
- Institute of Child and Adolescent Health & School of Public Health, Peking University, Beijing, China
| | - Bo Wen
- Institute of Child and Adolescent Health & School of Public Health, Peking University, Beijing, China
| | - Yi Song
- Institute of Child and Adolescent Health & School of Public Health, Peking University, Beijing, China.
| | - Jun Ma
- Institute of Child and Adolescent Health & School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
36
|
de Prado-Bert P, Warembourg C, Dedele A, Heude B, Borràs E, Sabidó E, Aasvang GM, Lepeule J, Wright J, Urquiza J, Gützkow KB, Maitre L, Chatzi L, Casas M, Vafeiadi M, Nieuwenhuijsen MJ, de Castro M, Grazuleviciene R, McEachan RRC, Basagaña X, Vrijheid M, Sunyer J, Bustamante M. Short- and medium-term air pollution exposure, plasmatic protein levels and blood pressure in children. ENVIRONMENTAL RESEARCH 2022; 211:113109. [PMID: 35292243 DOI: 10.1016/j.envres.2022.113109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 05/26/2023]
Abstract
Exposure to air pollution influences children's health, however, the biological mechanisms underlying these effects are not completely elucidated. We investigated the association between short- and medium-term outdoor air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6-11 years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in children's plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a standardized protocol. We performed an association study for each air pollutant at each location and time window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but other study designs are needed to prove the causal directionality between HGF and blood pressure.
Collapse
Affiliation(s)
- Paula de Prado-Bert
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Audrius Dedele
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004 Paris, France
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000, Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Jose Urquiza
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Léa Maitre
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA; Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Maribel Casas
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Mark J Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Xavier Basagaña
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
37
|
Tong J, An X, Zhao L, Qu P, Tang X, Chen M, Liang X. Combining multiaspect factors to predict the risk of childhood hypertension incidence. J Clin Hypertens (Greenwich) 2022; 24:1015-1025. [PMID: 35866196 PMCID: PMC9380136 DOI: 10.1111/jch.14544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022]
Abstract
Childhood hypertension has become a global public health issue due to its increasing prevalence and association with cerebral‐cardiovascular disease in adults. In this study, we developed a predictive model for childhood hypertension based on environmental and genetic factors to identify at‐risk individuals. Eighty children diagnosed with childhood hypertension and 84 children in the control group matched by sex and age from an established cohort were included in a nested case–control study. We constructed a multiple logistic regression model to analyze the factors associated with hypertension and applied the 10‐fold cross‐validation method to verify the prediction stability of the model. Childhood hypertension was found positively correlated with triglyceride level ≥150 mg/dL; low‐density lipoprotein cholesterol level ≥110 mg/dL; body mass index Z score; waist‐to‐height ratio Z score; and red blood cell count (all P < .01) and negatively correlated with the relative expression level of retinol acyltransferase; relative expression level of vitamin D receptor; and dietary intake of fiber, vitamin C and copper (all P < .05) in this study. BMI Z score, triglyceride ≥150 mg/dL, RBC count, VDR/β‐actin and LRAT/β‐actin ratios were used to construct the predictive model. The area under the receiver operating characteristic curve was 94.45% (95% CI = 89.35%∼98.65%, P < .001). The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were all above 80% in both the training and validation sets. In conclusion, this model can predict the risk of childhood hypertension and could provide a theoretical basis for early prevention and intervention to improve the cardiovascular health of children.
