1
|
Raza MAS, Muhammad F, Farooq M, Aslam MU, Akhter N, Toleikienė M, Binobead MA, Ali MA, Rizwan M, Iqbal R. ZnO-nanoparticles and stage-based drought tolerance in wheat (Triticum aestivum L.): effect on morpho-physiology, nutrients uptake, grain yield and quality. Sci Rep 2025; 15:5309. [PMID: 39939384 PMCID: PMC11822009 DOI: 10.1038/s41598-025-89718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Drought-stressed and zinc-deficient soils are major contributors to reduced wheat yields and low-quality grains, especially in semi-arid regions of the world. Zinc-oxide nanoparticles (ZnO-NPs) are adept enough to avoid these losses if applied under the right dose at the right growth stage of many crops including wheat (Triticum aestivum L.). Therefore, a pot experiment was conducted with four levels of ZnO-NPs (0, 50, 100 and 150 ppm), and drought imposed at tillering (D1) and grain filling (D2) stages, considering normal irrigation as control (D0), to explore interactive effects of ZnO-NPs and drought episodes on growth, eco-physiology, yield, and grain quality of wheat. The results depicted dose and growth stage-dependent variations in all recorded parameters. ZnO-NPs (150 ppm) significantly increased the number of grains (12.5%), grain weight (12.4%), total yield (25.5%), and zinc contents (58.6%) when the crop was exposed to drought stress at tillering stage, compared to the control treatment. Likewise, drought at grain filling stage with ZnO-NPs (150 ppm) significantly enhanced plant height, spike length, biomass, zinc contents, and grain protein by 15.5%, 3.2%, 16.7%, 100.0%, and 53.8%, respectively, when compared with control treatment. Thus, ZnO-NPs emerged as a potential drought alleviator and yield-oriented safe nano-fertilizer for wheat in semi-arid regions facing irrigation challenges.
Collapse
Affiliation(s)
- Muhammad Aown Sammar Raza
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Faqeer Muhammad
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Farooq
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Usman Aslam
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Naseem Akhter
- Department of Chemistry, Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
| | - Monika Toleikienė
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituo Al. 1, LT- 58344, Akademija, Kedainiai, Lithuania
| | - Manal Abdulaziz Binobead
- Department of Food Science and Nutrition, College of Agriculture Food Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Rizwan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| |
Collapse
|
2
|
Chahardoli A, Karimi N, Sharifan H. Elucidating the phytotoxic endpoints of sub-chronic exposure to titanium dioxide nanoparticles in Endemic Persian Dracocephalum species. CHEMOSPHERE 2025; 370:143853. [PMID: 39615853 DOI: 10.1016/j.chemosphere.2024.143853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
This study was designed to investigate the dichotomous effects of titanium dioxide nanoparticles (TiO2NPs) at varying concentrations (0, 50, 100, 1000, and 2500 ppm) on the physiological, biochemical, and antioxidative defense responses of Persian dragonhead plants cultivated in hydroponic conditions. Over 21 days of treatment, an increase in fresh shoot biomass by 26.2% and plant height by 18.2% was observed at exposure to 50 ppm TiO2NPs. Exposure to 100 ppm NPs negatively affected the biosynthesis of carotenoids, chlorophyll pigments (a, b, and total), and protein content. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) analysis revealed TiO2NPs deposition within intercellular spaces and cell walls of root tissues. The physiological stress was prominent in response to 2500 ppm NPs as evidenced by a significant increase in proline and sugar content compared to the control. The enzymatic antioxidative defense was significantly upregulated by the enhanced activity of catalase (CAT) across exposure ranges 100-2500 ppm NPs, ascorbate peroxidase (APX) at 100 and 2500 ppm NPs, and peroxidase (POD) at 100 ppm NPs in plant roots. The antioxidant proficiency was further corroborated by increases in total flavonoids by 30.43% at 2500 ppm, saponins by 253.7%, and iridoids by 22.3% at 100 ppm NPs, relative to control. The results suggest that TiO2NPs fostered growth promotion at sub-lethal doses, and induced adverse biochemical changes at elevated concentrations, prompting the activation of intrinsic defense mechanisms to enhance plant resilience against NPs stresses. The optimal nano-stimulation performance was observed at 50 ppm TiO2NPs, which was suggested for the high yield targets, signifying a potential boon for agricultural productivity.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, Texas, USA; Environmental Science and Engineering Program, University of Texas at El Paso, Texas, USA
| |
Collapse
|
3
|
Chen X, Zheng Y, Zhang Y, Chi Z, Zeng Y, Huang A, Xie Z. Intracellular diatom-derived carbon dots for enhancing photosynthetic efficiency and biomass production of Chlorella. BIORESOURCE TECHNOLOGY 2025; 420:132129. [PMID: 39894181 DOI: 10.1016/j.biortech.2025.132129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Optimizing photosynthesis in microalgae is crucial for enhancing bioenergy production and addressing global energy demands. Here, the diatom-derived carbon dots (D-CDs) were synthesized through a hydrothermal method and explored their impact on the growth and photosynthesis of Chlorella. The results demonstrated that D-CDs significantly improved Chlorella growth, with a 59.4% increase in biomass, a 35.3% increase in proteins and a 118.9% increase in carbohydrates. The D-CDs penetrated the cells and interacted with chloroplasts, accelerating photosynthetic electron transfer during light-dependent reactions. This led to a 26.3% increase in ATP and a 55.5% increase in NADPH production. Transcriptomic analysis revealed that D-CDs upregulated ribosome-related genes and stimulated the expression of genes encoding nitrite reductase and glutamine synthetase, thereby enhancing nitrogen assimilation and utilization. This study highlights the potential of CDs derived from biomass in promoting Chlorella growth and enhancing photosynthesis, offering a promising approach for sustainable bioresource development.
Collapse
Affiliation(s)
- Xiaoqi Chen
- School of Life and Health Sciences, Hainan University, Haikou 570228 China; School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Yimeng Zheng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Yuanshuai Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Zirong Chi
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Yanhua Zeng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China
| | - Aiyou Huang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China.
| | - Zhenyu Xie
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228 China.
| |
Collapse
|
4
|
Li G, Tang Y, Xie H, Iqbal B, Wang Y, Dong K, Zhao X, Kim HJ, Du D, Xiao C. Combined Impact of Canada Goldenrod Invasion and Soil Microplastic Contamination on Seed Germination and Root Development of Wheat: Evaluating the Legacy of Toxicity. PLANTS (BASEL, SWITZERLAND) 2025; 14:181. [PMID: 39861534 PMCID: PMC11768274 DOI: 10.3390/plants14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
The concurrent environmental challenges of invasive species and soil microplastic contamination increasingly affect agricultural ecosystems, yet their combined effects remain underexplored. This study investigates the interactive impact of the legacy effects of Canada goldenrod (Solidago canadensis L.) invasion and soil microplastic contamination on wheat (Triticum aestivum L.) seed germination and root development. We measured wheat seed germination and root growth parameters by utilizing a controlled potted experiment with four treatments (control, S. canadensis legacy, microplastics, and combined treatment). The results revealed that the legacy effects of S. canadensis and microplastic contamination affected wheat seed germination. The effects of different treatments on wheat seedling properties generally followed an "individual treatment enhances, and combined treatment suppresses" pattern, except for root biomass. Specifically, the individual treatment promoted wheat seedling development. However, combined treatment significantly suppressed root development, decreasing total root length and surface area by 23.85% and 31.86%, respectively. These findings demonstrate that while individual treatments may promote root development, their combined effects are detrimental, indicating a complex interaction between these two environmental stressors. The study highlights the need for integrated soil management strategies to mitigate the combined impacts of invasive species and microplastic contamination on crop productivity and ecosystem health.
Collapse
Affiliation(s)
- Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yi Tang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
| | - Hongliang Xie
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
| | - Yanjiao Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
| | - Ke Dong
- Division of Bio Convergence, Kyonggi University, Suwon 16227, Republic of Korea
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyun-Jun Kim
- Department of Forest Resources, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Environment and Safety Engineering, School of Emergency Management, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Sultan H, Mazhar Abbas HM, Faizan M, Emamverdian A, Shah A, Bahadur S, Li Y, Khan MN, Nie L. Residual effects of biochar and nano-modified biochar on growth and physiology under saline environment in two different genotype of Oryza sativa L. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123847. [PMID: 39746259 DOI: 10.1016/j.jenvman.2024.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Soil salinity is represent a significant environmental stressor that profoundly impairs crop productivity by disrupting plant physiological functions. To mitigate this issue, the combined application of biochar and nanoparticles has emerged as a promising strategy to enhance plant salt tolerance. However, the long-term residual effects of this approach on cereal crops remain unclear. In a controlled pot experiment, rice straw biochar (BC) was applied in an earlier experiment at a rate of 20 t/ha, in conjunction with ZnO and Fe2O3 nanoparticles at concentrations of 10 mg L-1 and 20 mg L-1. Two rice genotypes, Jing Liang You-534 (salt-sensitive) and Xiang Liang You-900 (salt-tolerant), were utilized under 0% NaCl (S1) and 0.6% NaCl (S2) conditions. Results showed that, application of residual ZnOBC-20 significantly enhanced rice biomass, photosynthetic assimilation, relative chlorophyll content, SPAD index, enzyme activities, K+/Na+ ratio, hydrogen peroxide (H2O2) levels, and overall plant growth. Specifically, ZnOBC-20 increased the tolerance index by 142.8% and 146.1%, reduced H2O2 levels by 27.11% and 35.8%, and decreased malondialdehyde (MDA) levels by 33% and 57.9% in V1 and V2, respectively, compared to their respective controls. Residual of ZnOBC-20 mitigated oxidative damage caused by salinity-induced over-accumulation of reactive oxygen species (ROS) by enhancing the activities of antioxidant enzymes (SOD, POD, CAT, and APX) and increasing total soluble protein (TSP) content. Xiang Liang You-900 exhibited a less severe response to salinity compared to Jing Liang You-534. Additionally, residual of ZnOBC-20 significantly enhanced the anatomical architecture of both root and leaf tissues and regulated the expression levels of salt-related genes. Residual of ZnOBC-20 also improved salt tolerance in rice plants by reducing sodium (Na+) accumulation and enhancing potassium (K+) retention, thereby increasing the K+/Na+ ratio under saline conditions. The overall results of this experiment demonstrate that, residual effects of ZnOBC-20 not only improved the growth and physiological traits of rice plants under salt stress but also provided insights into the mechanisms behind the innovative combination of biochar and nanoparticles residual impacts for enhancing plant salt tolerance.
