1
|
Wang G, Li X, Deng J, Cao J, Meng H, Dong J, Zhang H. Assessing soil cadmium quality standards for different land use types: A global synthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136450. [PMID: 39541885 DOI: 10.1016/j.jhazmat.2024.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The contamination of cadmium (Cd) in soil has become an increasingly serious issue worldwide, presenting significant risks to human health, crop safety, and ecosystems. Despite its importance, there is a lack of standardized soil threshold values for use in regulating exposure to Cd-contaminated surface soil. By synthesizing soil environmental standards for Cd from 61 countries and 75 regions, this study analyzed and categorized these standards by land use types. The distribution of Cd quality standards among various countries was determined, based on available data primarily from the United States, Canada, Europe, Australia, and China. The established soil Cd quality standards were also determined for different land types, including lands for agricultural, residential, industrial, construction, commercial uses, and parks/green spaces. Using the ecological environment criteria - species sensitivity distribution (ECC-SSD) model, Cd levels were analyzed across different land use types, and it was determined that a log-logistic distribution was the best fitted model. Our findings indicated that soil Cd quality standards ranged from 0.11 to 5.20 mg/kg for agricultural land, 1.25 to 171.51 mg/kg for residential land, and 2.58 to 1845.26 mg/kg for industrial land, all within the 5-95 % percentile range. The 5 % hazard concentration (HC5) value was recommended as the latest national quality standards for each land type. This comprehensive assessment of global soil Cd quality standards provides valuable insight for decision-makers tasked with effectively managing and mitigating Cd pollution in soil.
Collapse
Affiliation(s)
- Guiyun Wang
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xianglan Li
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Jingfei Deng
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Jiameng Cao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Hao Meng
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Jingqi Dong
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Hongzhen Zhang
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China.
| |
Collapse
|
2
|
Xu Z, Wang Y, Xie L, Shi D, He J, Chen Y, Feng C, Giesy JP, Leung KMY, Wu F. Resilient water quality management: Insights from Japan's environmental quality standards for conserving aquatic life framework. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100472. [PMID: 39247804 PMCID: PMC11378256 DOI: 10.1016/j.ese.2024.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Currently, chemicals and waste are recognized as key drivers of habitat degradation and biodiversity loss in aquatic ecosystems. To ensure vibrant habitats for aquatic species and maintain a sustainable aquatic food supply system, Japan promulgated its Environmental Quality Standards for the Conservation of Aquatic Life (EQS-CAL), based on its own aquatic life water quality criteria (ALWQC) derivation method and application mechanism. Here we overview Japan's EQS-CAL framework and highlight their best practices by examining the framework systems and related policies. Key experiences from Japan's EQS-CAL system include: (1) Classifying six types of aquatic organisms according to their adaptability to habitat status; (2) Using a risk-based chemical screening system for three groups of chemical pollutants; (3) Recommending a five-step method for determining ALWQC values based on the most sensitive life stage of the most sensitive species; (4) Applying site-specific implementation mechanisms through a series of Plan-Do-Check-Act loops. This paper offers scientific references for other jurisdictions, aiding in the development of more resilient ALWQC systems that can maintain healthy environments for aquatic life and potentially mitigate ongoing threats to human societies and global aquatic biodiversity.
Collapse
Affiliation(s)
- Zihan Xu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Li Xie
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya, 4668555, Japan
| | - Di Shi
- Research & Development Affairs Office, Tsinghua University, Beijing, 100084, China
| | - Jia He
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanqing Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48895, USA
- Department of Environmental Sciences, Baylor University, Waco, TX, 76798-7266, USA
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Quan T, Huang C, Yao Z, Liu Z, Ma X, Han D, Qi Y. Community-level risk assessments on organophosphate esters in the sediments from the Bohai Sea of China based on multimodal species sensitivity distributions coupled with the equilibrium partitioning method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174162. [PMID: 38909807 DOI: 10.1016/j.scitotenv.2024.174162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Organophosphate esters (OPEs), increasingly used as alternatives to brominated flame retardants, are ubiquitous in the global aquatic environment. Despite their potential toxicological impact on ecosystems, community-level risk assessments for OPEs in sediments remain scarce. This study investigated OPE occurrences and composition characteristics in the Bohai Sea's sediments and appraised both individual and joint ecological risks posed by characteristic OPE homologs using ten commonly used species sensitivity distribution (SSD) models, integrating acute-to-chronic conversion and phase equilibrium partitioning. OPEs were detected across all sediment samples, with total concentrations ranging from 0.213 ng/g dry weight (dw) to 91.1 ng/g dw. The predominant congeners included tri-n-butyl phosphate (TnBP), triisobutyl phosphate (TiBP), tri(2-ethylhexyl) phosphate, tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tris(1, 3-dichloro-2-propyl) phosphate (TDCIPP), and triphenylphosphine oxide. Best-fit SSD models varied among TnBP, TiBP, TCEP, TCPP, and TDCIPP, demonstrating Sigmoid, Burr III, Sigmoid, Burr III, and Burr III, respectively. The same parametric model demonstrated variability in the fitting process for different OPE congeners, which also happened to the fitting results of ten parametric models for the same specific characteristic congener, underscoring the necessity of employing multiple models for precise community-level risk assessments. Hazard concentrations for a 5% cumulative probability were 0.116 mg/L, 2.88 mg/L, 1.30 mg/L, 1.44 mg/L, and 1.85 mg/L for each respective congener. The resulting risk quotients (RQ) and overall hazard index (HI) were selected as criteria to assess the individual and joint ecological risks of OPEs in sediments from the Bohai Sea, respectively. RQ and HI were both below 0.1, indicating a low risk to the local ecosystems. Multi-model SSD analysis could provide refined data for community-level risk evaluation, offering valuable insights for the development of evidence-based environmental standards and pollution control strategies.
