1
|
Intharuksa A, Arunotayanun W, Takuathung MN, Boongla Y, Chaichit S, Khamnuan S, Prasansuklab A. Therapeutic Potential of Herbal Medicines in Combating Particulate Matter (PM)-Induced Health Effects: Insights from Recent Studies. Antioxidants (Basel) 2024; 14:23. [PMID: 39857357 PMCID: PMC11762796 DOI: 10.3390/antiox14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM), particularly fine (PM2.5) and ultrafine (PM0.1) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications. This review comprehensively examines the protective potential of natural products against PM-induced health issues across various physiological systems, including the respiratory, cardiovascular, skin, neurological, gastrointestinal, and ocular systems. It provides valuable insights into the health risks associated with PM exposure and highlights the therapeutic promise of herbal medicines by focusing on the natural products that have demonstrated protective properties in both in vitro and in vivo PM2.5-induced models. Numerous herbal medicines and phytochemicals have shown efficacy in mitigating PM-induced cellular damage through their ability to counteract oxidative stress, suppress pro-inflammatory responses, and enhance cellular defense mechanisms. These combined actions collectively protect tissues from PM-related damage and dysfunction. This review establishes a foundation for future research and the development of effective interventions to combat PM-related health issues. However, further studies, including in vivo and clinical trials, are essential to evaluate the safety, optimal dosages, and long-term effectiveness of herbal treatments for patients under chronic PM exposure.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Faculty of Public Health and Allied Health Science, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yaowatat Boongla
- Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Suthiwat Khamnuan
- Faculty of Pharmacy, Western University, Pathum Thani 12150, Thailand;
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Farah E, Fadel M, Mansour G, Fakhri N, Hassan SK, Boraiy M, El-Nazer M, Wheida A, Abdelwahab M, Oikonomou K, Sauvage S, Borbon A, Sciare J, Courcot D, Ledoux F, Afif C. Unveiling the organic chemical composition and sources of organic carbon in PM 2.5 at an urban site in Greater Cairo (Egypt): A comprehensive analysis of primary and secondary compounds. ENVIRONMENTAL RESEARCH 2024; 263:120118. [PMID: 39384006 DOI: 10.1016/j.envres.2024.120118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
This work presents an exhaustive chemical characterization of the organic fraction of fine particulate matter (PM2.5) collected at an urban site in the Greater Cairo Area, Egypt, one of the most polluted megacities in the world. An intensive 2-month sampling campaign was conducted at an urban site in Giza (Dokki), from November 26, 2019, to January 28, 2020. Daily (24-h integrated) PM2.5 filter samples were then analyzed for their carbonaceous (OC, EC) and organic fractions including primary (n-alkanes, phthalates, fatty acids, polycyclic aromatic hydrocarbons, hopanes, sugars, and sugar alcohols) and secondary (isoprene and β-caryophyllene oxidation products, and dicarboxylic acids) compounds. Average organic (OC) and elemental carbon (EC) concentrations were 17.8 ± 6.6 μg/m3 and 4.4 ± 1.5 μg/m3, respectively. Biomass burning was confirmed by high daily concentration levels of levoglucosan, mannosan, and galactosan (sum equals to 288 ng/m3). Road traffic was also highlighted by the relative abundance of tetracosane and a carbon preference index close to unity as well as by the concentration ratios of PAHs and hopanes. Moreover, phthalates were identified for the first time in Cairo with high concentrations (654 ng/m3) that might be attributable to open waste burning activities. Fatty acids and sugars were also investigated and assigned to cooking activities and primary biogenic sources, respectively. The average concentration of isoprene and β-caryophyllene oxidation products were 0.89 ± 0.83 ng/m3, and 0.01 ± 0.02 ng/m3, respectively. These low values are expected since no pine trees or even forests exist in Egypt. The macrotracer approach was employed alongside Monte Carlo simulation to identify sources of primary OC and evaluate the uncertainties associated with source attribution and OC reconstruction. The findings revealed a strong contribution from cooking (31% of observed OC) and biomass burning (18%), with median reconstructed OC levels showing significant uncertainty (64%) as expected.
Collapse
Affiliation(s)
- Eliane Farah
- Emissions, Measurements, and Modelling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Science, Saint-Joseph University, Beirut, Lebanon; Unité de Chimie Environnementale et Interactions sur le Vivant, (UCEIV) UR4492, University of Littoral Côte D'Opale (ULCO), Dunkirk, France
| | - Marc Fadel
- Unité de Chimie Environnementale et Interactions sur le Vivant, (UCEIV) UR4492, University of Littoral Côte D'Opale (ULCO), Dunkirk, France
| | - Gihane Mansour
- Laboratory of Mathematics and Applications, Mathematics and Modeling Research Unit, Faculty of Sciences, Saint-Joseph University, Beirut, 1104 2020, Lebanon
| | - Nansi Fakhri
- Emissions, Measurements, and Modelling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Science, Saint-Joseph University, Beirut, Lebanon; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, 2121, Cyprus
| | - Salwa K Hassan
- Air Pollution Research Department, Environment and Climate Change Research Institute, National, Research Centre, El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Mohamed Boraiy
- Physics and Mathematical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Mostafa El-Nazer
- Theoretical Physics Department, Physics Research Institute, National Research Centre, El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Ali Wheida
- Theoretical Physics Department, Physics Research Institute, National Research Centre, El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Magdy Abdelwahab
- Astronomy and Meteorology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Konstantina Oikonomou
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, 2121, Cyprus
| | - Stéphane Sauvage
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, 59000, Lille, France
| | - Agnès Borbon
- Laboratoire de Météorologie Physique, UMR6016, Université Clermont Auvergne, OPGC, CNRS, 63000, Clermont-Ferrand, France
| | - Jean Sciare
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, 2121, Cyprus
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, (UCEIV) UR4492, University of Littoral Côte D'Opale (ULCO), Dunkirk, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, (UCEIV) UR4492, University of Littoral Côte D'Opale (ULCO), Dunkirk, France
| | - Charbel Afif
- Emissions, Measurements, and Modelling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Science, Saint-Joseph University, Beirut, Lebanon; Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, 2121, Cyprus.
| |
Collapse
|
3
|
Das A, Pantzke J, Jeong S, Hartner E, Zimmermann EJ, Gawlitta N, Offer S, Shukla D, Huber A, Rastak N, Meščeriakovas A, Ivleva NP, Kuhn E, Binder S, Gröger T, Oeder S, Delaval M, Czech H, Sippula O, Schnelle-Kreis J, Di Bucchianico S, Sklorz M, Zimmermann R. Generation, characterization, and toxicological assessment of reference ultrafine soot particles with different organic content for inhalation toxicological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175727. [PMID: 39181261 DOI: 10.1016/j.scitotenv.2024.175727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ultrafine particles (UFP) are the smallest atmospheric particulate matter linked to air pollution-related diseases. The extent to which UFP's physical and chemical properties contribute to its toxicity remains unclear. It is hypothesized that UFP act as carriers for chemicals that drive biological responses. This study explores robust methods for generating reference UFP to understand these mechanisms and perform toxicological tests. Two types of combustion-related UFP with similar elemental carbon cores and physical properties but different organic loads were generated and characterized. Human alveolar epithelial cells were exposed to these UFP at the air-liquid interface, and several toxicological endpoints were measured. UFP were generated using a miniCAST under fuel-rich conditions and immediately diluted to minimize agglomeration. A catalytic stripper and charcoal denuder removed volatile gases and semi-volatile particles from the surface. By adjusting the temperature of the catalytic stripper, UFP with high and low organic content was produced. These reference particles exhibited fractal structures with high reproducibility and stability over a year, maintaining similar mass and number concentrations (100 μg/m3, 2.0·105 #/cm3) and a mean particle diameter of about 40 nm. High organic content UFP had significant PAH levels, with benzo[a]pyrene at 0.2 % (m/m). Toxicological evaluations revealed that both UFP types similarly affected cytotoxicity and cell viability, regardless of organic load. Higher xenobiotic metabolism was noted for PAH-rich UFP, while reactive oxidation markers increased when semi-volatiles were stripped off. Both UFP types caused DNA strand breaks, but only the high organic content UFP induced DNA oxidation. This methodology allows modification of UFP's chemical properties while maintaining comparable physical properties, linking these variations to biological responses.
