1
|
Xiao Y, Han D, Currell M, Song X, Zhang Y. Review of Endocrine Disrupting Compounds (EDCs) in China's water environments: Implications for environmental fate, transport and health risks. WATER RESEARCH 2023; 245:120645. [PMID: 37769420 DOI: 10.1016/j.watres.2023.120645] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/25/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
Endocrine Disrupting Compounds (EDCs) are ubiquitous in soil and water system and have become a great issue of environmental and public health concern since the 1990s. However, the occurrence and mechanism(s) of EDCs' migration and transformation at the watershed scale are poorly understood. A review of EDCs pollution in China's major watersheds (and comparison to other countries) has been carried out to better assess these issues and associated ecological risks, compiling a large amount of data. Comparing the distribution characteristics of EDCs in water environments around the world and analyzing various measures and systems for managing EDCs internationally, the significant insights of the review are: 1) There are significant spatial differences and concentration variations of EDCs in surface water and groundwater in China, yet all regions present non-negligible ecological risks. 2) The hyporheic zone, as a transitional zone of surface water and groundwater interaction, can effectively adsorb and degrade EDCs and prevent the migration of high concentrations of EDCs from surface water to groundwater. This suggests that more attention needs to be paid to the role played by critical zones in water environments, when considering the removal of EDCs in water environments. 3) In China, there is a lack of comprehensive and effective regulations to limit and reduce EDCs generated during human activities and their discharge into the water environment. 4) To prevent the deterioration of surface water and groundwater quality, the monitoring and management of EDCs in water environments should be strengthened in China. This review provides a thorough survey of scientifically valid data and recommendations for the development of policies for the management of EDCs in China's water environment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Matthew Currell
- School of Engineering, RMIT University, Melbourne, VIC, 3001, SA; Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, SA
| | - Xianfang Song
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Zhang
- Chinese Academy of Surveying and Mapping, Beijing, 100036, China
| |
Collapse
|
2
|
Cao H, Yao S, Xu L, Bian Y, Jiang X, Ćwieląg-Piasecka I, Song Y. Aging of biodegradable-mulch-derived microplastics reduces their sorption capacity of atrazine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121877. [PMID: 37230173 DOI: 10.1016/j.envpol.2023.121877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
Degradable plastics are gradually regarded as alternatives of conventional, synthetic organic polymers to reduce the plastics or microplastics (MPs) pollution; however, the reports upon environmental risk of degradable plastics are still limited. In order to evaluate the potential vector effect of biodegradable MPs on coexisting contaminants, sorption of atrazine onto pristine and ultraviolet-aged (UV) polybutylene adipate co-terephthalate (PBAT) MPs and polybutylene succinate co-terephthalate (PBST) MPs were investigated. The results showed that, UV aging led to more wrinkles and cracks on the surface, increased homogeneous chains proportion, enhanced hydrophobicity, and enlarged crystallinity of both MPs. The sorption kinetics of atrazine to MPs fitted well into pseudo-first-order (R2 = 0.809-0.996) and pseudo-second-order (R2 = 0.889-0.994) models. In the concentration range of 0.5-25 mg L-1, the sorption isotherm fitted into linear (R2 = 0.967-0.996) and Freundlich model (R2 = 0.972-0.997), indicating that the absorption partitioning was the dominant sorption mechanism. The partition coefficient (Kd) of atrazine to PBAT- MPs (40.11-66.01 L kg-1) was higher than that of PBST- MPs (34.34-57.96 L kg-1), and the Kd values of both MPs declined for aged MPs. The specific surface area, hydrophobicity, polarity and crystallinity of MPs jointly interpreted the changing sorption capacity of the MPs. In the present study, both aged PBAT- and aged PBST- MPs exhibited lower vector potential to atrazine than pristine MPs, suggesting reduced risk of being a pollutant carrier, which is of great significance for the development of biodegradable plastics.
Collapse
Affiliation(s)
- Huihui Cao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Irmina Ćwieląg-Piasecka
- Wroclaw University of Environmental and Life Sciences, Institute of Soil Science, Plant Nutrition and Environmental Protection, Grunwaldzka 53 St., 50-357, Wrocław, Poland
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Balda M, Mackenzie K, Kopinke FD, Georgi A. Uniform and dispersible carbonaceous microspheres as quasi-liquid sorbent. CHEMOSPHERE 2022; 307:136079. [PMID: 35995183 DOI: 10.1016/j.chemosphere.2022.136079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Functional colloidal carbon materials find various applications, including the remediation of contaminated water and soil in so-called particle-based in-situ remediation processes. In this study, uniform and highly dispersible micro-sized carbonaceous spheres (CS) were generated by hydrothermal carbonization (HTC) of sucrose in the presence of carboxymethyl cellulose (CMC) as environmentally friendly polyelectrolyte stabilizer. In order to ensure their optimal subsurface delivery and formation of a self-contained treatment zone, a narrow size distribution and low agglomeration tendency of the particles is desired. Therefore, the obtained CS were thoroughly characterized and optimized with respect to their colloidal properties which are a crucial factor for their application as quasi-liquid sorbent. The as-prepared uniform CS are readily dispersible into single particles in water as confirmed by digital microscopy and form stable suspensions. Due to their perfectly spherical shape, particle sedimentation in aqueous suspensions is well predicted by Stokes' law. High sorption coefficients on the synthesized CS KD,CS were determined for phenanthrene (up to log (KD,CS/[L kg-1]) = 5) and other hydrophobic groundwater contaminants. This confirms the application potential of the CS, which were prepared by an economic low-temperature process using sucrose as bio-based precursor, for generating in-situ sorption barriers for groundwater and soil remediation.
Collapse
Affiliation(s)
- Maria Balda
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, D-04318 Leipzig, Germany.
| | - Katrin Mackenzie
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, D-04318 Leipzig, Germany
| | - Frank-Dieter Kopinke
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, D-04318 Leipzig, Germany
| | - Anett Georgi
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research - UFZ, D-04318 Leipzig, Germany
| |
Collapse
|
4
|
Chang J, Fang W, Chen L, Zhang P, Zhang G, Zhang H, Liang J, Wang Q, Ma W. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: A comprehensive review. CHEMOSPHERE 2022; 307:136006. [PMID: 35973488 DOI: 10.1016/j.chemosphere.2022.136006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Atrazine has become one of the most popular applied triazine herbicides in the world due to its high herbicidal efficiency and low price. With its large-dosage and long-term use on a global scale, atrazine can cause widespread and persistent contamination of soil and sediment. This review systematically evaluates the toxicological effects, environmental risks, environmental behaviors (adsorption, transport and transformation, and bioaccumulation) of atrazine, and the remediation technologies of atrazine-contaminated soil and sediment. For the adsorption behavior of atrazine on soil and sediment, the organic matter content plays an extremely important role in the adsorption process. Various models and equations such as the multi-media fugacity model and solute transport model are used to analyze the migration and transformation process of atrazine in soil and sediment. It is worth noting that certain transformation products of atrazine in the environment even have stronger toxicity and mobility than its parent. Among various remediation technologies, the combination of microbial remediation and phytoremediation for atrazine-contaminated soil and sediment has wide application prospects. Although other remediation technologies such as advanced oxidation processes (AOPs) can also efficiently remove atrazine from soil, some potential problems still need to be further clarified. Finally, some related challenges and prospects are proposed.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
5
|
Wu D, Ren D, Li Q, Zhu A, Song Y, Yin W, Wu C. Molecular linkages between chemodiversity and MCPA complexation behavior of dissolved organic matter in paddy soil: Effects of land conversion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119949. [PMID: 35970345 DOI: 10.1016/j.envpol.2022.119949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Complexation of dissolved organic matter (DOM) plays a crucial role in regulating the fate and risk of agrochemicals. Here, taking a toxic herbicide MCPA (4-chloro-2- methylphenoxyacetic acid) as the target, the effect of land conversion on complexation behavior of DOM to agrochemicals was investigated in paddy soil. Furthermore, the mechanisms were explored in a new perspective of DOM chemodiversity. Soil DOMs were selected from four long-term cropping systems, including paddy field (PF), vegetable field (VF), rice-vegetable rotation (RV) and abandoned land (AL). The results showed that the DOMs in PF and AL were rich in hydrophilic substances (e.g., carbohydrates or protein-like molecules) with low aromaticity. However, after converting PF to VF and RV, abundant aromatic macromolecules and aliphatic alkanes were observed in DOM. Due to those changes in DOM chemodiversity, the binding site and capability of DOM were highest in VF and RV, and were positively correlated with DOM aromaticity, MW, humus and polar groups (e.g., amino). This was because the complexation of "DOM-MCPA" was static binding via ligand exchange and H-bonding among polar groups and hydrophobic interaction among aromatic skeletons. The EEM-PARAFAC confirmed that microbial humic-like substances dominated the complexation of DOM rather than terrestrial humic-like and tryptophan-like matters. The 2D-COS analysis further revealed that the complexation of DOM preferentially occurred in amino, polysaccharide C-O and aliphatic C-H for PF and AL, but in aromatic C=C, amide C=N for RV and VF. In summary, these findings provide molecular insight into the effect of land conversion on DOM complexation activity, which highlight the importance of DOM chemodiversity. These results will contribute to the risk assessments of agrochemicals in paddy soil.