Collapse
Affiliation(s)
- Tianyi Quan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunliang Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhenyang Liu
- New Energy Research Institute, China Renewable Energy Engineering Institute, Beijing 100120, China
| | - Xindong Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yanjie Qi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Ouyang K, Lu X, Meng J, Wang C, Feng S, Shi B, Su G, Li Q. Which pollutants and sources should be prioritized for control in multi-pollutants complex contaminated areas? JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135547. [PMID: 39154482 DOI: 10.1016/j.jhazmat.2024.135547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Risk assessment and source identification of multi-pollutants are essential for accurate control of soil contamination. However, complexity in pollutant properties and diversity in source types raise challenges to the target. Therefore, this study constructed a hierarchical ecological risk quantification method combined with risk ranking, risk of single pollutant using potential affected fraction (PAF), and joint risk of multi-pollutants employing msPAF. Taking regional contamination in South China as a case, the risk ranking was determined, while single and joint effects showed msPAF reaching 79.4 %, with risk as heavy metals (HMs) > per- and polyfluoroalkyl substances (PFASs) > polycyclic aromatic hydrocarbons (PAHs). Meanwhile, an integrated source apportionment method was established from three layers by principal component analysis to classify source types, multiple linear regression of distance to identify key sources, and positive matrix factorization to track omitted sources. Consequently, key sources were captured, with 80.8 %-93.2 % contribution of farmland and electroplating to three main HMs, 52.2 %-69.4 % contribution of roads to three main PAHs, and 71.1 %-73.2 % contribution of electroplating to two main PFASs. Further, omitted sources were tracked with contribution of 31.2 %-84.1 % to eight pollutants. The established methods can identify control targets, including high-risk pollutants and their key sources.
Collapse
Affiliation(s)
- Kaige Ouyang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaofei Lu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chenxi Wang
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Siting Feng
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China; Key Laboratory of Environmental Nanotechnology and Health Effects Research, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects Research, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wang X, Qi R, Li S, Ding M, Miao J, Han L, Fan Q, Li Y, Pan L. Species sensitivity distribution for nonylphenol: Acute toxicity and ecological risk in Bohai Region. MARINE POLLUTION BULLETIN 2024; 206:116765. [PMID: 39068711 DOI: 10.1016/j.marpolbul.2024.116765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Nonylphenol (NP), a main byproduct of nonylphenol polyethoxylates (NPEs) degradation, is prevalent across diverse environmental settings. Given its widespread presence, evaluating the ecological risks associated with NP in coastal waters and sediments is essential for the protection of the marine environment. This study evaluates the acute toxicity of NP on ten representative aquatic species from the Bohai Sea, determining the Aquatic Life Criteria (ALC) through two distinct methods. The Criteria Maximum Concentration (CMC) for NP in seawater was established at 12.0 μg/L, with a Predicted No-Effect Concentration (PNEC) for water at 15.2 μg/L and for sediment at 33.3 μg/kg. Additionally, a tiered ecological risk assessment (ERA) of both surface seawater and sediment in the Bohai Sea revealed significant ecological risks at various sediment sites. These results offer crucial insights for assessing the ecological risks to coastal ecosystem and provide foundational data necessary for informed environmental protection and management strategies.
Collapse
Affiliation(s)
- Xuening Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shang Li
- Key Laboratory of Marine chemistry Theory and Technology (Ocean University of china), Ministry of Education, Qingdao 266100, China
| | - Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Qinhuangdao Marine Environmental Monitoring Central Station of SOA, Qinhuangdao 066002, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Lianxue Han
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qichao Fan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yanbin Li
- Key Laboratory of Marine chemistry Theory and Technology (Ocean University of china), Ministry of Education, Qingdao 266100, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
6
|
Moon HG, Bae S, Lee HJ, Chae Y, Kang W, Min J, Kim HM, Seo JS, Heo JD, Hyun M, Kim S. Assessment of potential environmental and human risks for Bisphenol AF contaminant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116598. [PMID: 38896897 DOI: 10.1016/j.ecoenv.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Bisphenol AF (BPAF) is found in high concentrations in aquatic environments due to the increased use of thermal paper and food packaging. However, there have been relatively few toxicological studies and potential risk assessments of BPAF. In this study, the risk quotient (RQ) and hazard quotient (HQ) of BPAF were derived to present the safety standards for environmental risk management and protection in lakes, rivers, bays, and Italian regions. We applied the species sensitivity distribution (SSD) method based on the previous ecotoxicological data and the results of supplementary toxicity tests on BPAF. From the SSD curves, the hazardous concentration for 5 % of the species (HC5) values for the acute and chronic toxicity data were 464.75 µg/L and 3.59 µg/L, respectively, and the acute- and chronic-based predicted no-effect concentration were derived as 154.92 µg/L and 1.20 µg/L, respectively. The acute-based RQ (RQA)values of BPAF in all regions were negligible (RQ < 0.1). The chronic-based RQ (RQC) in the Xitang River (XR) and the Central Italy (CI) showed a considerably high ecological risk (12.77 and 1.29) and the Hangzhou Bay (0.21), the South and North Italy (0.79 and 0.27), and the Tamagawa River (0.13) had a medium ecological risk (0.1 < RQ < 1.0). However, the HQ values based on the tolerable daily intake for BPAF over all age groups in these regions was < 0.1, indicating the low health risk. Nonetheless, the result of this study indicates that BPAF contamination is serious in XR and CI, and their use and emissions require continuous monitoring.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Seonhee Bae
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Ho Jeong Lee
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Yooeun Chae
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Wonman Kang
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Jungeun Min
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Hyung-Min Kim
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Jong-Su Seo
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| | - Moonjung Hyun
- Gyeongnam Bio-Health Research Support Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| | - Sooyeon Kim
- Environmental Risk Assessment Center, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju 52834, Republic of Korea.