Collapse
Affiliation(s)
- Anusmita Das
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Seongho Jeong
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Nadine Gawlitta
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | - Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Deeksha Shukla
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Anja Huber
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Narges Rastak
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Arūnas Meščeriakovas
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Natalia P Ivleva
- Chair of Analytical Chemistry and Water Chemistry, Institute of Water Chemistry, TUM School of Natural Sciences, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Evelyn Kuhn
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Stephanie Binder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mathilde Delaval
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Olli Sippula
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland; Department of Chemistry, University of Eastern Finland, 80101 Joensuu, Finland
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Joint Mass Spectrometry Center (JMSC) at Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 27, D-18059 Rostock, Germany
| |
Collapse
|
4
|
Li Q, Li S, Xu C, Zhao J, Hou L, Jiang F, Zhu Z, Wang Y, Tian L. microRNA-149-5p mediates the PM 2.5-induced inflammatory response by targeting TAB2 via MAPK and NF-κB signaling pathways in vivo and in vitro. Cell Biol Toxicol 2023; 39:703-717. [PMID: 34331613 DOI: 10.1007/s10565-021-09638-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Epidemiological evidence has shown that fine particulate matter (PM2.5)-triggered inflammatory cascades are pivotal causes of chronic obstructive pulmonary disease (COPD). However, the specific molecular mechanism involved in PM2.5-induced COPD has not been clarified. Herein, we found that PM2.5 significantly downregulated miR-149-5p and activated the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways and generated the inflammatory response in COPD mice and in human bronchial epithelial (BEAS-2B) cells. We determined that increased expression of interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor-α (TNF-α) induced by PM2.5 was associated with decreased expression of miR-149-5p. The loss- and gain-of-function approach further confirmed that miR-149-5p could inhibit PM2.5-induced cell inflammation in BEAS-2B cells. The double luciferase reporter assay showed that miR-149-5p directly targeted TGF-beta-activated kinase 1 binding protein 2 (TAB2), which regulates the MAPK and NF-κB signaling pathways. We showed that miR-149-5p mediated the inflammatory response by targeting the 3'-UTR sequence of TAB2 and that it subsequently weakened the TAB2 promotor effect via the MAPK and NF-κB signaling pathways in BEAS-2B cells exposed to PM2.5. Thus, miR-149-5p may be a key factor in PM2.5-induced COPD. This study improves our understanding of the molecular mechanism of COPD.
Collapse
Affiliation(s)
- Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Siling Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xitoutiao Youanmen Street, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
5
|
Abdillah SFI, Wang YF. Ambient ultrafine particle (PM 0.1): Sources, characteristics, measurements and exposure implications on human health. ENVIRONMENTAL RESEARCH 2023; 218:115061. [PMID: 36525995 DOI: 10.1016/j.envres.2022.115061] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The problem of ultrafine particles (UFPs; PM0.1) has been prevalent since the past decades. In addition to become easily inhaled by human respiratory system due to their ultrafine diameter (<100 nm), ambient UFPs possess various physicochemical properties which make it more toxic. These properties vary based on the emission source profile. The current development of UFPs studies is hindered by the problem of expensive instruments and the inexistence of standardized measurement method. This review provides detailed insights on ambient UFPs sources, physicochemical properties, measurements, and estimation models development. Implications on health impacts due to short-term and long-term exposure of ambient UFPs are also presented alongside the development progress of potentially low-cost UFPs sensors which can be used for future UFPs studies references. Current challenge and future outlook of ambient UFPs research are also discussed in this review. Based on the review results, ambient UFPs may originate from primary and secondary sources which include anthropogenic and natural activities. In addition to that, it is confirmed from various chemical content analysis that UFPs carry heavy metals, PAHs, BCs which are toxic in its nature. Measurement of ambient UFPs may be performed through stationary and mobile methods for environmental profiling and exposure assessment purposes. UFPs PNC estimation model (LUR) developed from measurement data could be deployed to support future epidemiological study of ambient UFPs. Low-cost sensors such as bipolar ion and ionization sensor from common smoke detector device may be further developed as affordable instrument to monitor ambient UFPs. Recent studies indicate that short-term exposure of UFPs can be associated with HRV change and increased cardiopulmonary effects. On the other hand, long-term UFPs exposure have positive association with COPD, CVD, CHF, pre-term birth, asthma, and also acute myocardial infarction cases.
Collapse
Affiliation(s)
- Sultan F I Abdillah
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
6
|
Fadel M, Ledoux F, Seigneur M, Oikonomou K, Sciare J, Courcot D, Afif C. Chemical profiles of PM 2.5 emitted from various anthropogenic sources of the Eastern Mediterranean: Cooking, wood burning, and diesel generators. ENVIRONMENTAL RESEARCH 2022; 211:113032. [PMID: 35248563 DOI: 10.1016/j.envres.2022.113032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The chemical profiles of PM2.5 emitted from a non-road diesel generator, wood burning and cooking activities including chicken and beef charcoal grilling and general cooking activities were determined. The characterization included the carbonaceous fraction (OC/EC), water-soluble ions, elements, and organic species comprising n-alkanes, polycyclic aromatic hydrocarbons, carboxylic acids, levoglucosan, dioxins, furans, and dioxin-like polychlorinated biphenyls. The main component in the PM2.5 from the different sources was carbonaceous matter with a mass contribution to PM2.5 of 49% for cooking activities, 53% for wood burning, 66% for beef grilling, 72% for chicken grilling, and 74% for diesel generator with different OC/EC concentration ratios. The analysis of organic compounds contents using diagnostic ratios and indexes showed differences between the sources and revealed specific source markers. The water-soluble ions had the highest contribution in the cooking activities profile with 17% of PM2.5 and the least in the chicken grilling profile (1.1%). Additionally, 29 analyzed elements were identified, and their contribution varied with the sources (ranging from 1% to 11% of PM2.5). These findings could be used to differentiate these sources and could assist in the use of source apportionment methods.
Collapse
Affiliation(s)
- Marc Fadel
- Emissions, Measurements, and Modeling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon; Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, FR CNRS, 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, FR CNRS, 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Marianne Seigneur
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, FR CNRS, 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France
| | | | - Jean Sciare
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, FR CNRS, 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Charbel Afif
- Emissions, Measurements, and Modeling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon; Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus.
| |
Collapse
|
7
|
Larionov A, Volobaev V, Zverev A, Vdovina E, Bach S, Schetnikova E, Leshukov T, Legoshchin K, Eremeeva G. Chemical Composition and Toxicity of PM 10 and PM 0.1 Samples near Open-Pit Mines and Coal Power Stations. Life (Basel) 2022; 12:life12071047. [PMID: 35888135 PMCID: PMC9323517 DOI: 10.3390/life12071047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Particulate matter (PM) <10 μm in size represents an extremely heterogeneous and variable group of objects that can penetrate the human respiratory tract. The present study aimed to isolate samples of coarse and ultrafine PM at some distance from polluting industries (1−1.5 km from the border of open-cast mines). PM was collected from snow samples which allowed the accumulation of a relatively large amount of ultrafine particles (UFPs) (50−60 mg) from five objects: three open-cast mines, coal power plants, and control territories. The chemical composition of PM was examined using absorption spectroscopy, luminescence spectroscopy, high-performance liquid chromatography, X-ray diffraction (XRD), and X-ray fluorescence (XRF) analyses of solid particle material samples. Toxicity was assessed in human MRC-5 lung fibroblasts after 6 h of in vitro exposure to PM samples. The absorption spectra of all the samples contained a wide non-elementary absorption band with a maximum of 270 nm. This band is usually associated with the absorption of dissolved organic matter (DOM). The X-ray fluorescence spectra of all the studied samples showed intense lines of calcium and potassium and less intense lines of silicon, sulfur, chlorine, and titanium. The proliferation of MRC-5 cells that were exposed to PM0.1 samples was significantly (p < 0.01) lower than that of MRC-5 cells exposed to PM10 at the same concentration, except for PM samples obtained from the control point. PM0.1 samples—even those that were collected from control territories—showed increased genotoxicity (micronucleus, ‱) compared to PM10. The study findings suggest that UFPs deserve special attention as a biological agent, distinct from larger PMs.