Collapse
Affiliation(s)
- Jishuang Tong
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center of Child Development and Critical Disorders, Chongqing, China
| | - Xizhou An
- Hematology and Oncology Department, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhao
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center of Child Development and Critical Disorders, Chongqing, China
| | - Ping Qu
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center of Child Development and Critical Disorders, Chongqing, China
| | - Xian Tang
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center of Child Development and Critical Disorders, Chongqing, China
| | - Min Chen
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center of Child Development and Critical Disorders, Chongqing, China
| | - Xiaohua Liang
- Clinical Epidemiology and Biostatistics Department, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Center of Child Development and Critical Disorders, Chongqing, China
| |
Collapse
|
38
|
Zeng X, Xu C, Xu X, Huang Y, Wang Q, Huo X. Combined toxicity of air pollutants related to e-waste on inflammatory cytokines linked with neurotransmitters and pediatric behavioral problems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113657. [PMID: 35617902 DOI: 10.1016/j.ecoenv.2022.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023]
Abstract
E-waste usually refers to the discarded electrical or electronic equipment that is no longer used. Informal e-waste recycling methods, such as burning, roasting, acid leaching, and shredding, had resulted in serious air pollution, which is a prominent risk factor for children's health. However, the combined toxicity of air pollutants on children's behavioral health remains unclear. This study collected data on air pollution exposure, calculated the average daily dose (ADD) based on these air pollutants for children in Guiyu (e-waste group, n = 112) and Haojiang (reference group, n = 101), then assessed children's behavioral health using the Strengths and Difficulties Questionnaire (SDQ), and further estimated the associations of ADD, inflammatory cytokines, neurotransmitters, and children's behavioral problems. Compared with Haojiang, Guiyu has poorer air quality and higher levels of ADD, inflammatory cytokines (such as IL-1β, IL-6, and TNF-α), neurotransmitters (such as DA and SP), and SDQ scores, but lower levels of serum neuropeptide Y (NPY) levels. Spearman correlation analyses indicated that there were significant relationships among inflammatory cytokines, neurotransmitters, and behavioral scores. Multiple linear regression analyses showed that each unit increase in ADD was associated with serum levels of DA and SP, the serum NPY subsequently changed by B (95% CI): 0.99 (0.14, 1.84) nmol/L, 0.25 (0.08, 0.42) ng/mL, and - 0.16 (-0.26, -0.05) ng/mL, respectively. After adjustment for confounders, logistic regression analyses suggested that with each one-fold increase in ADD was associated with the risk of emotional symptoms [OR (95% CI): 18.15 (2.72, 121.06)], hyperactivity-inattention [13.64 (2.28, 81.65)] and total difficulties [8.90 (1.60, 49.35)] and prosocial behavior [- 7.32 (-44.37, -1.21)]. Taken together, this study demonstrates that combined exposure to air pollutants may alter the levels of inflammatory cytokines and serum neurotransmitter to subsequently impact behavioral health in children.
Collapse
Affiliation(s)
- Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yu Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
39
|
Yu Q, Zuo G. Relationship of indoor solid fuel use for cooking with blood pressure and hypertension among the elderly in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53444-53455. [PMID: 35284972 PMCID: PMC9343286 DOI: 10.1007/s11356-022-19612-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Indoor air pollution caused by solid fuel use for cooking affects 2.5 billion people worldwide and may elevate blood pressure (BP) and increase the burden of hypertension. Although the elderly are the most at risk of an elevated BP and hypertension, few studies have evaluated the effect of indoor solid fuel use for cooking on BP in persons over the age of 65. Therefore, in this study, we randomly selected 8067 elderly people over 65 years of age from the 2018 Chinese Longitudinal Healthy Longevity Survey to determine the impact of indoor solid fuel use on BP/hypertension. The results showed that, compared with those who cooked with clean fuel, those who cooked with solid fuel had a 1.87 mmHg higher systolic blood pressure, a 0.09 mmHg higher diastolic blood pressure, a 0.97 mmHg higher pulse pressure, and a 1.22 mmHg higher mean arterial pressure. However, we did not find any association between indoor solid fuel use and hypertension. We further observed that northern China residents, women, people aged over 90 years, hypertensive and heart patients, and those with natural ventilation in the kitchen that used indoor solid fuel experienced a greater BP impact. Replacing solid fuel with clean fuel may be an important way to lower BP. Regarding this, priority access to clean fuel should be given to the susceptible population, including the elderly aged ≥ 75 years, northern China residents, women, and hypertensive and heart patients.
Collapse
Affiliation(s)
- Qiutong Yu
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine Shandong University, 44 Wen-hua-xi Road, Jinan, 250012, Shandong, China
- NHC Key Laboratory of Health Economics and Policy Research, Shandong University, 44 Wen-hua-xi Road, Jinan, 250012, Shandong, China
| | - Genyong Zuo
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine Shandong University, 44 Wen-hua-xi Road, Jinan, 250012, Shandong, China.