Collapse
Affiliation(s)
- Haider Sultan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Hafiz Muhammad Mazhar Abbas
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Asad Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Saraj Bahadur
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yusheng Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| | - Lixiao Nie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China.
| |
Collapse
|
6
|
Rudi L, Cepoi L, Chiriac T, Djur S. Interactions Between Potentially Toxic Nanoparticles (Cu, CuO, ZnO, and TiO 2) and the Cyanobacterium Arthrospira platensis: Biological Adaptations to Xenobiotics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:46. [PMID: 39791805 PMCID: PMC11723369 DOI: 10.3390/nano15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain Arthrospira platensis, focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure. (2) Methods: The cyanobacterium Arthrospira platensis CNMN-CB-02 was cultivated under optimal laboratory conditions in the presence of CuNPs, CuONPs, ZnONPs, and TiO2NPs. Biochemical analyses were performed on the collected biomass. (3) Results: Various interactions between nanoparticles (NPs) and the cyanobacterial culture were identified, ranging from hormetic effects at low concentrations to evident toxic effects at high concentrations. NP toxicity was observed through the reduction in photosynthetic pigments and the disappearance of phycobiliproteins. Notably, NP toxicity was not always accompanied by increased malondialdehyde (MDA) levels. (4) Conclusions: Arthrospira platensis exhibits unique adaptive mechanisms under NP-induced stress, offering the potential for controlled NP applications in biotechnology. Future research should further explore the relationship between nanoparticle types and cyanobacterial responses to optimize biomolecule production.
Collapse
Affiliation(s)
- Ludmila Rudi
- Institute of Microbiology and Biotechnology, Technical University of Moldova, MD 2028 Chisinau, Moldova; (L.C.); (T.C.); (S.D.)
| | | | | | | |
Collapse
|
7
|
Agathokleous E, Calabrese EJ, Veresoglou SD. The microbiome orchestrates contaminant low-dose phytostimulation. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00336-4. [PMID: 39736489 DOI: 10.1016/j.tplants.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025]
Abstract
Our understanding of the physiological mechanisms of the plant hormetic response to countless environmental contaminants is rapidly advancing. However, the microbiome is a critical determinant of plant responses to stressors, thus possibly influencing hormetic responses. Here, we review the otherwise neglected role of microbes in shaping plant stimulation by subtoxic concentrations of contaminants and vice versa. Numerous contaminants at subtoxic levels enhance microorganisms and proliferate symbionts, such as mycorrhizae and other plant beneficial microbes, leading to both direct and indirect improvements in plant physiological performance. Microbial symbiosis facilitates nutrient uptake by plants, indicating an important contribution of symbionts to phytostimulation under subtoxic contamination. We also discuss the mechanisms and implications of the stimulation of plant-microbe systems by subtoxic contaminants.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
8
|
Kumar P, Perumal PK, Sumathi Y, Singhania RR, Chen CW, Dong CD, Patel AK. Nano-enabled microalgae bioremediation: Advances in sustainable pollutant removal and value-addition. ENVIRONMENTAL RESEARCH 2024; 263:120011. [PMID: 39284486 DOI: 10.1016/j.envres.2024.120011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Microalgae-assisted bioremediation, enriched by nanomaterial integration, offers a sustainable approach to environmental pollution mitigation while harnessing microalgae's potential as a biocatalyst and biorefinery resource. This strategy explores the interaction between microalgae, nanomaterials, and bioremediation, advancing sustainability objectives. The potent combination of microalgae and nanomaterials highlights the biorefinery's promise in effective pollutant removal and valuable algal byproduct production. Various nanomaterials, including metallic nanoparticles and semiconductor quantum dots, are reviewed for their roles in inorganic and organic pollutant removal and enhancement of microalgae growth. Limited studies have been conducted to establish nanomaterial's (CeO2, ZnO, Fe3O4, Al2O3, etc.) role on microalgae in pollution remediation; most studies cover inorganic pollutants (heavy metals and nutrients) remediation, exhibited 50-300% bioremediation efficiency improvement; however, some studies cover antibiotics and toxic dyes removal efficiency with 19-95% improvement. These aspects unveil the complex mechanisms underlying nanomaterial-pollutant-microalgae interactions, focusing on adsorption, photocatalysis, and quantum dot properties. Strategies to enhance bioremediation efficiency are discussed, including pollutant uptake improvement, real-time control, tailored nanomaterial design, and nutrient recovery. The review assesses recent advancements, navigates challenges, and envisions a sustainable future for bioremediation, underlining the transformative capacity of nanomaterial-driven microalgae-assisted bioremediation. This work aligns with Sustainable Development Goals 6 (Clean Water and Sanitation) and 12 (Responsible Consumption and Production) by exploring nanomaterial-enhanced microalgae bioremediation for sustainable pollution management and resource utilization.
Collapse
Affiliation(s)
- Prashant Kumar
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Yamini Sumathi
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
9
|
Qamar W, Gulia S, Athar M, Ahmad R, Imam MT, Chandra P, Singh BP, Haque R, Hassan MI, Rahman S. An insight into impact of nanomaterials toxicity on human health. PeerJ 2024; 12:e17807. [PMID: 39364370 PMCID: PMC11448750 DOI: 10.7717/peerj.17807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/03/2024] [Indexed: 10/05/2024] Open
Abstract
In recent years, advances in nanotechnology have significantly influenced electronics manufacturing, industrial processes, and medical research. Various industries have seen a surge in the use of nanomaterials. However, several researchers have raised the alarm about the toxicological nature of nanomaterials, which appear to be quite different from their crude forms. This altered nature can be attributed to their unique physicochemical profile. They can adversely affect human health and the environment. Nanomaterials that have been released into the environment tend to accumulate over time and can cause a significant impact on the ecosystem and organisms with adverse health effects. Increased use of nanoparticles has led to increased human exposure in their daily lives, making them more vulnerable to nanoparticle toxicity. Because of their small size, nanomaterials can readily cross biological membranes and enter cells, tissues, and organs. Therefore, the effect of nanomaterials on the human environment is of particular concern. The toxicological effects of nanomaterials and their mechanisms of action are being researched worldwide. Technological advances also support monitoring new nanomaterials marketed for industrial and household purposes. It is a challenging area because of the exceptional physicochemical properties of nanomaterials. This updated review focuses on the diverse toxicological perspective of nanomaterials. We have discussed the use of different types of nanoparticles and their physiochemical properties responsible for toxicity, routes of exposure, bio-distribution, and mechanism of toxicity. The review also includes various in vivo and in vitro methods of assessing the toxicity of nanomaterials. Finally, this review will provide a detailed insight into nano material-induced toxicological response, which can be beneficial in designing safe and effective nanoparticles.
Collapse
Affiliation(s)
- Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shweta Gulia
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Mohammad Athar
- Department of Medical Genetics, Umm Al-Qura University, Makkah, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Bhupendra Pratap Singh
- Department of Environmental Studies, Deshbandhu College, University of Delhi, New Delhi, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Shakilur Rahman
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
10
|
Huang F, Chen L, Zeng Y, Dai W, Wu F, Hu Q, Zhou Y, Shi S, Fang L. Unveiling influences of metal-based nanomaterials on wheat growth and physiology: From benefits to detriments. CHEMOSPHERE 2024; 364:143212. [PMID: 39222697 DOI: 10.1016/j.chemosphere.2024.143212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Metal-based nanomaterials (MNs) are widely used in agricultural production. However, our current understanding of the overall effects of MNs on crop health is insufficient. A global meta-analysis of 144 studies involving approximately 2000 paired observations was conducted to explore the impacts of MNs on wheat growth and physiology. Our analysis revealed that the MN type plays a key role in influencing wheat growth. Ag MNs had significant negative effects on wheat growth and physiology, whereas Fe, Ti, and Zn MNs significantly increased wheat biomass and photosynthesis. Our study also observed a clear dose-specific effect, with a decrease in wheat shoot biomass with increasing MN concentrations. Meanwhile, MNs with small sizes (<25 nm) have no significant impacts on wheat growth. Furthermore, both the root and foliar applications significantly improved wheat growth, with no considerable differences. Using a machine learning approach, we found that the MN type was the main driving factor affecting wheat shoot biomass, followed by MN dose and size. Overall, wheat growth and physiology can be negatively influenced by specific MNs, for which a high dose and small size should be avoided in practical applications. Therefore, our study can provide insights into the future design and safe use of MNs in agriculture and increase the public acceptance of nano-agriculture.
Collapse
Affiliation(s)
- Fengyu Huang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wei Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Shunmei Shi
- College of Environment and Resource, Xichang University, Xichang, 615000, China
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
11
|
Solis Flores S, López-Pacheco IY, Villalba-Rodriguez AM, González-González RB, Parra-Saldívar R, Iqbal HMN. Effect of carbon dots supplementation in Chlorella vulgaris biomass production and its composition. NANO EXPRESS 2024; 5:025007. [DOI: 10.1088/2632-959x/ad3cfd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Abstract
Microalgae cultures have an excellent ability to capture CO2 and produce high, medium, and low valuable biocompounds such as proteins, carbohydrates, lipids, pigments, and polyhydroxyalkanoates; those compounds have shown excellent properties in the pharmaceutical, cosmetic, food, and medical industries. Recently, the supplementation of carbon dots (CDs) in autotrophic microalgae cultures has been explored as a new strategy to increase light capture and improve photoluminescence, which in turn enhances biomass growth and biocompounds production. In this work, we synthesized CDs through a simple carbonization method using orange juice as a natural precursor. The green synthesized CDs were analyzed in detail through characterization techniques such as Fourier-transform infrared spectroscopy (FTIR), UV–visible, fluorescence spectroscopy, and ζ potential analysis. Moreover, CDs were added to Chlorella vulgaris to analyze the response under different photoperiod cycles and CDs dosages. The optimal results were obtained with the addition of 0.5 mg l−1 of CDs under a photoperiod cycle of 16 h:8 h (light:dark). In these conditions, a maximum biomass production of 2.12 g l−1 was observed, which represents an enhancement of 112% and 17% in comparison to the control samples under the photoperiod of 12 h:12 h and 16 h:8 h (light/dark), respectively. Furthermore, the production of lipids, proteins, and carbohydrates was significantly increased to 249 mg g−1, 285 mg g−1, and 217 mg g−1 dry weight, respectively. These results suggest that the addition of CDs enhances cell growth and increases the production of lipids and proteins, being a strategy with great potential for the food and pharmaceutical industries.