Collapse
Affiliation(s)
- Dongming Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation and Research Station, Danzhou, 571737, PR China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, PR China
| | - Qinfen Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation and Research Station, Danzhou, 571737, PR China; Hainan Key Laboratory of Tropical Eco-circuling Agriculture, Haikou, 571101, PR China
| | - Anhong Zhu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Yike Song
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Wenfang Yin
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Chunyuan Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation and Research Station, Danzhou, 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Haikou, 571101, PR China.
| |
Collapse
|
6
|
Valizadeh S, Lee SS, Choi YJ, Baek K, Jeon BH, Andrew Lin KY, Park YK. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. ENVIRONMENTAL RESEARCH 2022; 213:113599. [PMID: 35679906 DOI: 10.1016/j.envres.2022.113599] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known as a hazardous group of pollutants in the soil which causes many challenges to the environment. In this study, the potential of biochar (BC), as a carbonaceous material, is evaluated for the immobilization of PAHs in soils. For this purpose, various bonding mechanisms of BC and PAHs, and the strength of bonds are firstly described. Also, the effect of impressive criteria including BC physicochemical properties (such as surface area, porosity, particle size, polarity, aromaticity, functional group, etc., which are mostly the function of pyrolysis temperature), number of rings in PAHs, incubation time, and soil properties, on the extent and rate of PAHs immobilization by BC are explained. Then, the utilization of BC in collaboration with biological tools which simplifies further dissipation of PAHs in the soil is described considering detailed interactions among BC, microbes, and plants in the soil matrix. The co-effect of BC and biological remediation has been authenticated by previous studies. Moreover, recent technologies and challenges related to the application of BC in soil remediation are explained. The implementation of a combined BC-biological remediation method would provide excellent prospects for PAHs-contaminated soils.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
7
|
Netto MS, Georgin J, Franco DSP, Mallmann ES, Foletto EL, Godinho M, Pinto D, Dotto GL. Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3672-3685. [PMID: 34389956 DOI: 10.1007/s11356-021-15366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
In this work, a novel and effective hydrochar was prepared by hydrothermal treatment of Prunus serrulata bark to remove the pesticide atrazine in river waters. The hydrothermal treatment has generated hydrochar with a rough surface and small cavities, favoring the atrazine adsorption. The adsorption equilibrium time was not influenced by different atrazine concentrations used, being reached after 240 min. The Elovich adsorption kinetic model presented the best adjustment to the kinetic data. The Langmuir model presented the greatest compliance to the isotherm data and indicated a higher affinity between atrazine and hydrochar, reaching a maximum adsorption capacity of 63.35 mg g-1. Thermodynamic parameters showed that the adsorption process was highly spontaneous, endothermic, and favorable, with a predominance of physical attraction forces. In treating three real river samples containing atrazine, the adsorbent showed high removal efficiency, being above 70 %. The hydrochar from Prunus serrulata bark waste proved highly viable to remove atrazine from river waters due to its high efficiency and low precursor material cost.
Collapse
Affiliation(s)
- Matias S Netto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Evandro S Mallmann
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Marcelo Godinho
- Postgraduate Program in Engineering Processes and Technology, University of Caxias do Sul - UCS, Caxias do Sul, RS, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
- Facultad de Ingeniería y Arquitectura, Universidad de Lima, Lima, Peru.
| | - Guilherme L Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
8
|
Li Y, Han C, Luo J, Jones KC, Zhang H. Use of the Dynamic Technique DGT to Determine the Labile Pool Size and Kinetic Resupply of Pesticides in Soils and Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9591-9600. [PMID: 34029066 DOI: 10.1021/acs.est.1c01354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The diffusive gradients in thin films (DGT) technique has been successfully and widely applied to investigate the labile fractions of inorganic contaminants in soils and sediments, but there have been almost no applications to organic contaminants. Here we developed and tested the approach for the pesticide Atrazine (ATR) in a controlled soil experiment and in situ in an intact lake sediment core. The soil study explored the relationships between soil solution, DGT measured labile ATR and solvent extractable ATR in dosed soils of different organic matter, pH status and incubation times. The results are further interpreted using the DIFS (DGT-induced fluxes in soils and sediments) model. Resupply of ATR to the soil solution was partially sustained by the solid phase in all the soils. This was due to small labile pool size and slow kinetics, with soil pH being an important controlling factor. The in situ sediment study successfully used a DGT probe to examine labile ATR distribution through the core on the subcm scale. It demonstrated-for the first time-an easy to use in situ technique to investigate the effects of redox on resupply kinetics and biogeochemical processes of trace organic contaminants in sediments.
Collapse
Affiliation(s)
- Yanying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Chao Han
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, P. R. China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, U.K
| |
Collapse
|
9
|
Yuan Y, Li J, Dai H. Microcystin-LR sorption and desorption by diverse biochars: Capabilities, and elucidating mechanisms from novel insights of sorption domains and site energy distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:141921. [PMID: 32916485 DOI: 10.1016/j.scitotenv.2020.141921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
This study accurately assessed microcystin-LR (MCLR)-trapping capabilities of diverse biochars based on sorption and sequential desorption (SDE), and elucidated MCLR sorption-desorption mechanisms from novel views of sorption domains and site energy distribution along sorption-SDE process. Results showed that maize straw biochar (MSB) and chicken manure biochar (CMB) excelled in trapping MCLR (91.0%-97.4% and 85.7%-96.4%, respectively, at 60-600 μg/L of initial MCLR amount), followed by their respective HCl-treated ones (HCMB, HSMB), while HCl-treated bamboo biochar and pine sawdust biochar poorly trapped MCLR (48.9%-77.8% for HBB, 22.6%-67.2% for HPSB). Non-partition sorption domains (NPSD) contributed more than partition sorption domain (PSD) to MCLR sorption by each biochar. Higher NPSD contribution to MCLR sorption in CMBs and MSBs than other biochars resulted from their higher pHPZC and mesoporosity, which provided stronger electrostatic and pore-filling interaction for MCLR. Desorption hysteresis was weaken with rising aqueous MCLR amount for most biochars. Along SDE process, remaining MCLR in PSD of MSBs, HPSB and HBB could transfer to NPSD, thus desorption ratio continuously decreased with increasing desorption cycle. Differently, remaining MCLR in NPSD of CMBs converted into PSD during 1st-3rd desorption, causing fluctuated desorption ratio without obvious decrease as desorption cycle increased. These implied that MCLR in PSD was more easily desorbed than NPSD for each biochar. Site energy distribution dynamics supported the results of PSD and NPSD contribution changes along SDE. This study was greatly implicated in cost-efficient emergent MCLR-pollution remediation and deeply understanding MCLR sorption-desorption mechanisms of diverse biochars.
Collapse
Affiliation(s)
- Yue Yuan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| | - Haixiao Dai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Bianco F, Race M, Papirio S, Oleszczuk P, Esposito G. The addition of biochar as a sustainable strategy for the remediation of PAH-contaminated sediments. CHEMOSPHERE 2021; 263:128274. [PMID: 33297218 DOI: 10.1016/j.chemosphere.2020.128274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 05/27/2023]
Abstract
The contamination of sediments by polycyclic aromatic hydrocarbons (PAHs) has been widely spread for years due to human activities, imposing the research and development of effective remediation technologies for achieving efficient treatment and reuse of sediments. In this context, the amendment of biochar in PAH-contaminated sediments has been lately proposed as an innovative and sustainable technology. This review provides detailed information about the mechanisms and impacts associated with the supplementation of biochar to sediments polluted by PAHs. The properties of biochar employed in these applications have been thoroughly examined. Sorption onto biochar is the main mechanism involved in PAH removal from sediments. Sorption efficiency can be significantly improved even in the presence of a low remediation time (i.e. 30 d) when a multi-PAH system is used and biochar is provided with a high dosage (i.e. by 5% in a mass ratio with the sediment) and a specific surface area of approximately 360 m2 g-1. The use of biochar results in a decrease (i.e. up to 20%) of the PAH degradation during bioaugmentation and phytoremediation of sediments, as a consequence of the reduction of PAH bioavailability and an increase of water and nutrient retention. In contrast, PAH degradation has been reported to increase up to 54% when nitrate is used as electron acceptor in low-temperature biochar-amended sediments. Finally, biochar is effective in co-application with Fe2+ for the persulfate degradation of PAHs (i.e. up to 80%), mainly when a high catalyst dose and an acidic pH are used.
Collapse
Affiliation(s)
- Francesco Bianco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy.
