1
|
Zhang T, Liu W, Yang T, Zhai Y, Gu X, Xu L, Li F, Wu M, Lin J. Association between ambient fine particular matter components and subsequent cognitive impairment in community-dwelling older people: a prospective cohort study from eastern China. Aging Clin Exp Res 2024; 36:150. [PMID: 39060791 PMCID: PMC11282123 DOI: 10.1007/s40520-024-02793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Fine particular matter (PM2.5) has been associated with dementia, but limited information is available regarding the association between PM2.5 components and dementia. AIMS We aimed to identify the major components of PM2.5 that affect cognitive function to further investigate its mechanism of action, and develop a prevention strategy for dementia. METHODS In this study, we included 7804 participants aged ≥ 60 years recruited from seven counties in Zhejiang province, eastern China. The participants completed the baseline survey between 2014 and 2015, and were followed up until the end of 2020. We adopted single-component robust Poisson regression models for analyses, and estimated relative risks and 95% confidence intervals describing associations between the chemical constituents of PM2.5 exposure and incident cognitive impairment in those who were free from cognitive impairment at baseline. RESULTS Significantly positive associations were observed between sulfate, nitrate, ammonium, and organic matter in PM2.5 and incident cognitive impairment across different exposure periods; the relative risks of 10-year exposure before enrollment ranged from 1.01 to 1.02. However, we did not find a significant association between black carbon and cognitive impairment. The point estimates of the relative risk values did not change substantially after performing the sensitivity analyses. CONCLUSIONS Our findings strengthen the idea that long-term exposure to PM2.5 mass and its chemical components is associated with an elevated risk of incident cognitive impairment among older adults.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Wenfeng Liu
- Office, Changshan Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| | - Tao Yang
- Office, Yuhang Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yujia Zhai
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xue Gu
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Le Xu
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Fudong Li
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Mengna Wu
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Junfen Lin
- Department of Public Health Surveillance and Advisory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wang H, Murayama T, Ishida T, Shimizu KI, Sakaguchi N, Yamaguchi K, Miura H, Shishido T. The Development of the Regenerable Catalytic System in Selective Catalytic Oxidation of Ammonia with High N 2 Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18693-18702. [PMID: 38572967 DOI: 10.1021/acsami.3c17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Supported particulate noble-metal catalysts are widely used in industrial catalytic reactions. However, these metal species, whether in the form of nanoparticles or highly dispersed entities, tend to aggregate during reactions, leading to a reduced activity or selectivity. Addressing the frequent necessity for the replacement of industrial catalysts remains a significant challenge. Herein, we demonstrate the feasibility of the 'regenerable catalytic system' exemplified by selective catalytic oxidation of ammonia (NH3-SCO) employing Ag/Al2O3 catalysts. Results demonstrate that our highly dispersed Ag catalyst (Ag HD) maintains >90% N2 selectivity at 80% NH3 conversion and >80% N2 selectivity at 100% NH3 conversion after enduring 5 cycles of reducible aggregation and oxidative dispersion. Moreover, it consistently upholds over 98% N2 selectivity at 100% NH3 conversion after 10 cycles of Ar treatment. During the aggregation-dispersion process, the Ag HD catalyst intentionally aggregated into Ag nanoparticles (Ag NP) after H2 reduction and exhibited remarkable regenerable capabilities, returning to the Ag HD state after calcination in the air. This structural evolution was characterized through in situ transmission electron microscopy, atomically resolved high-angle annular dark-field scanning transmission electron microscopy, and X-ray absorption spectroscopy, revealing the on-site oxidative dispersion of Ag NP. Additionally, in situ diffuse reflectance infrared Fourier transform spectroscopy provided insights into the exceptional N2 selectivity on Ag HD catalysts, elucidating the critical role of NO+ intermediates. Our findings suggest a sustainable and cost-effective solution for various industry applications.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-Based Society, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-Based Society, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-Based Society, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Norihito Sakaguchi
- Laboratory of Integrated Function Materials, Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-Based Society, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8520, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-Based Society, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
3
|
Gianquintieri L, Oxoli D, Caiani EG, Brovelli MA. Implementation of a GEOAI model to assess the impact of agricultural land on the spatial distribution of PM2.5 concentration. CHEMOSPHERE 2024; 352:141438. [PMID: 38367880 DOI: 10.1016/j.chemosphere.2024.141438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Air pollution is considered one of the major environmental risks to health worldwide. Researchers are making significant efforts to study it, thanks to state-of-art technologies in data collection and processing, and to mitigate its effect. In this context, while a lot is known about the role of urbanization, industries, and transport, the impact of agricultural activities on the spatial distribution of pollution is less studied, despite knowledge about emissions suggest it is not a secondary factor. Therefore, the aim of this study was to assess this impact, and to compare it with that of traditional polluting sources, harvesting the capabilities of GEOAI (Geomatics and Earth Observation Artificial Intelligence). The analysis targeted the highly polluted territory of Lombardy, Italy, considering fine particulate matter (PM2.5). PM2.5 data were obtained from the Copernicus-Atmosphere-Monitoring-Service and processed to infer time-invariant spatial parameters (frequency, intensity and exposure) of concentration across the whole period. An ensemble architecture was implemented, with three blocks: correlation-based features selection, Multiscale-Geographically-Weighted-Regression for spatial enhancement, and a final random forest classifier. Finally, the SHapley Additive exPlanation algorithm was applied to compute the relevance of the different land-use classes on the model. The impact of land-use classes was found significantly higher compared to other published models, showing that the insignificant correlations found in the literature are probably due to an unfit experimental setup. The impact of agricultural activities on the spatial distribution of PM2.5 concentration was comparable to the other considered sources, even when focusing only on the most densely inhabited urban areas. In particular, the agriculture's contribution resulted in pollution spikes rather than in a baseline increase. These results allow to state that public policymakers should consider also agricultural activities for evidence-based decision-making about pollution mitigation.
Collapse
Affiliation(s)
- Lorenzo Gianquintieri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Daniele Oxoli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
| | - Enrico Gianluca Caiani
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | |
Collapse
|
4
|
Li T, Li J, Xie L, Lin B, Jiang H, Sun R, Wang X, Liu B, Tian C, Li Q, Jia W, Zhang G, Peng P. In situ biomass burning enhanced the contribution of biogenic sources to sulfate aerosol in subtropical cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168384. [PMID: 37956844 DOI: 10.1016/j.scitotenv.2023.168384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Sulfurous gases released by biogenic sources play a key role in the global sulfur cycle. However, the contribution of biogenic sources to sulfate aerosol in the urban atmosphere has received little attention. Emission sources and formation process of sulfate in Guangzhou, a subtropical mega-city in China, were clarified using multiple methods, including isotope tracers and chemical markers. The δ18O of sulfate suggested that secondary sulfate was the dominant component (84 %) of sulfate aerosol, which mainly formed by transition metal ion (TMI) catalyzed oxidation (31 %) and OH radical oxidation (30 %). The factors driving secondary sulfate formation were revealed using a tree boosting model, which suggested that NH3, temperature, and oxidants were the most important factors. The δ34S of sulfate indicated that biogenic sources accounted for annual average of 26.0 % of the sulfate, which increased to 30.4 % in winter monsoon period. Rice straw burning enhanced sulfate formation by promoting the release of reduced sulfur from soil, which is rapidly converted into sulfate under a subtropical urban atmosphere with high concentration of NH3 and oxidants. This study revealed the important influence of rice straw burning on biogenic sulfur emission during the rice harvest, thereby providing insight into the sulfur cycle and regional air pollution.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China.
| | - Luhua Xie
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China.
| | - Boji Lin
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongxing Jiang
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Rong Sun
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiao Wang
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben Liu
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, PR China
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, State Key Laboratory of Isotope Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, PR China
| |
Collapse
|
5
|
Shen N, Wang W, Tan J, Wang Q, Huang L, Wang Y, Wang M, Li L. Roles of historical land use/cover and nitrogen fertilizer application changes on ammonia emissions in farmland ecosystem from 1990 to 2020 in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167565. [PMID: 37802343 DOI: 10.1016/j.scitotenv.2023.167565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/10/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
In the past decades, China has witnessed significant changes in its land use/land cover (LULC) pattern. These changes have led to a direct impact on ammonia (NH3) emissions in soil background, and indirectly affected the total nitrogen fertilizer (N-fertilizer) application, crop planting amount and the resulting straw mass through the changes of cropland area. Great changes have also taken place in the amount and structure of fertilizer application in China, which affects the NH3 emissions from farmland ecosystems caused by N-fertilizer application. The aforementioned changes have led to significant alterations in NH3 emissions from China's farmland ecosystems over the past 30 years. The process of these changes remains to be analyzed, and the contributions of LULC changes and N-fertilizer application in this process are yet to be assessed. This study aims to investigate the NH3 emission changes and spatiotemporal variation characteristics from farmland ecosystems during 1990 and 2020 due to the LULC changes. Additionally, the study employs scenario analysis method to discuss the effects of LULC changes and N-fertilizer application changes on NH3 emissions in farmland ecosystems. Results indicate that there is evident spatiotemporal heterogeneity in China's LULC pattern, particularly in eastern China. The southeast region is predominantly characterized by the conversion of cropland into construction land. Moreover, some regions such as Northwest China and Northeast China have experienced the conversion of other land types into cropland, significantly influenced by national development policies. From 1990 to 2020, the national NH3 emissions from farmland ecosystem range from 3294.75 Gg to 4064.20 Gg. NH3 emissions and their interannual variation in farmland ecosystems exhibit significant differences across various regions. The regions with higher contributions to NH3 emissions in farmland ecosystems are East China, Central China, and North China, accounting for 25.32 %-37.26 %, 18.85 %-22.46 % and 11.24 %-18.50 % of the total emissions, respectively. NH3 emissions in each region are influenced by cropland area, N-fertilizer application, and regional development characteristics. Compared to LULC changes, changes in N-fertilizer application have a more pronounced impact on NH3 emission changes in farmland ecosystems. From 1990 to 2020, the contribution (increase or decrease) of N-fertilizer application changes to NH3 emission changes in farmland ecosystems in China ranges from 0.11 % to 16.61 %, while the contribution (increase or decrease) of LULC changes ranges from 0.47 % to 2.38 %. South China demonstrates a unique situation regarding the influence of LULC changes. This region has a relatively small cropland area, and fluctuations in cropland area significantly affect NH3 emissions in farmland ecosystems. The influence of policies is evident. From the changes in cropland area in Northwest China and Northeast China to changes in N-fertilizer application, policy changes have consistently impacted the changes in NH3 emissions in China's farmland ecosystems. From "soft policies" involving encouragement and guidance to "hard policies" encompassing the establishment of necessary targets, the degree of strictness in policy directly affects the timeliness of policies effectiveness. The results of this study indicate that reducing the application of N-fertilizers is the primary approach to reducing NH3 emissions in China's farmland ecosystems. In terms of policy guidance, compared to implementing structural and pathway adjustments, implementing clear total control of fertilizer usage is a timely and effective choice for reducing NH3 emissions.
Collapse
Affiliation(s)
- Nanchi Shen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Wenjin Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Jiani Tan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Qing Wang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ling Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Yangjun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Min Wang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Yang S, Wang M, Wang W, Zhang X, Han Q, Wang H, Xiong Q, Zhang C, Wang M. Establishing an emission inventory for ammonia, a key driver of haze formation in the southern North China plain during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166857. [PMID: 37678532 DOI: 10.1016/j.scitotenv.2023.166857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Despite the significant reduction in atmospheric pollutant levels during the COVID-19 lockdown, the presence of haze in the North China Plain remained a frequent occurrence owing to the enhanced formation of secondary inorganic aerosols under ammonia-rich conditions. Quantifying the increase or decrease in atmospheric ammonia (NH3) emissions is a key step in exploring the causes of the COVID-19 haze. Historic activity levels of anthropogenic NH3 emissions were collected through various yearbooks and studies, an anthropogenic NH3 emission inventory for Henan Province for 2020 was established, and the variations in NH3 emissions from different sources between COVID-19 and non-COVID-19 years were investigated. The validity of the NH3 emission inventory was further evaluated through comparison with previous studies and uncertainty analysis from Monte Carlo simulations. Results showed that the total NH3 emissions gradually increased from north-west to south-east, totalling 751.80 kt in 2020. Compared to the non-COVID-19 year of 2019, the total NH3 emissions were reduced by approximately 4 %, with traffic sources, waste disposal and biomass burning serving as the sources with the top three largest reductions, approximately 33 %, 9.97 % and 6.19 %, respectively. Emissions from humans and fuel combustion slightly increased. Meanwhile, livestock waste emissions decreased by only 3.72 %, and other agricultural emissions experienced insignificant change. Non-agricultural sources were more severely influenced by the COVID-19 lockdown than agricultural sources; nevertheless, agricultural activities contributed 84.35 % of the total NH3 emissions in 2020. These results show that haze treatment should be focused on reducing NH3, particularly controlling agricultural NH3 emissions.
