1
|
Gong H, Dai L, Hu X, Luo J, Feng S. Combined effects of heatwaves and atmospheric CO₂ levels on Brassica juncea phytoremediation. CHEMOSPHERE 2024; 363:142901. [PMID: 39029714 DOI: 10.1016/j.chemosphere.2024.142901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Heatwaves, expected to become more frequent, pose a significant threat to plant biomass production. This experiment was designed to estimate heatwave influence on Brassica juncea phytoremediation when superimposed on different CO2 levels. A 7-day heatwave was generated during the species flowering stage. Heatwaves decreased all B. juncea dry weights. The lowest species dry weight was recorded when the heatwave was accompanied by 250 ppm CO2, in which the biomass significantly decreased by 40.0% relative to that of no heatwave under the same atmospheric CO2 conditions. Heatwave superposition with 250 ppm CO2 reduced the Cd content in B. juncea aerial parts by 28.1% relative to that of identical environmental conditions without heatwave, whereas the opposite result was observed under 550 ppm CO2 conditions. The heatwave caused oxidative damage to B. juncea under all CO2 conditions, as manifested by increased malondialdehyde levels in the plant shoots. With heatwave superposition, antioxidant enzyme activity was enhanced by exposure to 400 and 550 ppm CO2. Considering biomass yield generation and Cd uptake capacity, heatwave superposition decreased the B. juncea phytoremediation effects, and high atmospheric CO2 conditions could alleviate detrimental effects to a certain extent. This study uniquely examines the combined effects of heatwaves and varying CO2 levels on phytoremediation, providing microscopic insights into oxidative damage and enzyme activity, highlighting the potential for CO2 enrichment to mitigate heatwave impacts, and offering comprehensive analysis for future agricultural practices and environmental management.
Collapse
Affiliation(s)
- Hao Gong
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Liangliang Dai
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Xiangrong Hu
- Changsha General Survey of Natural Resources Center, Changsha, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
2
|
Mishra AK, Sen Gupta G, Agrawal SB, Tiwari S. Divergent responses of ascorbate and glutathione pools in ozone-sensitive and ozone-tolerant wheat cultivars under elevated ozone and carbon dioxide interaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134453. [PMID: 38723481 DOI: 10.1016/j.jhazmat.2024.134453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024]
Abstract
Crop plants face complex tropospheric ozone (O3) stress, emphasizing the need for a food security-focused management strategy. While research extensively explores O3's harmful effects, this study delves into the combined impacts of O3 and CO2. This study investigates the contrasting responses of O3-sensitive (PBW-550) and O3-resistant (HUW-55) wheat cultivars, towards elevated ozone (eO3) and elevated carbon dioxide (eCO2), both individually and in combination. The output of the present study confirms the positive effect of eCO2 on wheat cultivars exposed to eO3 stress, with more prominent effects on O3-sensitive cultivar PBW-550, as compared to the O3-resistant HUW-55. The differential response of the two wheat cultivars can be attributed to the mechanistic variations in the enzyme activities of the Halliwell-Asada pathway (AsA-GSH cycle) and the ascorbate and glutathione pool. The results indicate that eCO2 was unable to uplift the regeneration of the glutathione pool in HUW-55, however, PBW-550 responded well, under similar eO3 conditions. The study's findings, highlighting mechanistic variations in antioxidants, show a more positive yield response in PBW-550 compared to HUW-55 under ECO treatment. This insight can inform agricultural strategies, emphasizing the use of O3-sensitive cultivars for sustained productivity in future conditions with high O3 and CO2 concentrations.
Collapse
Affiliation(s)
- Ashish Kumar Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gereraj Sen Gupta
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Supriya Tiwari
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
JawaharJothi G, Kovilpillai B, Subramanian A, Mani JR, Kumar S, Kannan B, Mani S. Effect of tropospheric ozone and its protectants on gas exchange parameters, antioxidant enzymes and quality of Garlic (Allium sativum. L). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:991-1004. [PMID: 38528211 DOI: 10.1007/s00484-024-02642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
An experimental study was conducted to assess the detrimental effect of ground-level ozone (O3) on garlic physiology and to find out appropriate control measures against ground-level O3, at TNAU-Horticultural Research farm, Udhagamandalam. Elevated ground ozone levels significantly decreased garlic leaf chlorophyll, photosynthetic rate, stomatal conductance, total soluble solids and pungency. The garlic chlorophyll content was highest in ambient ozone level and lowest in elevated ozone@200 ppb, highest stomatal conductance was recorded in ambient ozone with foliar spray of 3%Panchagavya, and the lowest was observed in elevated ozone@200 ppb. Since the elevated O3 had reduced in garlic photosynthetic rate significantly the lowest was observed in elevated O3@200 ppb and the highest photosynthetic rate was observed in ambient Ozone with foliar spray 3% of panchagavya after a week. The antioxidant enzymes of garlic were increased with increased concentration of tropospheric ozone. The highest catalase (60.97 µg of H2O2/g of leaf) and peroxidase (9.13 ΔA/min/g of leaf) concentration was observed at 200 ppb elevated ozone level. Garlic pungency content was highest in ambient ozone with foliar spray of 0.1% ascorbic acid and the lowest was observed under elevated O3@200 ppb. Highest total soluble solids were observed in ambient ozone with foliar spray of 3%Panchagavya and the lowest observed in elevated ozone@200 ppb. Thus, tropospheric ozone has a detrimental impact on the physiology of crops, which reduced crop growth and yield. Under elevated O3 levels, ascorbic acid performed well followed by panchagavya and neem oil. The antioxidant such as catalase and peroxidase had positive correlation among themselves and had negative correlation with chlorophyll content, stomatal conductance, photosynthetic rate, pungency and TSS. The photosynthetic rate has high positive correlation with chlorophyll content, pungency and TSS. Correlation analysis confirmed the negative effects of tropospheric ozone and garlic gas exchange parameters and clove quality. The ozone protectants will reduce stomatal opening by which the entry of O3 in to the cell will be restricted and other hand they also will alleviate ROS and allied stresses.
Collapse
Affiliation(s)
- Gayathri JawaharJothi
- Division of Environment Science, Indian Agricultural Research Institute, New Delhi, India
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Boomiraj Kovilpillai
- Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Avudainayagam Subramanian
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Sudhir Kumar
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India
| | - Balaji Kannan
- Department of Physical Science and Information Technology Tamil, Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sudhakaran Mani
- JKK Munirajah College of Agricultural Science, Tamil Nadu, Erode dt, India
| |
Collapse
|
4
|
Manzoor MA, Xu Y, Lv Z, Xu J, Shah IH, Sabir IA, Wang Y, Sun W, Liu X, Wang L, Liu R, Jiu S, Zhang C. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120759. [PMID: 38554453 DOI: 10.1016/j.jenvman.2024.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
5
|
Wang T, Gu X, Guo L, Zhang X, Li C. Integrated metabolomics and transcriptomics analysis reveals γ-aminobutyric acid enhances the ozone tolerance of wheat by accumulation of flavonoids. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133202. [PMID: 38091801 DOI: 10.1016/j.jhazmat.2023.133202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 02/08/2024]
Abstract
Wheat is susceptible to atmospheric ozone (O3) pollution, thus the increasing O3 is a serious threat to wheat production. γ-aminobutyric acid (GABA) is found to play key roles in the tolerance of plants to stress. However, few studies elaborated the function of GABA in response of wheat to O3. Here, we incorporated metabolome and transcriptome data to provide a more comprehensive insight on the role of GABA in enhancing the O3-tolerance of wheat. In our study, there were 31, 23, and 32 differentially accumulated flavonoids in the carbon-filtered air with GABA, elevated O3 with or without GABA treatments compared to the carbon-filtered air treatment, respectively. Elevated O3 triggered the accumulation of dihydroflavone, flavonols, and flavanols. Exogenous GABA enhanced dihydroflavone and dihydroflavonol, and also altered the expression of genes encoding some key enzymes in the flavonoid synthesis pathway. Additionally, GABA stimulated proline accumulation and antioxidant enzyme activities under elevated O3, resulting in the less accumulation of H2O2 and malondialdehyde. Consequently, GABA alleviated the grain yield loss from 19.6% to 9.6% induced by elevated O3. Our study provided comprehensive insight into the role of GABA in the alleviating the detrimental effects of elevated O3 on wheat, and a new avenue to mitigate O3 damage to the productivity of crops.