Collapse
|
12
|
Sun T, Ji C, Li F, Wu H. Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9314-9327. [PMID: 38709515 DOI: 10.1021/acs.est.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| |
Collapse
|
13
|
Pietrzak M, Skiba E, Wolf WM. Root-Applied Cerium Oxide Nanoparticles and Their Specific Effects on Plants: A Review. Int J Mol Sci 2024; 25:4018. [PMID: 38612829 PMCID: PMC11012102 DOI: 10.3390/ijms25074018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
With the pronounced increase in nanotechnology, it is likely that biological systems will be exposed to excess nanoparticles (NPs). Cerium oxide nanoparticles (CeO2 NPs) are among the most abundantly produced nanomaterials in the world. Their widespread use raises fundamental questions related to the accumulation in the environment and further interactions with living organisms, especially plants. NPs present in either soil or soilless environments are absorbed by the plant root systems and further transported to the aboveground parts. After entering the cytoplasm, NPs interact with chloroplast, nucleus, and other structures responsible for metabolic processes at the cellular level. In recent years, several studies have shown the impact of nanoceria on plant growth and metabolic processes. Research performed on different plants has shown a dual role for CeO2 NPs. The observed effects can be positive or negative and strongly depend on the plant species, characterization, and concentrations of NPs. This review describes the impact of root-applied CeO2 NPs on plant growth, photosynthesis, metal homeostasis, and parameters of induced oxidative stress.
Collapse
Affiliation(s)
- Monika Pietrzak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland;
| | - Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 114, 90-543 Lodz, Poland;
| | | |
Collapse
|
14
|
Wang Z, Liao J, Gai P, Guo X, Zheng W, Li X, Ran Y, Wang Z, Chen J. Metabolisms of both inorganic and methyl-mercury in hens reveal eggs as an effective bioindicator for environmental Hg pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133191. [PMID: 38071775 DOI: 10.1016/j.jhazmat.2023.133191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Mercury (Hg) is a globally distributed toxic metal and could pose serious harm to birds, which may ultimately threaten human health through poultry consumption. However, the avian Hg metabolism remains unclear. Poultry, like chickens, are more accessible human dietary sources than wild birds and are ideal proxies to study Hg metabolism in birds. In this study, the avian Hg metabolism is carefully investigated with hens fed by Hg-spiked (both inorganic mercury IHg and methylmercury MeHg) foods. Our results demonstrate that feces and eggs are the main removal pathways of Hg from hens, rather than feathers. Eggs show particularly rapid responses towards Hg exposures, thus could be more sensitive to environmental Hg pollution than feathers, feces or internal organs (and tissues). Egg yolk (with THg peak of 55.92 ng/g on Day 6) and egg white (THg peak of 1195.03 ng/g on Day 4) react as an effective bioindicator for IHg and MeHg exposure, respectively. In 90-day-single-dose exposure, IHg is almost completely excreted, while approximately 11% of MeHg remains in internal organs. Our study provides new insight into the metabolism and lifetime of IHg and MeHg in birds, advancing the understanding of the dynamics for human exposure to Hg through poultry products.
Collapse
Affiliation(s)
- Zhuhong Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jing Liao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Pengxue Gai
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Xiaoling Guo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Wang Zheng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, 300072 Tianjin, China
| | - Xue Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yulin Ran
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zhongwei Wang
- Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510220, China
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
15
|
Trela-Makowej A, Orzechowska A, Szymańska R. Less is more: The hormetic effect of titanium dioxide nanoparticles on plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168669. [PMID: 37989395 DOI: 10.1016/j.scitotenv.2023.168669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Titanium dioxide nanoparticles have attracted considerable attention due to their extensive applications; however, their multifaceted influence on plant physiology and the broader environment remains a complex subject. This review systematically synthesizes recent studies on the hormetic effects of TiO2 nanoparticles on plants - a phenomenon characterized by dual dose-response behavior that impacts various plant functions. It provides crucial insights into the molecular mechanisms underlying these hormetic effects, encompassing their effects on photosynthesis, oxidative stress response and gene regulation. The significance of this article consists in its emphasis on the necessity to establish clear regulatory frameworks and promote international collaboration to standardize the responsible adoption of nano-TiO2 technology within the agricultural sector. The findings are presented with the intention of stimulating interdisciplinary research and serving as an inspiration for further exploration and investigation within this vital and continually evolving field.
Collapse
Affiliation(s)
- Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Aleksandra Orzechowska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Reymonta 19, 30-059 Kraków, Poland.
| |
Collapse
|
16
|
Calabrese EJ, Nascarella M, Pressman P, Hayes AW, Dhawan G, Kapoor R, Calabrese V, Agathokleous E. Hormesis determines lifespan. Ageing Res Rev 2024; 94:102181. [PMID: 38182079 DOI: 10.1016/j.arr.2023.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
This paper addresses how long lifespan can be extended via multiple interventions, such as dietary supplements [e.g., curcumin, resveratrol, sulforaphane, complex phytochemical mixtures (e.g., Moringa, Rhodiola)], pharmaceutical agents (e.g., metformin), caloric restriction, intermittent fasting, exercise and other activities. This evaluation was framed within the context of hormesis, a biphasic dose response with specific quantitative features describing the limits of biological/phenotypic plasticity for integrative biological endpoints (e.g., cell proliferation, memory, fecundity, growth, tissue repair, stem cell population expansion/differentiation, longevity). Evaluation of several hundred lifespan extending agents using yeast, nematode (Caenorhabditis elegans), multiple insect and other invertebrate and vertebrate models (e.g., fish, rodents), revealed they responded in a manner [average (mean/median) and maximum lifespans] consistent with the quantitative features [i.e., 30-60% greater at maximum (Hormesis Rule)] of the hormetic dose response. These lifespan extension features were independent of biological model, inducing agent, endpoints measured and mechanism. These findings indicate that hormesis describes the capacity to extend life via numerous agents and activities and that the magnitude of lifespan extension is modest, in the percentage, not fold, range. These findings have important implications for human aging, genetic diseases/environmental stresses and lifespan extension, as well as public health practices and long-term societal resource planning.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences; University of Massachusetts, Morrill I - Room N344, Amherst, MA 01003, USA.
| | - Marc Nascarella
- Mass College of Pharmacy and Health Sciences University; School of Arts and Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management; College of Public Health; University of South Florida, Tampa, FL, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD) University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology; Nanjing University of Information Science & Technology; Nanjing 210044, China
| |
Collapse
|
17
|
Li X, Chen CC, Wu L, Zhou J, Huang Y, Zhu X. Neglected negative effect of carbon quantum dots (CQDs) entering the ocean on marine organisms living in different water layers. MARINE POLLUTION BULLETIN 2024; 199:115921. [PMID: 38150977 DOI: 10.1016/j.marpolbul.2023.115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Carbon quantum dots (CQDs) are well dispersed in water, but their potential risks in the marine environment have not been described. This study characterized CQDs and investigated their biological effects (including growth, photosynthesis and behavioural changes) in three marine organisms living in different water layers (the surface phytoplankton Phaeodactylum tricornutum and zooplankton Artemia salina and the benthic coral Zoanthus sp. at the bottom). The results showed that over 78 % of CQDs were suspended in seawater after 96 h. The biomass and photosynthesis of P. tricornutum were significantly affected, with a maximum reduction of 89.49 % in algal cells. CQDs accumulated in the intestinal tract of A. salina, reducing grazing and filtration rates by up to 71.88 % and 89.46 %, respectively. In contrast, CQD exposure had irreversible effects on the tentacle expansion behaviour of Zoanthus sp. This study helps clarify the environmental effects and ecological risks associated with the release of CQDs into the ocean.
Collapse
Affiliation(s)
- Xinyang Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, PR China
| | - Lin Wu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jin Zhou
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Yuxiong Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; College of Ecology and Environment, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
18
|
Shi R, Liu W, Lian Y, Wang X, Men S, Zeb A, Wang Q, Wang J, Li J, Zheng Z, Zhou Q, Tang J, Sun Y, Wang F, Xing B. Toxicity Mechanisms of Nanoplastics on Crop Growth, Interference of Phyllosphere Microbes, and Evidence for Foliar Penetration and Translocation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1010-1021. [PMID: 37934921 DOI: 10.1021/acs.est.3c03649] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Despite the increasing prevalence of atmospheric nanoplastics (NPs), there remains limited research on their phytotoxicity, foliar absorption, and translocation in plants. In this study, we aimed to fill this knowledge gap by investigating the physiological effects of tomato leaves exposed to differently charged NPs and foliar absorption and translocation of NPs. We found that positively charged NPs caused more pronounced physiological effects, including growth inhibition, increased antioxidant enzyme activity, and altered gene expression and metabolite composition and even significantly changed the structure and composition of the phyllosphere microbial community. Also, differently charged NPs exhibited differential foliar absorption and translocation, with the positively charged NPs penetrating more into the leaves and dispersing uniformly within the mesophyll cells. Additionally, NPs absorbed by the leaves were able to translocate to the roots. These findings provide important insights into the interactions between atmospheric NPs and crop plants and demonstrate that NPs' accumulation in crops could negatively impact agricultural production and food safety.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xue Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuzhen Men
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
19
|
Wu SW, Cheng CQ, Huang YT, Tan JZ, Li SL, Yang JX, Huang XL, Huang D, Zou LG, Yang WD, Li HY, Li DW. A study on the mechanism of the impact of phenthoate exposure on Prorocentrum lima. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132624. [PMID: 37801972 DOI: 10.1016/j.jhazmat.2023.132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/08/2023]
Abstract
Extensive application of organophosphorus pesticides such as phenthoate results in its abundance in ecosystems, particularly in waterbodies, thereby providing the impetus to assess its role in aquatic organisms. However, the impact of phenthoate on marine algal physiological and proteomic response is yet to be explored despite its biological significance. In this study, we thus ought to investigate the impact of phenthoate in the marine dinoflagellate Prorocentrum lima, which is known for synthesizing okadaic acid (OA), the toxin responsible for diarrhetic shellfish poisoning (DSP). Our results showed that P. lima effectively absorbed phenthoate in seawater, with a reduction efficiency of 90.31% after 48 h. Surprisingly, the provision of phenthoate (100 and 1000 µg/L) substantially reduced the OA content of P. lima by 35.08% and 60.28% after 48 h, respectively. Meanwhile, phenthoate treatment significantly reduced the oxidative stress in P. lima. Proteomic analysis revealed that the expression level of seven crucial proteins involved in endocytosis was upregulated, suggesting that P. lima could absorb phenthoate via the endocytic signaling pathway. Importantly, phenthoate treatment resulted in the downregulation of proteins such as polyketide synthase (PKS)- 2, Cytochrome P450 (CYP450)- 1, and CYP450-2, involved in OA synthesis, thereby decreasing the OA biosynthesis by P. lima. Our results demonstrated the potential role of P. lima in the removal of phenthoate in water and exemplified the crucial proteins and their possible molecular mechanisms underpinning the phenthoate remediation by P. lima and also the regulatory role of phenthoate in restricting the OA metabolism. Collectively, these findings uncovered the synergistic mechanisms of phenthoate and P. lima in remediating phenthoate and reducing the toxic impact of P. lima.