Collapse
Affiliation(s)
- Aleksey Larionov
- Department of Genetics and Fundamental Medicine, Institute of Biology, Ecology and Natural Resources, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (V.V.); (E.V.); (S.B.); (E.S.)
- Correspondence:
| | - Valentin Volobaev
- Department of Genetics and Fundamental Medicine, Institute of Biology, Ecology and Natural Resources, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (V.V.); (E.V.); (S.B.); (E.S.)
| | - Anton Zverev
- Department of Fundamental and Applied Chemistry, Institute of Fundamental Science, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (A.Z.); (G.E.)
- Institute of Coal Chemistry and Chemical Materials Science, The Federal Research Center of Coal and Coal Chemistry of SB RAS, 650000 Kemerovo, Russia
| | - Evgeniya Vdovina
- Department of Genetics and Fundamental Medicine, Institute of Biology, Ecology and Natural Resources, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (V.V.); (E.V.); (S.B.); (E.S.)
| | - Sebastian Bach
- Department of Genetics and Fundamental Medicine, Institute of Biology, Ecology and Natural Resources, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (V.V.); (E.V.); (S.B.); (E.S.)
| | - Ekaterina Schetnikova
- Department of Genetics and Fundamental Medicine, Institute of Biology, Ecology and Natural Resources, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (V.V.); (E.V.); (S.B.); (E.S.)
| | - Timofey Leshukov
- Department of Geology and Geography, Institute of Biology, Ecology and Natural Resources, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (T.L.); (K.L.)
| | - Konstantin Legoshchin
- Department of Geology and Geography, Institute of Biology, Ecology and Natural Resources, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (T.L.); (K.L.)
| | - Galina Eremeeva
- Department of Fundamental and Applied Chemistry, Institute of Fundamental Science, Kemerovo State University, 6 Krasnaya Street, 650000 Kemerovo, Russia; (A.Z.); (G.E.)
| |
Collapse
|
8
|
Dai C, Han Y, Duan Y, Lai X, Fu R, Liu S, Leong KH, Tu Y, Zhou L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. ENVIRONMENTAL RESEARCH 2022; 205:112423. [PMID: 34838568 DOI: 10.1016/j.envres.2021.112423] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The rapid economic and population growth in coastal areas is causing increasingly serious polycyclic aromatic hydrocarbons (PAHs) pollution in these regions. This review compared the PAHs pollution characteristics of different coastal areas, including industrial zones, commercial ports, touristic cities, aquacultural & agricultural areas, oil & gas exploitation areas and megacities. Currently there are various treatment methods to remediate soils and sediments contaminated with PAHs. However, it is necessary to provide a comprehensive overview of all the available remediation technologies up to date, so appropriate technologies can be selected to remediate PAHs pollution. In view of that, we analyzed the characteristics of the remediation mechanism, summarized the remediation methods for soil or sediments in coastal areas, which were physical repair, chemical oxidation, bioremediation and integrated approaches. Besides, this review also reported the development of new multi-functional green and sustainable systems, namely, micro-nano bubble (MNB), biochar, reversible surfactants and peracetic acid. While physical repair, expensive but efficient, was regarded as a suitable method for the PAHs remediation in coastal areas because of land shortage, integrated approaches would produce better results. The ultimate aim of the review was to ensure the successful restructuring of PAHs contaminated soil and sediments in coastal areas. Due to the environment heterogeneity, PAHs pollution in coastal areas remains as a daunting challenge. Therefore, new and suitable technologies are still needed to address the environmental issue.
Collapse
Affiliation(s)
- Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Yueming Han
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Yanping Duan
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai, 200234, China.
| | - Xiaoying Lai
- College of Management and Economics, Tianjin University, Tianjin, 300072, PR China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Shuguang Liu
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Perak, Malaysia
| | - Yaojen Tu
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai, 200234, China
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX, 78712, USA
| |
Collapse
|
9
|
Juarez-Facio AT, Castilla C, Corbière C, Lavanant H, Afonso C, Morin C, Merlet-Machour N, Chevalier L, Vaugeois JM, Yon J, Monteil C. Development of a standardized in vitro approach to evaluate microphysical, chemical, and toxicological properties of combustion-derived fine and ultrafine particles. J Environ Sci (China) 2022; 113:104-117. [PMID: 34963520 DOI: 10.1016/j.jes.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Ultrafine particles represent a growing concern in the public health community but their precise role in many illnesses is still unknown. This lack of knowledge is related to the experimental difficulty in linking their biological effects to their multiple properties, which are important determinants of toxicity. Our aim is to propose an interdisciplinary approach to study fine (FP) and ultrafine (UFP) particles, generated in a controlled manner using a miniCAST (Combustion Aerosol Standard) soot generator used with two different operating conditions (CAST1 and CAST3). The chemical characterization was performed by an untargeted analysis using ultra-high resolution mass spectrometry. In conjunction with this approach, subsequent analysis by gas chromatography-mass spectrometry (GC-MS) was performed to identify polycyclic aromatic hydrocarbons (PAH). CAST1 enabled the generation of FP with a predominance of small PAH molecules, and CAST3 enabled the generation of UFP, which presented higher numbers of carbon atoms corresponding to larger PAH molecules. Healthy normal human bronchial epithelial (NHBE) cells differentiated at the air-liquid interface (ALI) were directly exposed to these freshly emitted FP and UFP. Expression of MUC5AC, FOXJ1, OCLN and ZOI as well as microscopic observation confirmed the ciliated pseudostratified epithelial phenotype. Study of the mass deposition efficiency revealed a difference between the two operating conditions, probably due to the morphological differences between the two categories of particles. We demonstrated that only NHBE cells exposed to CAST3 particles induced upregulation in the gene expression of IL-8 and NQO1. This approach offers new perspectives to study FP and UFP with stable and controlled properties.