Collapse
Affiliation(s)
- Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Liyue Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xinxin Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
6
|
Feijó ADR, Viana VE, Balbinot A, Fipke MV, Souza GM, do Amarante L, Avila LAD. Water Deficit at Vegetative Stage Induces Tolerance to High Temperature during Anthesis in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3133. [PMID: 37687380 PMCID: PMC10490413 DOI: 10.3390/plants12173133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Crop yields have been affected by many different biotic and abiotic factors. Generally, plants experience more than one stress during their life cycle, and plants can tolerate multiple stresses and develop cross-tolerance. The expected rise in atmospheric CO2 concentration ([CO2]) can contribute to cross-tolerance. Priming is a strategy to increase yield or to maintain yield under stress conditions. Thus, our objective was to evaluate if priming the rice plants with water deficit during the vegetative stage can induce tolerance to heat stress at anthesis and to evaluate the contribution of e[CO2]. METHODS The experiment was arranged in a completely randomized design in a factorial arrangement. Factor A consisted of the following treatments: water deficit at four-leaf stage (no-stress, and drought stress), heat at anthesis (normal temperature, high temperature), and priming with water deficit at four-leaf stage and heat stress at anthesis; and Factor B was two [CO2] treatments: a[CO2] = 400 ± 40 μmol mol-1 and e[CO2] = 700 ± 40 μmol mol-1. We assessed the effect of the treatments on plant growth, yield, biochemical, and transcriptome alterations. RESULTS Although e[CO2] affected rice growth parameters, it did not affect the priming effect. Primed plants showed an increase in yield and number of panicles per plant. Primed plants showed upregulation of OsHSP16.9A, OsHSP70.1, and OsHSP70.6. These results showed induced cross-tolerance. CONCLUSIONS Water deficit at the rice vegetative stage reduces the effect of heat stress at the reproductive stage. Water deficit at the vegetative stage can be used, after further testing in field conditions, to reduce the effect of heat stress during flowering in rice.
Collapse
Affiliation(s)
- Anderson da Rosa Feijó
- Plant Physiology Graduate Program, Federal University of Pelotas, Pelotas 96160-000, Brazil
| | - Vívian Ebeling Viana
- Crop Protection Graduate Program, Federal University of Pelotas, Pelotas 96015-560, Brazil
| | - Andrisa Balbinot
- Crop Protection Graduate Program, Federal University of Pelotas, Pelotas 96015-560, Brazil
| | - Marcus Vinicius Fipke
- Crop Protection Graduate Program, Federal University of Pelotas, Pelotas 96015-560, Brazil
| | - Gustavo Maia Souza
- Plant Physiology Graduate Program, Federal University of Pelotas, Pelotas 96160-000, Brazil
| | - Luciano do Amarante
- Plant Physiology Graduate Program, Federal University of Pelotas, Pelotas 96160-000, Brazil
| | - Luis Antonio de Avila
- Department of Soil and Crop Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
7
|
Gong Z, Duan Y, Liu D, Zong Y, Zhang D, Shi X, Hao X, Li P. Physiological and transcriptome analysis of response of soybean (Glycine max) to cadmium stress under elevated CO 2 concentration. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130950. [PMID: 36860078 DOI: 10.1016/j.jhazmat.2023.130950] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The continuous accumulation of Cd has long-lasting detrimental effects on plant growth and food safety. Although elevated CO2 concentration (EC) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of elevated CO2 concentration and its mechanisms in the possible alleviation of Cd toxicity in soybean are limited. Here, we used physiological and biochemical methods together with transcriptomic comparison to explore the effects of EC on Cd-stressed soybean. Under Cd stress, EC significantly increased the weight of roots and leaves, promoted the accumulations of proline, soluble sugars, and flavonoid. In addition, the enhancement of GSH activity and GST gene expressions promoted Cd detoxification. These defensive mechanisms reduced the contents of Cd2+, MDA, and H2O2 in soybean leaves. The up-regulation of genes encoding phytochelatin synthase, MTPs, NRAMP, and vacuoles protein storage might play vital roles in the transportation and compartmentalization process of Cd. The MAPK and some transcription factors such as bHLH, AP2/ERF, and WRKY showed changed expressions and might be engaged in mediation of stress response. These findings provide a boarder view on the regulatory mechanism of EC on Cd stress and provide numerous potential target genes for future engineering of Cd-tolerant cultivars in soybean breeding programs under climate changes scenarios.
Collapse
Affiliation(s)
- Zehua Gong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yuqian Duan
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Danmei Liu
- School of Life Science, Shanxi University, 030036, Taiyuan, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xinrui Shi
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
8
|
Gu X, Wang T, Li C. Elevated ozone decreases the multifunctionality of belowground ecosystems. GLOBAL CHANGE BIOLOGY 2023; 29:890-908. [PMID: 36300607 DOI: 10.1111/gcb.16507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Elevated tropospheric ozone (O3 ) affects the allocation of biomass aboveground and belowground and influences terrestrial ecosystem functions. However, how belowground functions respond to elevated O3 concentrations ([O3 ]) remains unclear at the global scale. Here, we conducted a detailed synthesis of belowground functioning responses to elevated [O3 ] by performing a meta-analysis of 2395 paired observations from 222 publications. We found that elevated [O3 ] significantly reduced the primary productivity of roots by 19.8%, 16.3%, and 26.9% for crops, trees and grasses, respectively. Elevated [O3 ] strongly decreased the root/shoot ratio by 11.3% for crops and by 4.9% for trees, which indicated that roots were highly sensitive to O3 . Elevated [O3 ] impacted carbon and nitrogen cycling in croplands, as evidenced by decreased dissolved organic carbon, microbial biomass carbon, total soil nitrogen, ammonium nitrogen, microbial biomass nitrogen, and nitrification rates in association with increased nitrate nitrogen and denitrification rates. Elevated [O3 ] significantly decreased fungal phospholipid fatty acids in croplands, which suggested that O3 altered the microbial community and composition. The responses of belowground functions to elevated [O3 ] were modified by experimental methods, root environments, and additional global change factors. Therefore, these factors should be considered to avoid the underestimation or overestimation of the impacts of elevated [O3 ] on belowground functioning. The significant negative relationships between O3 -treated intensity and the multifunctionality index for croplands, forests, and grasslands implied that elevated [O3 ] decreases belowground ecosystem multifunctionality.