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio 43, 03043, Cassino, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, Via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
11
|
Wirsching J, Pagel H, Ditterich F, Uksa M, Werneburg M, Zwiener C, Berner D, Kandeler E, Poll C. Biodegradation of Pesticides at the Limit: Kinetics and Microbial Substrate Use at Low Concentrations. Front Microbiol 2020; 11:2107. [PMID: 32983068 PMCID: PMC7481373 DOI: 10.3389/fmicb.2020.02107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/15/2022] Open
Abstract
The objective of our study was to test whether limited microbial degradation at low pesticide concentrations could explain the discrepancy between overall degradability demonstrated in laboratory tests and their actual persistence in the environment. Studies on pesticide degradation are often performed using unrealistically high application rates seldom found in natural environments. Nevertheless, biodegradation rates determined for higher pesticide doses cannot necessarily be extrapolated to lower concentrations. In this context, we wanted to (i) compare the kinetics of pesticide degradation at different concentrations in arable land and (ii) clarify whether there is a concentration threshold below which the expression of the functional genes involved in the degradation pathway is inhibited without further pesticide degradation taking place. We set up an incubation experiment for four weeks using 14C-ring labeled 2-methyl-4-chlorophenoxyacetic acid (MCPA) as a model compound in concentrations from 30 to 20,000 μg kg–1 soil. To quantify the abundance of putative microorganisms involved in MCPA degradation and their degradation activity, tfdA gene copy numbers (DNA) and transcripts (mRNA) were determined by quantitative real-time PCR. Mineralization dynamics of MCPA derived-C were analyzed by monitoring 14CO2 production and 14C assimilation by soil microorganisms. We identified two different concentration thresholds for growth and activity with respect to MCPA degradation using tfdA gene and mRNA transcript abundance as growth and activity indices, respectively. The tfdA gene expression started to increase between 1,000 and 5,000 μg MCPA kg–1 dry soil, but an actual increase in tfdA sequences could only be determined at a concentration of 20,000 μg. Accordingly, we observed a clear shift from catabolic to anabolic utilization of MCPA-derived C in the concentration range of 1,000 to 5,000 μg kg–1. Concentrations ≥1,000 μg kg–1 were mainly associated with delayed mineralization, while concentrations ≤1,000 μg kg–1 showed rapid absolute dissipation. The persistence of pesticides at low concentrations cannot, therefore, be explained by the absence of functional gene expression. Nevertheless, significant differences in the degradation kinetics of MCPA between low and high pesticide concentrations illustrate the need for studies investigating pesticide degradation at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Johannes Wirsching
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Holger Pagel
- Department of Soil Physics, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Franziska Ditterich
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Marie Uksa
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Martina Werneburg
- Department of Environmental Analytical Chemistry, Institute of Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Christian Zwiener
- Department of Environmental Analytical Chemistry, Institute of Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Doreen Berner
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Ellen Kandeler
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Christian Poll
- Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
12
|
Wu D, Ren C, Jiang L, Li Q, Zhang W, Wu C. Characteristic of dissolved organic matter polar fractions with variable sources by spectrum technologies: Chemical properties and interaction with phenoxy herbicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138262. [PMID: 32272408 DOI: 10.1016/j.scitotenv.2020.138262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous with high biological and chemical activity. The large intake of DOM from compost, plant residues or soil can modify the behaviors of agrochemicals. Phenoxy herbicide is the third widely used herbicide around the world with both aromaticity and polarity. However, how the diverse fractions of DOM interacting with phenoxy herbicide and the underlying mechanisms remain unknown. Thus, it is crucial to investigate the heterogeneous chemical properties of DOM fractions from variable sources and explore the interactive mechanisms. In this study, polar DOM derived from compost, rice straw and soil were fractionated, and the chemical properties of fractions were analyzed by spectrum technology and the complex interaction with phenoxy herbicide was assessed by infrared spectroscopy. Results showed that hydrophobic acid (HOA) was the largest component (49.6%) in compost DOM, while hydrophilic matter (HIM) was the main component in the polar DOM from rice straw and soil. The 4-chloro-2-methylphenoxyac etic acid (MCPA) as one representative of phenoxy herbicides was used in our study, and the results showed the interaction between different DOM fractions and MCPA was heterogeneous. HOA containing abundant fulvic-like component and polar groups resulted a greatly complex interaction with MCPA mainly via hydrophobic force, ligand exchange and hydrogen bonding. Hydrophobic neutral fraction and acid-insoluble matter showed a medium interaction with MCPA as a result of enrichment with the high aromatic humic-like molecules. Inversely, no significant interaction between HIM and MCPA was observed. Our research revealed that the aromatic framework associated with polar groups in DOM dominated the interaction with phenoxy herbicide, which might affect the bioavailability, toxicity, and mobility of phenoxy herbicide.
Collapse
Affiliation(s)
- Dongming Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China
| | - Changqi Ren
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Lei Jiang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China
| | - Qinfen Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China.
| | - Wen Zhang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Chunyuan Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China.
| |
Collapse
|
13
|
Gunti H, Kandukuri DJ, Kumari A, Aniya V, Satyavathi B, Naidu MR. A non-edible waste as a potential sorptive media for removal of herbicide from the watershed. JOURNAL OF HAZARDOUS MATERIALS 2020; 390:121671. [PMID: 31831287 DOI: 10.1016/j.jhazmat.2019.121671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
A non-edible waste, from biodiesel processing industry is being turned to carbonaceous material (biochar) using slow pyrolysis. The material was found to be amorphous with hydroxyl, methyl, carbonyl and carboxyl functional groups onto the surface. The influencing parameters, namely adsorbate concentration (0.05-5 mg/l), biochar loading (0.02-0.4 g), pH(3-12) and particle sizes (0.03-0.13 mm) were studied to observe the effect on the sorption of simazine using biochar. A multivariate optimization using central composite design in response surface methodology was performed employing desirability function. The optimized biosorption efficiency (B%) and capacity qe was found to be 91.98 % and 0.83 mg/g respectively with the optimized parameters as 3.76 mg/l of adsorbate concentration, 0.12 g of biochar loading, pH of 5.26 and 0.0535 mm of particle size. The simazine adsorption phenomena were found to be multilayer heterogeneous sorption based on Langmuir and Freundlich models. The kinetics investigation shows that chemisorption was involved for the transfer of simazaine to the surface of biochar with three distinct intra particulate diffusional zones. An adsorption process requires activation energy of 11.27 kJ/mol and the negative magnitude of ΔH* indicates the exothermicity involved in the process.
Collapse
Affiliation(s)
- Harika Gunti
- Department of Chemical Engineering, VFSTR (deemed to be) University, India; Process Engineering & Technology Transfer Department, CSIR -Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Datta Jagrithi Kandukuri
- Process Engineering & Technology Transfer Department, CSIR -Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Alka Kumari
- Process Engineering & Technology Transfer Department, CSIR -Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - Vineet Aniya
- Process Engineering & Technology Transfer Department, CSIR -Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India
| | - B Satyavathi
- Process Engineering & Technology Transfer Department, CSIR -Indian Institute of Chemical Technology, Hyderabad, Telangana, 500 007, India.
| | - M Ramesh Naidu
- Department of Chemical Engineering, VFSTR (deemed to be) University, India.
| |
Collapse
|
14
|
Ji H, Han J, Xue J, Hatten JA, Wang M, Guo Y, Li P. Soil organic carbon pool and chemical composition under different types of land use in wetland: Implication for carbon sequestration in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136996. [PMID: 32059329 DOI: 10.1016/j.scitotenv.2020.136996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
This study was conducted to understand how different wetland vegetation-land use types influenced the storage and stability of soil organic carbon (SOC) in surface soils. We determined the concentration and chemical composition of SOC in both density (including light fraction organic carbon (LFOC) and heavy fraction organic carbon (HFOC)) and particle size fractions (including <2 μm, 2-63 μm, 63-200 μm and 200-2000 μm) in four wetland land use types covered with different vegetation: lake-sedge, reed, willow and poplar wetlands. Results showed that the concentrations and stock of SOC and LFOC in willow and poplar wetlands were significantly higher than those in lake-sedge and reed. However, a higher proportion of alkyl-C and a lower proportion of O-alkyl-C were observed in lake-sedge and reed wetlands than in willow and poplar, suggesting that accumulated C in willow and poplar wetlands was less stable than that in lake-sedge and reed. For all particle-size fractions except the silt (2-63 μm), the SOC concentrations were highest in willow and lowest in reed wetland surface soils, while their alkyl-C/O-alkyl-C (A/O-A) and hydrophobic-C/hydrophilic-C ratios progressively decreased from lake-sedge and reed wetland surface soils to poplar and willow surface soils. Moreover, the ratios of A/O-A and hydrophobic-C/hydrophilic-C in surface soils generally decreased with increasing concentrations of SOC in particle-size fractions, with these stability indexes being lowest in the largest particle-size fraction. These results indicate that the wetland vegetation-land use types that could incorporate more C into finer particle-size fractions had a greater potential for sequestering more stable C in such wetland ecosystems. Different wetland vegetation-land use types resulted in significant changes in the concentration and chemical structure of SOC, which could affect soil C sequestration and dynamics, C cycling in wetland ecosystems. Although both willow and poplar forests could increase SOC stock, the stability of SOC in willow wetland was higher. Therefore, on balance (stock and stability) the land use of wetland for willow forest could be a more promising way for enhancing soil C sequestration in wetlands.