Collapse
Affiliation(s)
| | - Clément Castilla
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | - Hélène Lavanant
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Carlos Afonso
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | - Christophe Morin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
| | | | - Laurence Chevalier
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | | | - Jérôme Yon
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, CORIA, 76000 Rouen, France
| | | |
Collapse
|
10
|
Juarez Facio AT, Yon J, Corbière C, Rogez-Florent T, Castilla C, Lavanant H, Mignot M, Devouge-Boyer C, Logie C, Chevalier L, Vaugeois JM, Monteil C. Toxicological impact of organic ultrafine particles (UFPs) in human bronchial epithelial BEAS-2B cells at air-liquid interface. Toxicol In Vitro 2021; 78:105258. [PMID: 34653646 DOI: 10.1016/j.tiv.2021.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Air pollution has significant health effects worldwide, and airborne particles play a significant role in these effects. Ultrafine particles (UFPs) have an aerodynamic diameter of 0.1 μm or less, can penetrate deep into the respiratory tree, and are more toxic due to their large specific surface area, which should adsorb organic compounds. The aim of this study is to show the toxicological effects of UFPs with high organic content at low dose on BEAS-2B cells through at air-liquid interface (ALI) exposure using a Vitrocell® technology and a miniCAST (Combustion Aerosol Standard) generator. In conjunction with this approach, chemical analysis of particles and gas phase was performed to evaluate the presence of polycyclic aromatic hydrocarbons (PAHs). Chemical analyses confirmed the presence of PAHs in UFPs. With this experimental setup, exposure of the BEAS-2B cells induced neither cytotoxicity nor mitochondrial dysfunction. However, an increase of oxidative stress was observed, as assessed through Nrf2, NQO1, HO-1, CuZnSOD, MnSOD, and Catalase gene expression, together with significant induction of genes related to xenobiotic metabolism CYP1A1 and CYP1B1. Negative regulation of inflammatory genes expression (IL-6 and IL-8) was present three hours after the exposition to the UFPs. Taken together, this experimental approach, using repeatable conditions, should help to clarify the mechanisms by which organic UFPs induce toxicological effects.
Collapse
Affiliation(s)
| | - J Yon
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, CORIA, 76000 Rouen, France
| | - C Corbière
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | | | - C Castilla
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - H Lavanant
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - M Mignot
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Devouge-Boyer
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Logie
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - L Chevalier
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - J-M Vaugeois
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - C Monteil
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France.
| |
Collapse
|
11
|
Kermani M, Rahmatinia T, Oskoei V, Norzaee S, Shahsavani A, Farzadkia M, Kazemi MH. Potential cytotoxicity of trace elements and polycyclic aromatic hydrocarbons bounded to particulate matter: a review on in vitro studies on human lung epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55888-55904. [PMID: 34490568 DOI: 10.1007/s11356-021-16306-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies have been conducted for clarifying toxicological mechanisms of particulate matter (PM) aimed to investigate the physicochemical properties of PM and providing biological endpoints such as inflammation, perturbation of cell cycle, oxidative stress, or DNA damage. However, although several studies have presented some effects, there is still no consensus on the determinants of biological responses. This review attempts to summarize all past research conducted in recent years on the physicochemical properties of environmental PM in different places and the relationship between different PM components and PM potential cytotoxicity on the human lung epithelial cells. Among 447 papers with our initial principles, a total of 50 articles were selected from 1986 to April 2020 based on the chosen criteria for review. According to the results of selected studies, it is obvious that cytotoxicity in human lung epithelial cells is created both directly or indirectly by transition metals (such as Cu, Cr, Fe, Zn), polycyclic aromatic hydrocarbons (PAH), and ions that formed on the surface of particles. In the selected studies, the findings of the correlation analysis indicate that there is a significant relationship between cell viability reduction and secretion of inflammatory mediators. As a result, it seems that the observed biological responses are related to the composition and the physicochemical properties of the PMs. Therefore, the physicochemical properties of PM should be considered when explaining PM cytotoxicity, and long-term research data will lead to improved strategies to reduce air pollution.
Collapse
Affiliation(s)
- Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Tahere Rahmatinia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vahide Oskoei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Norzaee
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Shahsavani
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Fadel M, Ledoux F, Farhat M, Kfoury A, Courcot D, Afif C. PM 2.5 characterization of primary and secondary organic aerosols in two urban-industrial areas in the East Mediterranean. J Environ Sci (China) 2021; 101:98-116. [PMID: 33334541 DOI: 10.1016/j.jes.2020.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 06/12/2023]
Abstract
Primary and secondary organic aerosols in PM2.5 were investigated over a one-year campaign at Zouk Mikael and Fiaa, Lebanon. The n-alkanes concentrations were quite similar at both sites (26-29 ng/m3) and mainly explained by anthropogenic emissions rather than natural ones. The concentrations of total Polycyclic Aromatic Hydrocarbons (PAHs) were nearly three times higher at Zouk Mikael (2.56 ng/m3) compared to Fiaa (0.95 ng/m3), especially for indeno[1,2,3-c,d]pyrene linked to the presence of the power plant. A characteristic indeno[1,2,3-c,d]pyrene/(indeno[1,2,3-c,d]pyrene + benzo[g,h,i]perylene) ratio in the range 0.8-1.0 was determined for heavy fuel oil combustion from the power plant. Fatty acids and hopanes were also investigated and were assigned to cooking activities and vehicular emissions respectively. Phthalates were identified for the first time in Lebanon with high concentrations at Zouk and Fiaa (106.88 and 97.68 ng/m3 respectively). Moreover, the biogenic secondary aerosols revealed higher concentrations in summer. The total terpene concentration varied between 131 ng/m3 at Zouk Mikael in winter to 469 ng/m3 at Fiaa in summer. Additionnally, the concentrations of the dicarboxylic acids especially for adipic and phthalic acids were more influenced by anthropogenic sources.The analysis of molecular markers and diagnostic ratios indicated that the sites were strongly affected by anthropogenic sources such as waste open burning, diesel private generators, cooking activities, road transport, power plant, and industrial emissions. Moreover, results showed different pattern during winter and summer seasons. Whereas, higher concentrations of biogenic markers were clearly encountered during the summer period.
Collapse
Affiliation(s)
- Marc Fadel
- Emissions, Measurements, and Modeling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon; Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, FR CNRS 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, FR CNRS 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Mariana Farhat
- Emissions, Measurements, and Modeling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon
| | - Adib Kfoury
- Department of Environmental Sciences, University of Balamand, Al Kourah, Lebanon
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, FR CNRS 3417, University of Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Charbel Afif
- Emissions, Measurements, and Modeling of the Atmosphere (EMMA) Laboratory, CAR, Faculty of Sciences, Saint Joseph University, Beirut, Lebanon; Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus.
| |
Collapse
|
13
|
Cochard M, Ledoux F, Landkocz Y. Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: state of the art and critical review of the in vitro studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:293-318. [PMID: 32921295 DOI: 10.1080/10937404.2020.1816238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with several diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. Mechanisms such as oxidative stress and inflammation are well-documented and are considered as the starting point of some of the pathological responses. However, a number of studies also focused on epithelial-mesenchymal transition (EMT), which is a biological process involved in fibrotic diseases and cancer progression notably via metastasis induction. Up until now, EMT was widely reported in vivo and in vitro in various cell types but investigations dealing with in vitro studies of PM2.5 induced EMT in pulmonary cells are limited. Further, few investigations combined the necessary endpoints for validation of the EMT state in cells: such as expression of several surface, cytoskeleton or extracellular matrix biomarkers and activation of transcription markers and epigenetic factors. Studies explored various cell types, cultured under differing conditions and exposed for various durations to different doses. Such unharmonized protocols (1) might introduce bias, (2) make difficult comparison of results and (3) preclude reaching a definitive conclusion regarding the ability of airborne PM2.5 to induce EMT in pulmonary cells. Some questions remain, in particular the specific PM2.5 components responsible for EMT triggering. The aim of this review is to examine the available PM2.5 induced EMT in vitro studies on pulmonary cells with special emphasis on the critical parameters considered to carry out future research in this field. This clarification appears necessary for production of reliable and comparable results.
Collapse
Affiliation(s)
- Margaux Cochard
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| |
Collapse
|
14
|
Electron microscopic and spectroscopic analysis of airborne ultrafine particles: its effects on the cell viability. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractParticulate matter (PM) is one of the most common air pollution sources causing various health-related conditions like cardiovascular diseases. However, among the three major PM types, UFPs have not yet been independently studied for their toxic effects on human health. In this study, we collected airborne dusts from Chuncheon-si, Republic of Korea, and analyzed it to understand the structural and chemical features of UFPs by using transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The TEM result showed UFP size to be within 100 nm, with some even appearing about 10 nm in size, while the X-ray spectroscopic studies implied the presence of sulfur to be a part of the UFPs chemical composition. We extended our study by carrying out in vitro cell analysis to understand the cellular response upon UFPs treatment. Our results serve as an analytical platform providing the preliminary information about the structural and compositional aspects of UFPs that can be attributed to further understanding of sulfur-induced human diseases.