Collapse
Affiliation(s)
- Si-Wei Wu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Cai-Qin Cheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jin-Zhou Tan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Song-Liang Li
- The First People's Hospital of Qinzhou, The Tenth Affiliated Hospital of Guangxi Medical University, China
| | - Jia-Xin Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xue-Ling Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dan Huang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Gong Zou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
20
|
Liu J, Liu L, Wang S, Sun S, Hu C, Zhao Y. Enhancement of carbon nanotubes on microalgal-fungal consortium formation and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119120. [PMID: 37778062 DOI: 10.1016/j.jenvman.2023.119120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
As a promising material with an efficient light capture capability, a low amount of carbon nanotubes can affect growth and photosynthesis by regulating microalgal cells, thereby enhancing the pollutant removal efficiency in wastewater. In this study, microalgal-fungal consortia of Chlorella vulgaris and Ganoderma lucidum were developed with different types and concentrations of carbon nanotubes. The treatment effect of microalgal-fungal consortia on simulated digestate was also studied. The results demonstrate that 1.5 mg/L of carboxylated multi-walled carbon nanotubes remarkably promoted the formation, growth and photosynthesis of consortium. The dry weight and chlorophyll a content reached 19.3 ± 0.53 mg/symbiont and 27.3 ± 0.52 μg/L, respectively. Moreover, the removal efficiency of chemical oxygen demand, total nitrogen, total phosphorus and tetracycline hydrochloride were 94.1%, 65.5%, 61.9% and 96.2%, respectively. Overall, these findings suggest a promising future for the use of carbon nanotubes in wastewater treatment by regulating microalgal-fungal consortia.
Collapse
Affiliation(s)
- Juan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Li Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Shilun Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China
| | - Shiqing Sun
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, PR China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| |
Collapse
|
21
|
Erofeeva EA. Environmental hormesis in living systems: The role of hormetic trade-offs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166022. [PMID: 37541518 DOI: 10.1016/j.scitotenv.2023.166022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Hormesis (low-dose stimulation and high-dose inhibition) can be accompanied by hormetic trade-offs, that is, stimulation of some traits and inhibition (trade-off 1) or invariability (trade-off 2) of others. Currently, trade-off options and their biological significance are insufficiently studied. Therefore, the review analyses trade-off types, their relationship with asynchronous stress responses of indicators, the importance of trade-offs for preconditioning, hormesis transgenerational effects, fitness, and evolution. The analysis has shown that hormetic trade-offs 1 and 2 can be observed in evolutionarily distant groups of organisms and at different biological levels (cells, individuals, populations, and communities) with abiotic and biotic stressors, as well as various pollutants. Trade-offs 1 and 2 are found both between different functional traits (e.g., self-maintenance and reproduction in animals, growth and defense in plants), and between the endpoints of the same functional trait (e.g., seed weight and seed number in plants). Asynchronous responses of indicators to a low-dose stressor can lead to hormetic trade-offs in two cases: 1) these indicators have different responses (hormesis, inhibition or zero reaction) in the same dose range; 2) these indicators have hormetic responses with different hormetic zones. Trade-offs can have a positive, negative or zero effect on preconditioning, offspring, and fitness of the population. Trade-offs can potentially affect evolution in two ways: 1) the creation of trends in genotype selection; 2) participation in the assimilation of phenotypic adaptations in the genotype through the Baldwin effect (selection of mutations copying adaptive phenotypes).
Collapse
Affiliation(s)
- Elena A Erofeeva
- Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Pr, Nizhni Novgorod 603950, Russian Federation.
| |
Collapse
|
22
|
Bhattacharya S, Gupta S, Saha J. Nanoparticles regulate redox metabolism in plants during abiotic stress within hormetic boundaries. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:850-869. [PMID: 37757867 DOI: 10.1071/fp23068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Abiotic stress management remains under scrutiny because of the unpredictable nature of climate, which undergoes abrupt alterations. Population pressure, loss of cultivable lands, environmental pollution and other anthropogenic disturbances add to the problem and grossly hinder ongoing management strategies. This has driven increasing effort to find better performing, eco-friendly and reliable alternatives that can contribute to sustainable agricultural practices to manage abiotic stress. Nanotechnology and its implementation in agriculture have emerged as a promising option to cater to the problem of abiotic stress. Induction of reactive oxygen species (ROS) is an inevitable phenomenon linked to stress. Nanoparticles (NPs) perform dual actions in regulating ROS biology. The bidirectional roles of NPs in modulating ROS generation and/or ROS detoxification is tightly coupled within the hormetic boundaries. Nonetheless, how these NPs control the ROS metabolism within hormetic limits demands extensive investigation. This review focuses on the details of ROS metabolism under normal versus stressed conditions. It shall elaborate on the types, modes and process of uptake and translocation of NPs. The molecular dissection of the role of NPs in controlling transcriptomic expressions and modulating molecular crosstalks with other growth regulators, ions, reactive nitrogen species and other signalling molecules shall also be detailed. Throughout, this review aims to summarise the potential roles and regulation of NPs and consider how they can be used for green synthesis within a sustainable agricultural industry.
Collapse
Affiliation(s)
- Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, India
| | - Sumanti Gupta
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| | - Jayita Saha
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| |
Collapse
|
23
|
Chahardoli A. Hormetic dose responses induced by nickel oxide nanoparticles (NiONPs) on growth, biochemical, and antioxidant defense systems of Dracocephalum kotschyi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100078-100094. [PMID: 37624496 DOI: 10.1007/s11356-023-29359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
The application of nickel oxide nanoparticles (NiONPs) in various fields leads to their release into soil and water and, consequently, interaction with plants. Unlike its bulk counterpart, the phytotoxic potential of NiONPs is relatively less studied, particularly in a hormesis framework. Hormesis is an interesting phenomenon characterized by low-dose stimulation and high-dose inhibition. Therefore, this study demonstrates the stimulatory and inhibitory effects of NiONPs on Dracocephalum kotschyi Boiss as a medicinal plant cultivated in a pot experiment carried out in a greenhouse for 3 weeks. High bioaccumulation of nickel (Ni) in roots of treated plants relative to shoots indicates higher oxidative damage. NiONPs induced hormetic effects on photosynthetic pigments, as at low concentration of 50 mg/L stimulated chlorophyll (2.8-46.7%), carotenoid (16%), and anthocyanin (5.9%) contents and at higher concentrations inhibited the content of these pigments. A hormetic response was observed in growth parameters, i.e., NiONPs induced shoot height (7.2%) and weight (33%) at 100 mg/L, while inhibited shoot and root length (14.5-16.1% and 28.7-42.7%) and weight (46.8-48.1% and 37-40.6%), respectively, at 1000 and 2500 mg/L. The treated plants declined the toxic effects and oxidative stress caused by NiONPs by activating non-enzymatic antioxidants (phenolic compounds and proline) and enzymatic antioxidants, i.e., increasing the levels of SOD, POD, CAT, and APX. Therefore, the present study investigated for the first time the different mechanisms and responses of D. kotschyi plants to NiONPs in a wide range of concentrations. The results suggest that NiONPs may act as an elicitor at lower concentrations in medicinal plants according to specific conditions. However, these NPs at higher concentrations induce oxidative stress and harmful effects on plants, so their use poses serious risks to human health and the environment.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| |
Collapse
|
24
|
Bytešníková Z, Koláčková M, Dobešová M, Švec P, Ridošková A, Pekárková J, Přibyl J, Cápal P, Húska D, Adam V, Richtera L. New insight into the biocompatibility/toxicity of graphene oxides and their reduced forms on Chlamydomonas reinhardtii. NANOIMPACT 2023; 31:100468. [PMID: 37209721 DOI: 10.1016/j.impact.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Graphene oxides (GOs) and their reduced forms are often discussed both positively and negatively due to the lack of information about their chemistry and structure. This study utilized GOs with two sheet sizes that were further reduced by two reducing agents (sodium borohydride and hydrazine) to obtain two different degrees of reduction. The synthesized nanomaterials were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy (RA) to understand their chemistry and structure. The second focus of our investigation included in vitro testing of the biocompatibility/toxicity of these materials on a model organism, the freshwater microalga Chlamydomonas reinhardtii. The effects were studied on the basis of biological endpoints complemented by biomass investigation (FTIR spectroscopy, EA, and atomic absorption spectrometry (AAS)). The results showed that the biocompatibility/toxicity of GOs is dependent on their chemistry and structure and that it is impossible to generalize the toxicity of graphene-based nanomaterials.
Collapse
Affiliation(s)
- Zuzana Bytešníková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Koláčková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Markéta Dobešová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavel Švec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridošková
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Jana Pekárková
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, 616 00 Brno, Czech Republic
| | - Jan Přibyl
- CEITEC MU, Masaryk University, Kamenice 5/A35, 62 500 Brno, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71, Olomouc, Czech Republic
| | - Dalibor Húska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Lukáš Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
25
|
Kartsonakis IA, Vardakas P, Goulis P, Perkas N, Kyriazis ID, Skaperda Z, Tekos F, Charitidis CA, Kouretas D. Toxicity assessment of core-shell and superabsorbent polymers in cell-based systems. ENVIRONMENTAL RESEARCH 2023; 228:115772. [PMID: 36967000 DOI: 10.1016/j.envres.2023.115772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023]
Abstract
The identification of health risks arising from occupational exposure to submicron/nanoscale materials is of particular interest and toxicological investigations designed to assess their hazardous properties can provide valuable insights. The core-shell polymers poly (methyl methacrylate)@poly (methacrylic acid-co-ethylene glycol dimethacrylate) [PMMA@P (MAA-co-EGDMA)] and poly (n-butyl methacrylate-co-ethylene glycol dimethacrylate)@poly (methyl methacrylate) [P (nBMA-co-EGDMA)@PMMA] could be utilized for the debonding of coatings and for the encapsulation and targeted delivery of various compounds. The hybrid superabsorbent core-shell polymers poly (methacrylic acid-co-ethylene glycol dimethacrylate)@silicon dioxide [P (MAA-co-EGDMA)@SiO2] could be utilized as internal curing agents in cementitious materials. Therefore, the characterization of their toxicological profile is essential to ensure their safety throughout manufacturing and the life cycle of the final products. Based on the above, the purpose of the present study was to assess the acute toxic effects of the above mentioned polymers on cell viability and on cellular redox state in EA. hy926 human endothelial cells and in RAW264.7 mouse macrophages. According to our results, the examined polymers did not cause any acute toxic effects on cell viability after any administration. However, the thorough evaluation of a panel of redox biomarkers revealed that they affected cellular redox state in a cell-specific manner. As regards EA. hy926 cells, the polymers disrupted redox homeostasis and promoted protein carbonylation. Concerning RAW264.7 cells, P (nBMA-co-EGDMA)@PMMA caused disturbances in redox equilibrium and special emphasis was placed on the triphasic dose-response effect detected in lipid peroxidation. Finally, P (MAA-co-EGDMA)@SiO2 activated cellular adaptive mechanisms in order to prevent from oxidative damage.
