1
|
Huang Y, Xiao Z, Wu S, Zhang X, Wang J, Huangfu X. Biochemical transformation and bioremediation of thallium in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176028. [PMID: 39265674 DOI: 10.1016/j.scitotenv.2024.176028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Thallium (Tl) is a toxic element associated with minerals, and its redistribution is facilitated by both geological and anthropogenic activities. In the natural environment, the transformation and migration of Tl mediated by (micro)organisms have attracted increasing attention. This review presents an overview of the biochemical transformation of Tl and the bioremediation strategies for Tl contamination. In the environment, Tl exists in various forms and originates from diverse sources. The global distribution characteristics of Tl in various media are summarized here, while its speciation and toxicity mechanism to organisms are elucidated. Interactions between (micro)organisms and Tl are commonly observed in the environment. Microbial response mechanisms to typical Tl exposure are analyzed at both species and gene levels, and the possibility of microorganisms as bio-indicators for monitoring Tl contamination is also highlighted. The processes and mechanisms involved in the microbial and benthic mediated transformation of Tl, as well as its enrichment by plants, are discussed. Additionally, in situ bioremediation strategies for Tl contamination and bio-treatment techniques for Tl-containing wastewater are summarized. Finally, the existing knowledge gaps and future research challenges are emphasized, including Tl distribution characteristics in the atmosphere and ocean, the key molecular mechanisms underlying Tl transformation by organisms, the screening of potential Tl oxidizing microorganisms and hyperaccumulators, as well as the revelation of global biogeochemical cycling pathways of Tl.
Collapse
Affiliation(s)
- Yuheng Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhentao Xiao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoling Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jingrui Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Zeng X, Wang J, Yuan W, Zhou Y, Beiyuan J, Deng P, Cao H, Chen Y, Wei X, Li L, Liu J. Mitigation of thallium threat in paddy soil and rice plant by application of functional biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121861. [PMID: 39096733 DOI: 10.1016/j.jenvman.2024.121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Thallium (Tl) is a highly toxic metal, and its contamination in soils entails high risks to human health via food chain. It remains largely unknown of the effects of applying biochar on Tl uptake in paddy systems despite that few studies have shown that biochar exhibits great potential for decreasing Tl bioavailability in soils. Herein, we examined the mitigating effects of the application of biochar (5 and 20 g/kg pristine biochar; 5 and 20 g/kg Fe/Mn-modified biochar) on Tl uptake in paddy soil and rice plant after an entire rice growth period. The results suggested that the application of Fe/Mn-modified biochar (FMBC) considerably mitigated the accumulation of Tl in different tissues of rice plants. Specifically, total Tl content in rice plants treated with FMBC-20 decreased by over 75% compared with control experiment. In addition, the amendment of FMBC in Tl-rich paddy soils can enhance the communities of microorganisms (Actinobacteria and Proteobacteria). Further analysis of the soil microbial symbiosis network revealed that FMBC promotes the living microorganisms to play modular synergistic interactions, which is crucial for FMBC-induced Tl stabilization in soils. All these findings indicated that FMBC is an efficient and environmentally friendly Tl-immobilization alternative material and can be potentially used in the remediation of Tl-contaminated paddy soils and/or cropland.
Collapse
Affiliation(s)
- Xuan Zeng
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenhuan Yuan
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuchen Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingzi Beiyuan
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Pengyuan Deng
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Huimin Cao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yuyi Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| |
Collapse
|
3
|
Liu J, Huang Y, Liu Y, Jiang S, Zhang Q, Li P, Lin K, Zeng X, Hu H, Cao Y, Xiong X, Wang J. Increased atmospheric thallium threats to populated areas: A mini review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135681. [PMID: 39276740 DOI: 10.1016/j.jhazmat.2024.135681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024]
Abstract
Air pollutants combined with Hg, Cd, Cr, Pb, etc. in many global populated areas were studied comprehensively, while our understanding towards thallium (Tl), an extremely toxic heavy metal, remains very limited. Further, the knowledge on atmospheric emissions, distribution, and the hidden risks associated with Tl is of great scarcity. Hence, this work aims to review recent data on significant sources of ambient Tl resulting from industrial activities, including Pb/Zn/Cu/Fe sulfide ore smelting, steel-making, coal burning, and cement production that involves the use of Tl-bearing wastes. Through the examination of Tl emissions and transfer pathways in the atmosphere, it is found that Tl is present at lower than ng/m3 in aerosols and air particulates but can increase to much higher levels even at 1000 μg/m3 in atmospheric fine particulate matters near the mining and smelting industrialized zones located near populated areas. This study highlights the importance of creating a comprehensive emission inventory for Tl, particularly in developing countries where this data is currently lacking. The time has come to develop a precise national emission inventory for Tl in order to prevent and mitigate the risks associated with ambient exposure to this element. This review offers novel insights for the scientific community and policy-makers in establishing effective control and management strategies to curb hidden Tl hazards derived from industrial activities.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yaole Huang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanyi Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shunlong Jiang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiong Zhang
- The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei Li
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ke Lin
- Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore
| | - Xuan Zeng
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haiyao Hu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xinni Xiong
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Sun M, Liu J, Lin K, Yuan W, Liang X, Wu H, Zhang Y, Dai Q, Yang X, Song G, Wang J. Distribution and migration of rare earth elements in sediment profile near a decommissioned uranium hydrometallurgical site in South China: Environmental implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121832. [PMID: 39038435 DOI: 10.1016/j.jenvman.2024.121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Rare earth elements have garnered increasing attention due to their strategic properties and chronic toxicity to humans. To better understand the content, migration, and ecological risk of rare earth elements in a 180 cm depth sediment profile downstream of a decommissioned uranium hydrometallurgical site in South China, X-ray powder diffraction (XRD) and High-resolution transmission electron microscope (HRTEM) were additionally used to quantify and clarify the mineral composition features. The results showed a high enrichment level of total rare earth elements in the sediment depth profile (range: 129.6-1264.3 mg/kg); the concentration variation of light rare earth elements was more dependent on depth than heavy rare earth elements. Overall, there was an obvious enrichment trend of light rare earth elements relative to heavy rare earth elements and negative anomalies of Ce and Eu. The fractionation and anomaly of rare earth elements in sediments were closely related to the formation and weathering of iron-bearing minerals and clay minerals, as confirmed by the correlation analysis of rare earth elements with Fe (r2 = 0.77-0.90) and Al (r2 = 0.50-0.71). The mineralogical composition of sediments mainly consisted of quartz, feldspar, magnetite, goethite, and hematite. Pollution assessment based on the potential ecological risk index, pollution load index (PLI), enrichment factor, and geological accumulation index (Igeo) showed that almost all the sediments had varying degrees of pollution and a high level of ecological risk. This study implied that continued environmental supervision and management are needed to secure the ecological health in terms of rare earth elements enrichment around a decommissioned uranium hydrometallurgical site. The findings may provide valuable insights for other uranium mining and hydrometallurgical areas globally.
Collapse
Affiliation(s)
- Mengqing Sun
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Juan Liu
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Ke Lin
- Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qunwei Dai
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| | - Xiao Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jin Wang
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
5
|
Tessele I, Dal Molin TR, Dognini J, Noremberg S, de Carvalho LM. Investigation of thallium as a contaminant in dietary supplements marketed for weight loss and physical fitness. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:800-810. [PMID: 38781478 DOI: 10.1080/19440049.2024.2354494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Dietary supplements are drastically growing as a category of consumer products all over the world. The abuse of supplements marketed for slimming purposes and physical fitness has been observed worldwide in recent years, which raises concerns in terms of public health. In this study, different types of dietary supplements marketed and delivered through the e-commerce were studied for the determination of thallium as a hazardous inorganic contaminant. The total content of thallium was determined by a sensitive voltammetric method after a microwave-assisted oxidative digestion of the sample. In addition, a comparative spectrometric method was applied for validation of the results in the samples. The maximum concentration found for thallium was found to be 2.89 mg kg-1, which well agree with the comparative measurement. Considering the 32 studied formulations, it can be pointed out that ∼24% of the of dietary supplements presented Tl concentrations at concentrations higher than 1 mg kg-1. The results permitted the assessment of the health risk related to thallium from contaminated samples, based on the calculation of the estimated daily intake (EDI) and the risk quotient (HQ). The highest daily intake of thallium was calculated as 82.0 µg day-1 in a protein-based supplement, which is equivalent to an EDI of 1.17 µg kg-1 day-1. This work highlights the need to develop regulations on the limits of toxic elements such as thallium in widely consumed dietary supplements, as well as an in-depth look at the adverse effects caused by this element in the human body.