Collapse
|
15
|
Fifteen Years of Airborne Particulates in Vitro Toxicology in Milano: Lessons and Perspectives Learned. Int J Mol Sci 2020; 21:ijms21072489. [PMID: 32260164 PMCID: PMC7177378 DOI: 10.3390/ijms21072489] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Air pollution is one of the world’s leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.
Collapse
|
16
|
Platel A, Privat K, Talahari S, Delobel A, Dourdin G, Gateau E, Simar S, Saleh Y, Sotty J, Antherieu S, Canivet L, Alleman LY, Perdrix E, Garçon G, Denayer FO, Lo Guidice JM, Nesslany F. Study of in vitro and in vivo genotoxic effects of air pollution fine (PM 2.5-0.18) and quasi-ultrafine (PM 0.18) particles on lung models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134666. [PMID: 31812380 DOI: 10.1016/j.scitotenv.2019.134666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Air pollution and particulate matter (PM) are classified as carcinogenic to humans. Pollutants evidence for public health concern include coarse (PM10) and fine (PM2.5) particles. However, ultrafine particles (PM0.1) are assumed to be more toxic than larger particles, but data are still needed to better understand their mechanism of action. In this context, the aim of our work was to investigate the in vitro and in vivo genotoxic potential of fine (PM2.5-018) and quasi ultra-fine (PM0.18) particles from an urban-industrial area (Dunkirk, France) by using comet, micronucleus and/or gene mutation assays. In vitro assessment was performed with 2 lung immortalized cell lines (BEAS-2B and NCI-H292) and primary normal human bronchial epithelial cells (NHBE) grown at the air-liquid interface or in submerged conditions (5 µg PM/cm2). For in vivo assessment, tests were performed after acute (24 h, 100 µg PM/animal), subacute (1 month, 10 µg PM/animal) and subchronic (3 months, 10 µg PM/animal) intranasal exposure of BALB/c mice. In vitro, our results show that PM2.5-018 and PM0.18 induced primary DNA damage but no chromosomal aberrations in immortalized cells. Negative results were noted in primary cells for both endpoints. In vivo assays revealed that PM2.5-018 and PM0.18 induced no significant increases in DNA primary damage, chromosomal aberrations or gene mutations, whatever the duration of exposure. This investigation provides initial answers regarding the in vitro and in vivo genotoxic mode of action of PM2.5-018 and PM0.18 at moderate doses and highlights the need to develop standardized specific methodologies for assessing the genotoxicity of PM. Moreover, other mechanisms possibly implicated in pulmonary carcinogenesis, e.g. epigenetics, should be investigated.
Collapse
Affiliation(s)
- A Platel
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - K Privat
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - S Talahari
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - A Delobel
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - G Dourdin
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - E Gateau
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - S Simar
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - Y Saleh
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - J Sotty
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - S Antherieu
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - L Canivet
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France; Ecole des Mines de Douai, Département Chimie et Environnement, 941 Rue Charles Bourseul, BP 10838, 59508 Douai Cedex, France.
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France; Ecole des Mines de Douai, Département Chimie et Environnement, 941 Rue Charles Bourseul, BP 10838, 59508 Douai Cedex, France.
| | - G Garçon
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - F O Denayer
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - J M Lo Guidice
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| | - F Nesslany
- Université de Lille, CHU Lille, Institut Pasteur de Lille, EA4483-IMPECS, France; Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59000 Lille, France.
| |
Collapse
|
17
|
Merhaby D, Ouddane B, Net S, Halwani J. Assessment of persistent organic pollutants in surface sediments along Lebanese coastal zone. MARINE POLLUTION BULLETIN 2020; 153:110947. [PMID: 32056855 DOI: 10.1016/j.marpolbul.2020.110947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The levels of some persistent organic pollutants (POPs) along the Lebanese coastal zone (LCZ) were assessed by collecting15 surface sediments from five hotspot stations. Such stations were influenced by various industrial units, riverine input, and touristic activities. The levels of polycyclic aromatic hydrocarbons (∑16PAHs), their methylated derivatives (∑18Me-PAHs), and polychlorinated biphenyls (∑28PCBs) were in the range of 537-3773 μg∙kg-1 dw, 187-1541 μg∙kg-1 dw, and 143-303 μg∙kg-1 dw respectively. Significant contamination was found at Beirut Port that is surrounded by a densely populated area and is subjected to multidisciplinary activities. Source identification of PAHs was confirmed by using the diagnostic ratio of PAHs with low molecular weight and high molecular weight (LMW/HMW). For PCBs, LCZ is polluted by higher chlorinated congeners with 4 to 9 chlorinated atoms generated from volatilization and combustion processes. Toxicity and biological risks were assessed using toxic equivalent quantity (TEQcarc) and sediment quality guideline quotient (SQGq).
Collapse
Affiliation(s)
- Dima Merhaby
- Univ. Lille, Laboratoire de Spectrochimie Infrarouge et Raman (LASIR)-UMR CNRS 8516, Equipe Physico-chimie de l'Environnement, 59000 Lille, France; Université Libanaise, Faculté de Santé Publique Section III, Laboratoire des Sciences de l'Eau et de l'Environnement (L.S.E.E), Tripoli, Lebanon
| | - Baghdad Ouddane
- Univ. Lille, Laboratoire de Spectrochimie Infrarouge et Raman (LASIR)-UMR CNRS 8516, Equipe Physico-chimie de l'Environnement, 59000 Lille, France.
| | - Sopheak Net
- Univ. Lille, Laboratoire de Spectrochimie Infrarouge et Raman (LASIR)-UMR CNRS 8516, Equipe Physico-chimie de l'Environnement, 59000 Lille, France
| | - Jalal Halwani
- Université Libanaise, Faculté de Santé Publique Section III, Laboratoire des Sciences de l'Eau et de l'Environnement (L.S.E.E), Tripoli, Lebanon
| |
Collapse
|
18
|
Badran G, Ledoux F, Verdin A, Abbas I, Roumie M, Genevray P, Landkocz Y, Lo Guidice JM, Garçon G, Courcot D. Toxicity of fine and quasi-ultrafine particles: Focus on the effects of organic extractable and non-extractable matter fractions. CHEMOSPHERE 2020; 243:125440. [PMID: 31995888 DOI: 10.1016/j.chemosphere.2019.125440] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
To date no study has been able to clearly attribute the observed toxicological effects of atmospheric particles (PM) to a specific class of components. The toxicity of both the organic extractable matter (OEM2.5-0.3) and non-extractable matter (NEM2.5-0.3) of fine particles (PM2.5-0.3) was compared to that of PM2.5-0.3 in its entirety on normal human epithelial bronchial BEAS-2B cells in culture. The specific effect of the quasi-ultrafine fraction (PM0.3) was assessed, by comparing the responses of cells exposed to the PM2.5-0.3 and PM0.3 organic extractable matter, OEM2.5-0.3 and OEM0.3 respectively. Chemically, PAH, O-PAH, and N-PAH were respectively 43, 17, and 4 times more concentrated in PM0.3 than in PM2.5-0.3, suggesting thereby a predominant influence of anthropogenic activities and combustion sources. BEAS-2B cells exposed to PM2.5-0.3, NEM2.5-0.3, EOM2.5-0.3 and OEM0.3 lead to different profiles of expression of selected genes and proteins involved in the metabolic activation of PAH, O-PAH, and N-PAH, and in the genotoxicity pathways. Specifically, OEM0.3 was the most inducer for phase I and phase II enzymes implicated in the metabolic activation of PAH (AHR, AHRR, ARNT, CYP1A1, CYP1B1, EPHX-1, GSTA-4) thereby producing the highest DNA damage, felt by ATR and, thereafter, a cascade of protein phosphorylation (CHK1/CHK2/MDM2) closely related to the cell cycle arrest (P21 and P53 induction). This study underlined the crucial role played by the organic chemicals present in PM0.3. These results should be considered in any future study looking for the main chemical determinants responsible for the toxicity of ambient fine PM.