Collapse
Affiliation(s)
- Ioannis A Kartsonakis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Periklis Vardakas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Panagiotis Goulis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Nikolaos Perkas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Ioannis D Kyriazis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece.
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece.
| |
Collapse
|
26
|
Agathokleous E, Sonne C, Benelli G, Calabrese EJ, Guedes RNC. Low-dose chemical stimulation and pest resistance threaten global crop production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162989. [PMID: 36948307 DOI: 10.1016/j.scitotenv.2023.162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Pesticide resistance increases and threatens crop production sustainability. Chemical contamination contributes to the development of pest resistance to pesticides, in part by causing stimulatory effects on pests at low sub-toxic doses and facilitating the spread of resistance genes. This article discusses hormesis and low-dose biological stimulation and their relevance to crop pest resistance. It highlights that a holistic approach is needed to tackle pest resistance to pesticides and reduce imbalance in accessing food and improving food security in accordance with the UN's Sustainable Development Goals. Among others, the effects of sub-toxic doses of pesticides should be considered when assessing the impact of synthetic and natural pesticides, while the promotion of alternative agronomical practices is needed to decrease the use of agrochemicals. Potential alternative solutions include camo-cropping, exogenous application of phytochemicals that are pest-suppressing or -repelling and/or attractive to carnivorous arthropods and other pest natural enemies, and nano-technological innovations. Moreover, to facilitate tackling of pesticide resistance in poorer countries, less technology-demanding and low-cost practices are needed. These include mixed cropping systems, diversification of cultures, use of 'push-pull cropping', incorporation of flower strips into cultivations, modification of microenvironment, and application of beneficial microorganisms and insects. However, there are still numerous open questions, and more research is needed to address the ecological and environmental effects of many of these potential solutions, with special reference to trophic webs.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China.
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| |
Collapse
|
27
|
Silva PMMD, Alkimin GDD, Camparotto NG, Prediger P, Nunes B. Toxicological effects resulting from co-exposure to nanomaterials and to a β-blocker pharmaceutical drug in the non-target macrophyte species Lemna minor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121166. [PMID: 36738879 DOI: 10.1016/j.envpol.2023.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The wide use of carbon-based materials for various purposes leads to their discharge in the aquatic systems, and simultaneous occurrence with other environmental contaminants, such as pharmaceutical drugs. This co-occurrence can adversely affect exposed aquatic organisms. Up to now, few studies have considered the simultaneous toxicity of nanomaterials, and organic contaminants, including pharmaceutical drugs, towards aquatic plants. Thus, this study aimed to assess the toxic effects of the co-exposure of propranolol (PRO), and nanomaterials based on cellulose nanocrystal, and graphene oxide in the aquatic macrophyte Lemna minor. The observed effects included reduction of growth rate in 13% in co-exposure 1 (nanomaterials + PRO 5 μg L-1), and 52-64% in co-exposure 2 (nanomaterials + PRO 51.3 mg L-1), fresh weight reduction of 94-97% in co-exposure 2 compared to control group, and increased pigment production caused by co-exposure treatments. The analysis of PCA showed that co-exposure 1 (nanomaterials + PRO 5 μg L-1) positively affected growth, and fresh weight, and co-exposure 2 positively affected pigments content. The results suggested that the presence of nanomaterials enhanced the overall toxicity of PRO, exerting deleterious effects in the freshwater plant L. minor, suggesting that this higher toxicity resulting from co-exposure was a consequence of the interaction between nanomaterials and PRO.
Collapse
Affiliation(s)
| | | | | | - Patricia Prediger
- Faculdade de Tecnologia, Universidade Estadual de Campinas, Campus De Limeira, Limeira, Brazil
| | - Bruno Nunes
- Centro de Estudos Do Ambiente e Do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
29
|
Xu YQ, Li K, Wang ZJ, Huang P, Liu SS. Transfer pattern of hormesis into personal care product mixtures from typical hormesis-inducing compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158981. [PMID: 36155044 DOI: 10.1016/j.scitotenv.2022.158981] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Some personal care products (PCPs) and their chemical components showed a hormetic effect in the freshwater photobacterium Vibrio qinghaiensis sp. -Q67 (Q67) after long-term exposure. However, how hormesis transfers between chemical components and PCP mixture, and which chemical component plays a major role remain unknown. To this end, according to the seven compounds detected in one skin lotion (SK5) and their concentration ratios, many mixture rays were constructed to simulate the SK5. Of these seven compounds, three presented monotonic concentration-response curves (CRC) to Q67 at 0.25 and 12 h (called a S-shaped compound). The other four compounds showed hormetic CRCs after 12 h and monotonic CRCs at 0.25 h (called a J-shaped compound). Based on their mixture ratios, we designed one ternary mixture ray of all S-shaped compounds, one quaternary mixture ray of all J-shaped compounds, and four quaternary mixture rays of one J-shaped and three S-shaped compounds. It was shown that SK5 could be approximately simulated by the mixture ray of the seven compounds detected in SK5 and only the mixture rays containing at least one hormesis-inducing compound produced hormesis to Q67 at 12 h. Based on the concentration ratios of various compounds and comparison of four hormetic characteristic parameters to those of various mixture rays, it was found that the compound betaine (BET) is a key compound affecting the hormesis of mixtures. Additionally, we studied the hormesis mechanism of BET on Q67 via quorum sensing (QS). This preliminarily indicated that the autoinducer-2 triggered the QS pathway. This study elucidated the transfer pattern of hormesis into mixtures, which would be an efficient method to identifying the potential components that affect hormesis transfer in mixtures. We expect that this study will provide new insights into hormesis and its mixtures.
Collapse
Affiliation(s)
- Ya-Qian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kai Li
- Institute of Ecological Environment, Yangtze Delta Region Research Institute of Tsinghua University, Jiaxing 314006, China
| | - Ze-Jun Wang
- Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Peng Huang
- Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
30
|
Agathokleous E, Zhou B, Geng C, Xu J, Saitanis CJ, Feng Z, Tack FMG, Rinklebe J. Mechanisms of cerium-induced stress in plants: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158352. [PMID: 36063950 DOI: 10.1016/j.scitotenv.2022.158352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A comprehensive evaluation of the effects of cerium on plants is lacking even though cerium is extensively applied to the environment. Here, the effects of cerium on plants were meta-analyzed using a newly developed database consisting of approximately 8500 entries of published data. Cerium affects plants by acting as oxidative stressor causing hormesis, with positive effects at low concentrations and adverse effects at high doses. Production of reactive oxygen species and its linked induction of antioxidant enzymes (e.g. catalase and superoxide dismutase) and non-enzymatic antioxidants (e.g. glutathione) are major mechanisms driving plant response mechanisms. Cerium also affects redox signaling, as indicated by altered GSH/GSSG redox pair, and electrolyte leakage, Ca2+, K+, and K+/Na+, indicating an important role of K+ and Na+ homeostasis in cerium-induced stress and altered mineral (ion) balance. The responses of the plants to cerium are further extended to photosynthesis rate (A), stomatal conductance (gs), photosynthetic efficiency of PSII, electron transport rate, and quantum yield of PSII. However, photosynthesis response is regulated not only by physiological controls (e.g. gs), but also by biochemical controls, such as via changed Hill reaction and RuBisCO carboxylation. Cerium concentrations <0.1-25 mg L-1 commonly enhance chlorophyll a and b, gs, A, and plant biomass, whereas concentrations >50 mg L-1 suppress such fitness-critical traits at trait-specific concentrations. There was no evidence that cerium enhances yields. Observations were lacking for yield response to low concentrations of cerium, whereas concentrations >50 mg Kg-1 suppress yields, in line with the response of chlorophyll a and b. Cerium affects the uptake and tissue concentrations of several micro- and macro-nutrients, including heavy metals. This study enlightens the understanding of some mechanisms underlying plant responses to cerium and provides critical information that can pave the way to reducing the cerium load in the environment and its associated ecological and human health risks.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Boya Zhou
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China; Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Caiyu Geng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Jianing Xu
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China
| | - Costas J Saitanis
- Lab of Ecology and Environmental Science, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany
| |
Collapse
|
31
|
Huang Y, Lai J, Huang Y, Luo X, Yang X, Liu Z, Duan Y, Li C. Response mechanism of Chlamydomonas reinhardtii to nanoscale bismuth oxyiodide (nano-BiOI): Integrating analysis of mineral nutrient metabolism and metabolomics. J Environ Sci (China) 2022; 121:13-24. [PMID: 35654504 DOI: 10.1016/j.jes.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 06/15/2023]
Abstract
Nanoscale bismuth oxyiodide (nano-BiOI) is widely studied and applied in environmental applications and biomedical fields, with the consequence that it may be deposited into aquatic environments. However, the impact of nano-BiOI on aquatic ecosystems, especially freshwater microalga, remains limited. Herein, the nano-BiOI was synthesized and its response mechanism towards microalga Chlamydomonas reinhardtii was evaluated. Results showed that a low concentration of nano-BiOI (5 mg/L) could stimulate algal growth at the early stage of stress. With the increase in concentration, the growth rate of algal cells was inhibited and showed a dose effect. Intracellular reactive oxygen species (ROS) were significantly induced and accompanied by enhanced lipid peroxidation, decreased nonspecific esterase activity, and significantly upregulated glutathione S-transferase activity (GST) activity. Mineral nutrient metabolism analysis showed that nano-BiOI significantly interfered with the mineral nutrients of the algae. Non-targeted metabolomics identified 35 different metabolites (DEMs, 22 upregulated, and 13 downregulated) under 100 mg/L BiOI stress. Metabolic pathway analysis demonstrated that a high concentration of nano-BiOI significantly induced metabolic pathways related to amino acid biosynthesis, lipid biosynthesis, and glutathione biosynthesis, and significantly inhibited the sterol biosynthesis pathway. This finding will contribute to understanding the toxicological mechanisms of nano-BiOI on C. reinhardtii.