| |
Collapse
|
7
|
Shen C, Pan X, Wu X, Xu J, Zheng Y, Dong F. Prediction of Potential Risk for Flupyradifurone and Its Transformation Products to Hydrobionts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15151-15163. [PMID: 38941616 DOI: 10.1021/acs.jafc.4c03004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Flupyradifurone (FPF) is considered the latest generation of neonicotinoid insecticides. Here, we investigated the toxicity and ecological risk of FPF and its aerobic transformation products (TPs) to aquatic species using the method of prediction. We found that FPF exhibited moderate or high toxicity to some aquatic species. The 5% hazardous concentration of FPF was 3.84 μg/L for aquatic organisms. We obtained 91 aerobic TPs for FPF, and almost half of FPF TPs exhibited toxicity to fish or Daphnia. Eleven of the TPs of FPF exhibited a high or moderate risk to aquatic ecosystems. All FPF TPs with high and moderate risks contained a 6-chloropyridine ring structure, indicating that the derivant of a pyridine ring exhibits potential risks to aquatic ecosystems. Our results provide insight into the potential risk of FPF to aquatic ecosystems and could be used to help set criteria to control pollution caused by FPF.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- East China Branch of the National Center for Agricultural Biosafety Sciences/Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
8
|
Cai Y, Bi Y, Tian B, Cheng L, Zhou S, Qi Q. Water quality characteristics and ecological risk evaluation of a landscaped river replenished by three reclaimed water sources in Qingdao, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35609-35618. [PMID: 38739337 DOI: 10.1007/s11356-024-33617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
The water crisis may be solved by utilizing reclaimed water. Three reclaimed water sources have restored the lower sections of the Licun River, forming a landscaped river. In this paper, the river's water quality was monitored for a year, and the ecological concerns were analyzed using luminescent bacteria, chlorella, and zebrafish. The results indicated that although basic water quality indicators like COD and ammonia fluctuated along the river, the classification of water quality was primarily affected by factors such as flow rate and water depth. Under experimental conditions, the toxic inhibitory effect of river water on luminescent bacteria, chlorella, and zebrafish was related to the treatment process of reclaimed water. It was found that the reclaimed water produced by the MBR, along with the UV disinfection process, showed no detectable toxicity. In contrast, the MBBR process, when combined with coagulation, sedimentation, filtration, ozonation, and chlorination, seemed to be the source of this toxicity. Along the river, the results of water quality assessments and ecological risk assessments were different, indicating that both should be conducted to evaluate rivers replenished with reclaimed water.
Collapse
Affiliation(s)
- Yanan Cai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, No.777, Jialingjiang East Road, Huangdao District, Qingdao, 266520, China.
| | - Yunze Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, No.777, Jialingjiang East Road, Huangdao District, Qingdao, 266520, China
| | - Bowen Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, No.777, Jialingjiang East Road, Huangdao District, Qingdao, 266520, China
| | - Lihua Cheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, No.777, Jialingjiang East Road, Huangdao District, Qingdao, 266520, China
| | - Shuhui Zhou
- School of Environmental and Municipal Engineering, Qingdao University of Technology, No.777, Jialingjiang East Road, Huangdao District, Qingdao, 266520, China
| | - Quanyong Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, No.777, Jialingjiang East Road, Huangdao District, Qingdao, 266520, China
| |
Collapse
|
9
|
Li H, Meng F, Li A. Ecological risk assessment for xylenes and propylbenzenes in aquatic environment using a species sensitivity distribution approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115106. [PMID: 37290297 DOI: 10.1016/j.ecoenv.2023.115106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Xylenes and propylbenzenes (PBZs) are volatile aromatic hydrocarbons with high aquatic toxicity. Xylenes can be present in three isomers: o-xylene (OX), m-xylene (MX), and p-xylene (PX), while PBZs include two isomers: n-propylbenzene (n-PBZ) and isopropylbenzene (i-PBZ). Their accidental spills and improper discharges from petrochemical industries can cause severe contamination in water bodies posing potential ecological risks. In this study, the published acute toxicity data of these chemicals for aquatic species were collected to calculate hazardous concentrations protecting 95% species (HC5) using a species sensitivity distribution (SSD) approach. The acute HC5 values for OX, MX, PX, n-PBZ, and i-PBZ were estimated to be 1.73, 3.05, 1.23, 1.22, and 1.46 mg/L, respectively. The risk quotient (RQ) values calculated based on HC5 indicated their high risk (RQ: 1.23 ∼ 21.89) in groundwater, but low risk (RQ < 0.1) in natural seawater, river water, and lake water. When xylenes or PBZs leaked into the sea, they were expected to pose a high risk (RQ > 1) at the start and then a low risk (RQ < 0.1) after 10 days due to natural attenuation. These results may help to derive more reliable protection thresholds for xylenes and PBZs in aquatic environment and provide a basis for evaluating their ecological risks.