Collapse
Affiliation(s)
- Shili Yang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Mingya Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Wenju Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xuechun Zhang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Qiao Han
- Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haifeng Wang
- Jincheng Ecological Environment Bureau, Jincheng 048000, China
| | - Qinqing Xiong
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Chunhui Zhang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Mingshi Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China.
| |
Collapse
|
7
|
Xu J, Lu M, Guo Y, Zhang L, Chen Y, Liu Z, Zhou M, Lin W, Pu W, Ma Z, Song Y, Pan Y, Liu L, Ji D. Summertime Urban Ammonia Emissions May Be Substantially Underestimated in Beijing, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13124-13135. [PMID: 37616592 DOI: 10.1021/acs.est.3c05266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Ammonia (NH3) is critical to the nitrogen cycle and PM2.5 formation, yet a great deal of uncertainty exists in its urban emission quantifications. Model-underestimated NH3 concentrations have been reported for cities, yet few studies have provided an explanation. Here, we explore reasons for severe WRF-Chem model underestimations of NH3 concentrations in Beijing in August 2018, including simulated gas-particle partitioning, meteorology, regional transport, and emissions, using spatially refined (3 km resolution) NH3 emission estimates in the agricultural sector for Beijing-Tianjin-Hebei and in the traffic sector for Beijing. We find that simulated NH3 concentrations are significantly lower than ground-based and satellite observations during August in Beijing, while wintertime underestimations are much more moderate. Further analyses and sensitivity experiments show that such discrepancies cannot be attributed to factors other than biases in NH3 emissions. Using site measurements as constraints, we estimate that both agricultural and non-agricultural NH3 emission totals in Beijing shall increase by ∼5 times to match the observations. Future research should be performed to allocate underestimations to urban fertilizer, power, traffic, or residential sources. Dense and regular urban NH3 observations are necessary to constrain and validate bottom-up inventories and NHx simulation.
Collapse
Affiliation(s)
- Jiayu Xu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Mengran Lu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
- Department of Ecology and Environment of Shanxi Province, Taiyuan 030024, China
| | - Yixin Guo
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Youfan Chen
- Sichuan Academy of Environmental Policy and Planning, Chengdu 610041, China
| | - Zehui Liu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Mi Zhou
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
- Princeton School of Public and International Affairs, Princeton University, Princeton, New Jersey 08540, United States
| | - Weili Lin
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| | - WeiWei Pu
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Zhiqiang Ma
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Yu Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
8
|
Bhuiyan MSI, Rahman A, Loladze I, Das S, Kim PJ. Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162712. [PMID: 36921862 DOI: 10.1016/j.scitotenv.2023.162712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The subsurface application (SA) of nitrogenous fertilizers is a potential solution to mitigate climate change and improve food security. However, the impacts of SA technology on greenhouse gas (GHG) emissions and agronomic yield are usually evaluated separately and their results are inconsistent. To address this gap, we conducted a meta-analysis synthesizing 40 peer-reviewed studies on the effects of SA technology on GHG and ammonia (NH3) emissions, nitrogen uptake (NU), crop yield, and soil residual NO3-N in rice paddies and upland cropping system. Compared to the surface application of N, SA technology significantly increased rice yields by 32 % and crop yield in upland systems by 62 %. The largest SA-induced increases in crop yield were found at low N input rates (<100 kg Nha-1) in rice paddies and medium N input rates (100-200 kg Nha-1) in upland systems, suggesting that soil moisture is a key factor determining the efficiency of SA technology. SA treatments increased yields by more at reduced fertilizer rates (~30 % less N), a shallow depth (<10 cm), and with urea in both cropping systems than at the full (recommended) N rate, a deeper depth (10-20 cm), and with ammonical fertilizer. SA treatments significantly increased NU in rice paddies (34 %) and upland systems (18 %), and NO3-N (40 %) in paddyland; however, NO3-N decreased (28 %) in upland conditions. Ammonia mitigation was greater in paddyland than in upland conditions. SA technology decreased the carbon footprint (CF) in paddyland by 29 % and upland systems by 36 %, and overall by 33 %. Compared with broadcasting, SA significantly reduced CH4 emissions by 16 %, N2O emissions by 30 %, and global warming potential (GWP) by 10 % in paddy cultivation. Given SA increased grain yield and NU while reducing NH3, CF, and GWP, this practice provides dual benefits - mitigating climate change and ensuring food security.
Collapse
Affiliation(s)
- Mohammad Saiful Islam Bhuiyan
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea; Department of Soil Science, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Azizur Rahman
- School of Computing, Mathematics and Engineering, Charles Sturt University, Wagg Wagga, NSW 2678, Australia
| | - Irakli Loladze
- Bryan College of Health Science, Lincoln, NE 68506, United States; School of Mathematical and Statistical Sciences, Arizona State University, United States
| | - Suvendu Das
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea
| | - Pil Joo Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea; Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, South Korea.
| |
Collapse
|
9
|
Cui X, Peng L, Guo Y, Zhang G, Liu H, Wen Y, Zhang G, Sun J. Distribution, source identification and ecological effects of aerosol dissolved nutrients in the Bohai Bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121069. [PMID: 36639046 DOI: 10.1016/j.envpol.2023.121069] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The atmospheric aerosols around the Bohai Bay are affected intensively by the surrounding industrial, shipping and other human activities. Although atmospheric dry deposition is an important way for nutrients to enter the Bohai Bay, few studies explore the distribution patterns, source and deposition fluxes of typical nutrients in aerosols and their impacts on the marine ecosystem. This paper explored the spatial-temporal distribution of typical aerosol nutrients in summer and autumn, and their source and ecological effects were illustrated further. The mean concentration of dissolved total phosphorus (DTP), dissolved total nitrogen (DTN), dissolved organic nitrogen (DON), dissolved inorganic nitrogen (DIN), ammonium (NH4-N), nitrate (NO3-N), nitrite (NO2-N), silicate (SiO3-Si), phosphate (PO4-P), and dissolved organic phosphorus (DOP) were 31.22, 847.22, 288.19, 559.77, 288.19, 304.00, 253.65, 2.12, 15.74 and 15.48 nmol/m3, respectively, while their fluxes were corresponding to 0.61, 8.36, 2.52, 4.90, 1.41, 2.49, 0.02, 0.04, 0.19 and 0.26 mmol/(m2 month). Typical aerosol nutrient concentrations in autumn were mostly higher than those in summer, with high values occurring mainly in the central region. The potential sources of pollution were mainly concentrated in Shandong and Mongolia, and the sources of pollution were mainly agriculture, dust and industry. The large N:P and N:Si ratios in the dry deposition likely exacerbated Si and P limitation in the water column. These results provided the data basis for evaluating the pollution status and revealed that the dry deposition of aerosol nutrients should not be neglected by the ecological environment in the Bohai Bay.
Collapse
Affiliation(s)
- Xudong Cui
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Liying Peng
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yu Guo
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Guicheng Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haijiao Liu
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yujian Wen
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Guodong Zhang
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jun Sun
- Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute for Advanced Marine Research, China University of Geosciences, Guangzhou, 511462, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China.
| |
Collapse
|
10
|
Kar S, Singh R, Gurian PL, Hendricks A, Kohl P, McKelvey S, Spatari S. Life cycle assessment and techno-economic analysis of nitrogen recovery by ammonia air-stripping from wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159499. [PMID: 36257433 DOI: 10.1016/j.scitotenv.2022.159499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) with anaerobic digestion of biosolids produce an ammonia-rich sidestream out of which nitrogen can be recovered through air stripping. Recovered ammonia can be used to produce ammonium sulfate (AS) for agricultural use, enabling the circular return of nitrogen as fertilizer to the food system. We investigate the cost and life cycle environmental impact of recovering ammonia from the sidestream of WWTPs for conversion to AS and compare it to AS production from the Haber Bosch process. We perform life cycle assessment (LCA) to investigate the environmental impact of AS fertilizer production by air-stripping ammonia from WWTP sidestreams at varying sidestream nitrogen concentrations. Techno-economic analysis (TEA) is performed to assess the break-even selling price of sidestream AS production at a WWTP in the City of Philadelphia. Greenhouse gas emissions for air-stripping technology range between 0.2 and 0.5 kg CO2e/kg AS, about six times lower than the hydrocarbon-based Haber-Bosch process, estimated at 2.5 kg CO2e/kg AS. Further reduction of greenhouse gas emissions is feasible by replacing fossil-based energy use in air-stripping process (82-98 % of net energy demand) with renewable sources. Also, a significant reduction in mineral depletion and improvement in human and ecosystem health are observed for the air-stripping approach. Furthermore, the break-even selling price for installing sidestream-based AS production at the Philadelphia's WWTP, considering capital and operating costs, is estimated at $0.046/kg AS (100 %), which is 92 % lower than the 2014 estimate of AS's average selling price at farms in the United States. We conclude that even with varying ammonia concentrations and high sidestream volume, air-stripping technology offers an environmentally and economically favorable option for implementing nitrogen recovery and simultaneous production of AS at WWTPs.
Collapse
Affiliation(s)
- Saurajyoti Kar
- Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia 19104, United States.
| | - Rajveer Singh
- Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia 19104, United States
| | - Patrick L Gurian
- Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia 19104, United States
| | - Adam Hendricks
- Philadelphia Water Department, Philadelphia 19107, United States
| | - Paul Kohl
- Philadelphia Water Department, Philadelphia 19107, United States
| | - Sean McKelvey
- Philadelphia Water Department, Philadelphia 19107, United States
| | - Sabrina Spatari
- Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia 19104, United States; Civil and Environmental Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
11
|
Nawaz MO, Henze DK, Anenberg SC, Braun C, Miller J, Pronk E. A Source Apportionment and Emission Scenario Assessment of PM 2.5- and O 3-Related Health Impacts in G20 Countries. GEOHEALTH 2023; 7:e2022GH000713. [PMID: 36618583 PMCID: PMC9811479 DOI: 10.1029/2022gh000713] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Exposure to air pollution is a leading risk factor for premature death globally; however, the complexity of its formation and the diversity of its sources can make it difficult to address. The Group of Twenty (G20) countries are a collection of the world's largest and most influential economies and are uniquely poised to take action to reduce the global health burden associated with air pollution. We present a framework capable of simultaneously identifying regional and sectoral sources of the health impacts associated with two air pollutants, fine particulate matter (PM2.5) and ozone (O3) in G20 countries; this framework is also used to assess the health impacts associated with emission reductions. This approach combines GEOS-Chem adjoint sensitivities, satellite-derived data, and a new framework designed to better characterize the non-linear relationship between O3 exposures and nitrogen oxides emissions. From this approach, we estimate that a 50% reduction of land transportation emissions by 2040 would result in 251 thousand premature deaths avoided in G20 countries. These premature deaths would be attributable equally to reductions in PM2.5 and O3 exposure which make up 51% and 49% of the potential benefits, respectively. In our second application, we estimate that the energy generation related co-benefits associated with G20 countries staying on pace with their net-zero carbon dioxide targets would be 290 thousand premature deaths avoided in 2040; action by India (47%) would result in the most benefits of any country and a majority of these avoided deaths would be attributable to reductions in PM2.5 exposure (68%).