Collapse
Affiliation(s)
- Yan Huang
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jinlong Lai
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China; College of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yang Huang
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, China; Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, China
| | - Xuegang Luo
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xu Yang
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zewei Liu
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yue Duan
- School of Life Sciences, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chen Li
- College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong 723000, China
| |
Collapse
|
32
|
Liu Y, Ma Y, Chen M, Zhou T, Ji R, Guo R, Chen J. Trophic transfer and environmental safety of carbon dots from microalgae to Daphnia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157201. [PMID: 35817103 DOI: 10.1016/j.scitotenv.2022.157201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The application of carbon dots (CDs), a novel carbon nanomaterial, is extensive, leading to inevitable CD pollution. However, studies on their environmental fate and related risks to aquatic ecosystems are limited. Here, the trophic transfer of CDs from Chlorella pyrenoidosa to Daphnia magna and their toxic effects on the two organisms were analyzed. 14C-labelling was used to quantify and evaluate the fate of CDs. The results showed that the radioactivity of CDs in water was >80 % of the initial radioactivity, and that water extractable residues were dominant in organisms, with only 3 % or less recovered from the mineralization product 14CO2. The distribution of radioactivity illustrated how the exposure routes changed the fate of CDs in aquatic environments. CD aggregates were found in algal cells and Daphnia intestinal tract, indicating the cellular uptake of CDs in these aquatic organisms. Wall-membrane detachment, cell collapse, and rupture were observed in the ultrastructural investigations of microalgae, whereas pneumatosis cystoides intestinalis was observed in the ultrastructural investigations of D. magna. CD exposure affected the growth and chlorophyll content of C. pyrenoidosa as well as the feeding behavior, oxidative stress system, digestive system, and symbiotic bacteria of D. magna. The toxicity of CDs is also affected by the route of exposure. These findings suggest that dietary exposure to CDs was more likely to cause environmental risk and adverse effects than aqueous exposure, and the environmental risks associated with CDs should not be underestimated.
Collapse
Affiliation(s)
- Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Meilin Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tianhan Zhou
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
33
|
Song S, Wan M, Luo Y, Shen H, Shen J. Carboxymethyl Chitosan-Modified Graphene Oxide as a Multifunctional Vector for Deltamethrin Delivery and pH-Responsive Controlled Release, Enhanced Leaf Affinity, and Improved Mosquito-Killing Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12148-12156. [PMID: 36166331 DOI: 10.1021/acs.langmuir.2c01669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Traditional deltamethrin (DM) formulations (e.g., emulsifiable concentrates, wettable powders, etc.) have significant disadvantages of poor water dispersion stability, burst release, weak leaf affinity, short duration, poor efficacy, and high environmental toxicity. A nanomaterial-based pesticide delivery system (PDS) has provided effective strategies for green preparation and synergism of pesticide formulations. In this article, we developed carboxymethyl chitosan (CMCS)-modified graphene oxide (GO) as a vector for DM and constructed a pH-responsive PDS for Culex pipiens pallens control. GO-CMCS possesses excellent pesticide loading performance for DM (loading rate 87.76%). After being loading on GO-CMCS, the GO-CMCS-DM has a significantly improved dispersion stability in water. The GO-CMCS-DM exhibits pH-responsive controlled release performance, which can sustain the release of DM into the medium, maintaining an effective long-term concentration. Additionally, the leaf adhesion of GO-CMCS-DM is better than that for free DM, which can improve the pesticide utilization. Therefore, GO-CMCS-DM has a prolonged persistent period and sustained activity against Culex pipiens pallens. Considering the industrialization potential of GO, we believe that GO will play an important role in the pest control and antiepidemic fields.
Collapse
Affiliation(s)
- Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Minghui Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yi Luo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Li J, Yue L, Zhao Q, Cao X, Tang W, Chen F, Wang C, Wang Z. Prediction models on biomass and yield of rice affected by metal (oxide) nanoparticles using nano-specific descriptors. NANOIMPACT 2022; 28:100429. [PMID: 36130713 DOI: 10.1016/j.impact.2022.100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The use of in silico tools to investigate the interactions between metal (oxide) nanoparticles (NPs) and plant biological responses is preferred because it allows us to understand molecular mechanisms and improve prediction efficiency by saving time, labor, and cost. In this study, four models (C5.0 decision tree, discriminant function analysis, random forest, and stepwise multiple linear regression analysis) were applied to predict the effect of NPs on rice biomass and yield. Nano-specific descriptors (size-dependent molecular descriptors and image-based descriptors) were introduced to estimate the behavior of NPs in plants to appropriately represent the wide space of NPs. The results showed that size-dependent molecular descriptors (e.g., E-state and connectivity indices) and image-based descriptors (e.g., extension, area, and minimum ferret diameter) were associated with the behavior of NPs in rice. The performance of the constructed models was within acceptable ranges (correlation coefficient ranged from 0.752 to 0.847 for biomass and from 0.803 to 0.905 for yield, while the accuracy ranged from 64% to 77% for biomass and 81% to 89% for yield). The developed model can be used to quickly and efficiently evaluate the impact of NPs under a wide range of experimental conditions and sufficient training data.
Collapse
Affiliation(s)
- Jing Li
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Zhao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Xuesong Cao
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Weihao Tang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Feiran Chen
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processotes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
35
|
Agathokleous E, Peñuelas J, Azevedo RA, Rillig MC, Sun H, Calabrese EJ. Low Levels of Contaminants Stimulate Harmful Algal Organisms and Enrich Their Toxins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11991-12002. [PMID: 35968681 DOI: 10.1021/acs.est.2c02763] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A widespread increase in intense phytoplankton blooms has been noted in lakes worldwide since the 1980s, with the summertime peak intensity amplifying in most lakes. Such blooms cause annual economic losses of multibillion USD and present a major challenge, affecting 11 out of the 17 United Nations Sustainable Development Goals. Here, we evaluate recent scientific evidence for hormetic effects of emerging contaminants and regulated pollutants on Microcystis sp., the most notorious cyanobacteria forming harmful algal blooms and releasing phycotoxins in eutrophic freshwater systems. This new evidence leads to the conclusion that pollution is linked to algal bloom intensification. Concentrations of contaminants that are considerably smaller than the threshold for toxicity enhance the formation of harmful colonies, increase the production of phycotoxins and their release into the environment, and lower the efficacy of algaecides to control algal blooms. The low-dose enhancement of microcystins is attributed to the up-regulation of a protein controlling microcystin release (McyH) and various microcystin synthetases in tandem with the global nitrogen regulator Ycf28, nonribosomal peptide synthetases, and several ATP-binding cassette transport proteins. Given that colony formation and phycotoxin production and release are enhanced by contaminant concentrations smaller than the toxicological threshold and are widely occurring in the environment, the effect of contaminants on harmful algal blooms is more prevalent than previously thought. Climate change and nutrient enrichment, known mechanisms underpinning algal blooms, are thus joined by low-level pollutants as another causal mechanism.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, People's Republic of China
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, People's Republic of China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz"/Universidade de São Paulo (ESALQ/USP), Avenida Pádua Dias, 11, Piracicaba, São Paulo, São Paulo 13418-900, Brazil
| | - Matthias C Rillig
- Institut für Biologie, Freie Universität Berlin, Altensteinstr. 6, D-14195 Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Morrill I, N344, Amherst, Massachusetts 01003, United States
| |
Collapse
|
36
|
Li X, He F, Wang Z, Xing B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:181-197. [PMID: 38075596 PMCID: PMC10702922 DOI: 10.1016/j.eehl.2022.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2024]
Abstract
Research on the environmental health of emerging contaminants is critical to understand their risks before causing severe harm. However, the low environmental concentrations, complex behaviors, and toxicology of emerging contaminants present enormous challenges for researchers. Here, we reviewed the research on the environmental health of engineered nanomaterials (ENMs), one of the typical emerging contaminants, to enlighten pathways for future research on emerging contaminants at their initial exploratory stage. To date, some developed pretreatment methods and detection technologies have been established for the determination of ENMs in natural environments. The mechanisms underlying the transfer and transformation of ENMs have been systematically explored in laboratory studies. The mechanisms of ENMs-induced toxicity have also been preliminarily clarified at genetic, cellular, individual, and short food chain levels, providing not only a theoretical basis for revealing the risk change and environmental health effects of ENMs in natural environments but also a methodological guidance for studying environmental health of other emerging contaminants. Nonetheless, due to the interaction of multiple environmental factors and the high diversity of organisms in natural environments, health effects observed in laboratory studies likely differ from those in natural environments. We propose a holistic approach and mesocosmic model ecosystems to systematically carry out environmental health research on emerging contaminants, obtaining data that determine the objectivity and accuracy of risk assessment.
Collapse
Affiliation(s)
- Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
37
|
Application of an Ecotoxicological Battery Test to the Paddy Field Soils of the Albufera Natural Park. TOXICS 2022; 10:toxics10070375. [PMID: 35878280 PMCID: PMC9324136 DOI: 10.3390/toxics10070375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
Albufera Natural Park (ANP) (Valencia, Spain) is one of the most important wetland areas of the Mediterranean coast subject to high anthropogenic pressure, on whose soils a battery of bioassays has never been applied to evaluate the ecotoxicological risk. The present study determined available and water-soluble heavy metal content in four paddy soils used in the ANP, and the ecotoxicological effect on these soils was evaluated by performing the bioassays regulated in Spanish Royal Decree 9/2005. Soil properties and extractable Co, Cr, Cu, Ni, Pb and Zn (EDTA pH = 7) were analyzed in soils. These elements and macro- and micronutrients were also assessed in soil leachate. A test battery covering the following was needed: acute toxicity test in Eisenia foetida (OECD TG 207); mineralization tests of nitrogen (OECD TG 2016) and carbon (OECD TG 217); growth inhibition test in Raphidocelis subcapitata (OECD TG 201); mobility inhibition test in Daphnia magna (OECD TG 202). The soils found in the most anthropized areas to the north of the ANP (Massanassa and Alfafar) demonstrated a higher concentration of available heavy metals than in the southern ones (Sueca and Sollana). The aqueous leachate of the studied soils contained very low concentrations, which would be related to soil properties. Despite the high concentration of available potentially toxic elements (PTEs) in the Massanassa and Alfafar soils, the studied soils showed no toxicity during the performed battery bioassays. Therefore, soils can be considered non-toxic despite the obtained PTEs available concentration.