Collapse
Affiliation(s)
- Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Aifeng Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
10
|
Razak MR, Aris AZ, Yusoff FM, Yusof ZNB, Abidin AAZ, Kim SD, Kim KW. Risk assessment of bisphenol analogues towards mortality, heart rate and stress-mediated gene expression in cladocerans Moina micrura. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3567-3583. [PMID: 36450975 DOI: 10.1007/s10653-022-01442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 06/01/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting compound that causes several toxic effects on human and aquatic organisms. The restriction of BPA in several applications has increased the substituted toxic chemicals such as bisphenol F (BPF) and bisphenol S (BPS). A native tropical freshwater cladoceran, Moina micrura, was used as a bioindicator to assess the adverse effects of bisphenol analogues at molecular, organ, individual and population levels. Bisphenol analogues significantly upregulated the expressions of stress-related genes, which are the haemoglobin and glutathione S-transferase genes, but the sex determination genes such as doublesex and juvenile hormone analogue genes were not significantly different. The results show that bisphenol analogues affect the heart rate and mortality rate of M. micrura. The 48-h lethal concentration (LC50) values based on acute toxicity for BPA, BPF and BPS were 611.6 µg L-1, 632.0 µg L-1 and 819.1 µg L-1, respectively. The order of toxicity based on the LC50 and predictive non-effect concentration values were as follows: BPA > BPF > BPS. Furthermore, the incorporated method combining the responses throughout the organisation levels can comprehensively interpret the toxic effects of bisphenol analogues, thus providing further understanding of the toxicity mechanisms. Moreover, the output of this study produces a comprehensive ecotoxicity assessment, which provides insights for the legislators regarding exposure management and mitigation of bisphenol analogues in riverine ecosystems.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Aisamuddin Ardi Zainal Abidin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Kyoung Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|
11
|
Razak MR, Aris AZ, Zainuddin AH, Yusoff FM, Balia Yusof ZN, Kim SD, Kim KW. Acute toxicity and risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) in tropical cladocerans Moina micrura. CHEMOSPHERE 2023; 313:137377. [PMID: 36457264 DOI: 10.1016/j.chemosphere.2022.137377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are gaining worldwide attention because of their toxicity, bioaccumulative and resistance to biological degradation in the environment. PFAS can be categorised into endocrine disrupting chemicals (EDCs) and identified as possible carcinogenic agents for the aquatic ecosystem and humans. Despite this, only a few studies have been conducted on the aquatic toxicity of PFAS, particularly in invertebrate species such as zooplankton. This study evaluated the acute toxicity of two main PFAS, perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), by using freshwater cladocerans (Moina micrura) as bioindicators. This study aimed to assess the adverse effects at different levels of organisations such as organ (heart size and heart rate), individual (individual size and mortality) and population (lethal concentration, LC50). PFOA was shown to be more hazardous than PFOS, with the LC50 values (confidence interval) of 474.7 (350.4-644.5) μg L-1 and 549.6 (407.2-743.9) μg L-1, respectively. As the concentrations of PFOS and PFOA increased, there were declines in individual size and heart rate as compared to the control group. The values of PNECs acquired by using the AF method (PNECAF) for PFOA and PFOS were 0.4747 and 0.5496 μg L-1, respectively. Meanwhile, the PNEC values obtained using the SSD method (PNECSSD) were 1077.0 μg L-1 (PFOA) and 172.5 μg L-1 (PFOS). PNECAF is more protective and conservative compared to PNECSSD. The findings of this study have significant implications for PFOS and PFOA risk assessment in aquatic environments. Thus, it will aid freshwater sustainability and safeguard the human dependency on water resources.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Azim Haziq Zainuddin
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 61005 Buk-gu, Gwangju, Republic of Korea
| | - Kyoung Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 61005 Buk-gu, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Jing Q, Liu J, Chen A, Chen C, Liu J. The spatial-temporal chemical footprint of pesticides in China from 1999 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75539-75549. [PMID: 35657547 DOI: 10.1007/s11356-022-20602-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The massive use of pesticides brings considerable environmental and human health impacts. This study conducted an overall assessment of the ecological impact of the extensive pesticide use in China from 1999 to 2018 through the Chemical Footprint (ChF) calculation. The results demonstrated that the primary ecological impacts caused by pesticides occurred in the most central and eastern regions in China, e.g., provinces of Shandong, Henan, Hubei, Anhui, and Jiangsu. The northeastern, some southern and central provinces, e.g., Heilongjiang, Jilin, Liaoning, Yunnan, Guangxi, Guangdong, Ningxia, and Shaanxi, got moderate impacts, whereas the northwest regions, e.g., Qinghai, Xinjiang, and Tibet, had much lighter impacts relatively. The agricultural soil in inland areas and surface sea waters in coastal provinces bore the major impacts of the pesticide pollution in China, shared above 80% of the ChF across all environmental compartments. Chlorpyrifos, pymetrozine, fenpropathrin, pyridaben, atrazine, etc., were the pesticides that had the greatest impacts on the ecosystem, which contributed over 95% of the total ChF of pesticides used in China, although the use amount of these pesticides accounted for less than 10% of the total use amount of all pesticides annually. The study also indicated that the overall ChF of pesticide use in China has been declining since 2010, which was corresponding with the control actions of highly hazardous pesticides, especially the elimination of high toxic organophosphorus insecticides during the past decade.
Collapse
Affiliation(s)
- Qiaonan Jing
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Junzhou Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Anna Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengkang Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Mao L, Ren W, Liu X, Lin C, Wang Z, Wang B, Xin M, He M, Ouyang W. Occurrence, allocation and geochemical controls for mercury in a typical estuarine ecosystem: Implications for the predictability of mercury species. MARINE POLLUTION BULLETIN 2022; 183:114052. [PMID: 35998525 DOI: 10.1016/j.marpolbul.2022.114052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
In this study, surface seawater, bottom seawater and surface sediments were collected from the Yellow River Estuary Area (YREA) and the Laizhou Bay (LB) to investigate the occurrence, spatial distribution and geochemical control factors for total mercury (THg) and methylmercury (MeHg) in different phases. The geochemical characteristics of seawater and sediments suggested significant variances in the YREA and the LB. The high contamination of Hg in the YREA showed the discharge of the Yellow River (YR) contributed significantly to the Hg contamination in the LB. The partial least squares regression (PLSR) model was utilized to explore the complicated interactions between geochemical controls and methylation potentials in different phases. Although the ecological risk (ER) of Hg was not significant in this study area, the higher values of ER in the YREA suggested that the YR was the primary Hg contributor to LB. Therefore, the potential Hg risk should not be ignored.
Collapse
Affiliation(s)
- Lulu Mao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenbo Ren
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zongxing Wang
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Baodong Wang
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
14
|
Chu L, He W, Xu F, Tong Y, Xu F. Ecological risk assessment of toxic metal(loid)s for land application of sewage sludge in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155549. [PMID: 35490816 DOI: 10.1016/j.scitotenv.2022.155549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Sewage sludge, including those after biological or thermochemical treatments, has the potential to be used as fertilizers for recycle of resources. However, its potential ecological risk is also of great concern to policy making. This study employed comprehensive ecological risk assessment (ERA) methods to evaluate the risk caused by the toxic metal(loid)s in sewage sludge throughout China. The conventional geo-accumulation index and potential ecological risk index revealed that cadmium (Cd) and mercury (Hg) were of significant concern in treating sewage sludge before land application, but chromium (Cr) and zinc (Zn) were preferred by potential affected proportion (PAF) and overall risk probability (ORP) of species sensitivity distribution (SSD). Because SSD considered both the community and the ecotoxicity of toxic metal(loid)s, it was more advantageous and promising in assessing ecological risks caused by land application of sewage sludge. Based on the predicted no-effect concentration (PNEC) of toxic metal(loid) calculated by hazardous concentration that cause death of 50% of species (HC50) by SSD, the maximum allowable disposal amount (MADA) of sewage sludge in the whole China indicated that chromium (Cr) should be totally eliminated because of its high risks in the present background soil. After excluding Cr, the MADA of sewage sludge in China was 3.24 × 106 t and 6.47 × 107 t under land application scenarios with high and low ecological risks, respectively. Additionally, the MADA could be increased by mixing sewage sludge with deeper soil in wider areas. This study emphasized that local laws and regulations on land application of sewage sludge and the subsequent ERA system need to be addressed in the future.