Collapse
Affiliation(s)
- M. Omar Nawaz
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
| | - Daven K. Henze
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
| | - Susan C. Anenberg
- Milken Institute School of Public HealthGeorge Washington UniversityWashingtonDCUSA
| | | | - Joshua Miller
- The International Council on Clean TransportationSan FranciscoCAUSA
| | - Erik Pronk
- The International Council on Clean TransportationSan FranciscoCAUSA
| |
Collapse
|
12
|
Mgelwa AS, Song L, Fan M, Li Z, Zhang Y, Chang Y, Pan Y, Gurmesa GA, Liu D, Huang S, Qiu Q, Fang Y. Isotopic imprints of aerosol ammonium over the north China plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120376. [PMID: 36228846 DOI: 10.1016/j.envpol.2022.120376] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric PM2.5 poses a variety of health and environmental risks to urban environments. Ammonium is one of the main components of PM2.5, and its role in PM2.5 pollution will likely increase in the coming years as NH3 emissions are still unregulated and rising in many cities worldwide. However, partitioning urban NH4+ sources remains challenging. Although the 15N natural abundance (δ15N) analysis is a promising approach for this purpose, it has seldom been applied across multiple cities within a given region. This limits our understanding of the regional patterns and controls of NH4+ sources in urban environments. Here, we collected PM2.5 samples using an active sampling technique during winter at six cities in the North China Plain to characterize the concentrations, δ15N and sources of NH4+ in PM2.5. We found substantial variations in both the concentrations and δ15N of NH4+ among the sites. The mean NH4+ concentrations across the six cities ranged from 3.6 to 12.1 μg m-3 on polluted days and from 0.9 to 10.6 μg m-3 on non-polluted days. The δ15N ranged from 6.5‰ to 13.9‰ on polluted days and from 8.7‰ to 13.5‰ on non-polluted days. The δ15N decreased with increasing NH4+ concentrations at all six sites. We found that non-agricultural sources (vehicle exhaust, ammonia slip and urban wastes) contributed 72%-94% and 56%-86% of the NH4+ on polluted and non-polluted days, respectively, and that during polluted days, combustion-related emissions (vehicle exhaust and ammonia slip) were positively associated with the proportion of urban area, population density and number of vehicles, highlighting the importance of local sources of particulate pollution. This study suggests that the analysis of 15N in aerosol NH4+ is a promising approach for apportioning atmospheric NH3 sources over a large region, and this approach has potential for mapping rapidly and precisely the sources of NH3 emissions.
Collapse
Affiliation(s)
- Abubakari Said Mgelwa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; College of Natural Resources Management & Tourism, Mwalimu Julius K. Nyerere University of Agriculture & Technology, P.O. Box 976, Musoma, Tanzania
| | - Linlin Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiyi Fan
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhengjie Li
- College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yunhua Chang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change (ILCEC), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Geshere Abdisa Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China
| | - Dongwei Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China
| | - Shaonan Huang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Key Laboratory of Air Pollution Prevention and Ecological Security (Henan University), Kaifeng, 475004, China
| | - Qingyan Qiu
- Forest Ecology & Stable Isotope Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
13
|
Zhang J, Liu P, Song H, Miao C, Yang J, Zhang L, Dong J, Liu Y, Zhang Y, Li B. Multi-Scale Effects of Meteorological Conditions and Anthropogenic Emissions on PM2.5 Concentrations over Major Cities of the Yellow River Basin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15060. [PMID: 36429779 PMCID: PMC9690158 DOI: 10.3390/ijerph192215060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The mechanism behind PM2.5 pollution is complex, and its performance at multi-scales is still unclear. Based on PM2.5 monitoring data collected from 2015 to 2021, we used the GeoDetector model to assess the multi-scale effects of meteorological conditions and anthropogenic emissions, as well as their interactions with PM2.5 concentrations in major cities in the Yellow River Basin (YRB). Our study confirms that PM2.5 concentrations in the YRB from 2015 to 2021 show an inter-annual and inter-season decreasing trend and that PM2.5 concentrations varied more significantly in winter. The inter-month variation of PM2.5 concentrations shows a sinusoidal pattern from 2015 to 2021, with the highest concentrations in January and December and the lowest from June to August. The PM2.5 concentrations for major cities in the middle and downstream regions of the YRB are higher than in the upper areas, with high spatial distribution in the east and low spatial distribution in the west. Anthropogenic emissions and meteorological conditions have similar inter-annual effects, while air pressure and temperature are the two main drivers across the whole basin. At the sub-basin scale, meteorological conditions have stronger inter-annual effects on PM2.5 concentrations, of which temperature is the dominant impact factor. Wind speed has a significant effect on PM2.5 concentrations across the four seasons in the downstream region and has the strongest effect in winter. Primary PM2.5 and ammonia are the two main emission factors. Interactions between the factors significantly enhanced the PM2.5 concentrations. The interaction between ammonia and other emissions plays a dominant role at the whole and sub-basin scales in summer, while the interaction between meteorological factors plays a dominant role at the whole-basin scale in winter. Our study not only provides cases and references for the development of PM2.5 pollution prevention and control policies in YRB but can also shed light on similar regions in China as well as in other regions of the world.
Collapse
Affiliation(s)
- Jiejun Zhang
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
| | - Pengfei Liu
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Institute of Urban Big Data, Henan University, Kaifeng 475004, China
| | - Hongquan Song
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Institute of Urban Big Data, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Changhong Miao
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
| | - Jie Yang
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
| | - Longlong Zhang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Junwu Dong
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Yi Liu
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China
| | - Yunlong Zhang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Bingchen Li
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Tuning reactivity of Bi2MoO6 nanosheets sensors toward NH3 via Ag doping and nanoparticle modification. J Colloid Interface Sci 2022; 625:879-889. [DOI: 10.1016/j.jcis.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/21/2022]
|
15
|
Hang Y, Meng X, Li T, Wang T, Cao J, Fu Q, Dey S, Li S, Huang K, Liang F, Kan H, Shi X, Liu Y. Assessment of long-term particulate nitrate air pollution and its health risk in China. iScience 2022; 25:104899. [PMID: 36039292 PMCID: PMC9418855 DOI: 10.1016/j.isci.2022.104899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/26/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Air pollution is a major environmental and public health challenge in China and the Chinese government has implemented a series of strict air quality policies. However, particulate nitrate (NO3−) concentration remains high or even increases at monitoring sites despite the total PM2.5 concentration has decreased. Unfortunately, it has been difficult to estimate NO3− concentration across China due to the lack of a PM2.5 speciation monitoring network. Here, we use a machine learning model incorporating ground measurements and satellite data to characterize the spatiotemporal patterns of NO3−, thereby understanding the disease burden associated with long-term NO3− exposure in China. Our results show that existing air pollution control policies are effective, but increased NO3− of traffic emissions offset reduced NO3− of industrial emissions. In 2018, the national mean mortality burden attributable to NO3− was as high as 0.68 million, indicating that targeted regulations are needed to control NO3− pollution in China. We build a NO3− model using machine learning techniques incorporating satellite data We estimate spatiotemporal variations of NO3− concentration in China from 2005–2018 In 2018, the national mean mortality burden attributable to NO3− was about 0.68 million Targeted regulations on vehicle emissions are needed to control NO3− pollution in China
Collapse
Affiliation(s)
- Yun Hang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Xia Meng
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tijian Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Junji Cao
- Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100101, China
| | - Qingyan Fu
- State Ecologic Environmental Scientific Observation and Research Station at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shenshen Li
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, Beijing 100101, China
| | - Kan Huang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haidong Kan
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Impact of NH3 Emissions on Particulate Matter Pollution in South Korea: A Case Study of the Seoul Metropolitan Area. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We analyzed the multi-year relationship between particulate matter (PM10 and PM2.5) concentrations and possible precursors including NO2, SO2, and NH3 based on local observations over the Seoul Metropolitan Area (SMA) from 2015 to 2017. Surface NH3 concentrations were obtained from Cross-track Infrared Sounder (CrIS) retrievals, while other pollutants were observed at 142 ground sites. We found that NH3 had the highest correlation with PM2.5 (R = 0.51) compared to other precursors such as NO2 and SO2 (R of 0.16 and 0.14, respectively). The correlations indicate that NH3 emissions are likely a limiting factor in controlling PM2.5 over the SMA in a high-NOx environment. This implies that the current Korean policy urgently requires tools for controlling local NH3 emissions from the livestock industry (for example, from hog manure). These findings provide the first satellite-based trace gas evidence that implementing an NH3 control strategy could play a key role in improving air quality in the SMA.
Collapse
|
17
|
Wang C, Duan J, Ren C, Liu H, Reis S, Xu J, Gu B. Ammonia Emissions from Croplands Decrease with Farm Size in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9915-9923. [PMID: 35621262 DOI: 10.1021/acs.est.2c01061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Farm size affects nitrogen fertilizer input and agricultural practices, which are key determinants of ammonia (NH3) emissions from croplands. However, the degree to which NH3 emissions are associated with changes in farm size is not well understood yet despite its crucial role in achieving agricultural sustainability in China, where agricultural production is still dominated by smallholder farms. Here we provide a first analysis of the relationship between farm size and NH3 emissions based on 863 000 surveys conducted in 2017 across China. Results show that NH3 emissions (kg ha-1) on average decrease by 0.07% for each 1% increase in average farm size. This change occurs mainly due to a reduction in nitrogen fertilizer use and the introduction of more efficient fertilization practices. The largest reduction in NH3 emissions is found in maize, with less pronounced changes in rice cultivation, and none for wheat production. Overall lower NH3 emissions factors can be observed in the north of China with increasing farm size, especially in the northeast, the opposite pattern was found in the south. National total NH3 emissions could be approximately halved (1.5 Tg) in a scenario favoring a conversion to large-scale farming systems. This substantial reduction potential highlights the potential of such a transition to reduce NH3 emissions, including benefits from a socioeconomic point of view as well as for improving air quality.
Collapse
Affiliation(s)
- Chen Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Jiakun Duan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Chenchen Ren
- Policy Simulation Laboratory, Zhejiang University, Hangzhou 310058, China
- Department of Land Management, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Liu
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, U.K
- University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro TR1 3HD, U.K
- The University of Edinburgh, School of Chemistry, Level 3, Murchison House, 10 Max Born Crescent, The King's Buildings, West Mains Road, Edinburgh EH9 3BF, U.K
| | - Jianming Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Baojing Gu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM2.5 Pollution: Evidence from Rural China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148387. [PMID: 35886238 PMCID: PMC9323440 DOI: 10.3390/ijerph19148387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Concern for environmental issues is a crucial component in achieving the goal of sustainable development of humankind. Different countries face various challenges and difficulties in this process, which require unique solutions. This study investigated the relationship between land transfer, fertilizer usage, and PM2.5 pollution in rural China from 2000 to 2019, considering their essential roles in agricultural development and overall national welfare. A cross section dependence test, unit root test, and cointegration test, among other methods, were used to test the panel data. A Granger causality test was used to determine the causal relationship between variables, and an empirical analysis of the impulse response and variance decomposition was carried out. The results show that the use of chemical fertilizers had a significant positive impact on PM2.5 pollution, but the impact of land transfer on PM2.5 pollution was negative. In addition, land transfer can reduce the use of chemical fertilizers through economies of scale, thus reducing air pollution. More specifically, for every 1% increase in fertilizer usage, PM2.5 increased by 0.17%, and for every 1% increase in land transfer rate, PM2.5 decreased by about 0.07%. The study on the causal relationship between land transfer, fertilizer usage, and PM2.5 pollution in this paper is helpful for exploring environmental change—they are supplements and innovations which are based on previous studies and provide policy-makers with a basis and inspiration for decision-making.
Collapse
|
19
|
Zheng M, Wang Y, Yuan L, Chen N, Kong S. Ambient observations indicating an increasing effectiveness of ammonia control in wintertime PM 2.5 reduction in Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153708. [PMID: 35182649 DOI: 10.1016/j.scitotenv.2022.153708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Ammonia emission reduction is increasingly being considered one of the control measures to mitigate wintertime fine particulate matter (PM2.5) pollution. Three wintertime observations from 2012 to 2018 in Wuhan, China, were analyzed to examine the effectiveness of ammonia control in wintertime PM2.5 reduction based on the critical total ammonia concentration (CTAC, i.e., the inflection point of effective ammonia control for PM2.5 mass reduction based on the asymmetric response of PM2.5 to ammonia control). The CTAC gradually approached 0% (immediate effectiveness), with values of -26% in 2012, -23% in 2015, and -9% in 2018. At the observed ambient conditions, there were significant positive correlations of the CTAC with sulfate and total nitrate changes, in contrast to the negative correlation of the CTAC with total ammonia change. An approximately 10% total ammonia reduction could offset the decline in CTAC attributed to a 30-40% sulfate or 20-30% total nitrate reduction in Wuhan. This study indicates that the combined control of SO2 + NOx (NO+NO2) remains the preferred way to reduce inorganic particles in Central China at present, despite a tendency of the ambient chemical state moving towards effective ammonia control. However, as the CTAC approaches 0%, the effectiveness of ammonia and NOx reduction measures targeting wintertime PM2.5 can greatly exceed that observed during the 2012-2018 period in Central China.