Collapse
Affiliation(s)
- Huai Ji
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze 223100, China
| | - Jianming Xue
- New Zealand Forest Research Institute Ltd (Scion), Christchurch 8440, New Zealand
| | - Jeff A Hatten
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331, United States
| | - Minhuang Wang
- Chair of Silviculture, University of Freiburg, Tennenbacherstr. 4, Freiburg 79085, Germany
| | - Yanhui Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Pingping Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze 223100, China.
| |
Collapse
|
15
|
Khalid S, Shahid M, Murtaza B, Bibi I, Asif Naeem M, Niazi NK. A critical review of different factors governing the fate of pesticides in soil under biochar application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134645. [PMID: 31822404 DOI: 10.1016/j.scitotenv.2019.134645] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 05/13/2023]
Abstract
Pesticides are extensively used in the modern agricultural system. The inefficient and extensive use of pesticides during the last 5 to 6 decades inadvertently led to serious deterioration of environmental quality with health risk to living organisms, including humans. It is important to use some environmentally-friendly and sustainable approaches to remediate, restore and maintain soil quality. Biochar has gained considerable attention globally as a promising soil amendment because it has the ability to adsorb and as such minimize the bioavailability of pesticides in soils. This review emphasizes the recent trends and implications of biochar in pesticide-contaminated soils, as well as highlights need of the pesticides use and associated environmental issues in context of the biochar application. The overarching aim of this review is to signify the role of biochar on primary processes such as effect of biochar on the persistence, mineralization, leaching and efficacy of pesticides in soil. Notably, the effects of biochar on pesticide adsorption-desorption, degradation and bioavailability under various operating/production conditions are critically discussed. This review delineates the indirect impact of biochar on pesticides persistence in soils and proposes key recommendations for future research which are essential for the remediation and restoration of pesticides-impacted soils.
Collapse
Affiliation(s)
- Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan.
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| |
Collapse
|
16
|
Wang P, Liu X, Yu B, Wu X, Xu J, Dong F, Zheng Y. Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134767. [PMID: 31726335 DOI: 10.1016/j.scitotenv.2019.134767] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to investigate the sorption of atrazine and nicosulfuron onto several experimentally produced biochars, as well as to understand the influence of biochar structure on sorption mechanisms. Nine biochars were generated by pyrolyzing peanut shell at 300, 450, or 600 °C and exposing samples to each of the several deashing treatments: none, water or HCl. The sorption of atrazine and nicosulfuron by the nine biochars were evaluated. Biochars were characterized via elemental analyzer, BET-N2 surface area, FTIR and XPS. Three kinetic models were used to fit the sorption kinetics data and both the Freundlich and dual-mode models described the sorption isotherms well. All the biochar samples exhibited high sorption affinity for both atrazine and nicosulfuron. The sorption mechanisms of the biochar included hydrophobic partition, π-π electron donor-acceptor interactions, H-bonding, and pore-filling mechanism, and these mechanisms were dependent on both the degree of biochar carbonization and the concentration of atrazine or nicosulfuron. Ash could bind to atrazine and nicosulfuron by specific interactions but played a negative role in the sorption, especially on high pyrolyzing temperature biochars. These results will facilitate the production of efficient and cheap adsorbents for reducing the risk of atrazine and nicosulfuron.
Collapse
Affiliation(s)
- Pingping Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Bochi Yu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
17
|
Wei Z, Wang JJ, Hernandez AB, Warren A, Park JH, Meng Y, Dodla SK, Jeong C. Effect of biochar amendment on sorption-desorption and dissipation of 17α‑ethinylestradiol in sandy loam and clay soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:959-967. [PMID: 31200312 DOI: 10.1016/j.scitotenv.2019.06.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Animal manure application in agricultural land has caused the release of steroid estrogens in the soil environment and further movement to aquatic systems. The objective of this study was to investigate the effects of biochar addition on sorption-desorption and dissipation behaviors of 17α‑ethinylestradiol (EE2) in two different textured soils. A Commerce sandy loam and a Shakey clay were selected and subjected to sterilization. Soil samples with and without sterilization were reacted with a series of EE2 solutions of different concentrations for sorption followed by desorption and quantification using HPLC-MS/MS. Long-term dissipation of EE2 in the same soils was also evaluated over a 30-d incubation. Biochar amendment increased the maximum EE2 sorption capacity but decreased its water desorption in both sandy loam and clay soils. On other hand, biochar addition increased the Koc in the clay soil which had low EE2 sorption efficiency but decreased Koc in the sandy loam which had high EE2 sorption efficiency. Biochar did significantly increase both desorbable and non-extractable fractions of EE2, while it reduced the bioavailability of EE2 to microbial degradation. The dissipation of EE2 in non-sterilized soils fit to the first-order kinetic model, whereas it was better described by zero-order kinetic for sterilized soil. Biochar increased the half-life of EE2 dissipation in non-sterilized Commerce sandy loam soil by 48% (from 3.63 to 5.37 d) and in non-sterilized Sharkey clay soil by 67% (from 2.28 to 3.81 d). Overall, this study demonstrated positive impacts of biochar on the retention of estrogen hormones in soils.
Collapse
Affiliation(s)
- Zhuo Wei
- School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Jim J Wang
- School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| | - Amy B Hernandez
- Agricultural Chemistry Department, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Andrea Warren
- Agricultural Chemistry Department, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Jong-Hwan Park
- Division of Applied Life Science (BK21 Program) & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yili Meng
- School of Plant, Environment & Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Syam K Dodla
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA 71112, USA
| | - Changyoon Jeong
- Red River Research Station, Louisiana State University Agricultural Center, Bossier City, LA 71112, USA
| |
Collapse
|
18
|
Wang L, Hua X, Zhang L, Song N, Dong D, Guo Z. Influence of organic carbon fractions of freshwater biofilms on the sorption for phenanthrene and ofloxacin: The important role of aliphatic carbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:818-826. [PMID: 31238285 DOI: 10.1016/j.scitotenv.2019.06.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Sorption to biofilms is thought to be a crucial process controlling the fate of trace organic contaminants in aquatic systems. The organic composition of biofilms is regarded as the determining factor in the sorption mechanism of biofilm organic carbon fractions; however, its role is not well known. Here, the sorption of phenanthrene and ofloxacin was modeled with classic and emerging organic contaminants, respectively, by comparatively investigating nine type of freshwater biofilms cultured in a river, lake, and reservoir in spring, summer, and autumn. The chemical features of the nine biofilms were analyzed using elemental analysis, infrared spectroscopy, X-ray photoelectron spectroscopy, and carbon-13 nuclear magnetic resonance. Results showed that the freshwater biofilms were aliphatic-rich natural amorphous solid substances with O-containing functional groups, and their surface polarity was significantly lower than their bulk polarity. All the isotherms of phenanthrene and ofloxacin sorption by the biofilms were linear. The organic carbon-normalized partition coefficient values for phenanthrene and ofloxacin on the nine biofilms ranged from 91.9 to 364.2 L g-1 and 3.2 to 43.2 L g-1, respectively. The van der Waals interaction between a majority of aliphatic carbon (73.4%-83.9%) in biofilms and the two sorbates was much stronger than π-π interactions between a minority of aromatic carbon (12.7%-21.7%) and sorbates. The surface polarity of the biofilms regulated polar interactions including the hydrogen bonding and electron donor-acceptor interactions. Both the aliphatic carbon and surface polarity in the biofilms enhanced the sorption of phenanthrene and ofloxacin. The sorption characteristics and mechanisms of polycyclic aromatic hydrocarbons and antibiotics on biofilms shown in our present and previous studies are different from those of other ubiquitous natural solid materials such as soils and sediments. This study provides insight into the importance of aliphatic carbon fractions of freshwater biofilms for the sorption of classic and emerging organic contaminants.
Collapse
Affiliation(s)
- Liting Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Song
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
19
|
Andrade MVF, Santos FR, Oliveira AHB, Nascimento RF, Cavalcante RM. Influence of sediment parameters on the distribution and fate of PAHs in an estuarine tropical region located in the Brazilian semi-arid (Jaguaribe River, Ceará coast). MARINE POLLUTION BULLETIN 2019; 146:703-710. [PMID: 31426212 DOI: 10.1016/j.marpolbul.2019.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/07/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
18 polycyclic aromatic hydrocarbons (PAHs) were evaluated in the Jaguaribe River to explore the influence of grain size, organic carbon, humic and fulvic acids and black carbon on their adsorption onto sediment. The ∑PAHs concentrations variated from 0.6 to 3752.0 ng g-1 with highest concentrations in the estuarine zone. The PAHs predominant source along the river was from mixed sources, mainly related to biomass combustion, small oil spills related to recreational nautical activities and runoff from cities. Organic and inorganic parameters presented influence on PAHs distribution along the river, with humic acid as a determinant factor. These research findings are of importance to an assessment of the fate and transport of PAHs in estuarine systems.
Collapse
Affiliation(s)
- Márcia V F Andrade
- Instituto de Ciências do Mar, Universidade Federal do Ceará, 60165-081 Av. Abolição, 3207 Fortaleza, CE, Brazil
| | - Felipe R Santos
- Instituto de Ciências do Mar, Universidade Federal do Ceará, 60165-081 Av. Abolição, 3207 Fortaleza, CE, Brazil; Instituto Oceanográfico, Universidade de São Paulo, 05508-120 Praça do Oceanográfico, 191 São Paulo, SP, Brazil.
| | - André H B Oliveira
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Ronaldo F Nascimento
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Rivelino M Cavalcante
- Instituto de Ciências do Mar, Universidade Federal do Ceará, 60165-081 Av. Abolição, 3207 Fortaleza, CE, Brazil.
| |
Collapse
|
20
|
Fei YH, Chen Y, Liu C, Xiao T. Biochar Addition Enhances Phenanthrene Fixation in Sediment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:163-168. [PMID: 30600391 DOI: 10.1007/s00128-018-2521-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Biochar is believed to be promising for soil contaminant stabilization due to its large adsorption capacity. However, study in sediment is rare, especially with the aging effect. In the present study, a plant biomass-derived biochar was added to phenanthrene polluted sediment, in order to investigate its performance in sediment remediation. During the incubation period of 60 days, it was observed that the partition coefficient of phenanthrene increased in sediment either with or without biochar addition, as a result of aging process. Whilst, the biochar-added sediments showed much higher partition coefficients, as well as more curved adsorption isotherms, suggesting larger retention of the contaminant. Under the extreme extraction by strong surfactant, the release ratio of phenanthrene from polluted sediment was significantly reduced from 60% to 5% by 0.5% (w/w) addition of biochar. These results suggested that biochar would be applicable for improving the adsorption of organic pollutant in sediment, and the adsorbed organic pollutant would be stably fixed during aging as a result of the increased affinity.