Collapse
Affiliation(s)
- Igor Tessele
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Thaís R Dal Molin
- Graduate Program of Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | | | - Simone Noremberg
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Leandro M de Carvalho
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
- Graduate Program of Pharmaceutical Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
6
|
Chang HF, Tseng SC, Tang MT, Hsiao SSY, Lee DC, Wang SL, Yeh KC. Physiology and molecular basis of thallium toxicity and accumulation in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116290. [PMID: 38599154 DOI: 10.1016/j.ecoenv.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shao-Chin Tseng
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Mau-Tsu Tang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, Republic of China
| | - Silver Sung-Yun Hsiao
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, Republic of China.
| |
Collapse
|
7
|
Shakoor N, Tariq S, Adeel M, Azeem I, Nadeem M, Zain M, Li Y, Quanlong W, Aslam R, Rui Y. Cryptic footprint of thallium in soil-plant systems; A review. CHEMOSPHERE 2024; 356:141767. [PMID: 38537715 DOI: 10.1016/j.chemosphere.2024.141767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024]
Abstract
The current review highlights the complex behavior of thallium (Tl) in soil and plant systems, offering insight into its hazardous characteristics and far-reaching implications. The research investigates the many sources of Tl, from its natural existence in the earth crust to its increased release through anthropogenic activities such as industrial operations and mining. Soil emerges as a significant reservoir of Tl, with diverse physicochemical variables influencing bioavailability and entrance into the food chain, notably in Brassicaceae family members. Additionally, the study highlights a critical knowledge gap concerning Tl influence on legumes (e.g., soybean), underlining the pressing demand for additional studies in this crucial sector. Despite the importance of leguminous crops in the world food supply and soil fertility, the possible impacts of Tl on these crops have received little attention. As we traverse the ecological complexity of Tl, this review advocates the collaborative research efforts to eliminate crucial gaps and provide solutions for reducing Tl detrimental impacts on soil and plant systems. This effort intends to pave the path for sustainable agricultural practices by emphasizing the creation of Tl-tolerant legume varieties and revealing the complicated dynamics of Tl-plant interactions, assuring the long-term durability of our food systems against the danger of Tl toxicity.
Collapse
Affiliation(s)
- Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Samama Tariq
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, PR China.
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Nadeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wang Quanlong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rabia Aslam
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan City, Hebei, China; China Agricultural University Shanghe County Baiqiao Town Science and Technology Courtyard, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
8
|
Chang Y, Chiang CK. The Impact of Thallium Exposure in Public Health and Molecular Toxicology: A Comprehensive Review. Int J Mol Sci 2024; 25:4750. [PMID: 38731969 PMCID: PMC11084277 DOI: 10.3390/ijms25094750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
This review offers a synthesis of the current understanding of the impact of low-dose thallium (Tl) on public health, specifically emphasizing its diverse effects on various populations and organs. The article integrates insights into the cytotoxic effects, genotoxic potential, and molecular mechanisms of thallium in mammalian cells. Thallium, a non-essential heavy metal present in up to 89 different minerals, has garnered attention due to its adverse effects on human health. As technology and metallurgical industries advance, various forms of thallium, including dust, vapor, and wastewater, can contaminate the environment, extending to the surrounding air, water sources, and soil. Moreover, the metal has been identified in beverages, tobacco, and vegetables, highlighting its pervasive presence in a wide array of food sources. Epidemiological findings underscore associations between thallium exposure and critical health aspects such as kidney function, pregnancy outcomes, smoking-related implications, and potential links to autism spectrum disorder. Thallium primarily exerts cellular toxicity on various tissues through mitochondria-mediated oxidative stress and endoplasmic reticulum stress. This synthesis aims to shed light on the intricate web of thallium exposure and its potential implications for public health, emphasizing the need for vigilant consideration of its risks.
Collapse
Affiliation(s)
- Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
9
|
Hu S, Liu Y, Wei L, Luo D, Wu Q, Huang X, Xiao T. Recent advances in clay minerals for groundwater pollution control and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24724-24744. [PMID: 38503955 DOI: 10.1007/s11356-024-32911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Clay minerals are abundant on Earth and have been crucial to the advancement of human civilization. The ability of clay minerals to absorb chemicals is frequently utilized to remove hazardous compounds from aquatic environments. Moreover, clay-based adsorbent products are both environmentally acceptable and affordable. This study provides an overview of advances in clay minerals in the field of groundwater remediation and related predictions. The existing literature was examined using data and information aggregation approaches. Keyword clustering analysis of the relevant literature revealed that clay minerals are associated with groundwater utilization and soil pollution remediation. Principal component analysis was used to assess the relationships among clay mineral modification methods, pollutant properties, and the Langmuir adsorption capacity (Qmax). The results demonstrated that pollutant properties affect the Qmax of pollutants adsorbed by clay minerals. Systematic cluster analysis was utilized to classify the collected data and investigate the relationships. The pollution adsorption mechanism of the unique structure of clay minerals was investigated based on the characterization results. Modified clay minerals exhibited changes in surface functional groups, internal structure, and pHpzc. This review provides a summary of recent clay-based materials and their applications in groundwater remediation, as well as discussions of their challenges and future prospects.
Collapse
Affiliation(s)
- Simin Hu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
- Linköping University-Guangzhou University Research Center On Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China.
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linköping University-Guangzhou University Research Center On Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Qihang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| |
Collapse
|
10
|
Corzo-Remigio A, Harris HH, Kidman CJ, Nkrumah PN, Casey LW, Paterson DJ, Edraki M, van der Ent A. Mechanisms of Uptake and Translocation of Thallium in Brassica Vegetables: An X-ray Fluorescence Microspectroscopic Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2373-2383. [PMID: 38271998 DOI: 10.1021/acs.est.3c08113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Most nonoccupational human exposure to thallium (Tl) occurs via consumption of contaminated food crops. Brassica cultivars are common crops that can accumulate more than 500 μg Tl g-1. Knowledge of Tl uptake and translocation mechanisms in Brassica cultivars is fundamental to developing methods to inhibit Tl uptake or conversely for potential use in phytoremediation of polluted soils. Brassica cultivars (25 in total) were subjected to Tl dosing to screen for Tl accumulation. Seven high Tl-accumulating varieties were selected for follow-up Tl dosing experiments. The highest Tl accumulating Brassica cultivars were analyzed by synchrotron-based micro-X-ray fluorescence to investigate the Tl distribution and synchrotron-based X-ray absorption near-edge structure spectroscopy (XANES) to unravel Tl chemical speciation. The cultivars exhibited different Tl tolerance and accumulation patterns with some reaching up to 8300 μg Tl g-1. The translocation factors for all the cultivars were >1 with Brassica oleracea var. acephala (kale) having the highest translocation factor of 167. In this cultivar, Tl is preferentially localized in the venules toward the apex and along the foliar margins and in minute hot spots in the leaf blade. This study revealed through scanning electron microscopy and X-ray fluorescence analysis that highly Tl-enriched crystals occur in the stoma openings of the leaves. The finding is further validated by XANES spectra that show that Tl(I) dominates in the aqueous as well as in the solid form. The high accumulation of Tl in these Brassica crops has important implications for food safety and results of this study help to understand the mechanisms of Tl uptake and translocation in these crops.
Collapse
Affiliation(s)
- Amelia Corzo-Remigio
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia
| | - Clinton J Kidman
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia
| | - Philip Nti Nkrumah
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
| | - Lachlan W Casey
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane 4072, Australia
| | | | - Mansour Edraki
- Centre for Water in the Minerals Industry, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4072, Australia
- Laboratory of Genetics, Wageningen University and Research, Wageningen 6708, The Netherlands
| |
Collapse
|
11
|
Zhan J, Ren Y, Huang Y, Ju X, Liu H, Christie P, Wu L. New insights into the key role of node I in thallium accumulation in seed of coix (Coix lacryma-jobi L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168389. [PMID: 37952669 DOI: 10.1016/j.scitotenv.2023.168389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
The mechanisms underlying the distribution of many toxic metal(loid)s in shoots and metal(loid) transport to grains have been well documented in the quest for food safety but there remains a lack of knowledge on thallium (Tl) accumulation in food crops. Here, field investigations combined with a glasshouse pot experiment were conducted to investigate the characteristics of Tl distribution and accumulation in coix, a major food crop in south Guizhou province, China, and the role of node I in restricting Tl transport to the seed. Fourteen percent of coix seed samples collected from the Lanmuchang Tl-As-Hg mine contained higher Tl concentrations than the recommended limit for foods and feedstuffs in Germany (0.5 mg kg-1), with the highest exceedance rate of the metal(loid)s determined, when grown in soils surrounding the mine with a very high Tl concentration of 0.07-89.5 mg kg-1 and a general low pH of 4.19-6.48. Thallium concentrations were higher in coix nodes than in internodes, followed by roots and grains. The Tl translocation factors from node I to grains were 0.01-0.21 and were the lowest of any translocation factors between different tissues. Node I is therefore the key tissue restricting Tl transport to coix grains. Thallium was localized mainly in the diffuse vascular bundles (DVBs) in node I. The co-localization of Tl and sulfur in the DVBs and Tl contamination-induced phytochelatin (PC) accumulation indicate that Tl storage in the DVBs involving complexation with PCs in node I is an important process in Tl accumulation in coix grains. Moreover, the area of DVBs in node I increased with increasing soil Tl pollution level, providing more channels for Tl transport to the panicles and grains and thereby acting as a key factor restricting Tl transport to the grains. These results provide new insights into the key role of node I in Tl accumulation in coix grains and indicate key points to minimize Tl accumulation in grains for food safety.