Collapse
Affiliation(s)
- Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Lianxin Yuan
- Hubei Environment Monitoring Center, Wuhan 430072, China
| | - Nan Chen
- Hubei Environment Monitoring Center, Wuhan 430072, China
| | - Shaofei Kong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| |
Collapse
|
20
|
Particulate Matter and Ammonia Pollution in the Animal Agricultural-Producing Regions of North Carolina: Integrated Ground-Based Measurements and Satellite Analysis. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intensive animal agriculture is an important part of the US and North Carolina’s (NC’s) economy. Large emissions of ammonia (NH3) gas emanate from the handling of animal wastes at these operations contributing to the formation of fine particulate matter (PM2.5) around the state causing a variety of human health and environmental effects. The objective of this research is to provide the relationship between ammonia, aerosol optical depth and meteorology and its effect on PM2.5 concentrations using satellite observations (column ammonia and aerosol optical depth (AOD)) and ground-based meteorological observations. An observational-based multiple linear regression model was derived to predict ground-level PM2.5 during the summer months (JJA) from 2008–2017 in New Hanover County, Catawba County and Sampson County. A combination of the Cumberland and Johnston County models for the summer was chosen and validated for Duplin County, NC, then used to predict Sampson County, NC, PM2.5 concentrations. The model predicted a total of six 24 h exceedances over the nine-year period. This indicates that there are rural areas of the state that may have air quality issues that are not captured for a lack of measurements. Moreover, PM2.5 chemical composition analysis suggests that ammonium is a major component of the PM2.5 aerosol.
Collapse
|
21
|
Ye Z, Li J, Pan Y, Wang Z, Guo X, Cheng L, Tang X, Zhu J, Kong L, Song Y, Xing J, Sun Y, Pan X. Synergistic effect of reductions in multiple gaseous precursors on secondary inorganic aerosols in winter under a meteorology-based redistributed daily NH 3 emission inventory within the Beijing-Tianjin-Hebei region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153383. [PMID: 35085635 DOI: 10.1016/j.scitotenv.2022.153383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Secondary inorganic aerosols (SIA) account for 20-60% of the total fine particulates in the Beijing-Tianjin-Hebei (BTH) region of China, indicating an urgent need to clarify the relationship among such compounds. The purpose of this study was to quantify the relationship between emissions of NH3, NOx, SO2, VOCs and SIA concentrations during a severe winter haze episode using an air quality model and a meteorology-based redistributed NH3 emission inventory within the BTH region. The results showed that the model performance regarding the NH3 simulations in January by the four emission inventories improved after the redistribution of daily NH3 emissions, with an increase of 0.02-0.13 in R, a 9-56% decrease in NMB, and a 7-51% decrease in NME. The updated simulations reproduced the daily observations of SIA, SO2, and NO2 well. A total of 125 sets of sensitivity simulations showed that a synergistic reduction in NH3 and VOCs was more efficient in terms of SIA control than simply reducing SO2 or NOx in the BTH region. If only NOx emissions were reduced, the SIA concentration would first increase and then decrease, and it could decline by another 0.86-8.03% in parallel with an equal NH3 emission cut. SIA could be reduced by approximately 22.68% with the most stringent inorganic precursors' control. Moreover, VOCs emission reductions could lead to a decrease in SIA, and the impact of VOCs on SIA was similar to that of NH3. The collaborative control of both inorganic precursors and VOCs was more effective than single-factor control measures for decreasing SIA, and the decline rate was approximately 29.26% under minimum emission conditions. This improved effectiveness was obtained because VOCs mitigation effectively decreases the ozone concentration, which in turn influences SIA formation. Finally, on the premise of a 60% SO2 cut, the reduction scheme NH3:VOCs:NOx = 4:4:1 was suggested for SIA control.
Collapse
Affiliation(s)
- Zhilan Ye
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiurui Guo
- College of Environmental & Energy Engineering, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Long Cheng
- College of Environmental & Energy Engineering, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
| | - Xiao Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jiang Zhu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lei Kong
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yu Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Jia Xing
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
22
|
Dong F, Li H, Liu B, Liu R, Hou K. Protonated acetone ion chemical ionization time-of-flight mass spectrometry for real-time measurement of atmospheric ammonia. J Environ Sci (China) 2022; 114:66-74. [PMID: 35459515 DOI: 10.1016/j.jes.2021.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/14/2023]
Abstract
Ammonia (NH3) is ubiquitous in the atmosphere, it can affect the formation of secondary aerosols and particulate matter, and cause soil eutrophication through sedimentation. Currently, the use of radioactive primary reagent ion source and the humidity interference on the sensitivity and stability are the two major issues faced by chemical ionization mass spectrometer (CIMS) in the analysis of atmospheric ammonia. In this work, a vacuum ultraviolet (VUV) Kr lamp was used to replace the radioactive source, and acetone was ionized under atmospheric pressure to obtain protonated acetone reagent ions to ionize ammonia. The ionization source is designed as a separated three-zone structure, and even 90 vol.% high-humidity samples can still be directly analyzed with a sensitivity of sub-ppbv. A signal normalization processing method was designed, and with this new method, the quantitative relative standard deviation (RSD) of the instrument was decreased from 17.5% to 9.1%, and the coefficient of determination was increased from 0.8340 to 0.9856. The humidity correction parameters of the instrument were calculated from different humidity, and the ammonia concentrations obtained under different humidity were converted to its concentration under zero humidity condition with these correction parameters. The analytical time for a single sample is only 60 sec, and the limit of detection (LOD) was 8.59 pptv (signal-to-noise ratio S/N = 3). The ambient measurement made in Qingdao, China, in January 2021 with this newly designed CIMS, showed that the concentration of ammonia ranged from 1 to 130 ppbv.
Collapse
Affiliation(s)
- Fengshuo Dong
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Hang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bing Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ruidong Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Keyong Hou
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
23
|
Lee J, Seo Y, Kang DW, Park S, Kim H, Kim J, Kim K, Hong CS, Lim DW, Lee E. Reversible ammonia uptake at room temperature in a robust and tunable metal-organic framework. RSC Adv 2022; 12:7605-7611. [PMID: 35424727 PMCID: PMC8982270 DOI: 10.1039/d2ra01270g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Ammonia is useful for the production of fertilizers and chemicals for modern technology, but its high toxicity and corrosiveness are harmful to the environment and human health. Here, we report the recyclable and tunable ammonia adsorption using a robust imidazolium-based MOF (JCM-1) that uptakes 5.7 mmol g−1 of NH3 at 298 K reversibly without structural deformation. Furthermore, a simple substitution of NO3− with Cl− in a post-synthetic manner leads to an increase in the NH3 uptake capacity of JCM-1(Cl−) up to 7.2 mmol g−1. Recyclable and tunable ammonia adsorption with JCM-1 and JCM-1(Cl−) at room temperature occurs reversibly without structural decomposition.![]()
Collapse
Affiliation(s)
- Jaechul Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Younggyu Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| | - Seungjae Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Hyunyong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jaheon Kim
- Department of Chemistry, Soongsil University Seoul 06978 Republic of Korea
| | - Kimoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea .,Division of Advanced Materials Science, Pohang University of Science and Technology Pohang 37673 Republic of Korea.,Center for Self-assembly and Complexity, Institute for Basic Science (IBS) Pohang 37673 Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University Seoul 02841 Republic of Korea
| | - Dae-Woon Lim
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan.,Department of Chemistry and Medical Chemistry, Yonsei University Wonju 26493 Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea .,Division of Advanced Materials Science, Pohang University of Science and Technology Pohang 37673 Republic of Korea
| |
Collapse
|
24
|
Masselot P, Sera F, Schneider R, Kan H, Lavigne É, Stafoggia M, Tobias A, Chen H, Burnett RT, Schwartz J, Zanobetti A, Bell ML, Chen BY, Guo YLL, Ragettli MS, Vicedo-Cabrera AM, Åström C, Forsberg B, Íñiguez C, Garland RM, Scovronick N, Madureira J, Nunes B, De la Valencia Cruz C, Diaz MH, Honda Y, Hashizume M, Ng CFC, Samoli E, Katsouyanni K, Schneider A, Breitner S, Ryti NR, Jaakkola JJ, Maasikmets M, Orru H, Guo Y, Ortega NV, Correa PM, Tong S, Gasparrini A. Differential Mortality Risks Associated With PM2.5 Components: A Multi-Country, Multi-City Study. Epidemiology 2022; 33:167-175. [PMID: 34907973 PMCID: PMC7612311 DOI: 10.1097/ede.0000000000001455] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The association between fine particulate matter (PM2.5) and mortality widely differs between as well as within countries. Differences in PM2.5 composition can play a role in modifying the effect estimates, but there is little evidence about which components have higher impacts on mortality. METHODS We applied a 2-stage analysis on data collected from 210 locations in 16 countries. In the first stage, we estimated location-specific relative risks (RR) for mortality associated with daily total PM2.5 through time series regression analysis. We then pooled these estimates in a meta-regression model that included city-specific logratio-transformed proportions of seven PM2.5 components as well as meta-predictors derived from city-specific socio-economic and environmental indicators. RESULTS We found associations between RR and several PM2.5 components. Increasing the ammonium (NH4+) proportion from 1% to 22%, while keeping a relative average proportion of other components, increased the RR from 1.0063 (95% confidence interval [95% CI] = 1.0030, 1.0097) to 1.0102 (95% CI = 1.0070, 1.0135). Conversely, an increase in nitrate (NO3-) from 1% to 71% resulted in a reduced RR, from 1.0100 (95% CI = 1.0067, 1.0133) to 1.0037 (95% CI = 0.9998, 1.0077). Differences in composition explained a substantial part of the heterogeneity in PM2.5 risk. CONCLUSIONS These findings contribute to the identification of more hazardous emission sources. Further work is needed to understand the health impacts of PM2.5 components and sources given the overlapping sources and correlations among many components.
Collapse
Affiliation(s)
- Pierre Masselot
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine (LSHTM), 15-17 Tavistock Place, London, WC1H 9SH, UK
| | - Francesco Sera
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine (LSHTM), 15-17 Tavistock Place, London, WC1H 9SH, UK
- Department of Statistics, Computer Science and Applications “G. Parenti”, University of Florence, Florence, Italy
| | - Rochelle Schneider
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine (LSHTM), 15-17 Tavistock Place, London, WC1H 9SH, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- European Centre for Medium-Range Weather Forecast, Reading, UK
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Éric Lavigne
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome, Italy
| | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | | | | | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Bing-Yu Chen
- National Institute of Environmental Health Science, National Health Research Institutes, Zhunan, Taiwan
| | - Yue-Liang Leon Guo
- National Institute of Environmental Health Science, National Health Research Institutes, Zhunan, Taiwan
| | | | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Christofer Åström
- Department of Public Health and Clinical Medicine, Umeå University, Sweden
| | - Bertil Forsberg
- Department of Public Health and Clinical Medicine, Umeå University, Sweden
| | - Carmen Íñiguez
- Department of Statistics and Computational Research. Universitat de València, València, Spain
- Ciberesp, Madrid. Spain
| | - Rebecca M. Garland
- Natural Resources and the Environment Unit, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
- Department of Geography, Geo-informatics and Meteorology, University of Pretoria, Pretoria 0001, South Africa
| | - Noah Scovronick
- Gangarosa Department of Environmental Health. Rollins School of Public Health, Emory University, Atlanta, USA
| | - Joana Madureira
- Department of Environmental Health, Instituto Nacional de Saúde Dr Ricardo Jorge, Porto, Portugal
- EPIUnit – Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Baltazar Nunes
- Department of Epidemiology, Instituto Nacional de Saúde Dr Ricardo Jorge, Porto, Portugal
- Centro de Investigação em Saúde Pública, Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - César De la Valencia Cruz
- Department of Environmental Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Magali Hurtado Diaz
- Department of Environmental Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Yasushi Honda
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chris Fook Cheng Ng
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Greece
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Greece
- School of Population Health and Environmental Sciences, King’s College, London, UK
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- IBE-Chair of Epidemiology, LMU Munich, Munich, Germany
| | - Niilo R.I. Ryti
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland
- Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), University of Oulu, Oulu, Finland
- Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| | | | - Hans Orru
- Department of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | | | - Shilu Tong
- Shanghai Children’s Medical Centre, Shanghai Jiao-Tong University, Shanghai, China
- School of Public Health and Institute of Environment and Human Health, Anhui Medical University, Hefei, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine (LSHTM), 15-17 Tavistock Place, London, WC1H 9SH, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
- Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
25
|
Bai Z, Fan X, Jin X, Zhao Z, Wu Y, Oenema O, Velthof G, Hu C, Ma L. Relocate 10 billion livestock to reduce harmful nitrogen pollution exposure for 90% of China's population. NATURE FOOD 2022; 3:152-160. [PMID: 37117957 DOI: 10.1038/s43016-021-00453-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/20/2021] [Indexed: 04/30/2023]
Abstract
Livestock production in China is increasingly located near urban areas, exposing human populations to nitrogen pollution via air and water. Here we analyse livestock and human population data across 2,300 Chinese counties to project the impact of alternative livestock distributions on nitrogen emissions. In 2012 almost half of China's livestock production occurred in peri-urban regions, exposing 60% of the Chinese population to ammonia emissions exceeding UN guidelines. Relocating 5 billion animals by 2050 according to crop-livestock integration criteria could reduce nitrogen emissions by two-thirds and halve the number of people exposed to high ammonia emissions. Relocating 10 billion animals away from southern and eastern China could reduce ammonia exposure for 90% of China's population. Spatial planning can therefore serve as a powerful policy instrument to tackle nitrogen pollution and exposure of humans to ammonia.