- NHC Key Laboratory of Health Economics and Policy Research, Shandong University, 44 Wen-hua-xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
40
|
Yuan Z, Chen P, Yang L, Miao L, Wang H, Xu D, Lin Z. Combined oxidant capacity, redox-weighted oxidant capacity and elevated blood pressure: A panel study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113364. [PMID: 35255254 DOI: 10.1016/j.ecoenv.2022.113364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence is limited on the potential health effects of Ox (sum value) and Oxwt(weighted value), the two surrogates for ozone (O3) and nitrogen dioxides (NO2). OBJECTIVES To investigate the impacts of Ox and redox-weighted oxidant capacity (Oxwt) on blood pressure (BP). METHODS A panel study was conducted with four repeated follow-up visits among 40 healthy college students in Hefei, Anhui Province, China from August to October, 2021. We measured BP by using an automated sphygmomanometer and obtained hourly data of air pollutants at a nearby site. The sum of O3 and NO2 (Ox) and their weighted average (Oxwt) were obtained as exposure variables. We applied linear mixed-effect models to evaluate the effects of Ox and Oxwton systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP). RESULTS Totally, 160 pairs of valid BP values were obtained. The 24-h mean levels of Ox and Oxwt were 64.38 μg/m3 and 110.28 μg/m3, respectively. Overall, both Ox and Oxwt were significantly linked with SBP, DBP and MAP at most lag periods, whereas non-significant with PP. A 10-μg/m3 increase in Oxwt at lag 0-24 h was linked to increases of 2.43 mmHg (95% CI: 0.96, 3.91) in SBP, 2.31 mmHg (95% CI: 1.37, 3.26) in DBP and 2.35 mmHg (95% CI: 1.35, 3.36) in MAP, while the corresponding effect estimates for Ox were 1.51 mmHg (95%CI: 0.60, 2.43), 1.43 mmHg (95% CI: 0.85, 2.02) and 1.46 mmHg (95%CI: 0.83, 2.09). In two-pollutant models, our results were almost unchanged after controlling for simultaneous exposure to other pollutants. The effects were more pronounced among males and those with physical activity. CONCLUSIONS The findings provide first-hand evidence that short-term exposure to Ox and Oxwt was associated with BP increases in young adults.
Collapse
Affiliation(s)
- Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ping Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Liyan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Lin Miao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Zhijing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
41
|
Chen L, Xie J, Ma T, Chen M, Gao D, Li Y, Ma Y, Wen B, Jiang J, Wang X, Zhang J, Chen S, Wu L, Li W, Liu X, Dong B, Wei J, Guo X, Huang S, Song Y, Dong Y, Ma J. Greenness alleviates the effects of ambient particulate matter on the risks of high blood pressure in children and adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152431. [PMID: 34942264 DOI: 10.1016/j.scitotenv.2021.152431] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Both ambient particulate matter (PM) and decrease of greenness have been suggested as risk factors for high blood pressure (HBP) in children and adolescents. But most evidence were from cross-sectional studies with limited data from prospective cohorts. In this cohort study, we included 588,004 children and adolescents aged 7 to 18 years without HBP from 2005 to 2018 in Beijing (240,081) and Zhongshan (347,923) city of China. The cumulative incidence of HBP was 32.04%, and incidence rate was 14.86 per 100 person-year. After adjustment for confounders, the ten-unit increase in PM1, PM2.5, and PM10 exposure was significantly associated with 43%, 70%, and 43%- higher risks of HBP, respectively, but the 0.1-unit increase in NDVI exposure was significantly associated with a 25% lower risk of HBP. The HRs of PM1 on the HBP risk were 1.486 and 1.150 in the low and the high-level of greenness, and they were 2.635 and 2.507 for PM2.5, and for PM10 1.367 and 1.702 in the two groups. The attributable fraction (AFs) of PM1, PM2.5, and PM10 on HBP incidents were 13.74%, 40.08%, and 15.47% in the low-level of greenness, which simultaneously was higher than those in the high-level of greenness (AF = 4.62%, 17.28%, and 9.96%). The exposure to higher ambient PM air pollution and lower greenness around schools were associated with a higher risk of HBP in children and adolescents, but higher greenness alleviated the adverse effects of ambient PM1 and PM2.5 on the HBP risks. Our findings highlighted a synergic strategy in preventing childhood HBP by decreasing air pollution reduction and improving greenness concurrently.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Junqing Xie
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Di Gao
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yanhui Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Ying Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Bo Wen
- School of Public Health and Preventive Medicine, Monash University, Level 2, 553 St Kilda Road, Melbourne, VIC 3004, Australia
| | - Jun Jiang
- Department of Plant Science and Landscape Architecture, University of Maryland, USA
| | - Xijie Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China; Wanke School of Public Health, Tsinghua University, Beijing, China
| | - Jingbo Zhang
- Beijing Health Center for Physical Examination, Beijing 100191, China
| | - Shuo Chen
- Beijing Health Center for Physical Examination, Beijing 100191, China
| | - Lijuan Wu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Weiming Li
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Bin Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Sizhe Huang
- Zhongshan Health Care Centers for Primary and Secondary School, Zhongshan 528403, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China.