Collapse
Affiliation(s)
- Juan Zhan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Ren
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yufeng Huang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xianhang Ju
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
12
|
Wei X, Nicoletto C, Sambo P, Liu J, Wang J, Petrini R, Renella G. Thallium uptake and risk in vegetables grown in pyrite past-mining contaminated soil amended with organic fertilizer (compost): A potential method for Tl contamination remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168002. [PMID: 37875191 DOI: 10.1016/j.scitotenv.2023.168002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
Thallium (Tl) is a highly toxic trace metal that can cause severe pollution and damage to the ecological system. In this study, a field trial was conducted in a Tl-rich pyrite-barite past-mining area to unveil the fate of Tl in agricultural practice. Tuscany kale and red chicory cultivated in soil impacted by the dismissed mine of Valdicastello Carducci (Northern Tuscany, Italy) displayed significantly different uptake behaviors of Tl. Hyper-accumulation of Tl was observed in kale leaves and its content reached up to 17.1 mg kg-1 whereas only <0.70 mg kg-1 of Tl was found in leaves of red chicory. Due to the regionally polymetallic pollution, Tuscany kale grown in this area possessed a great Tl intake risk for the residents. As for the fertilization treatment, Tl in Tuscany kale leaves fertilized with mineral fertilizer (NPK) and compost were 21.4 and 12.8 mg kg-1. The results suggested a potential remediation ability of compost in diminishing Tl in the vegetable leaves and thus may reduce its risk in the soil-crop system. Since Tl poisoning emergency may occur in agricultural fields near past-mining zones, it is critical to establish possible remediation measures to ensure food safety surrounding former mining areas likewise.
Collapse
Affiliation(s)
- Xudong Wei
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Carlo Nicoletto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy.
| | - Paolo Sambo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Riccardo Petrini
- Department of Earth Sciences, University of Pisa, Via S. Maria 53, 56126 Pisa, Italy
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
13
|
An D, Sun J, Ma J, Xing X, Tang Z. Organic ultraviolet absorbents in soils and typical plants from an industrial metropolis in China: Concentrations, profiles and environmental implications. CHEMOSPHERE 2023; 343:140242. [PMID: 37739135 DOI: 10.1016/j.chemosphere.2023.140242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
There is accumulating evidence of the toxicity of organic ultraviolet absorbers (OUVAs); however, limited information is available regarding the presence of OUVAs in terrestrial environments and organisms. Therefore, this study was conducted to investigate the occurrence of 11 OUVAs in soils and typical plant species from an industrial metropolis in China. Total OUVA concentrations in soils ranged from 1.30 to 80.3 ng g-1 DW. Based on comparison with previously reported data, OUVA contamination in soil was not severe. Benzophenone and octocrylene were the dominant OUVAs in soils, with median contributions to total concentrations of 25% and 15%, respectively. Source assessment revealed that the observed OUVA contamination primarily originated from industrial activities and the use of personal care products. The concentration of 11 OUVAs in plants ranged from 159 to 4470 ng g-1 DW, at high levels. Our findings imply that great attention should be given to the presence of these chemicals in plants because of the risk they could pose as well as the potential for biomagnification as plants are eaten by insects and birds. Our results also indicate the necessity to further study the geochemical behavior of these chemicals in urban ecosystems in order to better manage the harmfulness to terrestrial ecological health caused by their exposure through the food chains.
Collapse
Affiliation(s)
- Di An
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Jiazheng Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Jiayi Ma
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Xiangyang Xing
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
14
|
Liu YZ, Wang JF, Fan HY, He T, Wang DY, Zhou HZ, Li QS. Arsenic pollution, geochemical fractions, and leaching characteristics in soil samples from four contaminated sites in the Beijiang River Basin, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108917-108927. [PMID: 37755597 DOI: 10.1007/s11356-023-30061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
To remediate historically polluted sites before their land-use changes, it is essential to understand the concentration distribution, geochemical fraction, and migratory behavior of As in soil with varied particle sizes for the use of a sieving procedure. This study investigated the amount and percentage of As in soil with different particle sizes (0.25, 0.25-1, and 1-2 mm) as well as its toxicity characteristic in leaching procedure at four previously contaminated sites in the Beijiang River Basin, South China. The results showed that the total As concentration in the collected soils ranged from 70.1 to 402.8 mg/kg, and only a few percent of soil particle samples had As contents below the local risk threshold value of 60 mg/kg. The amorphous hydrous oxide bound, crystalline hydrous oxide bound, and residual fractions (F3-F5) of the geochemical fraction of As in soil of polluted sites accounted for 82.2-95.7% of the total As distribution. However, the concentration of As in non-specifically bound fractions increased with the mass ratio of soil with coarse particle sizes due to the negative correlation of Fe-bearing minerals concentration with the mass ratio of soil with coarse particle size. According to redundancy analysis, soil with coarse particle sizes and non-specifically bound As were mostly responsible for the As concentration in the leachate. These findings confirmed that a sieving process was not suitable for the remediation of soil As at four historically contaminated sites in the Beijiang River Basin due to the high concentration of As in soil and non-negligible environmental risk of labile extractable As in soil with coarse particle size.
Collapse
Affiliation(s)
- Yu-Zhong Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jun-Feng Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Han-Yun Fan
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Tao He
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Dao-Yuan Wang
- Department of Environmental Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Huan-Zhan Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Qu-Sheng Li
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
15
|
Ma Q, Jiang L, Yang B, Xu B, Wang Q, Wu Q, Ning P, Zhang Y, Huang J, Hao J. Mn/Ce@HKUST-1 for Efficient Removal of Gaseous Thallium: Insights from Kinetic and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13090-13102. [PMID: 37669076 DOI: 10.1021/acs.langmuir.3c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Gaseous thallium (Tl) pollution events, primarily caused by non-ferrous mineral refineries and fossil fuel combustion, have increased over the past few decades. To prevent gaseous Tl distribution from flue gas, MnO2/CeO2@HKUST-1 (MCH) was synthesized and found to achieve a gaseous Tl(I) removal level of up to 90% at 423 K, a weight hourly space velocity (WHSV) of 2000 h-1/mL with an Mn dose of 10%, maintained over 10 h. The best Mn/Ce ratio was found to be 9:1. To further investigate surface kinetic behavior, four commonly used kinetic models were applied, including the Eley-Rideal (ER) model, Langmuir-Hinshelwood (LH) model, Mars-van Krevelen (MVK) model, and pseudo-first-order (PFO) model. While the ER and LH models had the slightest deviation, the MVK model was the most reliable. The CatMAP software was also used to match the simulation deviation. This work demonstrated the Tl removal mechanism and provided insights into the accuracy of kinetic models on minor-radius heavy metal. Thus, this research may help promote the design of reactors, heavy metal removal rates, and flue gas purification technology selection.
Collapse
Affiliation(s)
- Qiang Ma
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Lijun Jiang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China
| | - Bowen Yang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China
| | - Bowen Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Qingyuan Wang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China
| | - Qihong Wu
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yingjie Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China
| | - Jin Huang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Chengdu University, Chengdu 610106, China
| | - Jiming Hao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Nyero A, Achaye I, Upoki Anywar G, Malinga GM. Inorganic nutrients and heavy metals in some wild edible plants consumed by rural communities in Northern Uganda: Implications for human health. Heliyon 2023; 9:e18999. [PMID: 37636347 PMCID: PMC10447991 DOI: 10.1016/j.heliyon.2023.e18999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
For centuries, wild edible plant species have sustained local communities across Africa by supplementing households' diets in seasons of food shortage. Wild edible plants contain inorganic nutrients, which are essential for the proper functioning of organisms. However, their nutritional contents have not been well researched and are generally poorly understood. This study aimed to quantify the levels of inorganic micro-and macronutrients as well as heavy metals (Mg, Ca, K, Fe, Zn, Cd, Hg and Pb) in selected wild edible plants traditionally consumed among the Acholi communities in northern Uganda, and associated health risks of consuming them. The leaves and young stems of 12 wild edible plants, viz: Acalypha rhomboidea, Asystacia gangetica, Crassocephalum sacrobasis, Crotalaria ochroleuca, Heterotis rotundifolia, Hibiscus cannabinus, Hibiscus sp., Hibiscus surattensis, Ipomoea eriocarpa, Maerua angolensis, Senna obtusifolia and Vigna membranacea were air-dried and crushed to powder. The powders were then macerated using aqua regia solution and analyzed in triplicates using the Atomic Absorption Spectrophotometry (AAS). The target hazard quotient (THQ) of Pb was calculated for non-carcinogenic health risks. Mg, Ca, K, Fe, Zn and Pb were detectable in all the wild edible plants sampled. All inorganic nutrients (mg/100gdw), were below the Recommended Daily Allowance (RDA); Mg (9.4 ± 0.19 to 10.4 ± 0.15), Ca (119 ± 5.82 to 1265 ± 14.9), Fe (3.29 ± 0.02 to 11.2 ± 0.09), Zn (0.52 ± 0.02 to 2.36 ± 0.03). Hg and Cd were below detectable limits in all the samples tested. The content of Pb (0.69 ± 0.11 to1.22 ± 0.07) was higher than the CODEX and EU limits of 0.1 ppm (0.001 mg/g) but was below the recommended threshold of 1. The health risk assessment revealed no potential hazards both in children and adults. However, there is a need to study the bioavailability of Pb when the vegetables are consumed due to factors such as indigestion and antinutritional compounds.