Collapse
Affiliation(s)
- Xian Gu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | - Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Gupta A, Yadav DS, Agrawal SB, Agrawal M. Sensitivity of agricultural crops to tropospheric ozone: a review of Indian researches. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:894. [PMID: 36242703 DOI: 10.1007/s10661-022-10526-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
Tropospheric ozone (O3) is a long-range transboundary secondary air pollutant, causing significant damage to agricultural crops worldwide. There are substantial spatial variations in O3 concentration in different areas of India due to seasonal and geographical variations. The Indo-Gangetic Plain (IGP) region is one of the most crop productive and air-polluted regions in India. The concentration of tropospheric O3 over the IGP is increasing by 6-7.2% per decade. The annual trend of increase is 0.4 ± 0.25% year-1 over the Northeastern IGP. High O3 concentrations were reported during the summer, while they were at their minimum during the monsoon months. To explore future potential impacts of O3 on major crop plants, the responses of different crops grown under ambient and elevated O3 concentrations were compared. The studies clearly showed that O3 is an important stress factor, negatively affecting the yield of crops. In this review, we have discussed yield losses in agricultural crops due to rising O3 pollution and variations in O3 sensitivity among cultivars and species. The use of ethylene diurea (EDU) as a research tool in assessing the losses in yield under ambient and elevated O3 levels also discussed. Besides, an overview of interactive effects of O3 and nitrogen on crop productivity has been included. Several recommendations are made for future research and policy development on rising concentration of O3 in India.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Durgesh Singh Yadav
- Department of Botany, Government Raza P.G. College, Rampur, U.P. 244901, India
| | - Shashi Bhushan Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
Jiang Y, Chen D, Yang P, Ning W, Cao M, Luo J. Influences of elevated O 3 and CO 2 on Cd distribution in different Festuca arundinacea tissues. CHEMOSPHERE 2022; 290:133343. [PMID: 34922963 DOI: 10.1016/j.chemosphere.2021.133343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
It is necessary to reveal the responses of the biomass production and metal accumulation capacity of different plants to the variations of atmospheric conditions and soil metals, with the acceleration of urbanization and industrialization. In the present study, a series of experiments were designed to study the individual and interactive influences of O3 and CO2 fumigation on the biomass yield, variation in different leaf types, distribution of cadmium (Cd) in various tissues, and phytoremediation efficiency of Festuca arundinacea using open top chambers. The results found that an elevated O3 content of 80 ppb, a potential O3 content predicted for 2050, decreased the total dry mass of F. arundinacea and increased the proportion of falling leaf tissues of the species significantly. Under the same ambient CO2 levels, O3 fumigation increased the Cd concentrations in the roots and the fresh, mature, senescent, and dead leaf tissues by 27.8%, 133.3%, 94.4%, 125.3%, and 48.6%, respectively. An elevated CO2 content (550 ppm) promoted the biomass yield of F. arundinacea, particularly in the falling leaf tissues. The results of the combined O3 and CO2 treatment showed that CO2 fumigation alleviated the negative effects of O3 on plant growth and increased the accumulation capacity in different plant tissues. Significantly more Cd was accumulated in senescent and dead leaves under the synergistic action of CO2 and O3, suggesting that the phytoremediation effect on F. arundinacea using the falling leaves harvesting method could be improved under the future atmospheric environment of high CO2 and O3 levels.
Collapse
Affiliation(s)
- Yang Jiang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Dan Chen
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Pan Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Wenjing Ning
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China.
| |
Collapse
|
11
|
Semba RD, Askari S, Gibson S, Bloem MW, Kraemer K. The Potential Impact of Climate Change on the Micronutrient-Rich Food Supply. Adv Nutr 2022; 13:80-100. [PMID: 34607354 PMCID: PMC8803495 DOI: 10.1093/advances/nmab104] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Micronutrient deficiencies are a major cause of morbidity and mortality in low- and middle-income countries worldwide. Climate change, characterized by increasing global surface temperatures and alterations in rainfall, has the capacity to affect the quality and accessibility of micronutrient-rich foods. The goals of this review are to summarize the potential effects of climate change and its consequences on agricultural yield and micronutrient quality, primarily zinc, iron, and vitamin A, of plant foods and upon the availability of animal foods, to discuss the implications for micronutrient deficiencies in the future, and to present possible mitigation and adaptive strategies. In general, the combination of increasing atmospheric carbon dioxide and rising temperature is predicted to reduce the overall yield of major staple crops, fruits, vegetables, and nuts, more than altering their micronutrient content. Crop yield is also reduced by elevated ground-level ozone and increased extreme weather events. Pollinator loss is expected to reduce the yield of many pollinator-dependent crops such as fruits, vegetables, and nuts. Sea-level rise resulting from melting of ice sheets and glaciers is predicted to result in coastal inundation, salt intrusion, and loss of coral reefs and mangrove forests, with an adverse impact upon coastal rice production and coastal fisheries. Global ocean fisheries catch is predicted to decline because of ocean warming and declining oxygen. Freshwater warming is also expected to alter ecosystems and reduce inland fisheries catch. In addition to limiting greenhouse gas production, adaptive strategies include postharvest fortification of foods; micronutrient supplementation; biofortification of staple crops with zinc and iron; plant breeding or genetic approaches to increase zinc, iron, and provitamin A carotenoid content of plant foods; and developing staple crops that are tolerant of abiotic stressors such as elevated carbon dioxide, elevated temperature, and increased soil salinity.
Collapse
Affiliation(s)
- Richard D Semba
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sufia Askari
- Children's Investment Fund Foundation, London, United Kingdom
| | - Sarah Gibson
- Children's Investment Fund Foundation, London, United Kingdom
| | - Martin W Bloem
- Johns Hopkins Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Klaus Kraemer
- Sight and Life, Basel, Switzerland
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
12
|
Yang X, Gao Y, Gan T, Yang P, Cao M, Luo J. Elevated atmospheric CO 2 enhances the phytoremediation efficiency of tall fescue (Festuca arundinacea) in Cd-polluted soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1273-1283. [PMID: 35014567 DOI: 10.1080/15226514.2021.2025203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the economic development of society, concentrations of atmospheric CO2 and heavy metals in soils have been increasing. The physiological responses of plants to the interaction between soil pollution and climatic change need to be understood. Pot experiments were designed to assess variations in Festuca arundinacea dry weight, leaf type, chlorophyll content, antioxidase activities, and Cd accumulation ability, under different atmospheric CO2 treatments. The results showed that the total dry weights increased with increasing CO2, and Cd concentrations in falling leaf tissues increased with raised atmospheric CO2, before reaching a peak at 600 ppm, above which they remained constant. Compared with the control (400 ppm), 600, 650, and 700 ppm CO2 treatments increased the proportions of the falling tissues by 1.7%, 3.3%, and 4.5%, respectively. Antioxidant enzyme activities in plant leaves increased with increasing atmospheric CO2 levels. The concentration of H2O2 in leaf tissues increased with increasing CO2, reaching a peak at 600 ppm, and then decreased significantly as the CO2 content increased further, to 700 ppm. The results in this study suggest that F. arundinacea could be regarded as a potential candidate for phytoremediation of Cd-polluted soil; especially if senescent and dead leaf tissues could be harvested, and that raised atmospheric CO2 levels could improve its soil remediation efficiency.Novelty statement Extrapolation of results from experiments of environmental impacts in greenhouse to real scale field requires to be considered cautiously. External factors such as water, temperature, humidity, and pollution are variable in real field. Plants will face a lot of beneficial or detrimental conditions which will influence the magnitude of the results. However, the elevation of CO2 is an inevitable phenomenon in future. Therefore, findings from experiments under artificial conditions are sometime a good choice to obtain knowledge about elevated CO2 related impacts on phytoremediation efficiency of a specific plant. The final goal of this work is to find a suitable CO2 fumigation strategy optimized for soil remediation. We report on that elevated atmospheric CO2 can increase the phytoremediation efficiency of Festuca arundinacea for Cd. This is significant because the combined influences of elevated atmospheric CO2 and metal pollution in terms of biomass yield, pollutant uptake, and phytoremediation efficiency would be more complex than the effects of each individual factor.
Collapse
Affiliation(s)
- Xiaoying Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yueping Gao
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Tian Gan
- School of Civil Engineering, Shandong University, Jinan, China
| | - Pan Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, Leicester, UK
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
13
|
Tang Y, Gan T, Cao M, Song J, Chen D, Luo J. Impacts of root pruning intensity and direction on the phytoremediation of moderately Cd-polluted soil by Celosia argentea. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1152-1162. [PMID: 34872411 DOI: 10.1080/15226514.2021.2011832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root pruning can impact the physiological functions of various plants, which influence phytoremediation. A series of root pruning treatments with different combinations of direction (two-side pruning and four-side pruning) and intensity (10, 25, and 33% pruning) were performed on Celosia argentea L. All two-side pruning treatments, regardless of intensity, decreased the dry biomass of the C. argentea roots at the end of the experiment relative to that of the control. However, the two-side-10% and two-side-25% pruning treatments stimulated the growth rate of the plant leaves significantly by 58.6 and 41.4%, respectively, relative to that of the control, and even offset the weight loss of the plant roots. Contrastingly, the two-side-33% pruning treatment reduced the biomass yield of leaves by 24.1%. For the four-side pruning treatments, the low intensity increased the dry weight of both the plant roots and leaves, while both decreased under high-intensity root pruning. The dry weight, Cd content, pigment level, and photosynthetic efficiency in the four-side-10% treatment were higher than those in the other treatments during the experiment. This study indicates that root pruning with a suitable combination of direction and intensity can positively influence the Cd removal ability of C. argentea.