Collapse
Affiliation(s)
- Liquan Chu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei He
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Fuliu Xu
- MOE Key Laboratory for Earth Surface Process, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fuqing Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 710049, China
| |
Collapse
|
15
|
Qiu C, Zhang S, Ji J, Zhong Y, Zhang H, Zhao S, Meng M. Study on a risk model for prediction and avoidance of unmanned environmental hazard. Sci Rep 2022; 12:10199. [PMID: 35715483 PMCID: PMC9205957 DOI: 10.1038/s41598-022-14021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Comprehensive research is conducted on the design and control of the unmanned systems for electric vehicles. The environmental risk prediction and avoidance system is divided into the prediction part and the avoidance part. The prediction part is divided into environmental perception, environmental risk assessment, and risk prediction. In the avoidance part, according to the risk prediction results, a conservative driving strategy based on speed limit is adopted. Additionally, the core function is achieved through the target detection technology based on deep learning algorithm and the data conclusion based on deep learning method. Moreover, the location of bounding box is further optimized to improve the accuracy of SSD target detection method based on solving the problem of imbalanced sample categories. Software such as MATLAB and CarSim are applied in the system. Bleu-1 was 67.1, bleu-2 was 45.1, bleu-3 was 29.9 and bleu-4 was 21.1. Experiments were carried out on the database flickr30k by designing the algorithm. Bleu-1 was 72.3, bleu-2 was 51.8, bleu-3 was 37.1 and bleu-4 was 25.1. From the comparison results of the simulations of unmanned vehicles with or without a system, it can provide effective safety guarantee for unmanned driving.
Collapse
Affiliation(s)
- Chengqun Qiu
- Jiangsu Province Intelligent Optoelectronic Devices and Measurement-Control Engineering Research Center, Yancheng Teachers University, Yancheng, 224007, China. .,School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Shuai Zhang
- Jiangsu Province Intelligent Optoelectronic Devices and Measurement-Control Engineering Research Center, Yancheng Teachers University, Yancheng, 224007, China
| | - Jie Ji
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yuan Zhong
- Jiangsu Province Intelligent Optoelectronic Devices and Measurement-Control Engineering Research Center, Yancheng Teachers University, Yancheng, 224007, China
| | - Hui Zhang
- Jiangsu Province Intelligent Optoelectronic Devices and Measurement-Control Engineering Research Center, Yancheng Teachers University, Yancheng, 224007, China
| | - Shiqiang Zhao
- Jiangsu Province Intelligent Optoelectronic Devices and Measurement-Control Engineering Research Center, Yancheng Teachers University, Yancheng, 224007, China
| | - Mingyu Meng
- Interdisciplinary Graduate School of Science & Engineering, Tokyo Institute of Technology, Yokohama, 2268502, Japan
| |
Collapse
|
16
|
Qi Y, Yao Z, Ma X, Ding X, Shangguan K, Zhang M, Xu N. Ecological risk assessment for organophosphate esters in the surface water from the Bohai Sea of China using multimodal species sensitivity distributions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153172. [PMID: 35063513 DOI: 10.1016/j.scitotenv.2022.153172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) as the foremost substitutes of brominated flame retardants have been ubiquitously found in the aquatic environment around the world. However, the information on the community-level risks induced by OPEs to the marine ecosystem remains scarce. This study adopted ten commonly used species sensitivity distribution (SSD) parametric statistical approaches coupled with the acute-to-chronic transformation for the toxicity data to fit the sensitivity distributions of different species to four major OPE congeners including triethyl phosphate (TEP), tri-n-butyl phosphate (TnBP), tri(2-chloroethyl) phosphate (TCEP), and tris(1-chloro-2-propyl) phosphate (TCPP) in the surface water of the Bohai Sea. All SSD models except Exponential for TnBP, TCEP, and TCPP fitted well the chronic toxicity data for the four OPE congeners. Discrepancies appeared among the best fitting models for different congeners, which also happened to the fitting results from the multiple SSD models for each congener. Based on the best fitting models, the hazard concentrations corresponding to the cumulative probability of 5% were 3.58 mg/L, 0.116 mg/L, 1.30 mg/L, and 1.44 mg/L for TEP, TnBP, TCEP, and TCPP, respectively. The risks induced by the four OPE congeners to the Bohai Sea ecosystem were negligible during the monitoring period because of both the risk quotients and the hazard indexes far <0.1. This study drew a clear picture of the joint ecological risks of TEP, TnBP, TCEP, and TCPP to the Bohai Sea environment. The application of multimodal SSD statistical methods will benefit the accurate derivation of water quality criteria and the community-level ecological risk assessment for pollutants.