Collapse
Affiliation(s)
- Alfred Nyero
- Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Innocent Achaye
- Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Godwin Upoki Anywar
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | |
Collapse
|
17
|
Liu J, Yuan W, Ouyang Q, Bao Z, Xiao J, Xiong X, Cao H, Zhong Q, Wan Y, Wei X, Zhang Y, Xiao T, Wang J. A novel application of thallium isotopes in tracing metal(loid)s migration and related sources in contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163404. [PMID: 37059145 DOI: 10.1016/j.scitotenv.2023.163404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Thallium (Tl) is a highly toxic heavy metal, which is harmful to plants and animals even in trace amounts. Migration behaviors of Tl in paddy soils system remain largely unknown. Herein, Tl isotopic compositions have been employed for the first time to explore Tl transfer and pathway in paddy soil system. The results showed considerably large Tl isotopic variations (ε205Tl = -0.99 ± 0.45 ~ 24.57 ± 0.27), which may result from interconversion between Tl(I) and Tl(III) under alternative redox conditions in the paddy system. Overall higher ε205Tl values of paddy soils in the deeper layers were probably attributed to abundant presence of Fe/Mn (hydr)oxides and occasionally extreme redox conditions during alternative dry-wet process which oxidized Tl(I) to Tl(III). A ternary mixing model using Tl isotopic compositions further disclosed that industrial waste contributed predominantly to Tl contamination in the studied soil, with an average contribution rate of 73.23%. All these findings indicate that Tl isotopes can be used as an efficient tracer for fingerprinting Tl pathway in complicated scenarios even under varied redox conditions, providing significant prospect in diverse environmental applications.
Collapse
Affiliation(s)
- Juan Liu
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qi'en Ouyang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhi'an Bao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
| | - Jun Xiao
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi'an 710061, China
| | - Xinni Xiong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huimin Cao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qiaohui Zhong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuebing Wan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Yongqi Zhang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Chang Y, Tsai JF, Chen PJ, Huang YT, Liu BH. Thallium exposure interfered with heart development in embryonic zebrafish (Danio rerio): From phenotype to genotype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162901. [PMID: 36948317 DOI: 10.1016/j.scitotenv.2023.162901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
Thallium (Tl) is a rare trace metal element but increasingly detected in wastewater produced by coal-burning, smelting, and more recently, high-tech manufacturing industries. However, the adverse effects of Tl, especially cardiotoxicity, on aquatic biota remain unclear. In this study, zebrafish model was used to elucidate the effects and mechanisms of Tl(I) cardiotoxicity in developing embryos. Exposure of embryonic zebrafish to low-dose Tl(I) (25-100 μg/L) decreased heart rate and blood flow activity, and subsequently impaired swim bladder inflation and locomotive behavior of larvae. Following high-level Tl(I) administration (200-800 μg/L), embryonic zebrafish exhibited pericardial edema, incorrect heart looping, and thinner myocardial layer. Based on RNA-sequencing, Tl(I) altered pathways responsible for protein folding and transmembrane transport, as well as negative regulation of heart rate and cardiac jelly development. The gene expression of nppa, nppb, ucp1, and ucp3, biomarkers of cardiac damage, were significantly upregulated by Tl(I). Our findings demonstrate that Tl(I) at environmentally relevant concentrations interfered with cardiac development with respect to anatomy, function, and transcriptomic alterations. The cardiotoxic mechanisms of Tl(I) provide valuable information in the assessment of Tl-related ecological risk in freshwater environment.
Collapse
Affiliation(s)
- Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
19
|
Martín-León V, Rubio C, Rodríguez-Hernández Á, Zumbado M, Acosta-Dacal A, Henríquez-Hernández LA, Boada LD, Travieso-Aja MDM, Luzardo OP. Evaluation of Essential, Toxic and Potentially Toxic Elements in Leafy Vegetables Grown in the Canary Islands. TOXICS 2023; 11:toxics11050442. [PMID: 37235256 DOI: 10.3390/toxics11050442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Forty-seven elements in leafy green vegetables were studied to estimate the daily intakes from this food category in different scenarios (average and high consumers) and age groups of the Canary Islands population. The contribution of the consumption of each type of vegetable to the reference intakes of essential, toxic and potentially toxic elements was assessed and the risk-benefit ratio was evaluated. The leafy vegetables that provide the highest levels of elements are spinach, arugula, watercress and chard. While spinach, chard, arugula, lettuce sprouts and watercress were the leafy vegetables with the highest concentrations of essential elements (38,743 ng/g of Fe in spinach, 3733 ng/g of Zn in watercress), the high levels of Mn in chard, spinach and watercress are noteworthy. Among the toxic elements, Cd is the element with the highest concentration, followed by As and Pb. The vegetable with the highest concentration of potentially toxic elements (Al, Ag, Be, Cr, Ni, Sr and V) is spinach. In average adult consumers, while the greatest contribution of essential elements comes from arugula, spinach and watercress, insignificant dietary intakes of potentially toxic metals are observed. Toxic metal intakes from the consumption of leafy vegetables in the Canary Islands do not show significant values, so the consumption of these foods does not pose a health risk. In conclusion, the consumption of leafy vegetables provides significant levels of some essential elements (Fe, Mn, Mo, Co and Se), but also of some potentially toxic elements (Al, Cr and Tl). A high consumer of leafy vegetables would see their daily nutritional needs regarding Fe, Mn, Mo, and Co covered, although they are also exposed to moderately worrying levels of Tl. To monitor the safety of dietary exposure to these metals, total diet studies on those elements with dietary exposures above the reference values derived from the consumption of this food category, mainly Tl, are recommended.
Collapse
Affiliation(s)
- Verónica Martín-León
- Public Health Laboratory of Las Palmas, Canary Islands Government Health Service, 35004 Las Palmas de Gran Canaria, Spain
| | - Carmen Rubio
- Toxicology Department, Universidad de La Laguna, S/C de Tenerife, 38071 La Laguna, Spain
| | - Ángel Rodríguez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - Luis D Boada
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| | - María Del Mar Travieso-Aja
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera s/n, 35016 Las Palmas de Gran Canaria, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), 28029 Madrid, Spain
| |
Collapse
|
20
|
Liu J, Cao J, Yuan W, Zhong Q, Xiong X, Ouyang Q, Wei X, Liu Y, Wang J, Li X. Thallium adsorption on three iron (hydr)oxides and Tl isotopic fractionation induced by adsorption on ferrihydrite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161863. [PMID: 36716888 DOI: 10.1016/j.scitotenv.2023.161863] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Thallium (Tl) is an extraordinarily toxic metal, which is usually present with Tl(I) and highly mobile in aquatic environment. Limited knowledge is available on the adsorption and isotopic variations of Tl(I) to Fe-(hydr)oxides. Herein, the adsorption behavior and mechanism of Tl(I) on representative Fe-(hydr)oxides, i.e. goethite, hematite, and ferrihydrite, were comparatively investigated kineticly and isothermally, additional to crystal structure modelling and Tl isotope composition (205Tl/203Tl). The results showed that ferrihydrite exhibited overall higher Tl(I) adsorption capacity (1.11-10.86 mg/kg) than goethite (0.21-1.83 mg/kg) and hematite (0.14-2.35 mg/kg), and adsorption by the three prevalent Fe-minerals presented strong pH and ionic strength dependence. The magnitude of Tl isotopic fractionation during Tl(I) adsorption to ferrihydrite (αsolid-solution ≈ 1.00022-1.00037) was smaller than previously observed fractionation between Mn oxides and aqueous Tl(I) (αsolid-solution ≈ 1.0002-1.0015). The notable difference is likely that whether oxidation of Tl(I) occurred during Tl adsorption to the mineral surfaces. This study found a small but detectable Tl isotopic fractionation during Tl(I) adsorption to ferrihydrite and heavier Tl isotope was slightly preferentially adsorbed on surface of ferrihydrite, which was attributed to the formation of inner-sphere complex between Tl and ≡Fe-OH. The findings offer a new understanding of the migration and fate of 205Tl/203Tl during Tl(I) adsorption to Fe (hydr)oxides.