Collapse
Affiliation(s)
- Ghidaa Badran
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France; CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France; Lebanese Atomic Energy Commission, NCSR, Beirut, Lebanon
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France.
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Imane Abbas
- Lebanese Atomic Energy Commission, NCSR, Beirut, Lebanon
| | - Mohamed Roumie
- Lebanese Atomic Energy Commission, NCSR, Beirut, Lebanon
| | - Paul Genevray
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| |
Collapse
|
19
|
Martin PJ, Héliot A, Trémolet G, Landkocz Y, Dewaele D, Cazier F, Ledoux F, Courcot D. Cellular response and extracellular vesicles characterization of human macrophages exposed to fine atmospheric particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112933. [PMID: 31382213 DOI: 10.1016/j.envpol.2019.07.101] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/14/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Exposure to fine atmospheric Particulate Matter (PM) is one of the major environmental causes involved in the development of inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD) or asthma. When PM is penetrating in the pulmonary system, alveolar macrophages represent the first line of defense, in particular by triggering a pro-inflammatory response, and also by their ability to recruit infiltrating macrophages from the bone marrow. The aim of this in vitro study was to evaluate the gene expression and cytokine production involved in the toxicological and inflammatory responses of infiltrating macrophages, as well as the Extracellular Vesicles (EVs) production, after their exposure to PM. The ability of these EVs to convey information related to PM exposure from exposed macrophages to pulmonary epithelial cells was also evaluated. Infiltrating macrophages respond to fine particles exposure in a conventional manner, as their exposure to PM induced the expression of Xenobiotic Metabolizing Enzymes (XMEs) such as CYP1A1 and CYP1B1, the enzymes involved in oxidative stress SOD2, NQO1 and HMOX as well as pro-inflammatory cytokines in a dose-dependent manner. Exposure to PM also induced a greater release of EVs in a dose-dependent manner. In addition, the produced EVs were able to induce a pro-inflammatory phenotype on pulmonary epithelial cells, with the induction of the release of IL6 and TNFα proinflammatory cytokines. These results suggest that infiltrating macrophages participate in the pro-inflammatory response induced by PM exposure and that EVs could be involved in this mechanism.
Collapse
Affiliation(s)
- Perrine J Martin
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Amélie Héliot
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Gauthier Trémolet
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Yann Landkocz
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Dorothée Dewaele
- University of Littoral Côte d'Opale, Common Center of Measurements, CCM, Dunkerque, France.
| | - Fabrice Cazier
- University of Littoral Côte d'Opale, Common Center of Measurements, CCM, Dunkerque, France.
| | - Frédéric Ledoux
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Dominique Courcot
- University of Littoral Côte d'Opale, Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| |
Collapse
|
20
|
Curbani F, de Oliveira Busato F, do Nascimento MM, Olivieri DN, Tadokoro CE. Inhale, exhale: Why particulate matter exposure in animal models are so acute? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:230-237. [PMID: 31082607 DOI: 10.1016/j.envpol.2019.04.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Ecotoxicological studies that try to describe the effects of particulate matter (PM) on human health are important in order to gain a deeper understanding of their effects in disease outcomes. Because exposure protocols are not easily comparable, evaluating human PM exposure is a difficult task. Thus, interpreting ambiguous or conflicting results from different experiments could lead to misleading conclusions about the true nature of PM effects. To address these issues, we compiled a collection of relevant research articles in order to compare present PM exposure methods and extract data related to concentration, inhalation rates (IR), and doses. We also compare the experimental exposure levels reported in these articles to PM levels around the world. In particular, our dataset covers reported results from 75 research articles. To allow for comparison between protocols, we used this data to fit a normalization equation that depends upon concentration, exposure time, dose, inhalability, and physiological parameters. Based on the collected research papers, instillation is the prevalent exposure method. Also, the median PM IR from these experiments is three orders of magnitude higher than the PM IR found in environmental conditions (EAP). Experiments employing inhalation of concentrated PM show IR results that are two orders of magnitude higher than EAP; these results are cause for concerns, since the PM exposure were acute, sudden, and higher than the worst-case exposure scenarios reported by the world megacities. We also found that different PM exposure protocols are sources for the observed variability in physiological response results found from animal models. We discuss these findings and make suggestions for future exposure methodologies. Such considerations should be valuable for quantifying PM exposure in disease outcomes.
Collapse
Affiliation(s)
- Flávio Curbani
- Programa de Pós-Graduação Em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil; Departamento de Tecnologia Industrial, Centro Tecnológico, Universidade Federal Do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, CEP 29060-970, Vitória, ES, Brazil
| | - Fernanda de Oliveira Busato
- Laboratory of Immunobiology, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | - Maynara Marcarini do Nascimento
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | | | - Carlos Eduardo Tadokoro
- Programa de Pós-Graduação Em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil; Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.
| |
Collapse
|
21
|
Chemical Characterization of Two Seasonal PM2.5 Samples in Nanjing and Its Toxicological Properties in Three Human Cell Lines. ENVIRONMENTS 2019. [DOI: 10.3390/environments6040042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PM2.5 pollution is of great concern in China due to its adverse health effects. Many diseases have been proven to be associated with PM2.5 components, but the effects of chemical characteristics of PM2.5 on toxicological properties, especially in different human organs, are poorly understood. In this study, two seasonal PM2.5 samples (summer and winter) were collected in Nanjing, and their chemical compositions (heavy metals, water-soluble ions, organic carbon (OC), and elemental carbon (EC)) were analyzed. Human lung epithelial carcinoma cells (A549), human hepatocellular liver carcinoma cells (HepG2), and human neuroblastoma cells (Sh-Sy5y) were employed to evaluate the toxicological properties of the collected PM2.5. The results showed that the average mass concentrations of PM2.5 were lower in summer (51.3 ± 21.4 μg/m3) than those in winter (62.1 ± 21.5 μg/m3). However, the mass fractions of heavy metals, OC, and EC exhibited an opposite seasonal difference. Among all tested fractions, water-soluble ions were the major compositions of particles in both summer and winter, especially the secondary ions (SO42−, NO3− and NH4+). Besides, the ratio of OC/EC in PM2.5 was greater than two, indicating serious secondary pollution in this area. The NO3–/SO42− ratio (< 1) suggested that fixed sources made important contributions. The toxicological results showed that PM2.5 in the summer and winter significantly inhibited cell viability (p < 0.01) and induced intracellular reactive oxygen species (ROS) production (p < 0.01). Moreover, the viability inhibition in A549, Sh-Sy5y, and HepG2 cells was more prominent in summer, especially at high PM2.5 (400 μg/mL) (p < 0.05), and the induction of reactive oxygen species (ROS) in A549 and Sh-Sy5y cells was also more evident in summer. Such seasonal differences might be related to the variations of PM2.5 components.