Collapse
Affiliation(s)
- Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China.
- Wageningen University, Soil Quality Group, Wageningen, Netherlands.
- Xiongan Institute of Innovation, Chinese Academy of Sciences, Beijing, China.
| | - Xiangwen Fan
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xinpeng Jin
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Zhanqing Zhao
- School of Land Science and Space Planning, Hebei GEO University, Shijiazhuang, China
| | - Yan Wu
- Zhejiang University City College, Hangzhou, China
| | - Oene Oenema
- Wageningen University, Soil Quality Group, Wageningen, Netherlands
| | - Gerard Velthof
- Wageningen Environmental Research, Wageningen, Netherlands
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China.
| |
Collapse
|
26
|
Powlson DS, Dawson CJ. Use of ammonium sulphate as a sulphur fertilizer: Implications for ammonia volatilization. SOIL USE AND MANAGEMENT 2022; 38:622-634. [PMID: 35873863 PMCID: PMC9290479 DOI: 10.1111/sum.12733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Ammonium sulphate is widely used as a sulphur (S) fertilizer, constituting about 50% of global S use. Within nitrogen (N) management, it is well known that ammonium-based fertilizers are subject to ammonia (NH3) volatilization in soils with pH > 7, but this has been overlooked in decision making on S fertilization. We reviewed 41 publications reporting measurements of NH3 loss from ammonium sulphate in 16 countries covering a wide range of soil types and climates. In field experiments, loss was mostly <5% of applied N in soils with pH (in water) <7.0. In soils with pH > 7.0, there was a wide range of losses (0%-66%), with many in the 20%-40% range and some indication of increased loss (ca. 5%-15%) in soils with pH 6.5-7.0. We estimate that replacing ammonium sulphate with a different form of S for arable crops could decrease NH3 emissions from this source by 90%, even taking account of likely emissions from alternative fertilizers to replace the N, but chosen for low NH3 emission. For every kt of ammonium sulphate replaced on soils of pH > 7.0 in temperate regions, NH3 emission would decrease from 35.7 to 3.6 t NH3. Other readily available sources of S include single superphosphate, potassium sulphate, magnesium sulphate, calcium sulphate dihydrate (gypsum), and polyhalite (Polysulphate). In view of the large areas of high pH soils globally, this change of S fertilizer selection would make a significant contribution to decreasing NH3 emissions worldwide, contributing to necessary cuts to meet agreed ceilings under the Gothenburg Convention.
Collapse
Affiliation(s)
- David S. Powlson
- Department of Sustainable Agriculture SystemsRothamsted ResearchHarpendenHertsUK
| | | |
Collapse
|
27
|
Huang X, Zhang J, Zhang W, Tang G, Wang Y. Atmospheric ammonia and its effect on PM 2.5 pollution in urban Chengdu, Sichuan Basin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118195. [PMID: 34555796 DOI: 10.1016/j.envpol.2021.118195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Controlling ammonia (NH3) emissions has been proposed as a strategy to mitigate haze pollution. To explore the role of NH3 in haze pollution in Sichuan Basin, where agricultural activities are intense, hourly in situ data of NH3, as well as nitric acid and secondary inorganic aerosols (SIAs) were gathered in Chengdu from April 2017 to March 2018. We found that NH3 had an annual mean concentration of 9.7 ± 3.5 (mean ± standard deviation) μg m-3, and exhibited seasonal variations (spring > summer > autumn and winter) due to changes in emission sources and meteorological conditions (particularly temperature). Chengdu's atmosphere is generally NH3-sufficient, especially in the warm seasons, implying that the formation of SIAs is more sensitive to the availability of nitric acid. However, an NH3 "sufficient-to-deficient" transition was found to occur during winter pollution periods, and the frequency of NH3 deficiency increased with the aggravation of pollution. Under NH3-deficient conditions, the nitrogen oxidation ratio increased linearly with the increase in free NH3, implying that NH3 contributes appreciably to the formation of nitrate and thus to high PM2.5 loadings. No relationships of NH3 with fossil fuel combustion-related pollutants were found. The NH3 emissions from farmland and livestock waste in the suburbs of Chengdu and regional transport from west of Chengdu probably contribute to the occurrence of high PM2.5 loading in winter and spring, respectively. These results suggest that to achieve effective mitigation of PM2.5 in Chengdu, local and regional emission control of NH3 and NOx synergistically would be effective.
Collapse
Affiliation(s)
- Xiaojuan Huang
- Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Junke Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Wei Zhang
- Sichuan Environmental Monitoring Center, Chengdu, 610074, China
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100011, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100011, China
| |
Collapse
|
28
|
Zhou Y, Zhang M, Zhao X, Feng J. Ammonia exposure induced intestinal inflammation injury mediated by intestinal microbiota in broiler chickens via TLR4/TNF-α signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112832. [PMID: 34583273 DOI: 10.1016/j.ecoenv.2021.112832] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Ammonia is a known environmental pollutant that causes injury to the intestine. Growing evidence suggests that intestinal microbiota dysbiosis involves in the development of intestinal injury under environmental pollution. However, the specific mechanism remains unexplored. To do this, broiler chicken ileal exposed to ammonia was selected as the research object. Further, antibiotic depletion of intestinal microbiota and flora transplantation were used to clarify the role of intestinal microbiota in the intestinal injury. Histopathological examination indicated inhaled ammonia caused intestinal injury. Then we observed a decrease in intestinal muc-2, claudin-1, IL-6, IL-10 in ammonia inhalation, as opposed to the control group, associated with a significant increase in TLR4, MyD88, NF-κB, TNF-α, IL-1β, caspase3. Moreover, there was a significant increase of Streptococcus, Escherichia-Shigella, Faecalibacterium, [Ruminococcus]_torques_group, Ruminococcaceae_UCG-014, unclassified_f_Lachnospiraceae, Rothia, unclassified_f_Ruminococcaceae in the inhaled ammonia exposure. Correlation analysis suggested that the altered genera were positively correlated with the expression of TLR4 and TNF-α. Moreover, transferring intestinal microbiota from ammonia exposure broiler into healthy broiler caused intestinal injury and increased TLR4 and TNF-α concentrations in recipient broiler. Furthermore, antibiotic depletion of intestinal microbiota attenuated ammonia-caused intestinal injury and reduced TLR4 and TNF-α productions. In summary, TLR4/TNF-α signaling pathway was an important regulated mechanism involved in the intestinal injury mediated by intestinal microbiota dysbiosis under inhaled ammonia.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xin Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
29
|
Wang H, Zhao Z, Winiwarter W, Bai Z, Wang X, Fan X, Zhu Z, Hu C, Ma L. Strategies to reduce ammonia emissions from livestock and their cost-benefit analysis: A case study of Sheyang county. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118045. [PMID: 34488163 DOI: 10.1016/j.envpol.2021.118045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Ammonia (NH3) emissions, the majority of which arise from livestock production, are linked to high concentration of PM2.5 and lower air quality in China. NH3 mitigation options were well studied at the small-scale (laboratory or pilot), however, they lack of a large-scale test in China. This study fills this crucial gap by evaluating the cost-benefit of pioneering NH3 mitigation projects carried out for a whole county - Sheyang, Jiangsu province, China. Measures were implemented in 2019 following two distinct strategies, improved manure treatment for industrial livestock farms, and collection and central treatment for traditional livestock farms. Emission reductions of 16% were achieved in a short time. While this is remarkable, it falls short of expectations from small-scale studies. If measures were fully implemented according to purpose and meet expectations from the small scale, higher emission reductions of 42% would be possible. The cost benefit analysis presented in this study demonstrated advantages of central manure treatment over in-farm facilities. With improved implementation of mitigation strategies in industrial livestock farms, traditional livestock farms may play an increasing role in total NH3 emissions, which means such farms either need to be included in future NH3 mitigation policies or gradually replaced by industrial livestock farms. The study found an agricultural NH3 reduction technology route suitable for China's national conditions (such as the "Sheyang Model").
Collapse
Affiliation(s)
- Haodan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China; University of Chinese Academy of Science, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhanqing Zhao
- School of Land Science and Space Planning, Hebei GEO University, 136 East Huai' an Road, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Wilfried Winiwarter
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2444, Laxenburg, Austria; Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, PL 65-417, Zielona Góra, Poland
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China
| | - Xiangwen Fan
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China
| | - Zhiping Zhu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China; University of Chinese Academy of Science, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, 050021, Hebei, China; University of Chinese Academy of Science, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
30
|
Geospatial Correlation Analysis between Air Pollution Indicators and Estimated Speed of COVID-19 Diffusion in the Lombardy Region (Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212154. [PMID: 34831909 PMCID: PMC8617767 DOI: 10.3390/ijerph182212154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 11/29/2022]
Abstract
Background: the Lombardy region in Italy was the first area in Europe to record an outbreak of COVID-19 and one of the most affected worldwide. As this territory is strongly polluted, it was hypothesized that pollution had a role in facilitating the diffusion of the epidemic, but results are uncertain. Aim: the paper explores the effect of air pollutants in the first spread of COVID-19 in Lombardy, with a novel geomatics approach addressing the possible confounding factors, the reliability of data, the measurement of diffusion speed, and the biasing effect of the lockdown measures. Methods and results: all municipalities were assigned to one of five possible territorial classes (TC) according to land-use and socio-economic status, and they were grouped into districts of 100,000 residents. For each district, the speed of COVID-19 diffusion was estimated from the ambulance dispatches and related to indicators of mean concentration of air pollutants over 1, 6, and 12 months, grouping districts in the same TC. Significant exponential correlations were found for ammonia (NH3) in both prevalently agricultural (R2 = 0.565) and mildly urbanized (R2 = 0.688) areas. Conclusions: this is the first study relating COVID-19 estimated speed of diffusion with indicators of exposure to NH3. As NH3 could induce oxidative stress, its role in creating a pre-existing fragility that could have facilitated SARS-CoV-2 replication and worsening of patient conditions could be speculated.
Collapse
|
31
|
Zhou M, Li T, Liu P, Zhang S, Liu Y, An T, Zhao H. Real-time on-site monitoring of soil ammonia emissions using membrane permeation-based sensing probe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117850. [PMID: 34358875 DOI: 10.1016/j.envpol.2021.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/05/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
An ability to real-time, continuously monitor soil ammonia emission profiles under diverse meteorological conditions with high temporal resolution in a simple and maintenance-free fashion can provide the urgently needed scientific insights to mitigate ammonia emission to the atmosphere and improve agricultural fertilization practice. Here, we report an open-chamber deployment unit embedded a gas-permeable membrane-based conductometric sensing probe (OC-GPMCP) capable of on-site continuously monitoring soil ammonia emission flux ( [Formula: see text] ) -time (t) profiles without the need for ongoing calibration. The developed OC-GPMCPs were deployed to a sugarcane field and a cattle farm under different fertilization/meteorological conditions to exemplify their real-world applicability for monitoring soil ammonia emission from agricultural land and livestock farm, respectively. The obtained [Formula: see text] - t profiles from the sugarcane field unveil that the ammonia emission rate is largely determined by fertilization methods and meteorological conditions. While the [Formula: see text] - t profiles from the cattle farm can be decisively correlated to various meteorological conditions. The reported OC-GPMCP is cheap to fabricate, easy to deploy, and maintenance-free to operate. These advantageous features make OC-GPMCP an effective analytical tool for large-scale soil ammonia emission assessment under diverse meteorological conditions, providing critically important scientific insights to mitigate ammonia emission into the atmosphere and improve agricultural fertilization practice.