Collapse
Affiliation(s)
- Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jielong Cao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiaohui Zhong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xinni Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qi'en Ouyang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, 510006 Guangzhou, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000 Foshan, China.
| |
Collapse
|
21
|
Li CX, Talukder M, Xu YR, Zhu SY, Zhao YX, Li JL. Cadmium aggravates the blood-brain barrier disruption via inhibition of the Wnt7A/β-catenin signaling axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121400. [PMID: 36878275 DOI: 10.1016/j.envpol.2023.121400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is a non-biodegradable widespread environmental pollutant, which can cross the blood-brain barrier (BBB) and cause cerebral toxicity. However, the effect of Cd on the BBB is still unclear. In this study, a total of 80 (1-day-old) Hy-Line white variety chicks (20 chickens/group) were selected and randomly divided into four (4) groups: the control group (Con group) (fed with a basic diet, n = 20), the Cd 35 group (basic diet with 35 mg/kg CdCl2, n = 20), the Cd 70 group (basic diet with 70 mg/kg CdCl2, n = 20) and the Cd 140 group (basic diet with 140 mg/kg CdCl2, n = 20), and fed for 90 days. The pathological changes, factors associated with the BBB, oxidation level and the levels of Wingless-type MMTV integration site family, member 7 A (Wnt7A)/Wnt receptor Frizzled 4 (FZD4)/β-catenin signaling axis-related proteins in brain tissue were detected. Cd exposure induced capillary damage and neuronal swelling, degeneration and loss of neurons. Gene Set Enrichment Analysis (GSEA) showed the weakened Wnt/β-catenin signaling axis. The protein expression of the Wnt7A, FZD4, and β-catenin was decreased by Cd expusure. Inflammation generation and BBB dysfunction were induced by Cd, as manifested by impaired tight junctions (TJs) and adherens junctions (AJs) formation. These findings underscore that Cd induced BBB dysfunction via disturbing Wnt7A/FZD4/β-catenin signaling axis.
Collapse
Affiliation(s)
- Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying-Xin Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
22
|
Ouyang Q, Liu J, Yuan W, Wei X, Liu Y, Bao Z, Huang Y, Wang J. Stable thallium (Tl) isotopic signature as a reliable source tracer in river sediments impacted by mining activities. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130859. [PMID: 36736213 DOI: 10.1016/j.jhazmat.2023.130859] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Thallium (Tl) is an extremely toxic metal, whose geochemical behavior remains poorly understood. This study aims to clarify the migration pathway and source apportionment of Tl in sediments from a watershed downstream of an open and large-scale pyrite mine area in south China, using high-precised Tl isotopic compositions. Results showed that Tl isotopic fractionations were mainly influenced by the anthropogenic Tl sources in all the sediments as a whole from the studied watershed, while in situ mineral adsorption and biological activity were limited. Moreover, plot of ε205Tl vs. 1/Tl further illustrated that three possible end-members, viz. background sediments, pyrite tailings, and sewage treatment wastes were ascribed to predominant sources of Tl enrichment in the sediments. A ternary mixing model unveiled that waste from pyrite mining activities (i.e., both pyrite tailings and sewage treatment wastes) affected the downstream sediments up to 10 km. All these findings suggest that Tl isotopic signature is a reliable tool to trace Tl sources in the sediments impacted by mining activities. It is highly critical for further target-oriented and precise remediation of Tl contamination.
Collapse
Affiliation(s)
- Qi'en Ouyang
- School of Environmental Science and Engineering, Guangzhou University, and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Guangzhou University, and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE) University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Zhi'an Bao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
| | - Yeliang Huang
- School of Environmental Science and Engineering, Guangzhou University, and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, and Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
23
|
Silva DRD, Souza SRD, Silva LCD. Deterioration of extrafloral nectaries and leaf damages caused by air pollution in a Brazilian native species from the Atlantic Forest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43505-43521. [PMID: 36656482 DOI: 10.1007/s11356-023-25295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In Brazil, more than 90% of steel mills are located in states that have Atlantic Forest which, together with the pollution of large urban centers, represent risk factors for the environmental quality of this important biome. The aim of this study was to evaluate the effects of urban and industrial air pollution in a city in Minas Gerais that has a steel mill on the symptomatology, on the leaf chemistry, and on the anatomy and micromorphology of extrafloral nectaries (EFNs) of Joannesia princeps Vell. (Euphorbiaceae), a native species of the Atlantic Forest. For 126 days, seedlings of J. princeps were exposed on stand systems in the urban and industrial area of MG (Ipatinga city), in the following places: Bom Retiro, Cariru, Cidade Nobre, and Veneza. For anatomical analysis, EFNs were collected and processed for microscopic analysis. In the southern parts of the steel mill closest to the Rio Doce State Park (RDSP) (Bom Retiro and Cariru), there was a predominance of NO, NOX, SO2 (Bom Retiro), naphthalene, benzene, and total suspended particulates (Cariru). In locations north of the steel mill (Cidade Nobre and Veneza), there was a predominance of volatile organic compounds (VOCs). In the urban environment, intense anatomical and micromorphological damage to EFNs, leaf damage, leaf metal accumulation, and alterations in the histochemical tests of the plants were observed. The interior of the RDSP presented environmental quality, but the contribution of pollutants near the border between the RDSP and the city of Ipatinga is worrying, requiring constant monitoring of this area to verify the impact and threat that pollution can cause on these Atlantic Forest remnants.
Collapse
Affiliation(s)
- Daniel Rodrigues da Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P. H. Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil
| | - Silvia Ribeiro de Souza
- Núcleo de Uso Sustentável dos Recursos Naturais, Instituto de Pesquisas Ambientais de São Paulo, São Paulo, 01061-970, Brazil
| | - Luzimar Campos da Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P. H. Rolfs, S/N, Campus Universitário, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
24
|
Effect of montmorillonite biochar composite amendment on thallium bioavailability in contaminated agricultural soils and its mitigated health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47882-47891. [PMID: 36749515 DOI: 10.1007/s11356-023-25668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
Little information is available on the effect of clay minerals and biochar composite on the remediation and bioavailability of thallium in agricultural soils. This study thus investigated the influence of montmorillonite biochar composite (Mnt-BC) amendment on the remediation of agricultural soil contaminated artificially by Tl and its potential health risks. Herein, bok choi was cultured to estimate the efficiency of soil Mnt-BC amendments through the bioavailability of Tl of the vegetable. Results showed that Tl bioavailability was significantly reduced in Mnt-BC-amended soils, mainly ascribed to the elevated soil pH and other improved soil properties of high functional groups (-OH, -COOH), negative charges, and exchangeable cations after amendment. Specifically, the highest immobilization efficiency of Tl in soils was observed in 2.5% treated soils with 79.11%, while in plant leaves the highest reduction of Tl was estimated to be 75.1% compared to the control treatment. Hence, the amendment dosage improved the immobilization of Tl in soil and subsequently reduced Tl uptake by the vegetable. Furthermore, from target hazard quotient (THQ) estimation, Mnt-BC amendment can lower the potential health risk while consuming such cultured bok choi in Tl-contaminated soils. Considering the environmental friendliness and high efficiency of Mnt-BC, it could be used as a potential soil amendment to remediate agricultural soils contaminated by Tl.
Collapse
|
25
|
An Insight into the Impact of Serum Tellurium, Thallium, Osmium and Antimony on the Antioxidant/Redox Status of PCOS Patients: A Comprehensive Study. Int J Mol Sci 2023; 24:ijms24032596. [PMID: 36768916 PMCID: PMC9917046 DOI: 10.3390/ijms24032596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Humans exploit heavy metals for various industrial and economic reasons. Although some heavy metals are essential for normal physiology, others such as Tellurium (Te), Thallium (TI), antimony (Sb), and Osmium (Os) are highly toxic and can lead to Polycystic Ovarian Syndrome (PCOS), a common female factor of infertility. The current study was undertaken to determine levels of the heavy metals TI, Te, Sb and Os in serum of PCOS females (n = 50) compared to healthy non-PCOS controls (n = 56), and to relate such levels with Total Antioxidant Capacity (TAC), activity of key antioxidant enzymes, oxidative stress marker levels and redox status. PCOS serum samples demonstrated significantly higher levels of TI, Te, Sb and Os and diminished TAC compared to control (p < 0.001). Furthermore, there was significant inhibition of SOD, CAT and several glutathione-related enzyme activities in sera of PCOS patients with concurrent elevations in superoxide anions, hydrogen and lipid peroxides, and protein carbonyls, along with disrupted glutathione homeostasis compared to those of controls (p < 0.001 for all parameters). Additionally, a significant negative correlation was found between the elevated levels of heavy metals and TAC, indicative of the role of metal-induced oxidative stress as a prominent phenomenon associated with the pathophysiology of the underlying PCOS. Data obtained in the study suggest toxic metals as risk factors causing PCOS, and thus protective measures should be considered to minimize exposure to prevent such reproductive anomalies.