Collapse
|
22
|
Abbas I, Badran G, Verdin A, Ledoux F, Roumie M, Lo Guidice JM, Courcot D, Garçon G. In vitro evaluation of organic extractable matter from ambient PM 2.5 using human bronchial epithelial BEAS-2B cells: Cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. ENVIRONMENTAL RESEARCH 2019; 171:510-522. [PMID: 30743243 DOI: 10.1016/j.envres.2019.01.052] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
A particular attention has been devoted to the type of toxicological responses induced by particulate matter (PM), since their knowledge is greatly complicated by the fact that it is a heterogeneous and often poorly described pollutant. However, despite intensive research effort, there is still a lack of knowledge about the specific chemical fraction of PM, which could be mainly responsible of its adverse health effects. We sought also to better investigate the toxicological effects of organic extractable matter (OEM) in normal human bronchial epithelial lung BEAS-2B cells. The wide variety of chemicals, including PAH and other related-chemicals, found in OEM, has been rather associated with early oxidative events, as supported by the early activation of the sensible NRF-2 signaling pathway. For the most harmful conditions, the activation of this signaling pathway could not totally counteract the ROS overproduction, thereby leading to critical oxidative damage to macromolecules (lipid peroxidation, oxidative DNA adducts). While NRF-2 is an anti-inflammatory, OEM exposure did not trigger any significant change in the secretion of inflammatory cytokines (i.e., TNFα, IL-1β, IL-6, IL-8, MCP-1, and IFNγ). According to the high concentrations of PAH and other related organic chemicals found in this OEM, CYP1A1 and 1B1 genes exhibited high transcription levels in BEAS-2B cells, thereby supporting both the activation of the critical AhR signaling pathway and the formation of highly reactive ultimate metabolites. As a consequence, genotoxic events occurred in BEAS-2B cells exposed to this OEM together with cell survival events, with possible harmful cell cycle deregulation. However, more studies are required to implement these observations and to contribute to better decipher the critical role of the organic fraction of air pollution-derived PM2.5 in the activation of some sensitive signaling pathways closely associated with G1/S and intra-S checkpoint blockage, on the one hand, and cell survival, on the other hand.
Collapse
Affiliation(s)
- Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Ghidaa Badran
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon; Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France; CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV EA4492, FR CNRS 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Mohamed Roumie
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France
| | | | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
23
|
Ndong Ba A, Cazier F, Verdin A, Garcon G, Cabral M, Courcot L, Diouf A, Courcot D, Gualtieri M, Fall M. Physico-chemical characterization and in vitro inflammatory and oxidative potency of atmospheric particles collected in Dakar city's (Senegal). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:568-581. [PMID: 30469127 DOI: 10.1016/j.envpol.2018.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Exposure to atmospheric pollutants has been recognized as a major risk factor of respiratory and cardiovascular diseases. Fine particles (PM2.5) and a coarser fraction (PM>2.5) sampled at an urban site in Dakar (HLM), characterized by high road traffic emissions, were compared with particles sampled at a rural area, Toubab Dialaw located about 40 km from Dakar. The physicochemical characteristics of samples revealed that PMs differ for their physical (surface area) and chemical properties (in terms of CHN, metals, ions, paraffins, VOCs and PAHs) that were 65-75% higher in urban samples. Moreover the fine PMs contain higher amounts of anthropogenic related pollutants than the PM>2.5 one. These differences are sustained by the ratios reported for the analysed PAHs which suggest as predominant primary emission sources vehicle exhausts at urban site and biomass combustion at the rural site. The inflammatory response and the oxidative damages were evaluated in BEAS-2B cells by the quantification of 4 selected inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8) and of total carbonylated proteins and the oxidative DNA adduct 8-OHdG after 8 or 24 h exposure. In accordance with the different sources and different physical and chemical properties, the inflammatory response and the oxidative damages were found higher in bronchial cells exposed to urban PMs. These data confirm the importance, also for West African countries, to evaluate the correlation between PM physico-chemical properties and potential biological impacts.
Collapse
Affiliation(s)
- Awa Ndong Ba
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, SFR Condorcet FR CNRS 3417, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France; Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, SFR Condorcet FR CNRS 3417, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Guillaume Garcon
- CHU Lille, Institut Pasteur de Lille, EA4483-IMPacts de l'Environnement Chimique sur la Santé Humaine (IMPECS), Univ. Lille, Lille, France
| | - Mathilde Cabral
- Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Lucie Courcot
- Laboratoire d'Oceanologie et de Geosciences, F-62930, CNRS UMR8187, LOG, Université du Littoral Côte d'Opale, Wimereux, France
| | - Amadou Diouf
- Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, SFR Condorcet FR CNRS 3417, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Maurizio Gualtieri
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492, SFR Condorcet FR CNRS 3417, Maison de la Recherche en Environnement Industriel, Université du Littoral Côte d'Opale, Dunkerque, France.
| | - Mamadou Fall
- Laboratoire de Toxicologie et d'Hydrologie, Faculté de Médecine, de Pharmacie et d'Odontologie, Université Cheikh Anta Diop, Dakar, Senegal
| |
Collapse
|
24
|
Roper C, Delgado LS, Barrett D, Massey Simonich SL, Tanguay RL. PM 2.5 Filter Extraction Methods: Implications for Chemical and Toxicological Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:434-442. [PMID: 30507171 PMCID: PMC6652177 DOI: 10.1021/acs.est.8b04308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Toxicology research into the global public health burden of fine particulate matter (PM2.5) exposures frequently requires extraction of PM2.5 from filters. A standardized method for these extractions does not exist, leading to inaccurate interlaboratory comparisons. It is largely unknown how different filter extraction methods might impact the composition and bioactivity of the resulting samples. We characterized the variation in these metrics by using equal portions of a single PM2.5 filter, with each portion undergoing a different extraction method. Significant differences were observed between extraction methods for concentrations of elements and polycyclic aromatic hydrocarbons (PAHs) for the PM2.5 tested following its preparation for biological response studies. Importantly, the chemical profiles differed from those observed when we used standard protocols for chemical characterization of the ambient sample, demonstrating that extraction can alter both chemical component amounts and species profiles of the extracts. The impact of these chemical differences on sensitive end points of zebrafish development was investigated. Significant differences in the percent incidence and timing of mortality were associated with the PM2.5 extraction method. This research highlights the importance of and rationale for considering the extraction method when interlaboratory comparisons of PM2.5 toxicology research are made.
Collapse
Affiliation(s)
- Courtney Roper
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Lisandra Santiago Delgado
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Damien Barrett
- Department of Microbiology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
25
|
Zhang HH, Li Z, Liu Y, Xinag P, Cui XY, Ye H, Hu BL, Lou LP. Physical and chemical characteristics of PM 2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer. J Zhejiang Univ Sci B 2018; 19:317-326. [PMID: 29616507 DOI: 10.1631/jzus.b1700123] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the increasing occurrence of haze during the summer, the physicochemical characteristics and toxicity differences in PM2.5 in different seasons are of great concern. Hangzhou is located in an area that has a subtropical monsoon climate where the humidity is very high during both the summer and winter. However, there are limited studies on the seasonal differences in PM2.5 in these weather conditions. In this test, PM2.5 samples were collected in the winter and summer, the morphology and chemical composition of PM2.5 were analyzed, the toxicity of PM2.5 to human bronchial cells BEAS-2B was compared, and the correlation between PM2.5 toxicity and the chemical composition was discussed. The results showed that during both the winter and summer, the main compounds in the PM2.5 samples were water-soluble ions, particularly SO42-, NO3-, and NH4+, followed by organic components, while heavy metals were present at lower levels. The higher the mass concentration of PM2.5, the greater its impact on cell viability and ROS levels. However, when the mass concentration of PM2.5 was similar, the water extraction from the summer samples showed a greater impact on BEAS-2B than that from the winter samples. The cytotoxicity of PM2.5 was closely associated with heavy metals and organic pollutants but less related to water-soluble ions.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zheng Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ping Xinag
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Hui Ye
- Hangzhou Environmental Monitoring Center, Hangzhou 310007, China
| | - Bao-Lan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.,Research Center of Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| | - Li-Ping Lou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.,Research Center of Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Gualtieri M, Grollino MG, Consales C, Costabile F, Manigrasso M, Avino P, Aufderheide M, Cordelli E, Di Liberto L, Petralia E, Raschellà G, Stracquadanio M, Wiedensohler A, Pacchierotti F, Zanini G. Is it the time to study air pollution effects under environmental conditions? A case study to support the shift of in vitro toxicology from the bench to the field. CHEMOSPHERE 2018; 207:552-564. [PMID: 29843032 DOI: 10.1016/j.chemosphere.2018.05.130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Air pollution and particulate matter are recognised cause of increased disease incidence in exposed population. The toxicological processes underlying air pollution associated effects have been investigated by in vivo and/or in vitro experimentation. The latter is usually performed by exposing cells cultured under submerged condition to particulate matter concentration quite far from environmental exposure expected in humans. Here we report for the first time the feasibility of a direct exposure of air liquid interface cultured cells to environmental concentration of particulate matter. Inflammatory proteins release was analysed in cell medium while differential expression of selected genes was analysed in cells. Significant association of anti-oxidant genes was observed with secondary and aged aerosol, while cytochrome activation with primary and PAHs enriched ultrafine particles. The results obtained clearly show the opportunity to move from the lab bench to the field for properly understanding the toxicological effects also of ultrafine particles on selected in vitro models.