Collapse
Affiliation(s)
- Ming Zhou
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Tianling Li
- Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, China
| | - Porun Liu
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Taicheng An
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
32
|
Zhu X, Shen J, Li Y, Liu X, Xu W, Zhou F, Wang J, Reis S, Wu J. Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117870. [PMID: 34385131 DOI: 10.1016/j.envpol.2021.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The study of emissions and depositions of atmospheric reactive nitrogen species (Nrs) in a region is important to uncover the sources and sinks of atmospheric Nrs in the region. In this study, atmospheric total Nrs depositions including both wet-only and dry deposition were monitored simultaneously across major land-use types in a 105 km2 catchment called Jinjing River Catchment (JRC) in subtropical central China from 2015 to 2016. Based on activity data and emission factors for the main Nrs emission sources, ammonia (NH3) and nitrogen oxides (NOx) emission inventories for the catchment were also compiled. The estimated total Nrs deposition in JRC was 35.9 kg N ha-1 yr-1, with approximately 49.7 % attributed to reduced compounds (NHx), and 40.5 % attributed to oxidized (NOy). The total Nrs emission rate in JRC was 80.4 kg N ha-1 yr-1, with 61.5 and 18.9 kg N ha-1 yr-1 from NH3 and NOx emissions, respectively. Livestock excretion and fertilization were the two main contributing emission sources for NH3, while vehicle sources contributed the bulk of NOx emissions. The net atmospheric budgets of Nrs in paddy field, forest, and tea field were +3.7, -36.1, and +23.8 kg N ha-1 yr-1, respectively. At the catchment scale, the net atmospheric budget of Nrs was +47.7 kg N ha-1 yr-1, with +43.7 kg N ha-1 yr-1 of NHx and +4.0 kg N ha-1 yr-1 of NOy, indicating that the subtropical catchment was net sources of atmospheric Nrs. Considering that excessive atmospheric Nr emissions and deposition may cause adverse effects on the environment, effects should be conducted to mitigate the Nrs emissions from agriculture and transportation, and increasing the area of forest is good for reducing the net positive budget of atmospheric Nrs in the subtropical catchments in China.
Collapse
Affiliation(s)
- Xiao Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianlin Shen
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xuejun Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wen Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Zhou
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Juan Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK; University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro, TR1 3HD, UK
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
33
|
Gu B, Zhang L, Van Dingenen R, Vieno M, Van Grinsven HJ, Zhang X, Zhang S, Chen Y, Wang S, Ren C, Rao S, Holland M, Winiwarter W, Chen D, Xu J, Sutton MA. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM 2.5 air pollution. Science 2021; 374:758-762. [PMID: 34735244 DOI: 10.1126/science.abf8623] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Baojing Gu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | | | - Massimo Vieno
- UK Centre for Ecology & Hydrology, Edinburgh Research Station, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | | | - Xiuming Zhang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Shaohui Zhang
- School of Economics and Management, Beihang University, 100091 Beijing, China.,International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
| | - Youfan Chen
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Sitong Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenchen Ren
- Department of Land Management, Zhejiang University, Hangzhou 310058, China
| | - Shilpa Rao
- Norwegian Institute of Public Health, N-0213 Oslo, Norway
| | - Mike Holland
- Ecometrics Research and Consulting, Reading RG8 7PW, UK
| | - Wilfried Winiwarter
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria.,Institute of Environmental Engineering, University of Zielona Góra, PL 65-417 Zielona Góra, Poland
| | - Deli Chen
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Mark A Sutton
- UK Centre for Ecology & Hydrology, Edinburgh Research Station, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| |
Collapse
|
34
|
Ma R, Li K, Guo Y, Zhang B, Zhao X, Linder S, Guan C, Chen G, Gan Y, Meng J. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nat Commun 2021; 12:6308. [PMID: 34741029 PMCID: PMC8571346 DOI: 10.1038/s41467-021-25854-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Ammonia (NH3) emissions, mainly from agricultural sources, generate substantial health damage due to the adverse effects on air quality. NH3 emission reduction strategies are still far from being effective. In particular, a growing trade network in this era of globalization offers untapped emission mitigation potential that has been overlooked. Here we show that about one-fourth of global agricultural NH3 emissions in 2012 are trade-related. Globally they induce 61 thousand PM2.5-related premature mortalities, with 25 thousand deaths associated with crop cultivation and 36 thousand deaths with livestock production. The trade-related health damage network is regionally integrated and can be characterized by three trading communities. Thus, effective cooperation within trade-dependent communities will achieve considerable NH3 emission reductions allowed by technological advancements and trade structure adjustments. Identification of regional communities from network analysis offers a new perspective on addressing NH3 emissions and is also applicable to agricultural greenhouse gas emissions mitigation.
Collapse
Affiliation(s)
- Rong Ma
- School of Economics and Management, Beihang University, Beijing, China
| | - Ke Li
- Harvard-NUIST Joint Laboratory for Air Quality and Climate, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Yixin Guo
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ, USA
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
| | - Bo Zhang
- School of Management, China University of Mining and Technology (Beijing), Beijing, China.
| | - Xueli Zhao
- School of Management, China University of Mining and Technology (Beijing), Beijing, China
| | - Soeren Linder
- Joint Research Centre, Food Security Group, European Commissions, Ispra, Italy
| | - ChengHe Guan
- Arts and Science, New York University Shanghai, Shanghai, China
| | - Guoqian Chen
- Laboratory of Systems Ecology and Sustainability Science, College of Engineering, Peking University, Beijing, China
| | - Yujie Gan
- School of Government, The Leo KoGuan Building, Peking University, 100871, Beijing, China
| | - Jing Meng
- The Bartlett School of Sustainable Construction, University of College London, London, WC1E 7HB, UK.
| |
Collapse
|
35
|
Zhang R, Han Y, Shi A, Sun X, Yan X, Huang Y, Wang Y. Characteristics of ambient ammonia and its effects on particulate ammonium in winter of urban Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62828-62838. [PMID: 34218374 DOI: 10.1007/s11356-021-14108-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
To understand the characteristics of winter fine aerosol pollution in Beijing, we conducted continuous measurements of the atmospheric trace gas ammonia (NH3), PM2.5, and inorganic ions in PM2.5 at an urban site in Beijing from February 13 to March 17, 2015. The hourly average concentration of NH3 throughout the campaign was 15.4 ± 17.5 ppb. NH3 concentrations correlated well with NH4+ in PM2.5, indicating the dominant precursor role of NH3 on NH4+ formation. The diurnal profile indicated an increase in NH3 concentrations during the morning rush hours, which was likely due to vehicle emissions. The mean ammonium conversion ratio (NHR) was 0.26, with the highest value of 0.32 in the afternoon. Elevated NHR, nitrate oxidation ratio (NOR), and NH4+ coincided with the significant increase in O3 levels in the afternoon, indicating the large daytime formation of NH4NO3 via photochemical reactions. Moreover, higher NHR values occurred under higher relative humidity (RH >60%) and lower temperature (0-10 °C). NHR increased during the nighttime and correlated well with RH, indicating the dominant role of heterogeneous reactions on gas-particle partitioning. The sulfate oxidation ratio (SOR) and NOR showed positive correlations with RH, which suggests that the conversions of SO2 to SO42- and NO2 to NO3- were sensitive to changes in RH. The sustained increase in SO42- concentrations at RH >60% suggests that RH had a higher influence on SO42- formation than on NO3- formation. As the sole precursor of NH4+, NH3 significantly enhanced daytime NH4NO3 formation via homogeneous gas-phase reactions and also promoted sulfate formation via both homogeneous and heterogeneous reactions. Moreover, the back trajectory results inferred a high contribution of southwestern air masses to atmospheric NH3 and NH4+ aerosol variations in Beijing. The result suggests the need for controlling the vehicle emissions to reduce the high levels of NH3 and alleviate PM2.5 pollution in winter in Beijing.
Collapse
Affiliation(s)
- Rui Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Yuhua Han
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Aijun Shi
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Xuesong Sun
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Municipal Research Institute of Environmental Protection, Beijing, 100037, China.
| | - Xiao Yan
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Yuhu Huang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Yu Wang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory of Urban Atmospheric Volatile Organic Compounds Pollution Control and Application, Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| |
Collapse
|
36
|
Lin CH, Nicol CJB, Wan C, Chen SJ, Huang RN, Chiang MC. Exposure to PM 2.5 induces neurotoxicity, mitochondrial dysfunction, oxidative stress and inflammation in human SH-SY5Y neuronal cells. Neurotoxicology 2021; 88:25-35. [PMID: 34718062 DOI: 10.1016/j.neuro.2021.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Ambient air pollution is a global public health issue. Recent evidence suggests that exposure to fine aerosolized particulate matter (PM) as small as ≤2.5 microns (PM2.5) is neurotoxic to brain structures. Many studies also suggest exposure to PM2.5 may cause neurotoxicity and affect brain function. However, the molecular mechanisms by which PM2.5 exerts these effects are not fully understood. Thus, we evaluated the hypothesis that PM2.5 exposure exerts its neurotoxic effects via increased oxidative and inflammatory cellular damage and mitochondrial dysfunction using human SH-SY5Y neuronal cells. Here, we show PM2.5 exposure significantly decreases viability, and increases caspase 3 and 9 protein expression and activity in SH-SY5Y cells. In addition, PM2.5 exposure decreases SH-SY5Y survival, disrupts cell and mitochondrial morphology, and significantly decreases ATP levels, D-loop levels, and mitochondrial mass and function (maximal respiratory function, COX activity, and mitochondrial membrane potential) in SH-SY5Y cells. Moreover, SH-SY5Y cells exposed to PM2.5 have significantly decreased mRNA and protein expression levels of survival genes (CREB and Bcl-2) and neuroprotective genes (PPARγ and AMPK). We further show SH-SY5Y cells exposure to PM2.5 induces significant increases in the levels of oxidative stress, and expression levels of the inflammatory mediator's TNF-α, IL-1β, and NF-κB. Taken together, these results provide the first evidence of the biochemical, molecular and morphological effects of PM2.5 on human neuronal SH-SY5Y cells, and support our hypothesis that increased mitochondrial disruption, oxidative stress and inflammation are critical mediators of its neurotoxic effects. These findings further improve our understanding of the neuronal cell impact of PM2.5 exposure, and may be useful in the design of strategies for the treatment and prevention of human neurodegenerative disorders.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, and Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Chuan Wan
- Department of Pediatrics, Taipei City Hospital, Zhongxing Branch, Taipei, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science and Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| |
Collapse
|
37
|
Yang J, Liu P, Song H, Miao C, Wang F, Xing Y, Wang W, Liu X, Zhao M. Effects of Anthropogenic Emissions from Different Sectors on PM 2.5 Concentrations in Chinese Cities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010869. [PMID: 34682613 PMCID: PMC8535752 DOI: 10.3390/ijerph182010869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023]
Abstract
PM2.5 pollution has gradually attracted people's attention due to its important negative impact on public health in recent years. The influence of anthropogenic emission factors on PM2.5 concentrations is more complicated, but their relative individual impact on different emission sectors remains unclear. With the aid of the geographic detector model (GeoDetector), this study evaluated the impacts of anthropogenic emissions from different sectors on the PM2.5 concentrations of major cities in China. The results indicated that the influence of anthropogenic emissions factors with different emission sectors on PM2.5 concentrations exhibited significant changes at different spatial and temporal scales. Residential emissions were the dominant driver at the national annual scale, and the NOX of residential emissions explained 20% (q = 0.2) of the PM2.5 concentrations. In addition, residential emissions played the leading role at the regional annual scale and during most of the seasons in northern China, and ammonia emissions from residents were the dominant factor. Traffic emissions play a leading role in the four seasons for MUYR and EC in southern China, MYR and NC in northern China, and on a national scale. Compared with primary particulate matter, secondary anthropogenic precursors have a more important effect on PM2.5 concentrations at the national or regional annual scale. The results can help to strengthen our understanding of PM2.5 pollution, improve PM2.5 forecasting models, and formulate more precise government control policy.
Collapse
Affiliation(s)
- Jie Yang
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (J.Y.); (C.M.); (W.W.); (X.L.)
| | - Pengfei Liu
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (J.Y.); (C.M.); (W.W.); (X.L.)
- Institute of Urban Big Data, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China;
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Correspondence: (P.L.); (H.S.)
| | - Hongquan Song
- Institute of Urban Big Data, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China;
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
- Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng 475004, China
- Correspondence: (P.L.); (H.S.)
| | - Changhong Miao
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (J.Y.); (C.M.); (W.W.); (X.L.)