Collapse
|
26
|
Wang J, Deng P, Wei X, Zhang X, Liu J, Huang Y, She J, Liu Y, Wan Y, Hu H, Zhong W, Chen D. Hidden risks from potentially toxic metal(loid)s in paddy soils-rice and source apportionment using lead isotopes: A case study from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158883. [PMID: 36419275 DOI: 10.1016/j.scitotenv.2022.158883] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Pyrite is a typical sulfide mineral which contains various potentially toxic metal(loid)s (PTMs). The pyrite smelting and subsequent industrial utilization activities usually release numerous amounts of PTMs into nearby ecosystem, which may be enriched in the nearby farmland soils and crops, leading to hidden but irreversible harm to human health via the food chain. Herein, the distribution pattern, source apportionment, and potential health risks of Pb, Zn, Cu, Cd and multiple seldom monitored PTMs (Ag, Bi, Sb, Sr, Th, U, W, and V) in the paddy soils and different organs of the rice plants from ten various sites in a typical industrial zone were investigated, where pyrite ores were used for the production of sulfuric acid and subsequent cement over several decades. The results showed that the contents of Cd, Pb and Zn in studied paddy soils generally exceeded the maximum permissible level (MPL) in China, and the contents of Sb and V were approaching the MPL. Moreover, the rice is easier to bioaccumulate Cd, Cu, and Zn than the other studied elements. The hazard quotient (HQ) calculations indicate that the rice containing such multiple elements may cause a high potential non-carcinogenic and carcinogenic health risk for residents, particularly for the senior group. The Pb isotope tracing method combined with PCA (principal component analysis) further uncovered that the pyrite industrial utilization contributed 18.58-55.41 % to the highly enriched PTMs in paddy soils. All these findings indicate that the paddy soil system has been contaminated by the pyrite industrial activities and certain distances or areas should be rigidly forbidden from rice cultivation in the proximity of the pyrite smelting and related industrial sites.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Pengyuan Deng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Xiaoyin Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yeliang Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingye She
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanyi Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuebing Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haiyao Hu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wanying Zhong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
27
|
Jia Y, Xiao T, Sun J, Ning Z, Xiao E, Lan X, Chen Y. Calcium Enhances Thallium Uptake in Green Cabbage ( Brassica oleracea var. capitata L.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:4. [PMID: 36612325 PMCID: PMC9819253 DOI: 10.3390/ijerph20010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Thallium (Tl) is a nonessential and toxic trace metal that is detrimental to plants, but it can be highly up-taken in green cabbage (Brassica oleracea L. var. capitata L.). It has been proven that there is a significant positive correlation between Tl and Calcium (Ca) contents in plants. However, whether Ca presents a similar role for alleviating Tl toxicity in plants remains unclear, and little is known in terms of evidence for both Ca-enhanced uptake of Tl from soils to green cabbage and associated geochemical processes. In this study, we investigated the influence of Ca in soils on Tl uptake in green cabbage and the associated geochemical process. The pot experiments were conducted in 12 mg/kg Tl(I) and 8 mg/kg Tl(III) treatments with various Ca dosages. The results showed that Ca in soils could significantly enhance Tl uptake in green cabbage, increasing 210% in content over the control group. The soluble concentrations of Tl were largely increased by 210% and 150%, respectively, in 3.0 g/kg Ca treatment, compared with the corresponding treatment without Ca addition. This was attributed to the geochemical process in which the enhanced soluble Ca probably replaces Tl held on the soil particles, releasing more soluble Tl into the soil solution. More interestingly, the bioconcentration factor of the leaves and whole plant for the 2.0, 2.5, 3.0 g/kg Ca dosage group were greatly higher than for the non-Ca treatment, which could reach 207%, implying the addition of Ca can improve the ability of green cabbage to transfer Tl from the stems to the leaves. Furthermore, the pH values dropped with the increasing Ca concentration treatment, and the lower pH in soils also increased Tl mobilization, which resulted in Tl accumulation in green cabbage. Therefore, this work not only informs the improvement of agricultural safety management practices for the farming of crops in Tl-polluted and high-Ca-content areas, but also provides technical support for the exploitation of Ca-assisted phytoextraction technology.
Collapse
Affiliation(s)
- Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
- School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jialong Sun
- School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Yuxiao Chen
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
28
|
Sun F, Tao Y, Liao H, Wu F, Giesy JP, Yang J. Pollution levels and risk assessment of thallium in Chinese surface water and sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158363. [PMID: 36041602 DOI: 10.1016/j.scitotenv.2022.158363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Thallium (Tl) is one of the most toxic metals and can cause chronic and acute damage to humans. Due to occurrences of incidents involving Tl pollution in China, its potential environmental impacts are receiving increased attention. However, there is still limited information on Tl concentrations in the environment and their risks to human health and wildlife. This paper provides an overview of the contamination of surface water and sediments by Tl across China and assesses the potential risks using several methods. The acute and chronic aquatic life criteria for Tl were determined to be 13.25 and 1.65 μg/L, respectively. The acute and chronic risk quotients (RQs) of Tl in surface water near mining areas were 0.01-41.51 and 0.20-666.67, respectively, indicating medium to high ecological risks to aquatic organisms. Tl in sediments of Pearl and Gaofeng rivers pose a high risk based on the higher geo-accumulation index (Igeo) and potential ecological risk index (EI) values. Exposure parameters for the Chinese population were used to derive health criteria and assess non-carcinogenic risk posed by Tl in centralized drinking water sources. Tl criteria for protection of human health were calculated to be 0.18 μg/L for water+organisms and 0.30 μg/L for organisms only. The non-carcinogenic risk posed by Tl was acceptable. The human health criteria of Tl for children were the lowest among all age groups. The risks posed by Tl to health of children are greater than those for adults. Therefore, emphasis should be placed on protecting children from exposure to Tl. For the Chinese population, the drinking water guidance value to ensure protection of human health was determined to be 0.44 μg/L. The availability of multiple Tl guidance values for designated water uses will improve the environmental regulation and surveillance of Tl pollution in China and other countries.
Collapse
Affiliation(s)
- Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanru Tao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Integrative Biology, Michigan State University, East Lansing, MI 48895, USA; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA
| | - Jiwei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
29
|
Li D, Yao H, Zhu X, Li Z, Zeng X. Thallium(I) exposure perturbs the gut microbiota and metabolic profile as well as the regional immune function of C57BL/6 J mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90495-90508. [PMID: 35870064 DOI: 10.1007/s11356-022-22145-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Intestinal microbes regulate the development of diseases induced by environmental exposure. Thallium (Tl) is a highly toxic heavy metal, and its toxicity is rarely discussed in relation to gut microbes. Herein, we showed that Tl(I) exposure (10 ppm for 2 weeks) affected the alpha diversity of bacteria in the ileum, colon, and feces, but had little effect on the beta diversity of bacteria through 16S rRNA sequencing. LEfSe analysis revealed that Tl(I) exposure changed the abundance of intestinal microbiota along the digestive tract. Cecum metabolomic detection and analysis showed that Tl(I) exposure altered the abundance and composition of metabolites. In addition, the Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis revealed that Tl(I) exposure impaired amino acid, lipid, purine metabolism, and G protein-coupled receptor signalling pathways. A consistency test revealed a strong correlation, and a Pearson's correlation analysis showed an extensive interaction, between microorganisms and metabolites. Analysis of the intestinal immunity revealed that Tl(I) exposure suppressed the immune responses, which also had regional differences. These results identify the perturbation of the intestinal microenvironment by Tl exposure and provide a new explanation for Tl toxicity.
Collapse
Affiliation(s)
- Dong Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Huan Yao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Xiaohua Zhu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, Sichuan, China.