| |
Collapse
|
42
|
Li G, Zhang H, Hu M, He J, Yang W, Zhao H, Zhu Z, Zhu J, Huang F. Associations of combined exposures to ambient temperature, air pollution, and green space with hypertension in rural areas of Anhui Province, China: A cross-sectional study. ENVIRONMENTAL RESEARCH 2022; 204:112370. [PMID: 34780789 DOI: 10.1016/j.envres.2021.112370] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Hypertension (HTN) was a major preventable cause of cardiovascular disease (CVD), contributing to a huge disease burden. Ambient temperature, air pollution and green space were important influencing factors of HTN, and few studies have assessed the effects and interactions of ambient temperature, air pollution and green space on HTN in rural areas. In this study, we selected 8400 individuals randomly in rural areas of Anhui Province by a multi-stage stratified cluster sampling. A total of 8383 individuals were included in the final analysis. We collected particulate pollutants and meteorological data from the local air quality monitoring stations and National Center for Meteorological Science from January 1 to December 31, 2020, respectively. The normalized differential vegetation index (NDVI) of Anhui Province in 2020 was produced and processed by remote sensing inversion on the basis of medium resolution satellite images. The average annual mean exposure concentrations of air pollution, meteorological factors, and NDVI were calculated for each individual based on the geocoded residential address. HTN was defined according the Chinese Guidelines for Prevention and Treatment of HTN. The effects and interactions of ambient temperature, air pollution and green space on HTN were evaluated by generalized linear model and interaction model, respectively. In this study, the prevalence of HTN was 24.14%. The adjusted odd ratio of HTN for each 1 μg/m3 increasing in PM2.5 and PM10, 1 °C of ambient temperature, and 0.1 of NDVI were:1.276 (1.013, 1.043), 1.012 (1.006, 1.018), 0.862 (0.862, 0.981) and 0.669 (0.611, 0.733), respectively. The results showed that air pollutants were positively correlated with HTN, while ambient temperature and green space were negatively correlated with HTN. Meanwhile, the negative associations of green space on HTN could decrease with the increasing concentrations of air pollution, but increase with the rising of ambient temperature.
Collapse
Affiliation(s)
- Guoao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Hanshuang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Mingjun Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jialiu He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Wanjun Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Huanhuan Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Zhenyu Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jinliang Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
43
|
Li J, Dong Y, Song Y, Dong B, van Donkelaar A, Martin RV, Shi L, Ma Y, Zou Z, Ma J. Long-term effects of PM 2.5 components on blood pressure and hypertension in Chinese children and adolescents. ENVIRONMENT INTERNATIONAL 2022; 161:107134. [PMID: 35180672 DOI: 10.1016/j.envint.2022.107134] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Growing evidence has linked fine particulate matter (PM2.5) exposure to elevated blood pressure, but the effects of PM2.5 components are unclear, particularly in children and adolescents. Based on a cross-sectional investigation in China, we analyzed the associations between long-term exposure to PM2.5 and its major components with elevated blood pressure in children and adolescents. A representative sample (N = 37,610) of children and adolescents with age 7-18 years was collected in seven Chinese provinces. Exposures to PM2.5 and five of its major components, including black carbon (BC), organic matter (OM), inorganic nitrate (NO3-), sulfate (SO42-), and soil particles (SOIL), were estimated using satellite-based spatiotemporal models. The associations between long-term exposures to PM2.5 and its components and diastolic blood pressure (DBP), systolic blood pressure (SBP), and hypertension were investigated using mixed-effects logistic and linear regression models. Within the populations, 11.5 % were classified as hypertension. After adjusting for a variety of covariates, per interquartile range (IQR) increment in PM2.5 mass and BC levels were significantly associated with a higher hypertension prevalence with odds ratios (ORs) of 1.56 (95% confidence interval (CI): 1.08, 2.25) for PM2.5 and 1.19 (95% CI: 1.04, 1.35) for BC. Long-term exposures to PM2.5 and BC have also been associated with elevated SBP and DBP. Additionally, OM and NO3- were significantly associated with increased SBP, while SOIL was significantly associated with increased DBP. In the subgroup analysis, the associations between long-term exposures to BC and blood pressure vary significantly by urbanicity of residential area and diet habits. Our study suggests that long-term exposure to PM2.5 mass and specific PM2.5 components, especially for BC, are significantly associated with elevated blood pressure and a higher hypertension prevalence in Chinese children and adolescents.