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Feng Wang
- Institute of Urban Big Data, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China;
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
- Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng 475004, China
| | - Yu Xing
- Henan Ecological and Environmental Monitoring Center, Zhengzhou 450046, China;
| | - Wenjie Wang
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (J.Y.); (C.M.); (W.W.); (X.L.)
| | - Xinyu Liu
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China; (J.Y.); (C.M.); (W.W.); (X.L.)
| | - Mengxin Zhao
- Institute of Technology, Technology & Media University of Henan Kaifeng, Kaifeng 475004, China;
| |
Collapse
|
38
|
Chaudhary V, Gautam A, Mishra YK, Kaushik A. Emerging MXene-Polymer Hybrid Nanocomposites for High-Performance Ammonia Sensing and Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2496. [PMID: 34684936 PMCID: PMC8538932 DOI: 10.3390/nano11102496] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
Ammonia (NH3) is a vital compound in diversified fields, including agriculture, automotive, chemical, food processing, hydrogen production and storage, and biomedical applications. Its extensive industrial use and emission have emerged hazardous to the ecosystem and have raised global public health concerns for monitoring NH3 emissions and implementing proper safety strategies. These facts created emergent demand for translational and sustainable approaches to design efficient, affordable, and high-performance compact NH3 sensors. Commercially available NH3 sensors possess three major bottlenecks: poor selectivity, low concentration detection, and room-temperature operation. State-of-the-art NH3 sensors are scaling up using advanced nano-systems possessing rapid, selective, efficient, and enhanced detection to overcome these challenges. MXene-polymer nanocomposites (MXP-NCs) are emerging as advanced nanomaterials of choice for NH3 sensing owing to their affordability, excellent conductivity, mechanical flexibility, scalable production, rich surface functionalities, and tunable morphology. The MXP-NCs have demonstrated high performance to develop next-generation intelligent NH3 sensors in agricultural, industrial, and biomedical applications. However, their excellent NH3-sensing features are not articulated in the form of a review. This comprehensive review summarizes state-of-the-art MXP-NCs fabrication techniques, optimization of desired properties, enhanced sensing characteristics, and applications to detect airborne NH3. Furthermore, an overview of challenges, possible solutions, and prospects associated with MXP-NCs is discussed.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell and Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi 110045, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad 500046, India;
| | - Yogendra K. Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
| |
Collapse
|
39
|
Analysis of Basic Physical and Chemical Characteristics of Manganese Slag before and after Solidification and Its Feasibility as Highway Slope. MATERIALS 2021; 14:ma14195530. [PMID: 34639927 PMCID: PMC8509152 DOI: 10.3390/ma14195530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Manganese slag is a kind of industrial waste produced by electrolytic production of manganese metal. The traditional method of stacking manganese slag not only causes waste of resources, but also produces environmental pollution. Finding harmless, effective, and economical disposal technology of manganese slag has gradually become a research hotspot and difficulty in the field of electrolytic manganese industry and environmental protection. To verify the feasibility of using manganese slag as roadbed material, the basic physical and chemical properties of manganese slag were analyzed based on X-ray diffraction, X-ray fluorescence spectrum, SEM scanning electron microscope, and particle analysis, the basic engineering characteristics of raw materials of manganese slag and solidified manganese slag mixed with quicklime were analyzed through a compaction test and a CBR test. Finally, based on the Monte Carlo method, the stability of a highway slope in the Guizhou Province of China is simulated by the finite element method, considering the spatial variability of manganese slag material strength parameters. The results show that the solidified manganese slag material can be used as highway subgrade material. This study has important reference significance for manganese slag highway construction projects.
Collapse
|
40
|
Yu H, Zhang G, Cai Y, Dong F. Altering the substituents of salicylic acid to improve Berthelot reaction for ultrasensitive colorimetric detection of ammonium and atmospheric ammonia. Anal Bioanal Chem 2021; 413:5695-5702. [PMID: 34331553 DOI: 10.1007/s00216-021-03485-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 02/02/2023]
Abstract
The Berthelot reaction is a classic method for detection of ammonium (NH4+) and atmospheric ammonia (NH3) by using salicylic acid (SA) as the chromogenic substrate. However, there lacks a method for improving the activity of the Berthelot reaction to enhance the analytical performance for detection of NH4+ and NH3. Here, five SA analogues with electron-withdrawing groups (-F) and electron-donating groups (-CH3 and -OCH3) at different positions of the aromatic ring have been chosen as the alternative to SA for Berthelot reaction. Among these analogues, 4-methoxysalicylic acid (4-OCH3-SA) shows the best colorimetric response and color change at a NH4+ concentration of 30 μM, and the sensitivity of 4-OCH3-SA-based colorimetric assay for NH4+ increases 1.75-fold compared with that of SA-based colorimetric method. This enhancement effect is attributed to the strong electron-donating property of 4-OCH3 group, activating the two-step electrophilic aromatic substitution reaction in the Berthelot reaction. Additionally, visual and sensitive detection of NH3 is realized, along with a low limit of detection down to 0.037 ppm. Furthermore, we demonstrate that this assay is reliable and practical for detection of NH4+ and NH3 in real water and air samples with good accuracy.
Collapse
Affiliation(s)
- Haili Yu
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Guihua Zhang
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Yanhua Cai
- Chongqing Key Laboratory of Environmental Materials and Remediation Technology, Chongqing University of Arts and Sciences, Yongchuan, 402160, People's Republic of China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
| |
Collapse
|
41
|
The antecedents and outcomes of transformational leadership: leader's self-transcendent value, follower's environmental commitment and behavior. LEADERSHIP & ORGANIZATION DEVELOPMENT JOURNAL 2021. [DOI: 10.1108/lodj-10-2020-0471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThe primary purpose of this paper is to identify the antecedent (i.e. leader's self-transcendent value) and outcomes (i.e. follower's environmental commitment and behavior) of transformational leadership. The second purpose is to examine the mediating role of transformational leadership plays in the relationship between leader's self-transcendent value and follower's environmental commitment and behavior.Design/methodology/approachMulti-source data were collected at multiple times in China. A total of 262 employees and their 64 supervisors completed the survey. The authors conducted a series of confirmatory factor analyses (CFAs) to verify the validity of the constructs and adopted the SPSS PROCESS macro with bootstrapping techniques to test the hypotheses.FindingsThe authors find that leader's self-transcendent value is an important antecedent of transformational leadership, and transformational leadership can enhance followers' environmental commitment and foster their environmental behavior. Besides, transformational leadership plays a significant mediating role between leader's self-transcendent value and follower's environmental commitment and behavior.Originality/valueThis study has developed an integrated model of the antecedents and outcomes of transformational leadership in the Chinese context. It also confirmed that transformational leadership mediates the process through which leader's self-transcendent value has a positive impact on follower's environmental commitment and behavior.
Collapse
|
42
|
Li X, Bei N, Hu B, Wu J, Pan Y, Wen T, Liu Z, Liu L, Wang R, Li G. Mitigating NO X emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116931. [PMID: 33756242 DOI: 10.1016/j.envpol.2021.116931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 05/19/2023]
Abstract
Stringent mitigation measures have reduced wintertime fine particulate matter (PM2.5) concentrations by 42.2% from 2013 to 2018 in the Beijing-Tianjin-Hebei (BTH) region, but severe PM pollution still frequently engulfs the region. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM2.5, although the surface-measured NO2 concentration has decreased by over 20%. The contributions of nitrogen oxides (NOX) emissions mitigation to the nitrate and PM2.5 concentrations and how to alleviate nitrate aerosols efficiently under the current situation still remains elusive. The WRF-Chem model simulations of a persistent and heavy PM pollution episode in January 2019 in the BTH reveal that NOX emissions mitigation does not help lower wintertime nitrate and PM2.5 concentrations under current conditions in the BTH. A 50% reduction in NOX emissions only decreases nitrate mass by 10.3% but increases PM2.5 concentrations by 3.2%, because the substantial O3 increase induced by NOX mitigation offsets the HNO3 loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by the occurrence of severe PM pollution in the BTH during the COVID-19 outbreak, with a significant reduction in NO2 concentration. Mitigation of NH3 emissions constitutes the priority measure to effectively lower the nitrate and PM2.5 concentrations in the BTH under current conditions, with 35.5% and 12.7% decrease, respectively, when NH3 emissions are reduced by 50%.
Collapse
Affiliation(s)
- Xia Li
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710061, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Naifang Bei
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jiarui Wu
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710061, China
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Tianxue Wen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Lang Liu
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710061, China
| | - Ruonan Wang
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710061, China
| | - Guohui Li
- Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
43
|
Xu L, Yang Z, Tsona NT, Wang X, George C, Du L. Anthropogenic-Biogenic Interactions at Night: Enhanced Formation of Secondary Aerosols and Particulate Nitrogen- and Sulfur-Containing Organics from β-Pinene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7794-7807. [PMID: 34044541 DOI: 10.1021/acs.est.0c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixing of anthropogenic gaseous pollutants and biogenic volatile organic compounds impacts the formation of secondary aerosols, but still in an unclear manner. The present study explores secondary aerosol formation via the interactions between β-pinene, O3, NO2, SO2, and NH3 under dark conditions. Results showed that aerosol yield can be largely enhanced by more than 330% by NO2 or SO2 but slightly enhanced by NH3 by 39% when the ratio of inorganic gases to β-pinene ranged from 0 to 1.3. Joint effects of NO2 and SO2 and SO2 and NH3 existed as aerosol yields increased with NO2 but decreased with NH3 when SO2 was kept constant. Infrared spectra showed nitrogen-containing aerosol components derived from NO2 and NH3 and sulfur-containing species derived from SO2. Several particulate organic nitrates (MW 215, 229, 231, 245), organosulfates (MW 250, 264, 280, 282, 284), and nitrooxy organosulfates (MW 295, 311, 325, 327, and 343) were identified using high-resolution orbitrap mass spectrometry in NO2 and SO2 experiments, and their formation mechanism is discussed. Most of these nitrogen- and sulfur-containing species have been reported in ambient particles. Our results suggest that the complex interactions among β-pinene, O3, NO2, SO2, and NH3 during the night might serve as a potential pathway for the formation of particulate nitrogen- and sulfur-containing organics, especially in polluted regions with both anthropogenic and biogenic influences.
Collapse
Affiliation(s)
- Li Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zhaomin Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xinke Wang
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Christian George
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
44
|
Lian Z, Ouyang W, Liu H, Zhang D, Liu L. Ammonia volatilization modeling optimization for rice watersheds under climatic differences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144710. [PMID: 33636792 DOI: 10.1016/j.scitotenv.2020.144710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
The ammonia (NH3) volatilization mechanism is complicated with pronounced watershed differences of climate conditions, soil properties, and tillage practices. The watershed NH3 emission dynamics model was developed with the combination of field measurements, Soil Water Assessment Tool and NH3 volatilization algorithms. The temporal NH3 emissions patterns and the watershed NH3 volatilization dynamics were simulated with the improved NH3 volatilization modeling. Five monitoring sites and three case watersheds across China were selected to highlight the impacts of climatic conditions and validated the modeling. The average NH3 emissions of the three watersheds ranged from 14.94 to 120.33 kg N ha-1, which were mainly positively correlated with temperatures (r = 0.56, p < 0.01) and negatively correlated with soil organic carbon content (r = -0.33, p < 0.01). Analysis of similarities indicated that significant differences existed between the watersheds in terms of NH3 volatilization (RANOSIM = 0.758 and 0.834, p < 0.01). These analysis imply that environmental variabilities were more important than N input amounts.
Collapse
Affiliation(s)
- Zhongmin Lian
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, China
| | - Wei Ouyang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, China.
| | - Hongbin Liu
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lianhua Liu
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, China
| |
Collapse
|
45
|
Wu D, Zhang Y, Dong G, Du Z, Wu W, Chadwick D, Bol R. The importance of ammonia volatilization in estimating the efficacy of nitrification inhibitors to reduce N 2O emissions: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116365. [PMID: 33388681 DOI: 10.1016/j.envpol.2020.116365] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 05/15/2023]
Abstract
Nitrification inhibitors (NIs) have been shown to be an effective tool to mitigate direct N2O emissions from soils. However, emerging findings suggest that NIs may increase soil ammonia (NH3) volatilization and, subsequently, indirect N2O emission. A quantitative synthesis is lacking to evaluate how NIs may affect NH3 volatilization and the overall N2O emissions under different environmental conditions. In this meta-analysis, we quantified the responses of NH3 volatilization to NI application with 234 observations from 89 individual studies and analysed the role of experimental method, soil properties, fertilizer/NI type, fertilizer application rate and land use type as explanatory factors. Furthermore, using data sets where soil NH3 emission and N2O emission were measured simultaneously, we re-evaluated the effect of NI on overall N2O emissions including indirect N2O emission from NH3 volatilization. We found that, on average, NIs increased NH3 volatilization by 35.7% (95% CI: 25.7-46.7%) and increased indirect N2O emission from NH3 emission (and subsequent N deposition) by 2.9%-15.2%. Responses of NH3 volatilization mainly varied with experimental method, soil pH, NI type and fertilizer type. The increase of NH3 volatilization following NI application showed a positive correlation with soil pH (R2 = 0.04, n = 234, P < 0.05) and N fertilizer rate (R2 = 0.04, n = 187, P < 0.05). When the indirect N2O emission was considered, NI's N2O mitigation effect decreased from 48.0% to 39.7% (EF = 1%), or 28.2% (EF = 5%). The results indicate that using DMPP with ammonium-based fertilizer in low pH, high SOC soils would have a lower risk for increasing NH3 volatilization than using DCD and nitrapyrin with urea in high pH, lower SOC soil. Furthermore, reducing N application rate may help to improve NIs' overall N2O emission mitigation efficiency and minimize their impact on NH3 volatilization.