- College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.
| | - Zeqin Li
- College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| |
Collapse
|
30
|
Deng H, Tu Y, Wang H, Wang Z, Li Y, Chai L, Zhang W, Lin Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. ECO-ENVIRONMENT & HEALTH 2022; 1:229-243. [PMID: 38077254 PMCID: PMC10702911 DOI: 10.1016/j.eehl.2022.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 02/23/2024]
Abstract
Heavy metal(loid)s (HMs) have caused serious environmental pollution and health risks. Although the past few years have witnessed the achievements of studies on environmental behavior of HMs, the related toxicity mechanisms, and pollution control, their relationship remains a mystery. Researchers generally focused on one topic independently without comprehensive considerations due to the knowledge gap between environmental science and human health. Indeed, the full life cycle control of HMs is crucial and should be reconsidered with the combination of the occurrence, transport, and fate of HMs in the environment. Therefore, we started by reviewing the environmental behaviors of HMs which are affected by a variety of natural factors as well as their physicochemical properties. Furthermore, the related toxicity mechanisms were discussed according to exposure route, toxicity mechanism, and adverse consequences. In addition, the current state-of-the-art of available technologies for pollution control of HMs wastewater and solid wastes were summarized. Finally, based on the research trend, we proposed that advanced in-operando characterizations will help us better understand the fundamental reaction mechanisms, and big data analysis approaches will aid in establishing the prediction model for risk management.
Collapse
Affiliation(s)
- Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yuling Tu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ziyi Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yanyu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
31
|
Fang F, Li N, Zhang X, Liu J, Beiyuan J, Cao J, Wang J, Liu Y, Song G, Xiao T. Perspective on Fe 0-PS synergetic effect and reaction mechanism in the thallium(I) contaminated water treatment. ENVIRONMENTAL RESEARCH 2022; 214:113698. [PMID: 35779618 DOI: 10.1016/j.envres.2022.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/25/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Due to extreme toxicity of the element of thallium (Tl), increasing aqueous Tl pollution incidents have aroused growing concerns. As the prevalent and stable form, i.e., monovalent Tl, the highly efficient removal methodologies of Tl(I) from (waste)water remains limited and challenging. In this study, an advanced oxidation method, the feasibility of using zero valent iron (Fe0) coupled with persulfate (PS) to treat Tl(I)-containing synthetic wastewater was investigated. Its influence parameters, including reaction time, initial Tl concentration, dosages of PS and Fe0, initial and coagulation pH, temperature, coexisting ions and organic matter (NO3-, SO42-, Cl- and HA) were examined. The results revealed that the system can be applied to a wide range of pH and temperature and the reaction equilibrium can be reached in about 30 min. Favorable Tl(I) removal rate (>98%) was observed in the synthetic wastewater with medium and relatively high Tl(I) concentration (≤0.250 mM). The analyses of characterization results including electron spin resonance spectrometer and X-ray photoelectron spectroscopy indicated that ·OH played a vital role in the removal of Tl(I), which was oxidized and removed by co-precipitation. Fe0 can be served as a stable source of Fe2+ to efficiently catalyze PS. The remaining Fe0 can be easily separated because of its magnetism, assuring the promising reusability of the reactant. The study aims to provide references for treatment of real Tl polluted wastewater.
Collapse
Affiliation(s)
- Fa Fang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Nuo Li
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xian Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Jielong Cao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China.
| | - Yanyi Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Gang Song
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
32
|
Qvarforth A, Lundgren M, Rodushkin I, Engström E, Paulukat C, Hough RL, Moreno-Jiménez E, Beesley L, Trakal L, Augustsson A. Future food contaminants: An assessment of the plant uptake of Technology-critical elements versus traditional metal contaminants. ENVIRONMENT INTERNATIONAL 2022; 169:107504. [PMID: 36122458 DOI: 10.1016/j.envint.2022.107504] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
Technology-critical elements (TCEs) include most rare earth elements (REEs), the platinum group elements (PGEs), and Ga, Ge, In, Nb, Ta, Te, and Tl. Despite increasing recognition of their prolific release into the environment, their soil to plant transfer remains largely unknown. This paper provides an approximation of the potential for plant uptake by calculating bioconcentration factors (BCFs), defined as the concentration in edible vegetable tissues relative to that in cultivation soil. Here data were obtained from an indoor cultivation experiment growing lettuce, chard, and carrot on 22 different European urban soils. Values of BCFs were determined from concentrations of TCEs in vegetable samples after digestion with concentrated HNO3, and from concentrations in soil determined after 1) Aqua Regia digestion and, 2) diluted (0.1 M) HNO3 leaching. For comparison, BCFs were also determined for 5 traditional metal contaminants (TMCs; As, Cd, Cu, Pb, and Zn). The main conclusions of the study were that: 1)BCF values for the REEs were consistently low in the studied vegetables;2)the BCFs for Ga and Nb were low as well;3) the BCFs for Tl were high relative to the other measured TCEs and the traditional metal contaminants; and 4) mean BCF values for the investigated TCEs were generally highest in chard and lowest in carrot. These findings provide initial evidence that there are likely to be real and present soil-plant transfer of TCEs, especially in the case of Tl. Improvements in analytical methods and detection limits will allow this to be further investigated in a wider variety of edible plants so that a risk profile may be developed.
Collapse
Affiliation(s)
- A Qvarforth
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - M Lundgren
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - I Rodushkin
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - E Engström
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden; ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - C Paulukat
- ALS Laboratory Group, ALS Scandinavia AB, Luleå, Sweden
| | - R L Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| | - E Moreno-Jiménez
- Univ Autonoma Madrid, Fac Sci, Dept Agr & Food Chem, Madrid, Spain; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany; Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - L Beesley
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK; Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - L Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - A Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
33
|
Corzo Remigio A, Pošćić F, Nkrumah PN, Edraki M, Spiers KM, Brueckner D, van der Ent A. Comprehensive insights in thallium ecophysiology in the hyperaccumulator Biscutella laevigata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155899. [PMID: 35569660 DOI: 10.1016/j.scitotenv.2022.155899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Biscutella laevigata is the strongest known thallium (Tl) hyperaccumulator plant species. However, little is known about the ecophysiological processes leading to root uptake and translocation of Tl in this species, and the interactions between Tl and its chemical analogue potassium (K). Biscutella laevigata was subjected to hydroponics experimentation in which it was exposed to Tl and K, and it was investigated in a rhizobox experiment. Laboratory-based micro-X-ray fluorescence spectroscopy (μ-XRF) was used to reveal the Tl distribution in the roots and leaves, while synchrotron-based μ-XRF was utilised to reveal elemental distribution in the seed. The results show that in the seed Tl was mainly localised in the endosperm and cotyledons. In mature plants, Tl was highest in the intermediate leaves (16,100 μg g-1), while it was one order of magnitude lower in the stem and roots. Potassium did not inhibit or enhance Tl uptake in B.laevigata. At the organ level, Tl was localised in the blade and margins of the leaves. Roots foraged for Tl and cycled Tl across roots growing in the control soils. Biscutella laevigata has ostensibly evolved specialised mechanisms to tolerate high Tl concentrations in its shoots. The lack of interactions and competition between Tl and K suggests that it is unlikely that Tl is taken up via K channels, but high affinity Tl transporters remain to be identified in this species. Thallium is not only highly toxic but also a valuable metal and Tl phytoextraction using B. laevigata should be explored.
Collapse
Affiliation(s)
- Amelia Corzo Remigio
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Australia
| | - Filip Pošćić
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Germany
| | - Philip Nti Nkrumah
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Australia
| | - Mansour Edraki
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Australia
| | | | - Dennis Brueckner
- Deutsches Elektronen-Synchrotron DESY, Germany; Department of Physics, Universität Hamburg, Germany; Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Germany
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Australia.
| |
Collapse
|
34
|
Yang CH, Tan SW, Cheng CJ, Chen PJ. Revealing the toxicity of monovalent and trivalent thallium to medaka fish in controlled exposure conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106258. [PMID: 35952427 DOI: 10.1016/j.aquatox.2022.106258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/02/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Thallium (Tl) is a rare earth element increasingly being used in high-technology manufacturing. It is also an emerging pollutant with high exposure and toxicity risks to aquatic ecosystems. Tl exists in the environment in a monovalent [thallous, Tl(I)] or trivalent [thallic, Tl(III)] state. Currently, the stability of the two Tl species in natural water is uncertain and the toxicity in algae and daphnia are inconsistent due to lack of robust characterization of Tl species and matrix effects, while studies with fish are sparse. In this study, larvae of medaka fish (Oryzias latipes) were dosed with environmentally relevant concentrations of Tl(I) or Tl(III) spiked into synthetic and natural river water for 7 days to observe the toxic effects of two Tl species on fish. The transformation of Tl(I) and Tl(III) in water was analyzed by high performance liquid chromatography coupled with inductively coupled plasma and mass spectrometry. Analytical and toxicity results showed that Tl(I) is more stable presenting higher mortality and bioconcentration in medaka than Tl(III) in different water matrices. Tl(I)-induced LC50 and body burden in treated fish were highly correlated with its competitive ion, potassium (K), especially in waters containing medium K levels. This study provides reliable evidence regarding the stability and toxicity of Tl(I) and Tl(III) as well as the interaction of aqueous K versus Tl(I) in fish. Such information is useful for justifying water-quality guidelines and ecological risks of Tl pollution in natural water ecosystems.