Collapse
Affiliation(s)
- Yanjie Qi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xindong Ma
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaolin Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Kuixing Shangguan
- Ecological Civilization Construction Service Center of Linyi, Linyi 276000, China
| | - Mingxing Zhang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
17
|
Zhang Z, Liu Y, Li Y, Wang X, Li H, Yang H, Ding W, Liao Y, Tang N, He F. Lake ecosystem health assessment using a novel hybrid decision-making framework in the Nam Co, Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152087. [PMID: 34856268 DOI: 10.1016/j.scitotenv.2021.152087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Lake health assessment (LHA), a powerful tool for lake ecological protection, provides the foundation for sustainable water environment management. However, existing methods have not yet considered the effects of fuzziness and randomness on LHA. In addition, most of the current studies on LHA focus on the plain areas, lack of quantitative studies in mountain areas, such as the Qinghai-Tibet Plateau. The Pythagorean fuzzy cloud (PFC) integration algorithm drawing on the advantages of Pythagorean fuzzy sets (PFS) and cloud model was proposed. A novel hybrid decision-making framework combining PFC integration algorithm and TOPSIS model was developed to determine the lake health levels with fuzziness and randomness. An indicator system incorporating ecosystem integrity (physical habitat, water quantity and quality, aquatic life) and non-ecological performance (social services) was established. To comprehensively investigate the lake health level in the Qinghai-Tibet Plateau, the Nam Co was selected as study area. Our results confirm that the developed framework in this study can overcome the shortcomings of existing methods and provide a more effective approach for LHA with fuzziness and randomness. In Nam Co, the non-ecological performance was significantly better than the ecosystem integrity. Health levels exhibited a remarkable spatial variation influenced by tourism and grazing, with decreasing health status from the northwestern to southeastern Nam Co. Approximately 85% of the sampling sites were at excellent or healthy levels, 15% were subhealthy, and no sampling sites were unhealthy and sick. Our results highlight that tourism has affected health levels at Nam Co, and effective measures are needed to minimize the impact in ecological fragile areas.
Collapse
Affiliation(s)
- Zhengxian Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Yi Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yun Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Xiaogang Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Hongze Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Hong Yang
- Departmnent of Geography and Environmental Sciences, University of Reading, Reading RG6 6AB, UK.
| | - Wenhao Ding
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yipeng Liao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Nanbo Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Feifei He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| |
Collapse
|
18
|
An W, Sang C, Jensen KM, Sørensen PB, Zhang B, Yang M. Application of the health risk assessment of acetochlor in the development of water quality criteria. J Environ Sci (China) 2021; 110:48-54. [PMID: 34593194 DOI: 10.1016/j.jes.2021.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
Acetochlor is a widely used herbicide in agricultural production. Studies have shown that acetochlor has obvious environmental hormone effects, and long-term exposure may pose a threat to human health. To quantify the hazards of acetochlor in drinking water, a health risk assessment of acetochlor was conducted in major cities of China based on the data of acetochlor residue concentrations in drinking water. The approach of the Species Sensitivity Distributions (SSD) method is used to extrapolate from animal testing data to reflect worst case human toxicity. Results show that hazard quotients related to acetochlor residues in drinking water for different age groups range from 1.94 × 10-4 to 6.13 × 10-4, so, there are no indication of human risk. Compared to the total estimated hazard quotient from oral intake of acetochlor, the chronic exposure imputed to acetochlor residues in drinking water in China accounts for 0.4%. This paper recommends 0.02 mg/L to be the maximum acetochlor residue concentration level in drinking water and source water criteria.
Collapse
Affiliation(s)
- Wei An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Chenhui Sang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, Silkeborg, Denmark
| | - Kristian Marienlund Jensen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peter Borgen Sørensen
- Department of Bioscience, Aarhus University, Vejlsovej 25, PO BOX 314, Silkeborg, Denmark
| | - Bin Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Zhang Y, Zhang H, Wang J, Yu Z, Li H, Yang M. Suspect and target screening of emerging pesticides and their transformation products in an urban river using LC-QTOF-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147978. [PMID: 34102441 DOI: 10.1016/j.scitotenv.2021.147978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
This study sheds light on the occurrence of emerging pesticides and their transformation products (TPs) in an urban river in Beijing that is mainly supplemented with treated wastewater. To this end, suspect and non-target screening was conducted using a database of 557 commercial pesticides and over 1400 predicted TPs. Finally, 30 pesticides and 20 TPs were identified, with 12 pesticides and 10 TPs detected in all samples. Eleven pesticides and 17 TPs were detected in Beijing for the first time. Among these, 18 compounds were confirmed using authentic standards. Concentrations of the confirmed and suspected compounds were determined by quantification and semi-quantification, respectively, based on 18 authentic standards. Fungicides and their TPs constituted the largest group and exhibited the highest total concentration (26 compounds; 52.2 μg/L), followed by insecticides (14 compounds; 51.3 μg/L) and herbicides (10 compounds; 24.5 μg/L). DEET, carbendazim, prometryn, ω-carboxylic acid, 2-aminobenzimidazole, metolachlor TP, hexaconazole TP, metalaxyl TP, and azoxystrobin TP exhibited relatively high mean concentration (>100 ng/L). Among the 20 TPs, approximately 65% showed higher concentrations than their parent compounds. Correlation analysis revealed that 6 pesticides and 10 TPs in the river were mainly contributed by the discharge from a wastewater treatment plant. Although a majority of the emerging pesticides had low toxicity, 10 pesticides exhibited high risks to aquatic systems, especially invertebrates.
Collapse
Affiliation(s)
- Yangping Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, 100085, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Juan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiyong Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Hongyan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
Zhang Y, Zhang H, Yang M. Profiles and risk assessment of legacy and current use pesticides in urban rivers in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39423-39431. [PMID: 33755890 DOI: 10.1007/s11356-021-13140-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Pesticides in the environment can pose serious risks to aquatic ecosystems. This study focused on the existence of 27 pesticides, including 13 pesticides regulated by the Stockholm Convention as persistent organic pollutants (POPs) and 14 commonly used pesticides in three urban rivers in Beijing that receive effluents from three municipal wastewater treatment plants (MWTPs). Among the 27 pesticides, 12 were detected at least once over a period of 4 seasons. Atrazine, aldrin and dieldrin were universally found in the three rivers, with the highest concentrations being 311, 163 and 23.3 ng/L, respectively. HCHs, DDTs, heptachlor and endosulfan, which are POPs, were detected at lower concentrations (ND-16.7 ng/L). Most of the insecticides and some of the herbicides in the rivers originated from MWTP effluents. The risk assessment results showed that aldrin posed medium risk (0.1 ≤ RQ < 1) to fish, and atrazine exhibited medium risk to both fish and algae. Despite the implementation of the Stockholm Convention and the upgrades of MWTPs emitting ozone, high loads of aldrin, atrazine and dieldrin were discharged to the rivers. Efforts should be devoted to identifying POP pesticide sources and upgrading MWTPs with other technologies to ensure the ecological safety of rivers.