Collapse
Affiliation(s)
- Ying-Heng Fei
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, 511458, China
- Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China
| | - Yuxiao Chen
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
21
|
Xiang L, Wang XD, Chen XH, Mo CH, Li YW, Li H, Cai QY, Zhou DM, Wong MH, Li QX. Sorption Mechanism, Kinetics, and Isotherms of Di- n-butyl Phthalate to Different Soil Particle-Size Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4734-4745. [PMID: 30957994 DOI: 10.1021/acs.jafc.8b06357] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Di- n-butyl phthalate (DBP) is a prevalent pollutant in agricultural soils due to use of plastic film. This study focused on sorption mechanism, kinetics, and isotherms of DBP to six paddy soil particle-size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, clay, and humic acid fractions). DBP sorption involved in both boundary layer diffusion and intraparticle diffusion, following pseudo-second-order kinetics. DBP sorption was a spontaneous physical process, which fit the Freundlich model. Hydrophobic and ionic interaction relevant to the organic matter content, cation exchange capacity, surface area, and pore volume of soil fractions played key roles in DBP sorption. DBP was strongly adsorbed to humic acid and the sorption was reversely associated with soil particle sizes. DBP may exhibit higher mobility and bioavailability in a soil-crop system at lower temperature (15 °C), due to the lower log Koc values.
Collapse
Affiliation(s)
- Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Xiao-Dan Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Dong-Mei Zhou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , P. R. China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies , The University of Hong Kong , Tai Po , Hong Kong, SAR , China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
22
|
Removal Effect of Atrazine in Co-Solution with Bisphenol A or Humic Acid by Different Activated Carbons. MATERIALS 2018; 11:ma11122558. [PMID: 30558368 PMCID: PMC6316426 DOI: 10.3390/ma11122558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022]
Abstract
Activated carbons (ACs) based on apricot shells (AS), wood (W), and walnut shells (WS) were applied to adsorb atrazine in co-solutions. To study the effect of Bisphenol A (BPA) on the adsorption behavior of atrazine, the adsorption performance of ACs for BPA in single solution was studied. The results demonstrated that the adsorption kinetics of BPA fitted the pseudo-second-order model, the adsorption isotherms of BPA followed the Langmuir model. Meanwhile, the adsorption kinetics of atrazine fitted the pseudo-second-order kinetics model and the isotherm was consistent with the Freundlich model both in single solution and co-solution. In addition, competitive adsorption was observed when atrazine coexisted with BPA or humic acid. For the adsorption capacity, the adsorption amount of ASAC, WAC, and WSAC for atrazine obviously decreased by 18.0%, 30.0%, and 30.3% in the presence of BPA, respectively, which was due to the π−π interactions, hydrophobic interactions, and H-bonds, resulting in the competitive adsorption between atrazine and BPA. This study contributes to the further understanding of the adsorption behavior for atrazine in co-solution.
Collapse
|
23
|
Ren X, Sun H, Wang F, Zhang P, Zhu H. Effect of aging in field soil on biochar's properties and its sorption capacity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1880-1886. [PMID: 30061080 DOI: 10.1016/j.envpol.2018.07.078] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Due to its high sorption capacity for different kinds of contaminants, biochar is advocated as a novel remediation strategy for contaminated soils. However, it is not clear how long this extraordinary sorption capacity will be maintained after the biochar is applied to the soil. In this study, a commercial biochar was applied to an agricultural soil, and the sorption of atrazine and phenanthrene on biochar amended soils with different aging periods ranging from 0 to 2 y was investigated. The application of fresh biochar in soil led to an obvious enhancement of the sorption coefficients (Kd) of atrazine and phenanthrene (by 3.13 and 2.93 times at Ce = 0.01 Sw, respectively) compared with the untreated soil. The surface area of biochar first increased and then decreased with aging time. Correspondingly, the sorption of atrazine and phenanthrene on the biochar amended soils first increased and then decreased markedly. Based on the changing trend of the Kd values with aging time, it could be predicted that the sorption capacity of biochar amended soils will decrease to the level of the untreated soil after 2.5 y.
Collapse
Affiliation(s)
- Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Fei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Cao B, Zhang Y, Wang Z, Li M, Yang F, Jiang D, Jiang Z. Insight Into the Variation of Bacterial Structure in Atrazine-Contaminated Soil Regulating by Potential Phytoremediator: Pennisetum americanum (L.) K. Schum. Front Microbiol 2018; 9:864. [PMID: 29780374 PMCID: PMC5945882 DOI: 10.3389/fmicb.2018.00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Although plants of the genus Pennisetum can accelerate the removal of atrazine from its rhizosphere, the roles played by this plant in adjusting the soil environment and soil microorganism properties that might contribute to pollutant removal are incompletely understood. We selected Pennisetum americanum (L.) K. Schum (P. americanum) as the test plant and investigated the interaction between P. americanum and atrazine-contaminated soil, focusing on the adjustment of the soil biochemical properties as well as bacterial functional and community diversity in the rhizosphere using Biolog EcoPlates and high-throughput sequencing of the 16S rRNA gene. The results demonstrate that the rhizosphere soil of P. americanum exhibited higher catalase activity, urease activity and water soluble organic carbon (WSOC) content, as well as a suitable pH for microorganisms after a 28-day incubation. The bacterial functional diversity indices (Shannon and McIntosh) for rhizosphere soil were 3.17 ± 0.04 and 6.43 ± 0.86 respectively, while these indices for non-rhizosphere soil were 2.95 ± 0.06 and 3.98 ± 0.27. Thus, bacteria in the P. americanum rhizosphere exhibited better carbon substrate utilization than non-rhizosphere bacteria. Though atrazine decreased the richness of the soil bacterial community, rhizosphere soil had higher bacterial community traits. For example, the Shannon diversity indices for rhizosphere and non-rhizosphere soil were 5.821 and 5.670 respectively. Meanwhile, some bacteria, such as those of the genera Paenibacillus, Rhizobium, Sphingobium, and Mycoplana, which facilitate soil nutrient cycling or organic pollutants degradation, were only found in rhizosphere soil after a 28-day remediation. Moreover, redundancy analysis suggests that the soil biochemical properties that were adjusted by the test plant exhibited correlations with the bacterial community composition and functional diversity. These results suggest that the soil environment and bacterial properties could be adjusted by P. americanum during phytoremediation of atrazine-contaminated soil.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Wei X, Wu Z, Wu Z, Ye BC. Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.01.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Kong L, Gao Y, Zhou Q, Zhao X, Sun Z. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:276-284. [PMID: 28988053 DOI: 10.1016/j.jhazmat.2017.09.040] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/19/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Sawdust and wheat straw biochars prepared at 300°C and 500°C were applied to petroleum-polluted soil for an 84-day incubation to estimate their effectiveness on polycyclic aromatic hydrocarbons (PAHs) removal. Biochars alone were most effective at reducing PAHs contents. However, adding biochar to soils in company with NaN3 solution resulted in a decreasing trend in terms of PAHs removal, which was even lower than treatment CK without biochar. Moreover, it was discovered by PCR-DGGE files and sequencing analysis that the predominant bacterial diversity slightly decreased but the abundance of some specific taxa, including PAHs degraders, was promoted with biochar input. These results highlighted the potential of biochar application on accelerating PAHs biodegradation, which could be attributed to the properties of biochars that benefit for making the amended soil a better habitat for microbes. The impacts of biochar preparation and pollutants nature on PAHs removal were also determined. Significant reduction in the PAHs contents was detected when adding biochar prepared at a high temperature (500°C), while the feedstocks of biochar showed little effect on PAHs removal. Due to the high hydrophobicity of aromatic rings, high-molecular weight PAHs were found much more resistant to microbial degradation in comparison with low-molecular weight PAHs.