Collapse
Affiliation(s)
- Youjun Tang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Tian Gan
- School of Civil Engineering, Shandong University, Jinan, China
| | - Min Cao
- University of Leicester, Leicester, UK
| | - Jinnuo Song
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Dan Chen
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
14
|
Effects of high CO2 on the quality and antioxidant capacity of postharvest blueberries (Vaccinium spp.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Singh RN, Mukherjee J, Sehgal VK, Krishnan P, Das DK, Dhakar RK, Bhatia A. Interactive effect of elevated tropospheric ozone and carbon dioxide on radiation utilisation, growth and yield of chickpea (Cicer arietinum L.). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1939-1952. [PMID: 34050433 DOI: 10.1007/s00484-021-02150-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/21/2021] [Accepted: 05/17/2021] [Indexed: 05/21/2023]
Abstract
An experiment was conducted in the Free Air Ozone and Carbon dioxide Enrichment (FAOCE) facility to study the impact of elevated O3, CO2 and their interaction on chickpea crop (cv. Pusa-5023) in terms of phenology, biophysical parameters, yield components, radiation interception and use efficiency. The crop was exposed to elevated O3 (EO:60ppb), CO2 (EC:550 ppm) and their combined interactive treatment (ECO: EC+EO) during the entire growing season. Results revealed that the crop's total growth period was shortened by 10, 14 and 17 days under elevated CO2, elevated O3 and the combined treatment, respectively. Compared to ambient condition, the leaf area index (LAI) under elevated CO2 was higher by 4 to 28%, whilst it is reduced by 7.3 to 23.8% under elevated O3. The yield based radiation use efficiency (RUEy) was highest under elevated CO2 (0.48 g MJ-1), followed by combined (0.41 g MJ-1), ambient (0.38 g MJ-1) and elevated O3 (0.32 g MJ-1) treatments. Elevated O3 decreased RUEy by 15.78% over ambient, and the interaction results in a 7.8% higher RUEy. The yield was 31.7% more under elevated CO2 and 21.9% lower in elevated O3 treatment as compared to the ambient. The combined interactive treatment recorded a higher yield as compared to ambient by 9.7%. Harvest index (HI) was lowest under elevated O3 (36.10%), followed by ambient (39.18%), combined (40.81%), and highest was under elevated CO2 (44.18%). Chickpea showed a positive response to elevated CO2 resulting a 5% increase in HI as compared to ambient condition. Our findings quantified the positive and negative impacts of elevated O3, CO2 and their interaction on chickpea and revealed that the negative impacts of elevated O3 can be compensated by elevated CO2 in chickpea. This work promotes the understanding of crop behaviour under elevated O3, CO2 and their interaction, which can be used as valuable inputs for radiation-based crop simulation models to simulate climate change impact on chickpea crop.
Collapse
Affiliation(s)
- R N Singh
- Division of Agricultural Physics, ICAR-IARI, New Delhi, 110012, India
- School of Atmospheric Stress Management, ICAR-NIASM, Pune, 413115, India
| | - Joydeep Mukherjee
- Division of Agricultural Physics, ICAR-IARI, New Delhi, 110012, India.
| | - V K Sehgal
- Division of Agricultural Physics, ICAR-IARI, New Delhi, 110012, India
| | - P Krishnan
- Division of Agricultural Physics, ICAR-IARI, New Delhi, 110012, India
| | - Deb Kumar Das
- Division of Agricultural Physics, ICAR-IARI, New Delhi, 110012, India
| | - Raj Kumar Dhakar
- Division of Agricultural Physics, ICAR-IARI, New Delhi, 110012, India
| | - Arti Bhatia
- Centre for Environmental Science and Climate Resilient Agriculture, ICAR-IARI, New Delhi, 110012, India
| |
Collapse
|
16
|
Li W, Zhao Y, Li Y, Zhang S, Yun Y, Cui J, Peng Y. Elevated CO 2 concentration affects survival, but not development, reproduction, or predation of the predator Hylyphantes graminicola (Araneae: Linyphiidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117791. [PMID: 34280744 DOI: 10.1016/j.envpol.2021.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Elevated CO2 concentrations can change the multi-level nutritional relationship of the ecosystem through the cascading effect of the food chain. To date, few studies have investigated the effects of elevated CO2 concentration on the Araneae species through the tritrophic system. Hylyphantes graminicola (Araneae: Linyphiidae) is distributed widely in Asia and is a dominant predator in cotton fields. This study investigated chemical components in the food chain of cotton (Gossypium hirsutum)-cotton aphid (Aphis gossypii)-predator (H. graminicola) and compared the development, reproduction, and predation of H. graminicola under ambient (400 ppm) and elevated concentration of CO2 (800 ppm). The results showed that the elevated CO2 concentration increased the chemicals of cotton and cotton aphid, but it did not affect the nutrients, development, reproduction, and predation of the spider. However, the survival rate of the spider was significantly decreased in elevated CO2. The results will further our understanding of the role of natural enemies in an environment with elevated CO2 concentration.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yingying Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shichang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
17
|
Yang G, Luo Y, Sun L, Cao M, Luo J. Influence of elevated atmospheric CO 2 levels on phytoremediation effect of Festuca arundinacea intercropped with Echinochloa caudata. CHEMOSPHERE 2021; 270:128654. [PMID: 33268095 DOI: 10.1016/j.chemosphere.2020.128654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Atmospheric CO2 levels have been increasing with increasing industrialization. Studies have shown the growth response of various plant species to climate change and increasing CO2 levels, but variations in phytoremediation caused by elevated CO2 levels, especially in intercropping systems, have rarely been reported. The current study therefore revealed variations in the phytoremediation effect of Festuca arundinacea intercropped with Echinochloa caudata, a pernicious annual weed, exposed to various CO2 levels (280, 400, and 550 ppm). The biomass yield and Cd uptake capacity of monocultured F. arundinacea were found to increase with increasing atmospheric CO2 level, highlighting the promoted phytoremediation efficiency of this species under elevated CO2 levels. Elevated CO2 levels also significantly increased the dry weight of monocultured E. caudata but did not change the Cd content in various parts of the plant. However, the intercropping system decreased the biomass yield of belowground and aerial parts of F. arundinacea under all treatments, since E. caudata competed with it for water and nutrients. The weight reduction of F. arundinacea in the intercropping system increased with increasing CO2 level, because elevated CO2 significantly increased the competitiveness of the weed. Therefore, the Cd phytoremediation efficiency of F. arundinacea intercropped with E. caudata exposed to 280, 400, and 550 ppm CO2 decreased by 46.1%, 81.5%, and 215.0%, respectively, as evidenced by the decreased dry weight of F. arundinacea. Therefore, elevated CO2 levels could decrease the phytoremediation effect of F. arundinacea in fields where weed growth is unavoidable.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, China
| | - Yuting Luo
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, China
| | - Lin Sun
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Jie Luo
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, China.