Collapse
Affiliation(s)
- Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Bin Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Aaron van Donkelaar
- Department of Energy, Environmental and Chemical Engineering, Washington University at St. Louis, MO 63130, USA
| | - Randall V Martin
- Department of Energy, Environmental and Chemical Engineering, Washington University at St. Louis, MO 63130, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Yinghua Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Zhiyong Zou
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
44
|
Dzhambov AM, Lercher P, Markevych I, Browning MHEM, Rüdisser J. Natural and built environments and blood pressure of Alpine schoolchildren. ENVIRONMENTAL RESEARCH 2022; 204:111925. [PMID: 34437849 DOI: 10.1016/j.envres.2021.111925] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early life environments may influence children's blood pressure (BP), but evidence on the combined effects of natural and built environment exposures is scarce. The present study investigates the associations of natural and built environment indicators, traffic noise, and air pollution with BP in children living in Alpine valleys. METHODS In 2004/2005, 1251 school children (8-12 years old) were sampled for a cross-sectional survey in several Austrian and Italian mountain valleys. Children's mothers completed a questionnaire. The outcomes of interest were systolic and diastolic BP measured with a calibrated oscillometric device. Indicators of land cover assigned to the residential and school coordinates within 100 and 1000 m included normalized difference vegetation index (NDVI), tree canopy cover, and a broader naturalness indicator titled distance to nature (D2N). The presence of a home garden was also measured via self-report. Imperviousness density served as a proxy for the built environment. Residential air pollution (NO2) and noise (Lden) from traffic were calculated using bespoke modeling. NO2, Lden, physical activity, and body mass index (BMI) were treated as mediating pathways. RESULTS Higher NDVI and tree cover levels in residential and school surroundings and home gardens were consistently associated with lower BP. The built environment was associated with higher BP. Counterintuitive inverse associations between NO2 and Lden and BP were also found. Structural equation modeling showed that higher levels of greenspace and presence of a home garden were weakly associated with more outdoor play spaces, and in turn with lower BMI, and ultimately with lower BP. CONCLUSIONS Exposure to natural environments may help maintain normal BP in children, while built environment may increase children's BP. Outdoor play and less adiposity in greener areas may mediate some of these associations. Evidence on air pollution and noise remains controversial and difficult to explain.
Collapse
Affiliation(s)
- Angel M Dzhambov
- Department of Hygiene, Faculty of Public Health, Medical University of Plovdiv, Plovdiv, Bulgaria; Institute for Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria.