Collapse
Affiliation(s)
- Lulu Kong
- Resource and Environment Department, Shijiazhuang University, Hebei, 050000, China; Post-Doctoral Research Station of Ecology, Hebei Normal University, Hebei, 050024, China
| | - Yuanyuan Gao
- College of Environmental Science and Tourism, Nanyang Normal University, Henan, 473061, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Xuyang Zhao
- Resource and Environment Department, Shijiazhuang University, Hebei, 050000, China
| | - Zhongwei Sun
- Resource and Environment Department, Shijiazhuang University, Hebei, 050000, China
| |
Collapse
|
27
|
Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Zhang F, Li Y, Zhang G, Li W, Yang L. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9575-9584. [PMID: 28247270 DOI: 10.1007/s11356-017-8630-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
Natural estrogens in greenhouse soils with long-term manure application are becoming a potential threat to adjacent aquatic environment. Porous stalk biochar as a cost-effective adsorbent of estrogen has a strong potential to reduce their transportation from soil to waters. But the dominant adsorption mechanism of estrogen to stalk biochars and retention of estrogen by greenhouse soils amended with biochar are less well known. Element, function groups, total surface area (SAtotal), nano-pores of stalk biochars, and chemical structure of 17β-estradiol (E2, length 1.20 nm, width 0.56 nm, thickness 0.48 nm) are integrated in research on E2 sorption behavior in three stalk-derived biochars produced from wheat straw (WS), rice straw (RS), and corn straw (CS), and greenhouse soils amended with optimal biochar. The three biochars had comparable H/C and (O + N)/C, while their aromatic carbon contents and total surface areas (SAtotal) both varied as CS > WS > RS. However, WS had the highest sorption capacity (logK oc), sorption affinity (K f ), and strongest nonlinearity (n). Additionally, the variation of Langmuir maximum adsorption capacity (Q 0) was consistent with the trend for SA1.2-20 (WS > RS > CS) but contrary to the trend for SAtotal and SA<1.2 (CS > WS > RS). These results indicate that pore-filling dominates the sorption of E2 by biochars and exhibits "sieving effect" and length-directionality-specific via H-bonding between -OH groups on the both ends of E2 in the length direction and polar groups on the inner surface of pores. After the addition of wheat straw biochar, the extent of increase in the sorption affinity for E2 in the soil with low OC content was higher than those in the soil with high OC content. Therefore, the effectiveness for the wheat straw biochar mitigating the risk of E2 in greenhouse soil depended on the compositions of soil, especially organic matter.
Collapse
Affiliation(s)
- Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Guixiang Zhang
- College of Environment and Safety, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China.
| | - Wei Li
- Nuclear and Radiation Safety Centre, Ministry of Environmental Protection of China, 100082, Beijing, China
| | - Lingsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
29
|
Qu M, Li H, Li N, Liu G, Zhao J, Hua Y, Zhu D. Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments. CHEMOSPHERE 2017; 168:1515-1522. [PMID: 27932038 DOI: 10.1016/j.chemosphere.2016.11.164] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
We investigated sediments with high atrazine accumulation capability from 6 eutrophic lakes in Hubei Province of central China. Almost all lakes have atrazine in their sediments because of human activities. Honghu Lake and Liangzihu Lake were found to have higher levels of atrazine in sediment: 0.171 and 0.114 mg kg-1, respectively. The results showed that lake sediments could adsorb atrazine six times faster than soils. The equilibrium partition coefficient of atrazine desorption (KPd) is much larger than the adsorption equilibrium partition coefficient (KPa) of atrazine, indicating that the residue of atrazine in water is easily immobilized by the sediments. Meanwhile, the incubation experiment showed that the removal rateof atrazine in Potamogeton crispus-planted and Myriophyllum spicatum-planted sediments reached >90%, while the rate in unplanted sediments was 77.2 ± 2.12% over 45 d. In unplanted sediment, the half-life of atrazine dissipation was 14.30 d, which was strongly enhanced by P. crispus and M. spicatum, greatly reducing the half-life to 8.60 and 9.72 d, respectively. These two submerged macrophytes are considered to be potential tools in the remediation of atrazine-contaminated sediments.
Collapse
Affiliation(s)
- Mengjie Qu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huidong Li
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Institute of Quality Standard and Testing Technology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Na Li
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Duanwei Zhu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
30
|
Han L, Ro KS, Sun K, Sun H, Wang Z, Libra JA, Xing B. New Evidence for High Sorption Capacity of Hydrochar for Hydrophobic Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13274-13282. [PMID: 27993069 DOI: 10.1021/acs.est.6b02401] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated the sorption potential of hydrochars, produced from hydrothermally carbonizing livestock wastes, toward organic pollutants (OPs) with a wide range of hydrophobicity, and compared their sorption capacity with that of pyrochars obtained from conventional dry pyrolysis from the same feedstock. Results of SEM, Raman, and 13C NMR demonstrated that organic carbon (OC) of hydrochars mainly consisted of amorphous alkyl and aryl C. Hydrochars exhibited consistently higher log Koc of both nonpolar and polar OPs than pyrochars. This, combined with the significantly less energy required for the hydrothermal process, suggests that hydrothermal conversion of surplus livestock waste into value-added sorbents could be an alternative manure management strategy. Moreover, the hydrochars log Koc values were practically unchanged after the removal of amorphous aromatics, implying that amorphous aromatic C played a comparable role in the high sorption capacity of hydrochars compared to amorphous alkyl C. It was thus concluded that the dominant amorphous C associated with both alkyl and aryl moieties within hydrochars explained their high sorption capacity for OPs. This research not only indicates that animal-manure-derived hydrochars are promising sorbents for environmental applications but casts new light on mechanisms underlying the high sorption capacity of hydrochars for both nonpolar and polar OPs.
Collapse
Affiliation(s)
- Lanfang Han
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University , Beijing 100875, China
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Kyoung S Ro
- Coastal Plains Soil, Water, and Plant Research Center, Agricultural Research Service, U.S. Department of Agriculture , 2611 West Lucas Street, Florence, South Carolina 29501, United States
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University , Beijing 100875, China
| | - Haoran Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University , Beijing 100875, China
| | - Ziying Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University , Beijing 100875, China
| | - Judy A Libra
- Leibniz Institute for Agricultural Engineering , Max-Eyth-Allee 100, 14469 Potsdam-Bornim, Germany
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
31
|
Sorption Behaviour of Trichlorobenzenes and Polycyclic Aromatic Hydrocarbons in the Absence or Presence of Carbon Nanotubes in the Aquatic Environment. WATER AIR AND SOIL POLLUTION 2016. [DOI: 10.1007/s11270-016-3073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Sun C, Ma Q, Zhang J, Zhou M, Chen Y. Predicting seasonal fate of phenanthrene in aquatic environment with a Markov chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16661-16670. [PMID: 27180837 DOI: 10.1007/s11356-016-6843-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Phenanthrene (Phe) with carcinogenicity is ubiquitous in the environment, especially in aquatic environment; its toxicity is greater. To help determine toxicity risk and remediation strategies, this study predicted seasonal fate of Phe in aquatic environment. Candidate mechanisms including biodegradation, sorption, desorption, photodegradation, hydrolysis and volatility were studied; the results for experiments under simulated conditions for normal, wet and dry seasons in the Yinma River Basin indicated that biodegradation in sediment, sorption, desorption, and volatility were important pathways for elimination of Phe from aquatic environment and showed seasonal variations. A microcosm which was used to mimic sediment/water system was set up to illustrate seasonal distribution and transport of Phe. A Markov chain was applied to predict seasonal fate of Phe in air/water/sediment environment, the predicted results were perfectly agreed with results of microcosm experiments. Predicted results with a Markov chain suggested that volatility and biodegradation in sediment were main elimination pathways, and contributions of elimination pathways showed seasonal variations; Phe was eliminated from water and sediment to negligible levels over around 250 h in August and over 1000 h in May; in November, Phe was eliminated from water to a negligible level while about 31 % of Phe amount still remained in sediment over 1000 h.
Collapse
Affiliation(s)
- Caiyun Sun
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China
| | - Qiyun Ma
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China
| | - Jiquan Zhang
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China.
| | - Mo Zhou
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China
| | - Yanan Chen
- Institute of Natural Disaster Research, Department of Environment, Northeast Normal University, NO. 2555 Jingyue Street, Changchun, 130024, People's Republic of China
| |
Collapse
|
33
|
Tan G, Sun W, Xu Y, Wang H, Xu N. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. BIORESOURCE TECHNOLOGY 2016; 211:727-735. [PMID: 27061260 DOI: 10.1016/j.biortech.2016.03.147] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 06/05/2023]
Abstract
Corn straw biochar (BC) was used as a precursor to produce Na2S modified biochar (BS), KOH modified biochar (BK) and activated carbon (AC). Experiments were conducted to compare the sorption capacity of these sorbents for aqueous Hg (II) and atrazine existed alone or as a mixture. In comparison to BC, the sorption capacity of BS, BK and AC for single Hg (II) increased by 76.95%, 32.12% and 41.72%, while that for atrazine increased by 38.66%, 46.39% and 47 times, respectively. When Hg (II) and atrazine coexisted in an aqueous solution, competitive sorption was observed on all these sorbents. Sulfur impregnation was an efficient way to enhance the Hg (II) removal due to the formation of HgS precipitate, and oxygen-containing functional groups on the sorbents also contributed to Hg (II) sorption. Activated carbon was the best sorbent for atrazine removal because of its extremely high specific surface area.
Collapse
Affiliation(s)
- Guangcai Tan
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yaru Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hongyuan Wang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
34
|
|
35
|
de Paula RT, de Abreu ABG, de Queiroz MELR, Neves AA, da Silva AA. Leaching and persistence of ametryn and atrazine in red-yellow latosol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:90-95. [PMID: 26576486 DOI: 10.1080/03601234.2015.1092819] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study evaluated the mobility and persistence of atrazine and ametryn in red-yellow latosols using polyvinyl chloride columns with a diameter of 100 mm and a height of 15 cm. The assays simulated 60-mm rainfall events at 10-day intervals for 70 days. The persistence and leaching were evaluated for these two herbicides. The analytes obtained from the samples were quantified by gas chromatography using flame ionization detection. Compared with ametryn, atrazine showed a greater potential to reach depths below 15 cm over 30 days of simulated rain. Ametryn, however, showed greater persistence in soil at 70 days after application. The persistence of atrazine and ametryn in soil under sunlight was 10 and 144 days respectively. Atrazine was more susceptible to sunlight than ametryn because sunlight favored atrazine degradation in hydroxyatrazine. The results indicate that in red-yellow latosol, atrazine has a high leaching potential in short term, but that ametryn is more persistent and has a high leaching potential in long term.