Collapse
|
38
|
Agathokleous E, Barceló D, Rinklebe J, Sonne C, Calabrese EJ, Koike T. Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153116. [PMID: 35063521 DOI: 10.1016/j.scitotenv.2022.153116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Increasing amounts of silver iodide (AgI) in the environment are expected because of the recent massive expansion of weather modification programs. Concurrently, pharmaceuticals, microplastics, hydrocarbons, and pesticides in terrestrial ecosystems continue contaminating forests and agroforests. Our review supports that AgI induces hormesis, a biphasic dose response characterized by often beneficial low-dose responses and toxic high-dose effects, which adds to the evidence for pharmaceuticals, microplastics, hydrocarbons, and pesticides induced hormesis in numerous species. Doses smaller than the no-observed-adverse-effect-level (NOAEL) positively affect defense physiology, growth, biomass, yields, survival, lifespan, and reproduction. They also lead to negative or undesirable outcomes, including stimulation of pathogenic microbes, pest insects, and weeds with enhanced resistance to drugs and potential negative multi- or trans-generational effects. Such sub-NOAEL effects perplex terrestrial ecosystems managements and may compromise combating outbreaks of disease vectors that can threaten not only forest and agroforestry health but also sensitive human subpopulations living in remote forested areas.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
39
|
Sun T, Ji C, Li F, Wu H. Hormetic dose responses induced by organic flame retardants in aquatic animals: Occurrence and quantification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153295. [PMID: 35065129 DOI: 10.1016/j.scitotenv.2022.153295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The organic flame retardants (OFRs) have attracted global concerns due to their potential toxicity and ubiquitous presence in the aquatic environment. Hormesis refers to a biphasic dose response, characterized by low-dose stimulation and high-dose inhibition. The present study provided substantial evidence for the widespread occurrence of OFRs-induced hormesis in aquatic animals, including 202 hormetic dose response relationships. The maximum stimulatory response (MAX) was commonly lower than 160% of the control response, with a combined value of 134%. Furthermore, the magnitude of MAX varied significantly among multiple factors and their interactions, such as chemical types and taxonomic groups. Moreover, the distance from the dose of MAX to the no-observed-adverse-effect-level (NOAEL) (NOAEL: MAX) was typically below 10-fold (median = 6-fold), while the width of the hormetic zone (from the lowest dose inducing hormesis to the NOAEL) was approximately 20-fold. Collectively, the quantitative features of OFRs-induced hormesis in aquatic animals were in accordance with the broader hormetic literature. In addition, the implications of hormetic dose response model for the risk assessment of OFRs were discussed. This study offered a novel insight for understanding the biological effects of low-to-high doses of OFRs on aquatic animals and assessing the potential risks of OFRs in the aquatic environment.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
40
|
Verdú I, Amariei G, Plaza-Bolaños P, Agüera A, Leganés F, Rosal R, Fernández-Piñas F. Polystyrene nanoplastics and wastewater displayed antagonistic toxic effects due to the sorption of wastewater micropollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153063. [PMID: 35031361 DOI: 10.1016/j.scitotenv.2022.153063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The knowledge about the interaction of nanoplastics with other aquatic pollutants and their combined effects on biota is very scarce. In this work, we studied the interaction between polystyrene nanoplastics (PS NPs) (30 nm) and the micropollutants in a biologically treated wastewater effluent (WW). The capacity of PS NPs to sorb micropollutants was studied as well as their single and combined toxicity towards three freshwater organisms: the recombinant bioluminescent cyanobacterium, Anabaena sp. PCC 7120 CPB4337; the duckweed, Spirodela polyrhiza and the cladoceran, Daphnia magna. The endpoints were the inhibition of bioluminescence, the growth inhibition of the aquatic plant and the immobilization of D. magna after 24, 72 and 48 h of exposure, respectively. Combination Index (CI)-isobologram method was used to quantify mixture toxicity and the nature of interactions. PS NPs sorbed a variety of chemicals present in WW as micropollutants in a range of tens of ng/L to μg/L. It was found that those pollutants with positive charge were the main ones retained onto PS NPs, which was attributed to the electrostatic interaction with the negatively charged PS NPs. Regarding the toxicological effects, single exposure to PS NPs affected the three tested organisms. However, single exposure to WW only had a negative impact on the cyanobacterium and S. polyrhiza with no observed toxicity to D. magna. Regarding PS NPs-WW combined exposure, a reduction of toxicity in comparison with single exposure was observed probably due to the sorption of micropollutants onto PS NPs, which resulted in lower bioavailability of the micropollutants. In addition, the formation of PS NPs-WW heteroaggregates was observed which could result in lower bioavailability of PS NPs and sorbed micropollutants, thus lowering toxicity. This study represents a near-realistic scenario approach to the potential sorption of wastewater pollutants onto nanoplastics that could alter the toxicological effect on the biota.
Collapse
Affiliation(s)
- Irene Verdú
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Patricia Plaza-Bolaños
- CIESOL, Joint Centre of the University of Almería-CIEMAT, La Cañada de San Urbano, 04120 Almería, Spain
| | - Ana Agüera
- CIESOL, Joint Centre of the University of Almería-CIEMAT, La Cañada de San Urbano, 04120 Almería, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
41
|
Lau ZL, Low SS, Ezeigwe ER, Chew KW, Chai WS, Bhatnagar A, Yap YJ, Show PL. A review on the diverse interactions between microalgae and nanomaterials: Growth variation, photosynthetic performance and toxicity. BIORESOURCE TECHNOLOGY 2022; 351:127048. [PMID: 35337989 DOI: 10.1016/j.biortech.2022.127048] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/09/2023]
Abstract
Vast improvements in nanotechnology have led to the wide usage of nanomaterials (NMs) in daily products. This study reviews the interactions between NMs and microalgae in terms of impacts on growth and photosynthetic efficiency, and their toxicity on microalgae. All types of NMs such as carbon-based NMs (CNMs), metal oxide-based NMs (MONMs) and noble metal-based NMs (NMNMs) improve microalgal growth and photosynthetic efficiency at low concentration, typically ranging between 1 and 15 mg/L depending on the type of NMs, due to hormetic responses by microalgae. Higher concentrations of NMs have been found to reduce photosynthetic efficiency and subsequent growth inhibition of microalgae. MONMs-microalgae and NMNMs-microalgae interactions focus on membrane alteration, whereas carbon-based NMs-microalgae focus more on shading effect. The toxicity of each type of NMs on microalgae is in the order rGO > GO > MG > CNT for carbon-based NMs, ZnO > TiO2 > CuO > Fe2O3 for MONMs and Ag > Au > Pt for NMNMs. Incorporation of NMs in microalgae are seen to have promising future on producing higher microalgae yield with increased economic efficiency.
Collapse
Affiliation(s)
- Zhi Lin Lau
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, PR China
| | - Ejikeme Raphael Ezeigwe
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, PR China; Zhaoqing Leoch Battery Technology Co. Ltd., 518000 Guangdong, PR China
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, Guangdong, PR China; School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Yee Jiun Yap
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
42
|
Shi P, Liu S, Xia X, Qian J, Jing H, Yuan J, Zhao H, Wang F, Wang Y, Wang X, Wang X, He M, Xi S. Identification of the hormetic dose-response and regulatory network of multiple metals co-exposure-related hypertension via integration of metallomics and adverse outcome pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153039. [PMID: 35026265 DOI: 10.1016/j.scitotenv.2022.153039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Environmental stressors, including heavy metals, can be associated with hypertension development. However, little information regarding the dose-response relationship and toxicity mechanisms of metal mixtures with hypertension development is currently available. Therefore, we recruited 940 participants from six factories in northeastern China and measured the urinary concentrations of 19 metals. Then, we used Bayesian kernel machine regression (BKMR) to explore associations between metals co-exposure and hypertension. The BKMR model indicated a hermetic dose-response relationship between eight urinary metals (Co, Cr, Ni, Cd, As, Fe, Zn, and Pb) and hypertension risk. Moreover, heterogeneous and non-linear association patterns were detected across different metals/metalloids concentrations. Next, for the first time, we analyzed data of chemicals containing specific metal elements in the Comparative Toxicogenomics Database (CTD) from a disease perspective and provided insights from various biological levels to explain heavy metal co-exposure-related hypertension. On the molecular scale, 43 chemical components and 112 potential target genes were detected for metal exposure-related hypertension. Further, the network topology analysis indicated that target genes such as insulin (INS, degree = 78), albumin (ALB, degree = 74), renin (REN, degree = 71), interleukin-6 (IL6, degree = 70), endothelin 1 (EDN1, degree = 70), and endothelial nitric oxide synthase (NOS3, degree = 69) have a strong correlation with heavy metals co-exposure. Finally, we used integrative analyses in the adverse outcome pathway (AOP) wiki to analyze the co-exposure of heavy metals and hypertension and support an integrated metallomics approach. We selected the AOP 149 as the framework and found that the molecular initiating events (MIEs) of hypertension stems from the oxidation of AA residues on critical peptides of the NO pathway. The NOS3 was particularly promising since its subunit has three metal ion cross-linking domains with Zn2+, Fe2+, and Ga3+, which might serve as a binding site for heavy metal ions.
Collapse
Affiliation(s)
- Peng Shi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xinyu Xia
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jili Qian
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hongmei Jing
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jiamei Yuan
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Hanqing Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Fei Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yue Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Xue Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Xuan Wang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Central Hospital, Shenyang Medical College, Shenyang 110122, PR China
| | - Miao He
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China; Key Laboratory of Environmental Health Damage Research and Assessment, China Medical University, Shenyang 110122, PR China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
43
|
de Campos BG, do Prado E Silva MBM, Avelelas F, Maia F, Loureiro S, Perina F, Abessa DMDS, Martins R. Toxicity of innovative antifouling additives on an early life stage of the oyster Crassostrea gigas: short- and long-term exposure effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27534-27547. [PMID: 34981374 DOI: 10.1007/s11356-021-17842-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Recent advances in nanotechnology have allowed the encapsulation of hazardous antifouling (AF) biocides in silica mesoporous nanocapsules (SiNC) reducing their short-term toxicity. However, the chronic effects of such novel nanoadditives remain understudied. The present study aimed to assess short- and long-term sub-lethal effects of soluble forms (DCOIT and Ag) and nanostructured forms (SiNC-DCOIT and SiNC-DCOIT-Ag) of two AF biocides and the "empty" nanocapsule (SiNC) on juveniles of Crassostrea gigas after 96 h and 14 days of exposure. Juvenile oysters exposed for a short period to free DCOIT and AgNO3 presented worse physiological status comparing with those exposed to the nanostructured forms. The long-term exposure to DCOIT and Ag+ caused an extensive biochemical impairment comparing with the tested nanomaterials, which included oxidative damage, activation of the antioxidant defense system, and neurotransmission impairment. Despite the negative effects mostly observed on the health condition index and AChE, the encapsulation of the abovementioned AF biocides into SiNC seems to be a technological advantage towards the development of AF nanoadditives with lower long-term toxicity comparing with the soluble forms of such biocides.
Collapse
Affiliation(s)
- Bruno Galvão de Campos
- São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Paulo, São Vicente, 11330-900, Brazil.