| | - Peter Lercher
- Institute for Highway Engineering and Transport Planning, Graz University of Technology, Graz, Austria
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Matthew H E M Browning
- Department of Park, Recreation, and Tourism Management, Clemson University, Clemson, USA
| | | |
Collapse
|
45
|
Zhao M, Xu Z, Guo Q, Gan Y, Wang Q, Liu JA. Association between long-term exposure to PM 2.5 and hypertension: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL RESEARCH 2022; 204:112352. [PMID: 34762927 DOI: 10.1016/j.envres.2021.112352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Numerous studies have examined the association between long-term exposure to particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) and hypertension. However, the results are inconsistent. OBJECTIVES Considering the limitations of previous meta-analyses and the publication of many new studies in recent years, we conducted this meta-analysis to assess the relationship between long-term PM2.5 exposure and the incidence and prevalence of hypertension in a healthy population. METHODS We searched PubMed, Web of Science, Embase, and Scopus for relevant studies published until April 2, 2021 and reviewed the reference lists of previous reviews. A total of 28 observational studies reporting RR or OR with 95% CI for the association between long-term PM2.5 exposure and the risk of hypertension were included. RESULTS After the sensitivity analysis, we excluded one study with a high degree of heterogeneity, resulting in 27 studies and 28 independent reports. Approximately 42 million participants were involved, and the cases of hypertension in cohort and cross-sectional studies were 508,749 and 1,793,003, respectively. The meta-analysis showed that each 10 μg/m3 increment in PM2.5 was significantly associated with the risks of hypertension incidence (RR = 1.21, 95% CI: 1.07, 1.35) and prevalence (OR = 1.06, 95% CI: 1.03, 1.09). Subgroup analyses showed that occupational exposure had a significant effect on the association of PM2.5 and hypertension incidence (p for interaction = 0.042) and that the PM2.5 concentration level and physical activity had a noticeable effect on the association of PM2.5 and hypertension prevalence (p for interaction = 0.005; p for interaction = 0.022). CONCLUSIONS A significantly positive correlation was observed between long-term PM2.5 exposure and risks of hypertension incidence and prevalence, and a high PM2.5 concentration resulted in an increased risk of hypertension.
Collapse
Affiliation(s)
- Mingqing Zhao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyuan Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qianqian Guo
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-An Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
46
|
Liu Q, Li G, Zhang L, Liu J, Du J, Shao B, Li Z. Effects of household cooking with clean energy on the risk for hypertension among women in Beijing. CHEMOSPHERE 2022; 289:133151. [PMID: 34871615 DOI: 10.1016/j.chemosphere.2021.133151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Outdoor air pollution and indoor burning of biomass fuel can cause high blood pressure. However, little is known about the effects of cooking with clean energy on hypertension. We thus explored whether cooking with clean energy is associated with the risk for hypertension. The study used baseline data from 12,349 women from a large population-based cohort study in Beijing, China. Information on cooking habits, health status, and other characteristics was collected by questionnaire and physical examination. Fasting blood samples were collected to measure total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and homocysteine (HCY). An index of cooking exposure was constructed. Log-binomial regression models were used to estimate the association between cooking exposure and risk for hypertension. The prevalence of hypertension was 26.7%. Any cooking exposure at all was associated with an increased risk for hypertension with an adjusted prevalence ratio (aPR) of 2.27 (95% confidence interval [CI]: 2.01, 2.57). The risk for hypertension increased with increases in cooking frequency, time spent cooking, and the cooking index, all showing a dose-effect relationship (P < 0.001). An increased risk for hypertension was associated with both cooking using mainly electricity (aPR: 1.75, 95% CI: 1.41, 2.17) and cooking using mainly natural gas (aPR: 2.30, 95% CI: 2.03, 2.60). The cooking index was positively correlated with plasma concentrations of TC, TG, LDL-C, and HCY and negatively correlated with HDL-C. Abnormal levels of all these biomarkers were associated with an increased prevalence of hypertension after adjustment for confounding factors. Cooking with clean energy, mainly cooking habit, may contribute to an increased risk for hypertension among female residents of Beijing. Abnormal metabolism of lipids or HCY may be an important mechanism involved in the development of cooking-related hypertension.
Collapse
Affiliation(s)
- Qingping Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Gang Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Le Zhang
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China.
| | - Jufen Liu
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China.
| | - Jing Du
- Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Bing Shao
- Beijing Center for Disease Prevention and Control, Beijing, 100013, PR China.
| | - Zhiwen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, PR China; Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191, PR China.