Collapse
Affiliation(s)
- Yangping Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Universty of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min Yang
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Yuan L, Chai Y, Li C, Liu R, Chen Z, Li L, Li W, He Y. Dissipation, residue, dietary, and ecological risk assessment of atrazine in apples, grapes, tea, and their soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35064-35072. [PMID: 33661496 DOI: 10.1007/s11356-021-13133-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Atrazine is one of the most used herbicides in China. It is a persistent organic pollutant but has been widely used on Chinese farmlands for a long time. To assess its dietary and ecological risks to human and environment, in this study, atrazine residues were extracted with acetonitrile and then plant samples were detected with gas chromatography coupled with mass spectrometry (GC-MS) and soil samples were determined with gas chromatography coupled with nitrogen-phosphorus detector (GC-NPD). The limit of quantification (LOQ) of the method was 0.01 mg/kg for all matrices. The recoveries ranged from 82.0 to 105.4% for plant samples and 75.6 to 85.6% for soil samples. The final residues of atrazine in all plant samples were lower than LOQ. Dietary risk assessment suggested that under good agricultural practices (GAP) conditions, intake of atrazine from apples, grapes, and tea would exhibit an acceptably low health risk on consumers. However, the final residues of atrazine in soil samples were <0.01-9.2 mg/kg, and the half-lives were 2.0-9.1 days. Based on the species sensitivity distribution (SSD) model, the potential affected fraction (PAF) of atrazine in soil samples ranges from 0.01 to 65.8%. Atrazine residues in 43.1% soil samples were higher than 0.11 mg/kg, which was the hazardous concentration for 5% of species (HC5) of atrazine in soil. These results suggested that the ecological risks of atrazine in apples, grapes, and tea garden soil would exhibit a high risk on environmental species even under the same GAP conditions. This study could provide guidance for comprehensive risk assessment of atrazine properly used in apple, grape, and tea gardens.
Collapse
Affiliation(s)
- Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yida Chai
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Congdi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yujian He
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
22
|
Gu X, Xu L, Wang Z, Ming X, Dang P, Ouyang W, Lin C, Liu X, He M, Wang B. Assessment of cadmium pollution and subsequent ecological and health risks in Jiaozhou Bay of the Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145016. [PMID: 33607433 DOI: 10.1016/j.scitotenv.2021.145016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Million tons of cadmium (Cd) are annually discharged into China's coastal regions, creating a persistent hazard to marine organisms and human health. This study assessed Cd residues in the Yellow Sea's semi-enclosed Jiaozhou Bay (JZB), finding concentrations of 0.05-0.94 μg/L in seawater and 0.03-0.18 mg/kg in sediment. For marine organisms, mollusks had the highest Cd concentration (0.44 ± 0.09 mg/kg), followed by crustaceans (0.26 ± 0.08 mg/kg) and fish (0.10 ± 0.02 mg/kg). Cd was clearly accumulated by mollusks, with biota-sediment accumulation factor (BSAF) values >1 and biota-water accumulation factor (BWAF) values >1000. Stable nitrogen isotope (δ15N) analysis showed that Cd underwent biomagnification in mollusks, but was significantly bio-diluted with increasing trophic level among other marine organisms. In general, Cd contamination levels were low in the JZB's seawater and sediment, and fish was estimated to be certainly polluted due to strict safety limitations on seafood in China. Current Cd residues mean that few aquatic species (<< 5%) would be affected by acute exposure, and ~ 10% of the species would be affected by chronic exposure. Based on target hazard quotients (THQ) and estimated weekly intakes (EWIs), urban residents around the JZB would experience higher health risks in comparison with rural residents due to higher seafood consumption rates, especially from mollusk consumption. Therefore, urban households in the area should increase their fish consumption rate and reduce that of mollusks.
Collapse
Affiliation(s)
- Xiang Gu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ling Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zongxing Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xin Ming
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Pan Dang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
23
|
Razak MR, Aris AZ, Zakaria NAC, Wee SY, Ismail NAH. Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111905. [PMID: 33453636 DOI: 10.1016/j.ecoenv.2021.111905] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The constant increase of heavy metals into the aqueous environment has become a contemporary global issue of concern to government authorities and the public. The study assesses the concentration, distribution, and risk assessment of heavy metals in freshwater from the Linggi River, Negeri Sembilan, Malaysia. Species sensitivity distribution (SSD) was utilised to calculate the cumulative probability distribution of toxicity from heavy metals. The aquatic organism's toxicity data obtained from the ECOTOXicology knowledgebase (ECOTOX) was used to estimate the predictive non-effects concentration (PNEC). The decreasing sequence of hazardous concentration (HC5) was manganese > aluminium > copper > lead > arsenic > cadmium > nickel > zinc > selenium, respectively. The highest heavy metal concentration was iron with a mean value of 45.77 μg L-1, followed by manganese (14.41 μg L-1) and aluminium (11.72 μg L-1). The mean heavy metal pollution index (HPI) value in this study is 11.52, implying low-level heavy metal pollutions in Linggi River. The risk quotient (RQ) approaches were applied to assess the potential risk of heavy metals. The RQ shows a medium risk of aluminium (RQm = 0.1125) and zinc (RQm = 0.1262); a low risk of arsenic (RQm = 0.0122) and manganese (RQm = 0.0687); and a negligible risk of cadmium (RQm = 0.0085), copper (RQm = 0.0054), nickel (RQm = 0.0054), lead (RQm = 0.0016) and selenium (RQm = 0.0012). The output of this study produces comprehensive pollution risk, thus provides insights for the legislators regarding exposure management and mitigation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Nurul Amirah Che Zakaria
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nur Afifah Hanun Ismail
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Abstract
Indirect effects in ecotoxicology are defined as chemical- or pollutant-induced alterations in the density or behavior of sensitive species that have cascading effects on tolerant species in natural systems. As a result, species interaction networks (e.g., interactions associated with predation or competition) may be altered in such a way as to bring about large changes in populations and/or communities that may further cascade to disrupt ecosystem function and services. Field studies and experimental outcomes as well as models indicate that indirect effects are most likely to occur in communities in which the strength of interactions and the sensitivity to contaminants differ markedly among species, and that indirect effects will vary over space and time as species composition, trophic structure, and environmental factors vary. However, knowledge of indirect effects is essential to improve understanding of the potential for chemical harm in natural systems. For example, indirect effects may confound laboratory-based ecological risk assessment by enhancing, masking, or spuriously indicating the direct effect of chemical contaminants. Progress to better anticipate and interpret the significance of indirect effects will be made as monitoring programs and long-term ecological research are conducted that facilitate critical experimental field and mesocosm investigations, and as chemical transport and fate models, individual-based direct effects models, and ecosystem/food web models continue to be improved and become better integrated.