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | | | - Francisco Avelelas
- MARE, School of Tourism and Maritime Technology, Polytechnic of Leiria, Leiria, Portugal
| | - Frederico Maia
- Smallmatek - Small Materials and Technologies, Lda, Rua dos Canhas, 3810-075, Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando Perina
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | | | - Roberto Martins
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
44
|
Muhammad A, He J, Yu T, Sun C, Shi D, Jiang Y, Xianyu Y, Shao Y. Dietary exposure of copper and zinc oxides nanoparticles affect the fitness, enzyme activity, and microbial community of the model insect, silkworm Bombyx mori. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152608. [PMID: 34973320 DOI: 10.1016/j.scitotenv.2021.152608] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 05/24/2023]
Abstract
Copper and Zinc oxides nanoparticles (CuO and ZnO NPs, respectively) are among the most produced and commonly used engineered nanomaterials. They can be released into the environment, thereby causing health concerns and risks to biodiversity that indicate a need to evaluate their toxicological effects in a complex situation. Here, we used the insect model organism silkworm Bombyx mori to address the concerns about the biological effects associated with dietary exposure of CuO and ZnO NPs. ICP-MS analysis revealed significant accumulation of Cu and Zn (the latter being more accumulated) in silkworms' tissues (gut, fat body, silk gland, and malpighian tubule), and some elimination through feces in the respective NPs-exposed groups. NPs-exposures led to a decrease in larval body mass, survivorship, and cocoon production, where the effects of ZnO NPs were more pronounced. We also found that NPs-exposure induced gene expression changes (Attacin, lysozyme, SOD, and Dronc) and altered the activities of antioxidant enzymes (SOD, GST, and CAT), as well as impaired nutrient metabolism (alpha-amylase). Given their antibacterial property, CuO and ZnO NPs decreased species richness and diversity of the gut bacterial community and shifted their configuration to overt microbiome i.e., decreased abundance of probiotics (e.g., Acetobacter) and increased pathobionts (e.g., Pseudomonas, Bacillus, Escherichia, Enterococcus, Ralstonia, etc.) proportions. Overall, this integrated study revealed the unintended negative effects of CuO and ZnO NPs on silkworms and highlighted the potential to inevitably affect all living things due to intensive and possible mishandling of nanomaterials.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Dier Shi
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
45
|
Kolbert Z, Szőllősi R, Rónavári A, Molnár Á. Nanoforms of essential metals: from hormetic phytoeffects to agricultural potential. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1825-1840. [PMID: 34922354 PMCID: PMC8921003 DOI: 10.1093/jxb/erab547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Vital plant functions require at least six metals (copper, iron, molybdenum, manganese, zinc, and nickel), which function as enzyme cofactors or inducers. In recent decades, rapidly evolving nanotechnology has created nanoforms of essential metals and their compounds (e.g. nZnO, nFe2O3) with a number of favourable properties over the bulk materials. The effects of nanometals on plants are concentration-dependent (hormesis) but also depend on the properties of the nanometals, the plant species, and the treatment conditions. Here, we review studies examining plant responses to essential nanometal treatments using a (multi)omics approach and emphasize the importance of gaining a holistic view of the diverse effects. Furthermore, we discuss the beneficial effects of essential nanometals on plants, which provide the basis for their application in crop production as, for example, nanopriming or nanostimulator agents, or nanofertilizers. As lower environmental impact and increased yield can be achieved by the application of essential nanometals, they support sustainable agriculture. Recent studies have actively examined the utilization of green-synthesized metal nanoparticles, which perfectly fit into the environmentally friendly trend of future agriculture. Further knowledge is required before essential nanometals can be safely applied in agriculture, but it is a promising direction that is timely to investigate.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology University of Szeged, Közép fasor 52, Szeged H6726, Hungary
| | - Réka Szőllősi
- Department of Plant Biology University of Szeged, Közép fasor 52, Szeged H6726, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H6720, Hungary
| | - Árpád Molnár
- Department of Plant Biology University of Szeged, Közép fasor 52, Szeged H6726, Hungary
| |
Collapse
|
46
|
|
47
|
Hou J, Hu C, Li P, Lin D. Multidimensional bioresponses in nematodes contribute to the antagonistic toxic interaction between pentachlorophenol and TiO 2 nanoparticles in soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127587. [PMID: 34740505 DOI: 10.1016/j.jhazmat.2021.127587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Interactions between nanomaterials (NMs) and coexisting contaminants are important contributors to their joint biological effects, while the reverse actions of bioresponses in determining the toxic interaction between NMs and contaminants were rarely understood. Here, we investigated the toxic interaction and mechanism between TiO2 NMs (nTiO2) and pentachlorophenol (PCP) in soil using the model nematode (Caenorhabditis elegans). PCP (0.5-50 mg/kg) and nTiO2 (50-5000 mg/kg) co-exposures induced antagonistic effects on the survival, growth, and locomotion of nematodes, and the levels of ultrastructural damage and oxidative stress exhibited consistent alterations. Soil PCP concentrations changed insignificantly after the single or combined exposures, indicating a negligible direct interaction between PCP and nTiO2 under the soil condition. Transcriptomic analysis revealed that after 50 mg/kg PCP exposure, half of differentially expressed genes were involved in epidermal collagen synthesis, while the PCP-nTiO2 co-exposure particularly activated genes related to antistress responses and the positive regulation of physiological functions. Further biochemical analysis demonstrated the antagonistic interactions were derived from two aspects: 1) PCP-induced epidermal collagen incrassation lowered the bioaccumulation and toxicity of nTiO2; 2) nTiO2-activated glutathione detoxification pathway alleviated PCP-induced toxicity. These findings highlight the key role of bioresponses in determining toxic interactions between NMs and co-contaminants.
Collapse
Affiliation(s)
- Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chao Hu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Pei Li
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| |
Collapse
|
48
|
Teng L, Zhu Y, Li H, Song X, Shi L. The phytotoxicity of microplastics to the photosynthetic performance and transcriptome profiling of Nicotiana tabacum seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113155. [PMID: 35007831 DOI: 10.1016/j.ecoenv.2021.113155] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as emerging "new generation" organic contaminants, have attracted extensive attention regarding their severe toxicity to aquatic and terrestrial organisms. However, the responses of plant photosynthesis to soil MP pollution are unclear. In this study, Nicotiana tabacum seedlings were grown in soils containing 0~1000 g·kg-1 polyethylene (PE)-MPs for 48 days. PE-MPs significantly increased the superoxide anion content by 15.3~44.8% but decreased the chlorophyll content and Rubisco activity by 4.3~14.0% and 4.23~30.9%, respectively. PE-MPs also inhibited RuBP carboxylation activation and regeneration, restrained light use efficiency, and prevented dark respiration, thereby reducing the light-saturated photosynthesis rate. The changed shape of OJIP transients indicated that PE-MP toxicity inhibited not only the primary photochemistry rate but also photoelectrochemical quenching, resulting in decreased quantum yields. RNA-Seq revealed thousands of differentially expressed genes (DEGs), among which 79 highly expressed DEGs were enriched in photosynthesis-related processes. Functional annotation revealed that the reduction in environment stress was mainly due to the repressed expression of light harvesting-, electron transport- and photosystem-related genes in chloroplasts. This study regarding the physiological and molecular responses of photosynthetic performance to soil PE-MP pollution provides a new viewpoint for exploring the plant photosynthesis regulating and protective mechanisms under soil MP stresses.
Collapse
Affiliation(s)
- Linhong Teng
- College of Life Sciences, Dezhou University, De'zhou 253023, China
| | - Yihao Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Haibin Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xiliang Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| | - Lianhui Shi
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
49
|
Chahardoli A, Sharifan H, Karimi N, Kakavand SN. Uptake, translocation, phytotoxicity, and hormetic effects of titanium dioxide nanoparticles (TiO 2NPs) in Nigella arvensis L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151222. [PMID: 34715233 DOI: 10.1016/j.scitotenv.2021.151222] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The extensive application of titanium dioxide nanoparticles (TiO2NPs) in agro-industrial practices leads to their high accumulation in the environment or agricultural soils. However, their threshold and ecotoxicological impacts on plants are still poorly understood. In this study, the hormetic effects of TiO2NPs at a concentration range of 0-2500 mg/L on the growth, and biochemical and physiological behaviors of Nigella arvensis in a hydroponic system were examined for three weeks. The translocation of TiO2NPs in plant tissues was characterized through scanning and transmission electron microscopy (SEM and TEM). The bioaccumulation of total titanium (Ti) was quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Briefly, the elongation of roots and shoots and the total biomass growth were significantly promoted at 100 mg/L TiO2NPs. As the results indicated, TiO2NPs had a hormesis effect on the proline content, i.e., a stimulating effect at the low concentrations of 50 and 100 mg/L and an inhibiting effect in the highest concentration of 2500 mg/L. A biphasic dose-response was observed against TiO2NPs in shoot soluble sugar and protein contents. The inhibitory effects were detected at ≥1000 mg/L TiO2NPs, where the synthesis of chlorophylls and carotenoid was reduced. At 1000 mg/ L, TiO2NPs significantly promoted the cellular H2O2 generation, and increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Furthermore, it enhanced the total antioxidant content (TAC), total iridoid content (TIC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Overall, the study revealed the physiological and biochemical alterations in a medicinal plant affected by TiO2NPs, which can help to use these NPs beneficially by eliminating their harmful effects.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Hamidreza Sharifan
- Department of Natural Science, Albany State University, Albany, GA 31705, USA
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Shiva Najafi Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
50
|
Erofeeva EA. Environmental hormesis of non-specific and specific adaptive mechanisms in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150059. [PMID: 34508935 DOI: 10.1016/j.scitotenv.2021.150059] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 05/17/2023]
Abstract
Adaptive responses of plants are important not only for local processes in populations and communities but also for global processes in the biosphere through the primary production of ecosystems. In recent years, the concept of environmental hormesis has been increasingly used to explain the adaptive responses of living organisms, including plants, to low doses of natural factors, both abiotic and biotic, as well as various anthropogenic impacts. However, the issues of whether plant hormesis is similar/different when it is induced by mild stressors having different specific effects and what is the contribution of hormetic stimulation of non-specific and specific adaptive mechanisms in plant resilience to strong stressors (i.e., preconditioning) remains unclear. This paper analyses hormetic stimulation of non-specific and specific adaptive mechanisms in plants and its significance for preconditioning, the phenomenon of the hormetic trade-off for these mechanisms, and the position of hormetic stimulation of non-specific and specific adaptive mechanisms in the system of plant adaptations to environmental challenges. The analysis has shown that both non-specific and specific adaptive mechanisms of plants can be stimulated hormetically by mild stressors and are important for plant preconditioning. Due to limited plant resources, non-specific and specific adaptive mechanisms have hormetic trades-offs 1 (hormesis accompanied by the deterioration of some plant traits) and 2 (hormesis of some plant traits with the invariability of others). At the same time, hormetic trade-off 2 is observed much more often than hormetic trade-off 1, at least, this was demonstrated here for non-specific adaptive responses of plants. The hormetic stimulation of non-specific and specific adaptive mechanisms is part of the inducible adaptation of plants caused by stress factors and is an adaptation to random (unpredictable) changes in the environment.
Collapse
Affiliation(s)
- Elena A Erofeeva
- Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Pr, Nizhni Novgorod 603950, Russian Federation.
| |
Collapse
|