| |
Collapse
|
47
|
Wensu Z, Wen C, Fenfen Z, Wenjuan W, Li L. The Association Between Long-Term Exposure to Particulate Matter and Incidence of Hypertension Among Chinese Elderly: A Retrospective Cohort Study. Front Cardiovasc Med 2022; 8:784800. [PMID: 35087881 PMCID: PMC8788195 DOI: 10.3389/fcvm.2021.784800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background and Objectives: Studies that investigate the links between particulate matter ≤2. 5 μm (PM2.5) and hypertension among the elderly population, especially those including aged over 80 years, are limited. Therefore, we aimed to examine the association between PM2.5 exposure and the risk of hypertension incidence among Chinese elderly. Methods: This prospective cohort study used 2008, 2011, 2014, and 2018 wave data from a public database, the Chinese Longitudinal Healthy Longevity Survey, a national survey investigating the health of those aged over 65 years in China. We enrolled cohort participants who were free of hypertension at baseline (2008) from 706 counties (districts) and followed up in the 2011, 2014, and 2018 survey waves. The annual PM2.5 concentration of 706 counties (districts) units was derived from the Atmospheric Composition Analysis Group database as the exposure variable, and exposure to PM2.5 was defined as 1-year average of PM2.5 concentration before hypertension event occurrence or last interview (only for censoring). A Cox proportional hazards model with penalized spline was used to examine the non-linear association between PM2.5 concentration and hypertension risk. A random-effects Cox proportional hazards model was built to explore the relationship between each 1 μg/m3, 10 μg/m3 and quartile increment in PM2.5 concentration and hypertension incidence after adjusting for confounding variables. The modification effects of the different characteristics of the respondents were also explored. Results: A total of 7,432 participants aged 65-116 years were enrolled at baseline. The median of PM2.5 exposure concentration of all the participants was 52.7 (inter-quartile range, IQR = 29.1) μg/m3. Overall, the non-linear association between PM2.5 and hypertension incidence risk indicated that there was no safe threshold for PM2.5 exposure. The higher PM2.5 exposure, the greater risk for hypertension incidence. Each 1 μg/m3 [adjusted hazard ratio (AHR): 1.01; 95% CI: 1.01-1.02] and 10 μg/m3 (AHR: 1.12; 95% CI: 1.09-1.16) increments in PM2.5, were associated with the incidence of hypertension after adjusting for potential confounding variables. Compared to first quartile (Q1) exposure, the adjusted HRs of hypertension incidence for the Q2, Q3 and Q4 exposure of PM2.5 were 1.31 (95% CI: 1.13-1.51), 1.35 (95% CI: 1.15-1.60), and 1.83 (95% CI: 1.53-2.17), respectively. The effects appear to be stronger among those without a pension, living in a rural setting, and located in central/western regions. Conclusion: We found no safe threshold for PM2.5 exposure related to hypertension risk, and more rigorous approaches for PM2.5 control were needed. The elderly without a pension, living in rural and setting in the central/western regions may be more vulnerable to the effects of PM2.5 exposure.
Collapse
Affiliation(s)
- Zhou Wensu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Wen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhou Fenfen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wang Wenjuan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ling Li
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Elkama A, Şüküroğlu AA, Çakmak G. Exposure to particulate matter: a brief review with a focus on cardiovascular effects, children, and research conducted in Turkey. Arh Hig Rada Toksikol 2021; 72:244-253. [PMID: 34985835 PMCID: PMC8785112 DOI: 10.2478/aiht-2021-72-3563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Exposure to environmental particulate matter (PM), outdoor air pollution in particular, has long been associated with adverse health effects. Today, PM has widely been accepted as a systemic toxicant showing adverse effects beyond the lungs. There are numerous studies, from those in vitro to epidemiological ones, suggesting various direct and indirect PM toxicity mechanisms associated with cardiovascular risks, including inflammatory responses, oxidative stress, changes in blood pressure, autonomic regulation of heart rate, suppression of endothelium-dependent vasodilation, thrombogenesis, myocardial infarction, and fibrinolysis. In addition to these and other health risks, considerations about air quality standards should include individual differences, lifestyle, and vulnerable populations such as children. Urban air pollution has been a major environmental issue for Turkey, and this review will also address current situation, research, and measures taken in our country.