| |
Collapse
|
18
|
Peng J, Xu Y, Shang B, Agathokleous E, Feng Z. Effects of elevated ozone on maize under varying soil nitrogen levels: Biomass, nitrogen and carbon, and their allocation to kernel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144332. [PMID: 33385814 DOI: 10.1016/j.scitotenv.2020.144332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Effects of ozone (O3) on maize have been increasingly studied, but only few studies have focused on the combined impacts of O3 and nitrogen (N) on this important crop with C4 carbon (C) fixation. In this study, a maize cultivar with the largest acreage in China was exposed to two O3 treatments (NF: ambient air O3 concentration; NF60: NF plus 60 ppb O3) and four N levels (farmers' N practice: 240 kg N ha-1 yr-1; 150%, 50% and 25% of farmers' N practice). Generally, O3 and N significantly influenced biomass, N and C, but did not change their allocation to kernel. There were significant interactions between O3 and N in stem biomass, C concentration and uptake, and leaf biomass and C uptake, with significant O3 effects mainly occurring at N120 and N240. Based on the coefficient of determination (R2), root C:N ratio rather than the most commonly used leaf C:N ratio was the best trait to indicate maize productivity. Furthermore, O3 significantly increased the regression slopes between root C:N ratio and kernel N uptake, kernel C uptake and plant N uptake, strengthened the correlation of C:N ratio and kernel C uptake, and weakened the correlation of C:N ratio and hundred-kernels weight. These suggest that O3 pollution can change the relationship of C:N ratio and productivity in maize. The weak correlation between kernel harvest index (HI) and N harvest index (NHI) indicated that future breeding researches should consider how to improve the coupling between biomass and N-related nutrition allocations in crop edible parts. Our results not only are helpful to accurately estimate O3 impacts on maize with consideration of N but also provide a new insight into the relationship between plant traits and its productivity under O3 pollution.
Collapse
Affiliation(s)
- Jinlong Peng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yansen Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhaozhong Feng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
19
|
Zhao MH, Zheng XX, Liu JP, Zeng YY, Yang FL, Wu G. Time-dependent stress evidence in dynamic allocation of physiological metabolism of Nilaparvata lugens in response to elevated CO 2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114767. [PMID: 32447170 DOI: 10.1016/j.envpol.2020.114767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
To assess the time-dependent stress evidence in dynamic allocation of physiological metabolism of Nilaparvata lugens nymphs in response to elevated CO2, we measured the time-dependent allocation of nutrient compositions and physiological metabolism in the bodies of N. lugens at 1h, 4h and 12h under elevated CO2. Elevated CO2 significantly increased the contents of nutrient compositions (protein, glucose and total amino acids) and catalase (CAT) enzyme activity in the body of N. lugens at 12h relative to 1h and 4h (P < 0.05). Significantly higher genes expression levels of acetylcholinesterase (AChE), heat shock protein (HSP70) and vitellogenin gene (vg) were observed in the body of N. lugens compared with those in ambient CO2 at 4h (P < 0.05). These results showed that there was an instantaneous reaction of N. lugens nymphs to elevated CO2, which indicated N. lugens may enhance stress defense response to future increasing CO2 levels.
Collapse
Affiliation(s)
- Mu-Hua Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiao-Xu Zheng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jin-Ping Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yun-Yun Zeng
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Feng-Lian Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Gang Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Maurya VK, Gupta SK, Sharma M, Majumder B, Deeba F, Pandey N, Pandey V. Growth, physiological and proteomic responses in field grown wheat varieties exposed to elevated CO 2 under high ambient ozone. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1437-1461. [PMID: 32647460 PMCID: PMC7326879 DOI: 10.1007/s12298-020-00828-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 05/25/2023]
Abstract
The present study investigated growth, biochemical, physiological, yield and proteomic changes in 3 wheat varieties exposed to elevated CO2 (515 ppm) in a background of high ambient ozone in field. Ethylenediurea (EDU) was used as antiozonant. Average ozone concentration was 59 ppb and was sufficient enough to exert phytotoxic effects. Elevated carbon dioxide (eCO2) and EDU application individually or in combination negated the adverse effects of ozone by modulating antioxidants and antioxidative enzymes. Differential leaf proteomics revealed that at vegetative stage major changes in protein abundance were due to EDU treatment (47, 52 and 41 proteins in PBW-343, LOK1 and HD-2967, respectively). Combined treatment of eCO2 and EDU was more responsible for changes in 37 proteins during flowering stage of PBW-343 and LOK1. Functional categorization revealed more than 60% differentially abundant protein collectively belonging to carbon metabolism, protein synthesis assembly and degradation and photosynthesis. At both the growth stages, LOK1 was more responsive to eCO2 and combined treatment (eCO2 + EDU). HD-2967 was more positively responsive to EDU and combined treatment. eCO2 in combination of EDU protected these varieties against high ambient O3.
Collapse
Affiliation(s)
- Vivek K. Maurya
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Sunil K. Gupta
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Marisha Sharma
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Baisakhi Majumder
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| | - Farah Deeba
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Biotechnology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015 India
| | - Nalini Pandey
- Department of Botany, University of Lucknow, Lucknow, 226001 India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001 India
| |
Collapse
|
21
|
Pan T, Wang Y, Wang L, Ding J, Cao Y, Qin G, Yan L, Xi L, Zhang J, Zou Z. Increased CO 2 and light intensity regulate growth and leaf gas exchange in tomato. PHYSIOLOGIA PLANTARUM 2020; 168:694-708. [PMID: 31376304 DOI: 10.1111/ppl.13015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Carbon dioxide concentration (CO2 ) and light intensity are known to play important roles in plant growth and carbon assimilation. Nevertheless, the underlying physiological mechanisms have not yet been fully explored. Tomato seedlings (Solanum lycopersicum Mill. cv. Jingpeng No. 1) were exposed to two levels of CO2 and three levels of light intensity and the effects on growth, leaf gas exchange and water use efficiency were investigated. Elevated CO2 and increased light intensity promoted growth, dry matter accumulation and pigment concentration and together the seedling health index. Elevated CO2 had no significant effect on leaf nitrogen content but did significantly upregulate Calvin cycle enzyme activity. Increased CO2 and light intensity promoted photosynthesis, both on a leaf-area basis and on a chlorophyll basis. Increased CO2 also increased light-saturated maximum photosynthetic rate, apparent quantum efficiency and carboxylation efficiency and, together with increased light intensity, it raised photosynthetic capacity. However, increased CO2 reduced transpiration and water consumption across different levels of light intensity, thus significantly increasing both leaf-level and plant-level water use efficiency. Among the range of treatments imposed, the combination of increased CO2 (800 µmol CO2 mol-1 ) and high light intensity (400 µmol m-2 s-1 ) resulted in optimal growth and carbon assimilation. We conclude that the combination of increased CO2 and increased light intensity worked synergistically to promote growth, photosynthetic capacity and water use efficiency by upregulation of pigment concentration, Calvin cycle enzyme activity, light energy use and CO2 fixation. Increased CO2 also lowered transpiration and hence water usage.