Collapse
Affiliation(s)
| | | | - Claudia Consales
- ENEA SSPT-TECS-BIORISC, Via Anguillarese, 301, 00123, Rome, Italy
| | - Francesca Costabile
- CNR-ISAC - Italian National Research Council, Institute of Atmospheric Science and Climate, Rome, Italy
| | - Maurizio Manigrasso
- Department of Technological Innovations, INAIL, Via IV Novembre 144, 00187 Rome, Italy
| | - Pasquale Avino
- Department of Technological Innovations, INAIL, Via IV Novembre 144, 00187 Rome, Italy; Department of Agricultural, Environmental and Food Sciences, DiAAA, University of Molise, via De Sanctis, Campobasso I-86100, Italy
| | | | - Eugenia Cordelli
- ENEA SSPT-TECS-BIORISC, Via Anguillarese, 301, 00123, Rome, Italy
| | - Luca Di Liberto
- CNR-ISAC - Italian National Research Council, Institute of Atmospheric Science and Climate, Rome, Italy
| | - Ettore Petralia
- ENEA SSPT-MET-INAT, Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| | | | | | - Alfred Wiedensohler
- Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | | | - Gabriele Zanini
- ENEA SSPT-MET-INAT, Via Martiri di Monte Sole 4, 40129 Bologna, Italy
| |
Collapse
|
27
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
28
|
Liu Y, Feng GZ, Du Q, Jin XX, Du XR. Fine particulate matter aggravates allergic airway inflammation through thymic stromal lymphopoietin activation in mice. Mol Med Rep 2017; 16:4201-4207. [PMID: 28765890 DOI: 10.3892/mmr.2017.7089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/25/2017] [Indexed: 11/05/2022] Open
Abstract
Fine particulate matter (PM2.5) has been linked to exacerbation of allergic airway inflammation in mice. However, the mechanism underlying exposure to PM2.5 and subsequent and adverse effects remains to be fully elucidated. Therefore, the present study aimed to investigate the effects of PM2.5 by different levels on airway inflammation in mouse models of in allergic and steroid‑resistant asthma. BALB/c mice were nasally instilled with PBS (control) or 10, 31.6 or 100 µg PM2.5, and randomly assigned into nine groups. The acute asthma model was previously induced to investigate the change of inflammatory cells in bronchoalveolar lavage fluid (BALF). Histopathological changes of the lung were assessed, in addition to levels of interleukin (IL)‑4 and IL‑13 in BALF and immunoglobulin Ein serum. Thymic stromal lymphopoietin (TSLP) proteinexpression levels were assessed by western blotting. The present study demonstrated that medium‑ and high‑dose PM2.5 is linked to acute exacerbation of allergic airway inflammation in mice. In conclusion, the pathological mechanisms of PM2.5 may be associated with allergic/steroid‑resistant airway inflammation, T‑cell helper (Th)1/Th2 cytokine production and upregulation of TSLP expression in a murine model of allergic and steroid-resistant asthma.
Collapse
Affiliation(s)
- Yan Liu
- Department of Respiratory, The Central Hospital of Maanshan, Maanshan, Anhui 243000, P.R. China
| | - Gan-Zhu Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Qiang Du
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Xiao-Xiang Jin
- Department of Respiratory, The Central Hospital of Maanshan, Maanshan, Anhui 243000, P.R. China
| | - Xing-Ran Du
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
29
|
Landkocz Y, Ledoux F, André V, Cazier F, Genevray P, Dewaele D, Martin PJ, Lepers C, Verdin A, Courcot L, Boushina S, Sichel F, Gualtieri M, Shirali P, Courcot D, Billet S. Fine and ultrafine atmospheric particulate matter at a multi-influenced urban site: Physicochemical characterization, mutagenicity and cytotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:130-140. [PMID: 27914859 DOI: 10.1016/j.envpol.2016.11.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Particulate Matter (PM) air pollution is one of the major concerns for environment and health. Understanding the heterogeneity and complexity of fine and ultrafine PM is a fundamental issue notably for the assessment of PM toxicological effects. The aim of this study was to evaluate mutagenicity and cytotoxicity of a multi-influenced urban site PM, with or without the ultrafine fraction. For this purpose, PM2.5-0.3 (PM with aerodynamic diameter ranging from 0.3 to 2.5 μm) and PM2.5 were collected in Dunkerque, a French coastal industrial city and were extensively characterized for their physico-chemical properties, including inorganic and organic species. In order to identify the possible sources of atmospheric pollution, specific criteria like Carbon Preference Index (CPI) and PAH characteristic ratios were investigated. Mutagenicity assays using Ames test with TA98, TA102 and YG1041 Salmonella strains with or without S9 activation were performed on native PM sample and PM organic extracts and water-soluble fractions. BEAS-2B cell viability and cell proliferation were evaluated measuring lactate dehydrogenase release and mitochondrial dehydrogenase activity after exposure to PM and their extracts. Several contributing sources were identified in PM: soil resuspension, marine emissions including sea-salt or shipping, road traffic and industrial activities, mainly related to steelmaking or petro-chemistry. Mutagenicity of PM was evidenced, especially for PM2.5, including ultrafine fraction, in relation to PAHs content and possibly nitro-aromatics compounds. PM induced cytotoxic effects at relatively high doses, while alteration of proliferation with low PM doses could be related to underlying mechanisms such as genotoxicity.
Collapse
Affiliation(s)
- Yann Landkocz
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Frédéric Ledoux
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France.
| | - Véronique André
- Univ. Caen-Normandie, Aliments, Bioprocédés, Toxicologie, Environnements, EA 4651, Centre François Baclesse, F-14032, Caen, France
| | - Fabrice Cazier
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Paul Genevray
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Dorothée Dewaele
- Univ. Littoral Côte d'Opale, CCM - Centre Commun de Mesures, F-59140, Dunkerque, France
| | - Perrine J Martin
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Capucine Lepers
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Anthony Verdin
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Lucie Courcot
- Univ. Littoral Côte d'Opale, CNRS UMR8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930, Wimereux, France
| | - Saâd Boushina
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - François Sichel
- Univ. Caen-Normandie, Aliments, Bioprocédés, Toxicologie, Environnements, EA 4651, Centre François Baclesse, F-14032, Caen, France
| | - Maurizio Gualtieri
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Pirouz Shirali
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Dominique Courcot
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| | - Sylvain Billet
- Univ. Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, F-59140, Dunkerque, France
| |
Collapse
|