Collapse
Affiliation(s)
- Di Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yuxue Zhang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Gao Dong
- China National Institute of Standardization, Beijing, China
| | - Zhangliu Du
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenliang Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China.
| | - David Chadwick
- School of Natural Sciences, Bangor University, Gwynedd, UK
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
46
|
Zhu J, Jian Y, Long D, Wang H, Zeng Y, Li J, Xiao R, Pu S. Degradation of ammonia gas by Cu 2O/{001}TiO 2 and its mechanistic analysis. RSC Adv 2021; 11:3695-3702. [PMID: 35424286 PMCID: PMC8694158 DOI: 10.1039/d0ra10431k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
A heterogeneous composite catalyst Cu2O/{001}TiO2 was successfully prepared by the impregnation-reduction method. With ammonia as the target pollutant, the degradation performance and degradation mechanism analysis of the prepared composite catalyst were investigated, providing technology for the application of photocatalysis technology in ammonia treatment reference. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), specific surface area (BET), fluorescence spectrum (PL) and UV-visible absorption (UV-Vis). The results showed: compared with single {001}TiO2, the addition of Cu2O to form a composite catalyst can reduce the recombination of electron-hole pairs, resulting in increased absorption intensity in the visible light range, decreased band gap width, and finally improved the degradation performance. When the composite ratio is 1 : 10, the specific surface area is the largest, which is 72.51 m2 g-1, and the degradation rate of ammonia is also the highest maintained at 85%. After repeated use for 5 times, the degradation rate of ammonia decreases gradually due to the loss of catalyst and photo-corrosion. In the whole reaction process, surface adsorbed water and associated hydroxyl radical participate in the ammonia degradation reaction, and finally form free hydroxyl radical and NO3 -. It provides some theoretical support for ammonia gas treatment, which is of great significance to protect the environment.
Collapse
Affiliation(s)
- Jiaming Zhu
- Chongqing Academy of Animal Sciences Chongqing 402460 China .,Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture Chongqing 402460 China
| | - Yue Jian
- Chongqing Academy of Animal Sciences Chongqing 402460 China .,Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture Chongqing 402460 China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences Chongqing 402460 China .,Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture Chongqing 402460 China
| | - Hao Wang
- Chongqing Academy of Animal Sciences Chongqing 402460 China .,Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture Chongqing 402460 China
| | - Yaqiong Zeng
- Chongqing Academy of Animal Sciences Chongqing 402460 China .,Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture Chongqing 402460 China
| | - Jigang Li
- Chongqing Academy of Animal Sciences Chongqing 402460 China
| | - Rong Xiao
- Chongqing Academy of Animal Sciences Chongqing 402460 China
| | - Shihua Pu
- Chongqing Academy of Animal Sciences Chongqing 402460 China .,Scientific Observation and Experiment Station of Livestock Equipment Engineering in Southwest, Ministry of Agriculture Chongqing 402460 China
| |
Collapse
|
47
|
Zhang Y, Liu X, Fang Y, Liu D, Tang A, Collett JL. Atmospheric Ammonia in Beijing during the COVID-19 Outbreak: Concentrations, Sources, and Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:32-38. [PMID: 37566379 PMCID: PMC7641044 DOI: 10.1021/acs.estlett.0c00756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 05/06/2023]
Abstract
This study investigates the concentrations and δ15N values of NH3 in Beijing during and after the 2020 COVID-19 lockdown. Higher NH3 concentrations and lower δ15N-NH3(measured) were observed at most sites in 2020 compared to 2017. Except for a site inside a tunnel, NH3 concentrations did not increase significantly after the lockdown had ended compared to those during the lockdown, while δ15N-NH3(measured) increased by 2.1-9.9‰. Nonagricultural sources (fossil fuel and urban waste) overall contributed 81% and 62% of NH3 at on-road (tunnel interior) and nonroad (CAU) sites in 2020, respectively, comparable to those in 2017 (without significant difference). The contribution of nonagricultural sources slightly increased after the lockdown compared to the contribution during the lockdown at the nonroad site and hardly changed at the tunnel interior site. Our results suggest that (1) unfavorable meteorological conditions, especially lower boundary layer heights and changes in regional transport patterns, might play a more important role than reduced anthropogenic emissions in the temporal variations of Beijing NH3 and (2) the effect of reduced anthropogenic emissions, during the COVID-19 outbreak or with the future implementation of emission control strategies, on atmospheric NH3 can be better demonstrated by isotope-based source apportionment of NH3, rather than only by changes in NH3 concentrations.
Collapse
Affiliation(s)
- Yangyang Zhang
- Beijing Key Laboratory of Farmland
Soil Pollution Prevention and Remediation, College of Resources and
Environmental Sciences, China Agricultural
University, Beijing 100193,
China
| | - Xuejun Liu
- Beijing Key Laboratory of Farmland
Soil Pollution Prevention and Remediation, College of Resources and
Environmental Sciences, China Agricultural
University, Beijing 100193,
China
| | - Yunting Fang
- Key Laboratory of Forest Ecology and
Management, Institute of Applied Ecology, Chinese Academy
of Sciences, Shenyang 110164,
China
| | - Duanyang Liu
- Key Laboratory of Transportation
Meteorology, China Meteorological
Administration, Nanjing 210008,
China
- Nanjing Joint Institute
for Atmospheric Sciences, Nanjing 210008,
China
| | - Aohan Tang
- Beijing Key Laboratory of Farmland
Soil Pollution Prevention and Remediation, College of Resources and
Environmental Sciences, China Agricultural
University, Beijing 100193,
China
| | - Jeffrey L. Collett
- Department of Atmospheric Science,
Colorado State University, Fort
Collins, Colorado 80523, United States
| |
Collapse
|
48
|
Cao Y, Bai Z, Misselbrook T, Wang X, Ma L. Ammonia emissions from different pig production scales and their temporal variations in the North China Plain. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:23-33. [PMID: 32909911 DOI: 10.1080/10962247.2020.1815895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Pig production systems in China are shifting from small to industrial scale. Significant variation in housing ammonia (NH3) emissions can exist due to differences in diet, housing design, and management practices. However, there is a knowledge gap regarding the impacts of farm-scale in China, which may be critical in identifying hotspots and mitigation targets. Here, continuous in-situ NH3 concentration measurements were made at pig farms of different scales for sows and fattening pigs over periods of 3-6 days during two different seasons (summer vs. winter). For the sow farms, NH3 emission rates were greater at the small farm (summer: 0.52 g pig-1 hr-1; winter: 0.21 g pig-1 hr-1) than at the large farm (summer: 0.34 g pig-1 hr-1; winter: 0.12 g pig-1 hr-1). For the fattening pig farms, NH3 emission rates were greater at the large farm (summer: 0.22 g pig-1 hr-1; winter: 0.16 g pig-1 hr-1) than at the small farm (summer: 0.19 g pig-1 hr-1; winter: 0.07 g pig-1 hr-1). Regardless of farm scale, the NH3 emission rates measured in summer were greater than those in winter; the NH3 emission rates were greater in the daytime than at the nighttime; a positive relationship (R2 = 0.06-0.68) was established between temperature and NH3 emission rate, whereas a negative relationship (R2 = 0.10-0.47) was found between relative humidity and NH3 emission rate. The effect of farm-scale on indoor NH3 concentration could mostly be explained by the differences in ventilation rates between farms. The diurnal variation in NH3 concentration could be partly explained by ventilation rate (R2 = 0.48-0.78) in the small traditional farms and by emission rate (R2 = 0.26-0.85) in the large industrial farms, except for the large fattening pig farm in summer. Overall, mitigation of NH3 emissions from sow farms should be a top priority in the North China Plain. Implications: The present study firstly examined the farm-scale effect of ammonia emissions in the North China Plain. Of all farms, the sow farm was identified as the greatest source of ammonia emission. Regardless of farm scale, ammonia emission rates were observed to be higher in summer. Ammonia concentrations were mostly higher in the large industrial farms partly due to lower ventilation rates than in the small traditional farms.
Collapse
Affiliation(s)
- Yubo Cao
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science , Shijiazhuang, Hebei, People's Republic of China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Science , Beijing, People's Republic of China
| | - Zhaohai Bai
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science , Shijiazhuang, Hebei, People's Republic of China
| | - Tom Misselbrook
- Department of Sustainable Agriculture Sciences, Rothamsted Research , Okehampton, UK
| | - Xuan Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science , Shijiazhuang, Hebei, People's Republic of China
| | - Lin Ma
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, Chinese Academy of Science , Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
49
|
Lignite Improved the Quality of Composted Manure and Mitigated Emissions of Ammonia and Greenhouse Gases during Forced Aeration Composting. SUSTAINABILITY 2020. [DOI: 10.3390/su122410528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lignite amendment of livestock manure is considered a viable ammonia (NH3) emission mitigation technique. However, its impact on the subsequent composting of the manure has not been well studied. This work compared changes in biochemical parameters (e.g., organic matter loss and nitrogen (N) transformation) and also the emissions of NH3 and greenhouse gases (GHGs) between lignite-amended and unamended cattle manure during forced aeration composting. Amending manure with lignite did not alter the time to compost stability despite delaying the onset of the thermophilic temperatures. Lignite treatments retained N in the manure by suppressing NH3 loss by 35–54%, resulting in lignite-amended manure composts having 10–19% more total N than the unamended compost. Relative to manure only, lignites reduced GHG emissions over the composting period: nitrous oxide (N2O) (58–72%), carbon dioxide (CO2) (12–23%) and methane (CH4) (52–59%). Low levels of CH4 and N2O emissions were observed and this was attributed to the continuous forced aeration system used in the composting. Lignite addition also improved the germination index of the final compost: 90–113% compared to 71% for manure only. These findings suggest that lignite amendment of manure has the potential to improve the quality of the final compost whilst mitigating the environmental release of NH3 and GHGs.
Collapse
|
50
|
Lovarelli D, Conti C, Finzi A, Bacenetti J, Guarino M. Describing the trend of ammonia, particulate matter and nitrogen oxides: The role of livestock activities in northern Italy during Covid-19 quarantine. ENVIRONMENTAL RESEARCH 2020; 191:110048. [PMID: 32818500 PMCID: PMC7429516 DOI: 10.1016/j.envres.2020.110048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 05/03/2023]
Abstract
Nitrogen oxides (NOx), sulphur oxides (SOx) and ammonia (NH3) are among the main contributors to the formation of secondary particulate matter (PM2.5), which represent a severe risk to human health. Even if important improvements have been achieved worldwide, traffic, industrial activities, and the energy sector are mostly responsible for NOx and SOx release; instead, the agricultural sector is mainly responsible for NH3 emissions. Due to the emergency of coronavirus disease, in Italy schools and universities have been locked down from late February 2020, followed in March by almost all production and industrial activities as well as road transport, except for the agricultural ones. This study aims to analyze NH3, PM2.5 and NOx emissions in principal livestock provinces in the Lombardy region (Brescia, Cremona, Lodi, and Mantua) to evaluate if and how air emissions have changed during this quarantine period respect to 2016-2019. For each province, meteorological and air quality data were collected from the database of the Regional Agency for the Protection of the Environment, considering both data stations located in the city and the countryside. In the 2020 selected period, PM2.5 reduction was higher compared to the previous years, especially in February and March. Respect to February, PM2.5 released in March in the city stations reduced by 19%-32% in 2016-2019 and by 21%-41% in 2020. Similarly, NOx data of 2020 were lower than in the 2016-2019 period (reduction in March respect to February of 22-42% for 2016-2019 and of 43-62% for 2020); in particular, this can be observed in city stations, because of the current reduction in anthropogenic emissions related to traffic and industrial activities. A different trend with no reductions was observed for NH3 emissions, as agricultural activities have not stopped during the lockdown. Air quality is affected by many variables, for which making conclusions requires a holistic perspective. Therefore, all sectors must play a role to contribute to the reduction of harmful pollutants.
Collapse
Affiliation(s)
- Daniela Lovarelli
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Cecilia Conti
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133, Milan, Italy.
| | - Alberto Finzi
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Jacopo Bacenetti
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133, Milan, Italy
| | - Marcella Guarino
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133, Milan, Italy
| |
Collapse
|