Collapse
Affiliation(s)
- Tonghua Pan
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Yunlong Wang
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Linghui Wang
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
| | - Juanjuan Ding
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Yanfei Cao
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Gege Qin
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Lulu Yan
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Linjie Xi
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| | - Zhirong Zou
- College of Horticulture, Northwest Agricultural & Forest University, Yangling, 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture, Yangling, 712100, China
- Research Center of Facility Agriculture Engineering Technology, Shaanxi, Yangling, 712100, China
| |
Collapse
|
22
|
Effects of Elevated Temperature and Ozone in Brassica juncea L.: Growth, Physiology, and ROS Accumulation. FORESTS 2020. [DOI: 10.3390/f11010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Global warming and ozone (O3) pose serious threats to crop yield and ecosystem health. Although neither of these factors will act individually in reality, most studies have focused on the responses of plants to air pollution or climate change. Interactive effects of these remain poorly studied. Therefore, this study was conducted to assess the effects of optimal (22/20 °C day/night) and elevated temperature (27/25 °C) and/or ambient (10 ± 10 nL L−1) and elevated O3 concentrations (100 ± 10 nL L−1) on the growth, physiology, and reactive oxygen species (ROS) accumulation of leaf mustard (Brassica juncea L.). The aim was to examine whether elevated temperature increase the O3 damage due to increasing stomatal conductance, and thus, O3 flux into the leaf. Significant reductions in photosynthetic rates occurred under O (elevated O3 with optimal temperatures) and OT (elevated O3 and temperature) conditions compared to C (controls). Stomatal conductance was significantly higher under T than in the C at 7 DAE. Under OT conditions, O3 flux significantly increased compared to that in O conditions at 7 days after exposure (DAE). Significant reductions in total fresh and dry weight were observed under OT conditions compared to those under O. Furthermore, significant reductions in levels of carotenoids and ascorbic acid were observed under OT conditions compared to O. Lipid peroxidation and accumulation of ROS such as hydroxyl radical, hydrogen peroxide, and superoxide radical were higher under O and OT conditions than in C conditions at 7 and 14 DAE. As a result of O3 stress, the results of the present study indicated that the plant injury index significantly increased under OT compared to O conditions. This result suggested that elevated temperature (+5 °C) may enhance O3 damage to B. juncea by increasing stomatal conductance and O3 flux into leaves.
Collapse
|
23
|
Balasooriya HN, Dassanayake KB, Seneweera S, Ajlouni S. Impact of elevated carbon dioxide and temperature on strawberry polyphenols. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4659-4669. [PMID: 30906993 DOI: 10.1002/jsfa.9706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The strawberry cultivars 'Albion' and 'San Andreas' ('SA') were grown under various combinations of day temperature (25 and 30 °C) and carbon dioxide [CO2 ] (400, 650 and 950 μmol mol-1 ) conditions. The influence of different growth combinations on the polyphenol, flavonoid, anthocyanin, antioxidant, and individual phenolic compound content of fresh strawberry fruits was studied. The content of individual phenolic compounds of fresh strawberry fruits was quantified using high-performance liquid chromatography - ultraviolet (HPLC-UV). RESULTS Elevated [CO2 ] and higher temperature caused significant increases in total polyphenol, flavonoid, anthocyanin and antioxidants in both strawberry cultivars when compared with plants grown under ambient conditions. Results of HPLC-UV analysis also revealed that individual phenolic compounds of fruits were also increased with increasing [CO2 ] and temperature. However, the responses were significantly altered by the interaction of elevated [CO2 ] and higher temperature. The individual and interaction effects of [CO2 ] and temperature were also significantly cultivar dependent. The largest amounts of flavonoid (482 ± 68 mg kg-1 FW) and antioxidant (19.0 ± 2.1 μmol g-1 FW) were detected in 'Albion' grown at 30 °C and under 950 μmol mol-1 , and total polyphenol (3350 ± 104 mg GAE kg-1 FW) and anthocyanin (332 ± 16 mg kg-1 FW) in 'San Andreas' grown at 25 °C and 950 μmol mol-1 . CONCLUSION Strawberry fruit was rich with polyphenols and antioxidants when grown under elevated [CO2 ] and higher temperature. There were also interactions between [CO2 ] and temperature affecting the fruits' content. An increase in the polyphenol and antioxidant content in strawberry fruits would be highly beneficial to human health. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Himali N Balasooriya
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Kithsiri B Dassanayake
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
- Department of Infrastructure Engineering, Faculty of Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Saman Seneweera
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Said Ajlouni
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Loladze I, Nolan JM, Ziska LH, Knobbe AR. Rising Atmospheric CO2Lowers Concentrations of Plant Carotenoids Essential to Human Health: A Meta‐Analysis. Mol Nutr Food Res 2019; 63:e1801047. [DOI: 10.1002/mnfr.201801047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/07/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Irakli Loladze
- Bryan College of Health SciencesBryan Medical Center Lincoln NE 68506 USA
- School of Mathematical and Statistical SciencesArizona State University Temple AZ 85281 USA
| | - John M. Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore HouseWaterford Institute of Technology West Campus Waterford Ireland
| | - Lewis H. Ziska
- USDA‐ARSAdaptive Cropping Systems Laboratory Beltsville MD 20705 USA
- Mailman School of Public HealthColumbia University New York NY 10025 USA
| | - Amy R. Knobbe
- Bryan College of Health SciencesBryan Medical Center Lincoln NE 68506 USA
| |
Collapse
|
25
|
Xu S, Li B, Li P, He X, Chen W, Yan K, Li Y, Wang Y. Soil high Cd exacerbates the adverse impact of elevated O 3 on Populus alba 'Berolinensis' L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:35-42. [PMID: 30818258 DOI: 10.1016/j.ecoenv.2019.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
Pollution with both heavy metal and ground-level ozone (O3) has been steadily increasing, especially in the cities with heavy industry. Little information is known about their combined impacts on urban tree. This study was aimed at characterizing the interactive effects of soil cadmium (Cd) addition and O3 fumigation on visible injury and growth, photosynthesis, oxidative stress, antioxidant enzyme activities, abscisic acid (ABA) content and bioaccumulation of Cd in one-year-old Populus alba 'Berolinensis' saplings by using open top chambers in Shenyang city with developed heavy industry, Northeast China. In this study, poplar saplings were grown in the pots containing soil with different concentrations of Cd (0, 100 and 500 mg kg-1) under ambient air (40 µg L-1) and elevated O3 (120 µg L-1). The results showed that EO and its combination with high Cd (500 mg kg-1) induced significant foliar injury symptoms, decreased root weight (by 41.6%) and total biomass (by 17.4%), inhibited net photosynthetic rate and stomatal conductance, and increased malondialdehyde and ABA contents after 4 weeks of O3 exposure. Elevated O3 exacerbated the accumulation of Cd in leaves and stems of poplar plants grown in the pots with high Cd-polluted soil. Our results also indicated that high Cd pollution in soil increased the susceptibility of plants to O3 and exacerbated the adverse impact of elevated O3 on physiological metabolisms of poplar species, which implied that it was very necessary to take into consideration for O3-tolerance of tree species during phytoremediation of Cd-polluted soil in heavy industrial areas.
Collapse
Affiliation(s)
- Sheng Xu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Bo Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Pin Li
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xingyuan He
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China.
| | - Wei Chen
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Kun Yan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Yan Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Yijing Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| |
Collapse
|
26
|
Sreeharsha RV, Mudalkar S, Sengupta D, Unnikrishnan DK, Reddy AR. Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO 2 environment in pigeonpea (Cajanus cajan L.). PHOTOSYNTHESIS RESEARCH 2019; 139:425-439. [PMID: 30244353 DOI: 10.1007/s11120-018-0586-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
In the current study, pigeonpea (Cajanus cajan L.), a promising legume food crop was assessed for its photosynthetic physiology, antioxidative system as well as C and N metabolism under elevated CO2 and combined drought stress (DS). Pigeonpea was grown in open top chambers under elevated CO2 (600 µmol mol-1) and ambient CO2 (390 ± 20 µmol mol-1) concentrations, later subjected to DS by complete water withholding. The DS plants were re-watered and recovered (R) to gain normal physiological growth and assessed the recoverable capacity in both elevated and ambient CO2 concentrations. The elevated CO2 grown pigeonpea showed greater gas exchange physiology, nodule mass and total dry biomass over ambient CO2 grown plants under well-watered (WW) and DS conditions albeit a decrease in leaf relative water content (LRWC). Glucose, fructose and sucrose levels were measured to understand the role of hexose to sucrose ratios (H:S) in mediating the drought responses. Free amino acid levels as indicative of N assimilation provided insights into C and N balance under DS and CO2 interactions. The enzymatic and non-enzymatic antioxidants showed significant upregulation in elevated CO2 grown plants under DS thereby protecting the plant from oxidative damage caused by the reactive oxygen species. Our results clearly demonstrated the protective role of elevated CO2 under DS at lower LRWC and gained comparative advantage of mitigating the DS-induced damage over ambient CO2 grown pigeonpea.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Shalini Mudalkar
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Debashree Sengupta
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Divya K Unnikrishnan
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Attipalli Ramachandra Reddy
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
- Yogi Vemana University, Kadapa, Andhra Pradesh, 516003, India.