Collapse
|
25
|
Farzana S, Ruan Y, Wang Q, Wu R, Kai Z, Meng Y, Leung KMY, Lam PKS. Developing interim water quality criteria for emerging chemicals of concern for protecting marine life in the Greater Bay Area of South China. MARINE POLLUTION BULLETIN 2020; 161:111792. [PMID: 33197792 DOI: 10.1016/j.marpolbul.2020.111792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to establish marine water quality criteria (MWQC) for emerging chemicals of concern (ECCs) for protecting aquatic life in the Greater Bay Area (GBA) of South China. Despite the frequent occurrence and elevated concentrations of these ECCs in the GBA, there is a lack of regional MWQC for these contaminants. We screened 21 common ECCs that were classified into the following six groups: (1) new persistent organic contaminants; (2) brominated flame retardants; (3) perfluoroalkyl and polyfluoroalkyl substances; (4) pharmaceutically active compounds (PhACs); (5) plasticizers; and (6) personal care products. Globally, MWQC for PhACs remain largely unavailable despite their increasing occurrence in marine environments. Using an integrative scientific approach, we derived interim MWQC for the GBA with specific protection goals. The approach described herein can be applied for the derivation of MWQC for ECCs and the establishment of guidelines for ecological risk assessment in the GBA and other regions.
Collapse
Affiliation(s)
- Shazia Farzana
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhang Kai
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yan Meng
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
26
|
Wu RL, He W, Li YL, Li YY, Qin YF, Meng FQ, Wang LG, Xu FL. Residual concentrations and ecological risks of neonicotinoid insecticides in the soils of tomato and cucumber greenhouses in Shouguang, Shandong Province, East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140248. [PMID: 32806369 DOI: 10.1016/j.scitotenv.2020.140248] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoid insecticides (NNIs) are the most widely used insecticides in China and worldwide. Continuous use of NNIs can lead to their accumulation in soil, causing potential ecological risks due to their relatively long half-life. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the residual levels of nine neonicotinoids in greenhouse soils in Shouguang, East China, at different soil depths and with different crops (tomato and cucumber) after varying periods of cultivation. Seven neonicotinoids were detected in the soils of the tomato greenhouses and six were detected in the soils of the cucumber greenhouses, with total concentrations ranging from 0.731 to 11.383 μg kg-1 and 0.363 to 19.224 μg kg-1, respectively. In all samples, the neonicotinoid residues in the soils cultivated for 8-9 years were lower than in those cultivated for 2 years and 14-17 years. In the tomato greenhouse soils, the residual levels of NNIs were highest in the topsoil, with progressively lower concentrations found with depth. Under cucumber cultivation, the NNI residue levels were also highest in the topsoil but there was little difference between the middle and lower soil layers. Total organic carbon (TOC) decreased with soil depth while pH showed the opposite trend, showing a significant negative correlation in both types of soils (tomato soils ρ = -0.900, p = .001; cucumber soils ρ = -0.883, p = .002). Furthermore, TOC was significantly positively correlated, and pH was negatively correlated, with total NNI concentrations in both types of soils (TOC: tomato soils ρ = 0.800, p = .010; cucumber soils ρ = 0.881, p = .004; pH: tomato soils ρ = -0.850, p = .004; cucumber soils ρ = -0.643, p = .086). The results of an ecological risk analysis showed that acetamiprid represents a particularly high toxicity risk in these soils. Based on our analysis, NNI residues in the soils of tomato greenhouses and their associated ecological risks deserve more attention than those of cucumber greenhouse soils.
Collapse
Affiliation(s)
- Rui-Lin Wu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yi-Long Li
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Yu-Yan Li
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi-Fan Qin
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Fan-Qiao Meng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Li-Gang Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Agricultural Non-point Source Pollution Control, Ministry of Agriculture, Beijing 100081, China
| | - Fu-Liu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
27
|
Choudri BS, Al-Nasiri N, Charabi Y, Al-Awadhi T. Ecological and human health risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1440-1446. [PMID: 32568420 DOI: 10.1002/wer.1382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The literature review presented in this paper includes the ecological and human health risk assessment in the form of receptors in the environment. The main objective of this review to highlight a summary of the many studies undertaken in the year 2019. The first part of the review covers the papers published on the health risk assessment related to human and ecological health. This article focuses on methods and tools utilized for the analysis of scientific studies and the data. The review provides main issues such as interpretation of data, uncertainty, and policies related to the management of risks. The ecological and human health risk assessment is divided into two main sections. Each of these sections presents in broad the risk assessment process namely pollution studies, remediation, and tools required for the management of natural resources and the environment.
Collapse
Affiliation(s)
- B S Choudri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Noura Al-Nasiri
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
- Department of Geography, Sultan Qaboos University, Muscat, Oman
| | - Yassine Charabi
- Center for Environmental Studies and Research, Sultan Qaboos University, Muscat, Oman
| | - Talal Al-Awadhi
- Department of Geography, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|