Collapse
Affiliation(s)
- Rodrigo T de Paula
- a Department of Chemistry , Federal University of Viçosa , Viçosa , Brazil
| | - Adley Bergson G de Abreu
- b College of Biological Sciences, Agricultural and Health, University of the State of Mato Grosso , Tangará da Serra , Brazil
| | | | - Antônio A Neves
- a Department of Chemistry , Federal University of Viçosa , Viçosa , Brazil
| | - Antônio A da Silva
- c Department of Plant Science , Federal University of Viçosa , Viçosa , Brazil
| |
Collapse
|
36
|
Huang Y, Liu Z, He Y, Li Y. Impact of soil primary size fractions on sorption and desorption of atrazine on organo-mineral fractions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4396-4405. [PMID: 25300187 DOI: 10.1007/s11356-014-3684-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
In the current study, a mechanical dispersion method was employed to separate clay (<2 μm), silt (2-20 μm), and sand (20-50 μm) fraction in six bulk soils. Batch equilibrium method was used to conduct atrazine sorption and desorption experiments on soil organo-mineral fractions with bulk soils and their contrasting size fractions separately. The potential contribution of total organic carbon (TOC) for atrazine retention in different fractions was further investigated. It was found that clay fraction had the highest adsorption but the least desorption capacities for atrazine, while sand fraction had the lowest adsorption but the highest desorption capacities for atrazine. The adsorption percentage of atrazine, as compared with adsorption by the corresponding bulk soils, ranged from 53.6 to 80.5%, 35.7 to 56.4%, and 0.2 to 4.5% on the clay, silt, and sand fractions, respectively. TOC was one of the key factors affecting atrazine retention in soils, with the exact contribution dependent on varying degree of coating with mineral component in different soil size fractions. The current study may be useful to predict the bioavailability of atrazine in different soil size fractions.
Collapse
Affiliation(s)
- Yufen Huang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | | | | | | |
Collapse
|
37
|
Leovac A, Vasyukova E, Ivančev-Tumbas I, Uhl W, Kragulj M, Tričković J, Kerkez Đ, Dalmacija B. Sorption of atrazine, alachlor and trifluralin from water onto different geosorbents. RSC Adv 2015. [DOI: 10.1039/c4ra03886j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sorption behavior of the herbicides atrazine, alachlor and trifluralin on two modified organoclays, one model sediment, and one natural sediment in three water matrices (synthetic water, natural groundwater and surface water) was investigated.
Collapse
Affiliation(s)
- Anita Leovac
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Ekaterina Vasyukova
- Technische Universität Dresden
- Faculty of Environmental Sciences
- Institute of Urban Water Management
- Chair of Water Supply Engineering
- Dresden
| | - Ivana Ivančev-Tumbas
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Wolfgang Uhl
- Technische Universität Dresden
- Faculty of Environmental Sciences
- Institute of Urban Water Management
- Chair of Water Supply Engineering
- Dresden
| | - Marijana Kragulj
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Jelena Tričković
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Đurđa Kerkez
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | - Božo Dalmacija
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| |
Collapse
|
38
|
Yilmaz Ipek I. Application of Kinetic, Isotherm, and Thermodynamic Models for Atrazine Adsorption on Nanoporous Polymeric Adsorbents. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.915415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Xu D, Zhao Y, Sun K, Gao B, Wang Z, Jin J, Zhang Z, Wang S, Yan Y, Liu X, Wu F. Cadmium adsorption on plant- and manure-derived biochar and biochar-amended sandy soils: impact of bulk and surface properties. CHEMOSPHERE 2014; 111:320-326. [PMID: 24997935 DOI: 10.1016/j.chemosphere.2014.04.043] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/07/2014] [Accepted: 04/13/2014] [Indexed: 05/28/2023]
Abstract
To investigate the role of the bulk and surface composition of both biochar and biochar-amended soils in the adsorption of Cd(2+), as well as the influence of different biochars added to the soils on Cd(2+) adsorption, swine-manure-derived biochars (BSs) and wheat-straw-derived biochars (BWs) were produced at 300, 450, and 600°C. These biochars were added to a sandy soil to investigate the effect of biochars on the adsorption of Cd(2+) by soil. The significantly higher surface C content of the amended soils compared to their bulk C content suggests that the minerals of the biochar-amended soils are most likely covered primarily by biochars. The maximum adsorption capacity (Qmax,total) of the BSs was 10-15 times higher than that of the BWs due to the high polarity and ash content of the BSs. The polarity ((N+O)/C) of the low-temperature biochars greatly affected their Cd(2+) adsorption. The Qmax,total of the BS-amended soils increased with increasing dose, whereas the Qmax,total of the BW-amended soils showed the opposite behavior, which was attributed to the different surface composition characteristics of the two types of soil. The BSs were more effective in immobilizing Cd(2+) upon application to the soil relative to the BWs. This study elucidates the spatial distribution of biochars in biochar-amended soils and highlights the importance of the surface composition of the investigated samples in Cd(2+) adsorption.
Collapse
Affiliation(s)
- Dongyu Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ye Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ziying Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jie Jin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zheyun Zhang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Shuifeng Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Yan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
40
|
Qian L, Chen B. Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:373-380. [PMID: 24364719 DOI: 10.1021/jf404624h] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Interactions of aluminum with primary and oxidized biochars were compared to understand the changes in the adsorption properties of aged biochars. The structural characteristics of rice straw-derived biochars, before and after oxidation by HNO3/H2SO4, were analyzed by element composition, FTIR, and XPS. The adsorption of Al to primary biochars was dominated by binding to inorganic components (such as silicon particles) and surface complexation of oxygen-containing functional groups via esterification reactions. Oxidization (aging) introduced carboxylic functional groups on biochar surfaces, which served as additional binding sites for Al(3+). At pH 2.5-3.5, the Al(3+) binding was significantly greater on oxidized biochars than primary biochars. After loading with Al, the -COOH groups anchored to biochar surfaces were transformed into COO(-) groups, and the negative surface charge diminished, which indicated that Al(3+) coordinated with COO(-). Biochar is suggested as a potential adsorbent for removing Al from acidic soils.
Collapse
Affiliation(s)
- Linbo Qian
- Department of Environmental Science and Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | | |
Collapse
|
41
|
Kong LL, Liu WT, Zhou QX. Biochar: an effective amendment for remediating contaminated soil. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 228:83-99. [PMID: 24162093 DOI: 10.1007/978-3-319-01619-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biochar is a carbon-rich material derived from incomplete combustion of biomass.Applying biochar as an amendment to treat contaminated soils is receiving increasing attention, and is a promising way to improve soil quality. Heavy metals are persistent and are not environmentally biodegradable. However, they can be stabilized in soil by adding biochar. Moreover, biochar is considered to be a predominant sorptive agent for organic pollutants, having a removal efficiency of about 1 order of magnitude higher than does soil/sediment organic matter or their precursor substances alone.When trying to stabilize organic and inorganic pollutants in soil, several features of biochar' s sorption capacity should be considered, viz., the nature of the pollutants to be remediated, how the biochar is prepared, and the complexity of the soil systemin which biochar may be used. In addition, a significant portion of the biochar or some of its components that are used to remediate soils do change over time through abiotic oxidation and microbial decomposition. This change process is commonly referred to as "aging:" Biochar "aging" in nature is inevitable, and aged biochar exhibits an effect that is totally different than non-aged biochar on stabilizing heavy metals and organic contaminants in soils.Studies that have been performed to date on the use of biochar to remediate contaminated soil are insufficient to allow its use for wide-scale field application.Therefore, considerable new data are necessary to expand both our understanding of how biochar performs in the field, and where it can be best used in the future for soil remediation. For example, how biochar and soil biota (microbial and faunal communities)interact in soils is still poorly understood. Moreover, studies are needed on how to best remove new species of heavy metals, and on how biochar aging affects sorption capacity are also needed.
Collapse
Affiliation(s)
- Lu-Lu Kong
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, People's Republic of China
| | | | | |
Collapse
|
42
|
Jung C, Park J, Lim KH, Park S, Heo J, Her N, Oh J, Yun S, Yoon Y. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 2:702-10. [PMID: 24231319 DOI: 10.1016/j.jhazmat.2013.10.033] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/14/2013] [Accepted: 10/17/2013] [Indexed: 05/12/2023]
Abstract
Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0-45 ppm), methoxyl (45-63 ppm), O-alkyl (63-108 ppm), and carboxyl carbon (165-187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (Kow) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property of adsorbates steadily throughout the study.