| |
Collapse
|
27
|
Dong J, Xu Q, Gruda N, Chu W, Li X, Duan Z. Elevated and super-elevated CO 2 differ in their interactive effects with nitrogen availability on fruit yield and quality of cucumber. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4509-4516. [PMID: 29479715 DOI: 10.1002/jsfa.8976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/18/2018] [Accepted: 02/18/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Elevated carbon dioxide (CO2 ) and nitrogen (N) availability can interactively promote cucumber yield, but how the yield increase is realized remains unclear, whilst the interactive effects on fruit quality are unknown. In this study, cucumber plants (Cucumis sativus L. cv. Jinmei No. 3) were grown in a paddy soil under three CO2 concentrations - 400 (ambient CO2 ), 800 (elevated CO2 , eCO2 ) and 1200 µmol mol-1 (super-elevated CO2 ) - and two N applications - 0.06 (low N) and 0.24 g N kg-1 soil (high N). RESULTS Compared with ambient CO2 , eCO2 increased yield by 106% in high N but the increase in total biomass was only 33%. This can result from greater carbon translocation to fruits from other organs, indicated by the increased biomass allocation from stems and leaves, particularly source leaves, to fruits and the decreased concentrations of fructose and glucose in source leaves. Super-elevated CO2 reduced the carbon allocation to fruits thus yield increase (71%). Additionally, eCO2 also increased the concentrations of fructose and glucose in fruits, maintained the concentrations of dietary fiber, phosphorus, potassium, calcium, magnesium, sulfur, manganese, copper, molybdenum and sodium, whilst it decreased the concentrations of nitrate, protein, iron, and zinc in high N. Compared with eCO2 , super-elevated CO2 can still improve the fruit quality to some extent in low N availability. CONCLUSIONS Elevated CO2 promotes cucumber yield largely by carbon allocation from source leaves to fruits in high N availability. Besides a dilution effect, carbon allocation to fruits, carbohydrate transformation, and nutrient uptake and assimilation can affect the fruit quality. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinlong Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao Xu
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Melbourne, Australia
| | - Nazim Gruda
- Institute of Plant Sciences and Resource Conservation, Division of Horticultural Sciences, University of Bonn, Bonn, Germany
| | - Wenying Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xun Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zengqiang Duan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
28
|
Dong J, Gruda N, Lam SK, Li X, Duan Z. Effects of Elevated CO 2 on Nutritional Quality of Vegetables: A Review. FRONTIERS IN PLANT SCIENCE 2018; 9:924. [PMID: 30158939 PMCID: PMC6104417 DOI: 10.3389/fpls.2018.00924] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Elevated atmospheric CO2 (eCO2) enhances the yield of vegetables and could also affect their nutritional quality. We conducted a meta-analysis using 57 articles consisting of 1,015 observations and found that eCO2 increased the concentrations of fructose, glucose, total soluble sugar, total antioxidant capacity, total phenols, total flavonoids, ascorbic acid, and calcium in the edible part of vegetables by 14.2%, 13.2%, 17.5%, 59.0%, 8.9%, 45.5%, 9.5%, and 8.2%, respectively, but decreased the concentrations of protein, nitrate, magnesium, iron, and zinc by 9.5%, 18.0%, 9.2%, 16.0%, and 9.4%. The concentrations of titratable acidity, total chlorophyll, carotenoids, lycopene, anthocyanins, phosphorus, potassium, sulfur, copper, and manganese were not affected by eCO2. Furthermore, we propose several approaches to improving vegetable quality based on the interaction of eCO2 with various factors, including species, cultivars, CO2 levels, growth stages, light, O3 stress, nutrient, and salinity. Finally, we present a summary of the eCO2 impact on the quality of three widely cultivated crops, namely, lettuce, tomato, and potato.
Collapse
Affiliation(s)
- Jinlong Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Nazim Gruda
- Division of Horticultural Sciences, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Shu K. Lam
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Xun Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zengqiang Duan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
29
|
Jia X, Zhang C, Zhao Y, Liu T, He Y. Three years of exposure to lead and elevated CO 2 affects lead accumulation and leaf defenses in Robinia pseudoacacia L. seedlings. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:215-223. [PMID: 29427972 DOI: 10.1016/j.jhazmat.2018.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Few studies have explored the long-term effects of elevated atmospheric CO2 combined with lead (Pb) contamination on plants. The objective of this study was to examine the effects of 3 years of elevated CO2 (700 ± 23 μmol mol-1) on Pb accumulation and plant defenses in leaves of Robinia pseudoacacia L. seedlings in exposed to Pb (500 mg kg-1 soil). Elevated CO2 increased Pb accumulation in leaves and Pb removal rate in soils. In plants exposed to Pb stress, total chlorophyll and carotenoid contents in leaves were lower under elevated CO2 than under ambient CO2, but seedling height and width increased under elevated CO2 relative to ambient CO2. Elevated CO2 significantly (p < .01) stimulated malondialdehyde content in leaves under Pb exposure. Superoxide dismutase and catalase activity increased significantly (p < .01), peroxidase activity decreased significantly (p < .01), and glutathione, cystine, and phytochelatin contents increased under elevated CO2 + Pb relative to Pb alone. Elevated CO2 stimulated the production of soluble sugars, proline, flavonoids, saponins, and phenolics in plants exposed to Pb stress. Ove rall, long-term elevation of CO2 increased Pb-induced oxidative damage in seedlings, but enhanced the phytoextraction of Pb from contaminated soils.
Collapse
Affiliation(s)
- Xia Jia
- School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Chang'an University, Xi'an 710054, PR China.
| | - Chunyan Zhang
- School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Chang'an University, Xi'an 710054, PR China
| | - Yonghua Zhao
- The School of Earth Science and Resources, Chang'an University, Xi'an 710054, PR China.
| | - Tuo Liu
- School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Chang'an University, Xi'an 710054, PR China
| | - Yunhua He
- School of Environmental Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Chang'an University, Xi'an 710054, PR China
| |
Collapse
|
30
|
Sekhar KM, Reddy KS, Reddy AR. Amelioration of drought-induced negative responses by elevated CO 2 in field grown short rotation coppice mulberry (Morus spp.), a potential bio-energy tree crop. PHOTOSYNTHESIS RESEARCH 2017; 132:151-164. [PMID: 28238122 DOI: 10.1007/s11120-017-0351-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Present study describes the responses of short rotation coppice (SRC) mulberry, a potential bio-energy tree, grown under interactive environment of elevated CO2 (E) and water stress (WS). Growth in E stimulated photosynthetic performance in well-watered (WW) as well as during WS with significant increases in light-saturated photosynthetic rates (A Sat), water use efficiency (WUEi), intercellular [CO2], and photosystem-II efficiency (F V/F M and ∆F/F M') with concomitant reduction in stomatal conductance (g s) and transpiration (E) compared to ambient CO2 (A) grown plants. Reduced levels of proline, H2O2, and malondialdehyde (MDA) and higher contents of antioxidants including ascorbic acid and total phenolics in WW and WS in E plants clearly demonstrated lesser oxidative damage. Further, A plants showed higher transcript abundance and antioxidant enzyme activities under WW as well as during initial stages of WS (15 days). However, with increasing drought imposition (30 days), A plants showed down regulation of antioxidant systems compared to their respective E plants. These results clearly demonstrated that future increased atmospheric CO2 enhances the photosynthetic potential and also mitigate the drought-induced oxidative stress in SRC mulberry. In conclusion, mulberry is a potential bio-energy tree crop which is best suitable for short rotation coppice forestry-based mitigation of increased [CO2] levels even under intermittent drought conditions, projected to prevail in the fast-changing global climate.