Collapse
Affiliation(s)
- Aylin Elkama
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | | | - Gonca Çakmak
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| |
Collapse
|
49
|
Hu J, Xue X, Xiao M, Wang W, Gao Y, Kan H, Ge J, Cui Z, Chen R. The acute effects of particulate matter air pollution on ambulatory blood pressure: A multicenter analysis at the hourly level. ENVIRONMENT INTERNATIONAL 2021; 157:106859. [PMID: 34509047 DOI: 10.1016/j.envint.2021.106859] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological evidence from ambulatory blood pressure monitoring is needed to clarify the associations of particulate air pollution with blood pressure and potential lag patterns. We examined the associations of fine and coarse particulate matter (PM2.5, PM2.5-10) with ambulatory blood pressure among 7108 non-hypertensive participants from 7 Chinese cities between April 2016 and November 2020. Hourly concentrations of PM2.5 and PM2.5-10 were obtained from the nearest monitoring stations. We measured four blood pressure indicators, including systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and pulse pressure (PP). Linear mixed-effect models combined with distributed lag models were applied to analyze the data. Generally, very short-term exposure to PM2.5 was significantly associated with elevated blood pressure. These effects occurred on the same hour of blood pressure measurement, attenuated gradually, and became insignificant approximately at lag 12 h. An interquartile range (IQR, 33 μg/m3) increase of PM2.5 was significantly associated with cumulative increments of 0.58 mmHg for SBP, 0.31 mmHg for DBP, 0.38 mmHg for MAP, and 0.33 mmHg for PP over lag 0 to 12 h. The exposure-response relationship curves were almost linear without thresholds, but tended to be flat at very high concentrations. No significant associations were observed for PM2.5-10. Our study provides independent and robust associations between transient PM2.5 exposure and elevated blood pressure within the first 12 h, and reinforces the evidence for a linear and non-threshold exposure-response relationship, which may have implications for blood pressure management and hypertension prevention in susceptible population.
Collapse
Affiliation(s)
- Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaowei Xue
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Min Xiao
- Jiangsu Standard Medical Technology Co., Ltd, Beijing 100096, China
| | - Weidong Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| |
Collapse
|
50
|
Qin P, Luo X, Zeng Y, Zhang Y, Li Y, Wu Y, Han M, Qie R, Wu X, Liu D, Huang S, Zhao Y, Feng Y, Yang X, Hu F, Sun X, Hu D, Zhang M. Long-term association of ambient air pollution and hypertension in adults and in children: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148620. [PMID: 34274662 DOI: 10.1016/j.scitotenv.2021.148620] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
AIMS The association of long-term ambient air pollution and hypertension has been inconsistently reported. We performed an updated systematic review and meta-analysis to assess the association between long-term exposure to ambient air pollution and risk of hypertension in adults and in children. METHODS PubMed, EMBASE, and Web of Science were searched up to August 7, 2020 for published articles examining the association of long-term exposure to ambient air pollution, including particulate matter (PM; ultrafine particles, PM1, PM1-2.5, PM2.5, PM2.5-10 and PM10), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), ozone (O3), carbon monoxide (CO) and hypertension. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for hypertension with each 10-μg/m3 increase in air pollutants were calculated by random-effects models. RESULTS We included 57 studies (53 of adults and 4 of children) in the meta-analysis. Risk of hypertension was significantly increased in adults with each 10-μg/m3 increase in exposure to PM2.5 (OR 1.10, 95% CI 1.07-1.14; I2 = 93.1%; n = 37), PM10 (1.04, 1.02-1.07; I2 = 44.8%; n = 22), and SO2 (1.21, 1.08-1.36; I2 = 96.6%; n = 3). Hypertension was not significantly associated with PM1 (n = 2), PM2.5-10 (n = 16), NO2 (n = 27), or NOx (n = 17). In children, the summary ORs (95% CIs) for each 10-μg/m3 increase in PM2.5, PM10, SO2 and O3 were 2.82 (0.51-15.68; I2 = 83.8%; n = 2), 1.15 (1.01-1.32; I2 = 0; n = 2), 8.57 (0.13-575.58; I2 = 94.2%; n = 2), and 1.26 (0.81-1.09, I2 = 91.6%; n = 2), respectively. CONCLUSIONS Long-term ambient air pollution is a potential risk factor for hypertension in adults. More studies are needed to explore the effects of long-term air pollution on hypertension in children.
Collapse
Affiliation(s)
- Pei Qin
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xinping Luo
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yunhong Zeng
- Department of Health Management, Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Yang Li
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China; The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yuying Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Minghui Han
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Ranran Qie
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Xiaoyan Wu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China; Department of Health Management, Shenzhen Hospital of University of Chinese Academy of Sciences, Shenzhen, China
| | - Dechen Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Shengbing Huang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Yang Zhao
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Yifei Feng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Xingjin Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Xizhuo Sun
- The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Dongsheng Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China; The Affiliated Luohu Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Henan, China
| | - Ming Zhang
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|