Collapse
Affiliation(s)
- Chanil Jung
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Báez ME, Fuentes E, Espinoza J. Characterization of the atrazine sorption process on Andisol and Ultisol volcanic ash-derived soils: kinetic parameters and the contribution of humic fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6150-6160. [PMID: 23711282 DOI: 10.1021/jf400950d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Atrazine sorption was studied in six Andisol and Ultisol soils. Humic and fulvic acids and humin contributions were established. Sorption on soils was well described by the Freundlich model. Kf values ranged from 2.2-15.6 μg(1-1/n)mL(1/n)g⁻¹. The relevance of humic acid and humin was deduced from isotherm and kinetics experiments. KOC values varied between 221 and 679 mLg⁻¹ for these fractions. Fulvic acid presented low binding capacity. Sorption was controlled by instantaneous equilibrium followed by a time-dependent phase. The Elovich equation, intraparticle diffusion model, and a two-site nonequilibrium model allowed us to conclude that (i) there are two rate-limited phases in Andisols related to intrasorbent diffusion in organic matter and retarded intraparticle diffusion in the organo-mineral complex and that (ii) there is one rate-limited phase in Ultisols attributed to the mineral composition. The lower organic matter content of Ultisols and the slower sorption rate and mechanisms involved must be considered to assess the leaching behavior of atrazine.
Collapse
Affiliation(s)
- María E Báez
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone Pohlhammer 1007, Casilla 233, Santiago, Chile.
| | | | | |
Collapse
|
44
|
Impact of Biochar on Organic Contaminants in Soil: A Tool for Mitigating Risk? AGRONOMY-BASEL 2013. [DOI: 10.3390/agronomy3020349] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Mitchell PJ, Simpson MJ. High affinity sorption domains in soil are blocked by polar soil organic matter components. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013. [PMID: 23206246 DOI: 10.1021/es303853x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Reported correlations between organic contaminant sorption affinity and soil organic matter (OM) structure vary widely, suggesting the importance of OM physical conformation and accessibility. Batch equilibration experiments were used to examine the sorption affinity of bisphenol A, atrazine, and diuron to five soils of varying OM composition. (13)C cross-polarization magic angle spinning NMR spectroscopy was used to characterize the organic carbon chemistry of the soil samples. High sorption by a soil low in O-alkyl components suggested that these structures may block high affinity sorption sites in soil OM. As such, soil samples were subjected to acid hydrolysis, and NMR results showed a decrease in the O-alkyl carbon signal intensity for all soils. Subsequent sorption experiments revealed that organic carbon-normalized distribution coefficient (K(OC)) values increased for all three contaminants. Before hydrolysis, K(OC) values correlated positively with soil aromatic carbon content and negatively with polar soil O-alkyl carbon content. While these correlations were weaker after hydrolysis, the correlation between K(OC) values and soil alkyl carbon content improved. This study suggests that hydrolyzable O-alkyl soil OM components may block high affinity sorption sites and further highlights the importance of OM physical conformation and accessibility with respect to sorption processes.
Collapse
Affiliation(s)
- Perry J Mitchell
- Department of Chemistry and Environmental NMR Centre, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | | |
Collapse
|
46
|
Smídová K, Hofman J, Ite AE, Semple KT. Fate and bioavailability of ¹⁴C-pyrene and ¹⁴C-lindane in sterile natural and artificial soils and the influence of aging. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 171:93-98. [PMID: 22892571 DOI: 10.1016/j.envpol.2012.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/08/2012] [Accepted: 07/21/2012] [Indexed: 06/01/2023]
Abstract
Soil organic matter is used to extrapolate the toxicity and bioavailability of organic pollutants between different soils. However, it has been shown that other factors such as microbial activity are crucial. The aim of this study was to investigate if sterilization can reduce differences in the fate and bioavailability of organic pollutants between different soils. Three natural soils with increasing total organic carbon (TOC) content were collected and three artificial soils were prepared to obtain similar TOCs. Soils were sterilized and spiked with (14)C-pyrene and (14)C-lindane. Total (14)C radioactivity, HPCD extractability, and bioaccumulation in Eisenia fetida were measured over 56 days. When compared to non-sterile soils, differences between the natural and artificial soils and the influence of soil-contaminant contact time were generally reduced in the sterile soils (especially with middle TOC). The results indicate the possibility of using sterile soils as "the worst case scenario" in soil ecotoxicity studies.
Collapse
Affiliation(s)
- Klára Smídová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 126/3, Brno CZ-62500, Czech Republic
| | | | | | | |
Collapse
|
47
|
Sun K, Gao B, Ro KS, Novak JM, Wang Z, Herbert S, Xing B. Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 163:167-173. [PMID: 22325445 DOI: 10.1016/j.envpol.2011.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/01/2011] [Accepted: 12/03/2011] [Indexed: 05/31/2023]
Abstract
Sorption of two herbicides, fluridone (FLUN) and norflurazon (NORO), by two types of biochars, whole sediment, and various soil/sediment organic matter (OM) fractions including nonhydrolyzable carbon (NHC), black carbon (BC) and humic acid (HA) was examined. The single-point organic carbon (OC)-normalized distribution coefficients (K(OC)) of FLUN and NORO at low solution concentration (C(e)=0.01S(W), solubility) for HA, NHC, and BC were about 3, 14, and 24 times and 3, 16, and 36 times larger than their bulk sediments, respectively, indicating the importance of different OM fractions in herbicide sorption. This study revealed that aliphatic moieties of the hydrothermal biochars and aromatic moieties of NHC samples, respectively, were possibly responsible for herbicide sorption. The hydrothermal biochar and condensed OM (i.e., NHC and BC) showed relatively high or similar herbicide sorption efficiency compared to the thermal biochar, suggesting that the hydrothermal biochar may serve as an amendment for minimizing off-site herbicide movement.
Collapse
Affiliation(s)
- Ke Sun
- State Key Laboratory of Water Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Hung WN, Lin TF, Chiu CH, Chiou CT. On the use of a freeze-dried versus an air-dried soil humic acid as a surrogate of soil organic matter for contaminant sorption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 160:125-129. [PMID: 22035935 DOI: 10.1016/j.envpol.2011.08.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 05/31/2023]
Abstract
The sorption of phenanthrene (PHN) to relatively pure soil humic acids (HAs) was investigated to assess the suitability of the soil HA as a surrogate sorbent for the soil organic matter (SOM). The HAs were prepared in both freeze-dried and air-dried forms. The two forms of HAs from the same source are similar in composition but the freeze-dried HAs exhibit a significantly higher initial surface area (SA) (3.86-4.59 m(2)/g); the SAs of air-dried HAs are below 0.1 m(2)/g. However, the SAs of freeze-dried HAs are not stable upon contact with water; the samples lose practically all the SA after 4 days of immersion in water. The PHN sorption to both forms of HAs is practically linear, whether a co-solute is present or not. The sorption linearity observed with the present freeze-dried HAs is in sharp contrast with the allegedly nonlinear PHN sorption on similar freeze-dried HAs as presented by others.
Collapse
Affiliation(s)
- Wei-Nung Hung
- Department of Environmental Engineering and Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| | | | | | | |
Collapse
|
49
|
Dal Bosco TC, Sampaio SC, Coelho SRM, Cosmann NJ, Smanhotto A. Effects of the organic matter from swine wastewater on the adsorption and desorption of alachlor in soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:485-494. [PMID: 22494371 DOI: 10.1080/03601234.2012.665338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The application of swine wastewater to the soil for agricultural purposes results in the addition of total and dissolved organic matter to the soil, which may interfere with the dynamics of pesticides in the soil. The objective of this study was to evaluate the effects of the application of total and dissolved organic matter from a biodigester and a treatment lagoon of swine wastewater in the adsorption and desorption of alachlor [2-chloro-2,6-diethyl-N(methoxymethyl acetamide)]. The assay was performed by the batch equilibrium method, and the results were fitted to the Freundlich model. The curve comparison test revealed a greater adsorption of alachlor in the soil treated with swine wastewater from the biodigester. The adsorption and desorption of alachlor increased in the soils where swine wastewater was added, and hysteresis was observed in all of the treatments.
Collapse
Affiliation(s)
- Tatiane C Dal Bosco
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brazil.
| | | | | | | | | |
Collapse
|
50
|
Zhang G, Zhang Q, Sun K, Liu X, Zheng W, Zhao Y. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2594-601. [PMID: 21719171 DOI: 10.1016/j.envpol.2011.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/01/2011] [Accepted: 06/04/2011] [Indexed: 05/12/2023]
Abstract
Simazine sorption to corn straw biochars prepared at various temperatures (100-600 °C) was examined to understand its sorption behavior as influenced by characteristics of biochars. Biochars were characterized via elemental analysis, BET-N(2) surface area (SA), FTIR and (13)C NMR. Freundlich and dual-mode models described sorption isotherms well. Positive correlation between log K(oc) values and aromatic C contents and negative correlation between log K(oc) values and (O + N)/C ratios indicate aromatic-rich biochars have high binding affinity to simazine (charge transfer (π-π*) interactions) and hydrophobic binding may overwhelm H-bonding, respectively. Dual-mode model results suggest adsorption contribution to total sorption increases with carbonization degree. Positive correlation between amounts of adsorption (Q(ad)) and SA indicates pore-filling mechanism. Comparison between our results and those obtained with other sorbents indicates corn straw biochars produced at higher temperature can effectively retain simazine. These observations will be helpful for designing biochars as engineered sorbents to remove triazine herbicides.
Collapse
Affiliation(s)
- Guixiang Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | |
Collapse
|