Collapse
Affiliation(s)
- Kalva Madhana Sekhar
- Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Andhra Pradesh, India
| | - Kanubothula Sitarami Reddy
- Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Andhra Pradesh, India
| | - Attipalli Ramachandra Reddy
- Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Andhra Pradesh, India.
| |
Collapse
|
31
|
Xu Z, Jiang Y, Zhou G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:701. [PMID: 26442017 PMCID: PMC4564695 DOI: 10.3389/fpls.2015.00701] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2015] [Indexed: 05/19/2023]
Abstract
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
32
|
Singh A, Agrawal M. Effects of ambient and elevated CO2 on growth, chlorophyll fluorescence, photosynthetic pigments, antioxidants, and secondary metabolites of Catharanthus roseus (L.) G Don. grown under three different soil N levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3936-46. [PMID: 25304238 DOI: 10.1007/s11356-014-3661-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/25/2014] [Indexed: 04/16/2023]
Abstract
Catharanthus roseus L. plants were grown under ambient (375 ± 30 ppm) and elevated (560 ± 25 ppm) concentrations of atmospheric CO2 at different rates of N supply (without supplemental N, 0 kg N ha(-1); recommended N, 50 kg N ha(-1); and double recommended N, 100 kg N ha(-1)) in open top chambers under field condition. Elevated CO2 significantly increased photosynthetic pigments, photosynthetic efficiency, and organic carbon content in leaves at recommended (RN) and double recommended N (DRN), while significantly decreased total nitrogen content in without supplemental N (WSN). Activities of superoxide dismutase, catalase, and ascorbate peroxidase were declined, while glutathione reductase, peroxidase, and phenylalanine-ammonia lyase were stimulated under elevated CO2. However, the responses of the above enzymes were modified with different rates of N supply. Elevated CO2 significantly reduced superoxide production rate, hydrogen peroxide, and malondialdehyde contents in RN and DRN. Compared with ambient, total alkaloids content increased maximally at recommended level of N, while total phenolics in WSN under elevated CO2. Elevated CO2 stimulated growth of plants by increasing plant height and numbers of branches and leaves, and the magnitude of increment were maximum in DRN. The study suggests that elevated CO2 has positively affected plants by increasing growth and alkaloids production and reducing the level of oxidative stress. However, the positive effects of elevated CO2 were comparatively lesser in plants grown under limited N availability than in moderate and higher N availability. Furthermore, the excess N supply in DRN has stimulated the growth but not the alkaloids production under elevated CO2.
Collapse
Affiliation(s)
- Aradhana Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
33
|
Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GTS, Asard H. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. GLOBAL CHANGE BIOLOGY 2014; 20:3670-85. [PMID: 24802996 DOI: 10.1111/gcb.12626] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/12/2014] [Indexed: 05/19/2023]
Abstract
Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.
Collapse
Affiliation(s)
- Gaurav Zinta
- Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, Antwerp, Wilrijk, B-2610, Belgium; Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
He Z, Xiong J, Kent AD, Deng Y, Xue K, Wang G, Wu L, Van Nostrand JD, Zhou J. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. THE ISME JOURNAL 2014; 8:714-726. [PMID: 24108327 PMCID: PMC3930317 DOI: 10.1038/ismej.2013.177] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/01/2013] [Accepted: 09/06/2013] [Indexed: 11/08/2022]
Abstract
The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems.
Collapse
Affiliation(s)
- Zhili He
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, the University of Oklahoma, Norman, OK, USA.
| | - Jinbo Xiong
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, the University of Oklahoma, Norman, OK, USA
- Faculty of Marine Sciences, Ningbo University, Ningbo, China
| | - Angela D Kent
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ye Deng
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, the University of Oklahoma, Norman, OK, USA
| | - Kai Xue
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, the University of Oklahoma, Norman, OK, USA
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liyou Wu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, the University of Oklahoma, Norman, OK, USA
| | - Joy D Van Nostrand
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, the University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, the University of Oklahoma, Norman, OK, USA.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
35
|
Kumari S, Agrawal M. Growth, yield and quality attributes of a tropical potato variety (Solanum tuberosum L. cv Kufri chandramukhi) under ambient and elevated carbon dioxide and ozone and their interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 101:146-156. [PMID: 24507140 DOI: 10.1016/j.ecoenv.2013.12.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
The present study was designed to study the growth and yield responses of a tropical potato variety (Solanum tuberosum L. cv. Kufri chandramukhi) to different levels of carbon dioxide (382 and 570ppm) and ozone (50 and 70ppb) in combinations using open top chambers (OTCs). Plants were exposed to three ozone levels in combination with ambient CO2 and two ozone levels at elevated CO2. Significant increments in leaf area and total biomass were observed under elevated CO2 in combination with ambient O3 (ECO2+AO3) and elevated O3 (ECO2+EO3), compared to the plants grown under ambient concentrations (ACO2+AO3). Yield measured as fresh weight of potato also increased significantly under ECO2+AO3 and ECO2+EO3. Yield, however, reduced under ambient (ACO2+AO3) and elevated ozone (ACO2+EO3) compared to ACO2 (filtered chamber). Number, fresh and dry weights of tubers of size 35-50mm and>50mm used for direct consumption and industrial purposes, respectively increased maximally under ECO2+AO3. Ambient as well as elevated levels of O3 negatively affected the growth parameters and yield mainly due to reductions in number and weight of tubers of sizes >35mm. The quality of potato tubers was also modified under different treatments. Starch content increased and K, Zn and Fe concentrations decreased under ECO2+AO3 and ECO2+EO3 compared to ACO2+AO3. Starch content reduced under ACO2+AO3 and ACO2+EO3 treatments compared to ACO2. These results clearly suggest that elevated CO2 has provided complete protection to ambient O3 as the potato yield was higher under ECO2+AO3 compared to ACO2. However, ambient CO2 is not enough to protect the plants under ambient O3 levels. Elevated CO2 also provided protection against elevated O3 by improving the yield. Quality of tubers is modified by both CO2 and O3, which have serious implications on human health at present and in future.
Collapse
Affiliation(s)
- Sumita Kumari
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
36
|
Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N. Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:204-12. [PMID: 23792825 DOI: 10.1016/j.plaphy.2013.05.032] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/24/2013] [Indexed: 05/05/2023]
Abstract
Abiotic stresses such as salinity, drought, clilling, heavy metal are the major limiting factors for crop productivity. These stresses induce the overproduction of reactive oxygen species (ROS) which are highly reactive and toxic, which must be minimized to protect the cell from oxidative damage. The cell organelles, particularly chloroplast and mitochondria are the major sites of ROS production in plants where excessive rate of electron flow takes place. Plant cells are well equipped to efficiently scavenge ROS and its reaction products by the coordinated and concerted action of antioxidant machinery constituted by vital enzymatic and non-enzymatic antioxidant components. Glutathione reductase (GR, EC 1.6.4.2) and tripeptide glutathione (GSH, γ-Glutamyl-Cysteinyl-Glycine) are two major components of ascorbate-glutathione (AsA-GSH) pathway which play significant role in protecting cells against ROS and its reaction products-accrued potential anomalies. Both GR and GSH are physiologically linked together where, GR is a NAD(P)H-dependent enzymatic antioxidant and efficiently maintains the reduced pool of GSH - a cellular thiol. The differential modulation of both GR and GSH in plants has been widely implicated for the significance of these two enigmatic antioxidants as major components of plant defense operations. Considering recent informations gained through molecular-genetic studies, the current paper presents an overview of the structure, localization, biosynthesis (for GSH only), discusses GSH and GR significance in abiotic stress (such as salinity, drought, clilling, heavy metal)-exposed crop plants and also points out unexplored aspects in the current context for future studies.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Faculty of Life Sciences, MD University, Rohtak 124 001, India.
| | | | | | | | | | | | | | | |
Collapse
|