Collapse
Affiliation(s)
- Ching-Hsin Yang
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shih-Wei Tan
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chiung-Ju Cheng
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
35
|
Vejvodová K, Vaněk A, Drábek O, Spasić M. Understanding stable Tl isotopes in industrial processes and the environment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115151. [PMID: 35500486 DOI: 10.1016/j.jenvman.2022.115151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
In this review, a compilation of the current knowledge on stable thallium (Tl) isotopes (205Tl and 203Tl) in specific industrial processes, soils and plants is presented. An overview of the processes that may control Tl concentration and Tl isotope fractionation is compiled, while also overviewing the ability of Tl isotopic ratios to be used as a 'fingerprint' in source apportionment. Thallium isotopic compositions not only depend on their origin, but also on soil processes that may occur over time. One of the most important phases affecting the fractionation of stable Tl isotopes in soils (or sediments) was systematically identified to be specific Mn(III,IV)-oxides (mainly birnessite), due to their potential ability of oxidative Tl sorption, i.e., indicative of redox Tl reactions to be critical controlling factor. It has been established that the Brassica family is a hyperaccumulator of Tl, with clear demonstrations of Tl isotopic fractionation occurring up the translocation pathway. A clear pattern, so far, was observed with Tl isotopic compositions in plants grown on soils that were contaminated and those grown on uncontaminated soils, indicating the importance of the growing medium on Tl uptake, translocation, and isotopic fractionation.
Collapse
Affiliation(s)
- Kateřina Vejvodová
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic.
| | - Aleš Vaněk
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Ondřej Drábek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| | - Marko Spasić
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha 6, Czech Republic
| |
Collapse
|
36
|
Antoniadis V, Thalassinos G, Levizou E, Wang J, Wang SL, Shaheen SM, Rinklebe J. Hazardous enrichment of toxic elements in soils and olives in the urban zone of Lavrio, Greece, a legacy, millennia-old silver/lead mining area and related health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128906. [PMID: 35452984 DOI: 10.1016/j.jhazmat.2022.128906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Lavrio is a Greek town with several abandoned Ag/Pb mines. In this study, 19 potentially toxic elements (PTEs) were measured in soil, weeds, and olives. Levels of seven of the studied PTEs in soil were highly elevated: Zn (56.2-58,726 mg kg-1), Pb (36.2-31,332), As (7.3-10,886), Cu (8.3-1273), Sb (0.99-297.8), Cd (0.17-287.7), and Ag (0.09-38.7). Synchrotron-based X-ray absorption near edge structure analysis of the soils revealed that As was predominantly associated with scorodite, Pb with humic substances, Zn with illite, Zn(OH)2 and humic substances, and Fe with goethite-like minerals. The transfer of the PTEs to weeds was relatively low, with the transfer coefficient being less than 1.0 for all PTEs. Cadmium in table olives surpassed 0.05 mg kg-1 fresh weight (the limit in EU), while Pb surpassed its limit in approximately half of the samples. Health risk assessment confirmed soil contamination in the study area where As and Pb hazard quotients were well above 1.0 and the average hazard index equaled 11.40. Additionally, the cancer risk values exceeding the 1 × 10-4 threshold. The results obtained in the study indicate that Lavrio urgently requires an adequate ecofriendly remediation plan, including revegetation with tolerant species and targeted efforts to chemically stabilize harmful PTEs. The presented approach may serve as a pivotal study for industrial areas with similar contamination levels.
Collapse
Affiliation(s)
- Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Giorgos Thalassinos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106 Taiwan
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany.
| |
Collapse
|
37
|
Wang J, Huang Y, Beiyuan J, Wei X, Qi J, Wang L, Fang F, Liu J, Cao J, Xiao T. Thallium and potentially toxic elements distribution in pine needles, tree rings and soils around a pyrite mine and indication for environmental pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154346. [PMID: 35259386 DOI: 10.1016/j.scitotenv.2022.154346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In this study, the distributions of thallium (Tl), and other potential toxic elements, such as Cd, Co, Cu, Pb, Sr, As, Cr, Ni, Zn, and Mn in needles, tree rings and soils of pine trees in one of the largest pyrite mining areas in the world, i.e., Yunfu, China were investigated. The results showed that pseudo-total Tl concentration of the tree rings ranged from 0.41 to 2.03 mg/kg (average: 1.12 mg/kg) during the year of 1998 to 2011. This indicates an overall obvious enrichment of Tl. Further investigation of element level variations in the pine needles showed a negative correlation between Tl content and the distance from the mining area. The results of Principal Component Analysis additionally demonstrated that Tl in the tree rings was most likely derived from the pine needles. Notably, Tl contents in the tree rings exhibited generally similar distribution pattern to the annual production intensity of Yunfu pyrite mining activities. The findings suggest that metal(loid)s in particular of Tl in pine tree rings can be used as alternative proxies to approximatively reconstruct the chronological change of atmospheric environmental pollution induced by pyrite associated mining/smelting activities.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Yeliang Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianying Qi
- South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655, China
| | - Lulu Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fa Fang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Jielong Cao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
38
|
Ren S, Wei X, Wang J, Liu J, Ouyang Q, Jiang Y, Hu H, Huang Y, Zheng W, Nicoletto C, Renella G. Unexpected enrichment of thallium and its geochemical behaviors in soils impacted by historically industrial activities using lead‑zinc carbonate minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153399. [PMID: 35092772 DOI: 10.1016/j.scitotenv.2022.153399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Thallium is a trace metal with severe toxicity. Contamination of thallium (Tl) generated by steel and non-ferrous metals industry is gaining growing concern worldwide. However, little is known on Tl contamination owing to industrial activities using carbonate minerals. This study revealed abundant geochemical mobile/bioavailable Tl (> 65.7%, in average; mostly in oxidizable fraction) in soils from a carbonate-hosted PbZn ore utilizing area in China for the first time. Unexpected Tl enrichment was observed in soil accompanying with 3655, 7820, 100.1, 27.3 and 29.9 mg/kg (in average) of Pb, Zn, As, Cd and Sb, respectively. Characterization using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis further confirmed that historical industrial activities impose anthropogenic catastrophic effects on the local agricultural soil system. The ecological and health risk assessment of heavy metal(loid)s in soils proclaimed serious potential non-carcinogenic risks of Pb and V to adults, and Pb, Tl and As to children. Sequential extraction analysis showed that Tl, as well as Pb, Zn, Mn, Co, and Cd, mainly existed in the mobile fractions (exchangeable/acid-extractable, reducible and oxidizable), indicating an ecological risk of biological accumulation of multiple metal(loid)s in this area. These findings provide a theoretical basis for taking appropriate remediation measures in order to ensure safety of soils in such industrial areas likewise.
Collapse
Affiliation(s)
- Shixing Ren
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Qi'en Ouyang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanjun Jiang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Haiyao Hu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yeliang Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wentao Zheng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Carlo Nicoletto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
39
|
Ma C, Huang R, Huangfu X, Ma J, He Q. Light- and H 2O 2-Mediated Redox Transformation of Thallium in Acidic Solutions Containing Iron: Kinetics and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5530-5541. [PMID: 35435677 DOI: 10.1021/acs.est.2c00034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The redox transformation between the oxidation states of thallium (Tl(I) and Tl(III)) is the key to influencing its toxicity, reactivity, and mobility. Dissolved iron (Fe) is widely distributed in the environment and coexists at a high level with Tl in acidic mine drainages (AMDs). While ultraviolet (UV) light and H2O2 can directly (by inducing Tl(III) reduction) and indirectly (by inducing Fe(III) to form reactive intermediates) impact the redox cycles of Tl in Fe(III)-containing solutions, the kinetics and mechanism remain largely unclear. This study is the first to investigate the UV light- and H2O2-mediated Tl redox kinetics in acidic Fe(III) solutions. The results demonstrate that UV light and H2O2 could directly reduce Tl(III) to Tl(I), with the extent of reduction dependent on the presence of Fe(III) and the solution pH. At pH 3.0, Tl(I) was completely oxidized to Tl(III), which can be ascribed to the generation of hydroxyl radicals (•OH) from the Fe(III) photoreduction or Fe(III) reaction with H2O2. The kinetics of Tl(I) oxidation were strongly affected by the Fe(III) concentration, pH, light source, and water matrix. Kinetic models incorporating Tl redox kinetics with Fe redox kinetics were developed and satisfactorily interpreted Tl(III) reduction and Tl(I) oxidation under the examined conditions. These findings emphasize the roles of the UV light- and H2O2-driven Fe cycles in influencing the redox state of Tl, with implications for determining its mobility and fate in the environment.
Collapse
Affiliation(s)
- Chengxue Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruixing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
40
|
Chen W, Xiong J, Liu J, Wang H, Yao J, Liu H, Huangfu X, He Q, Ma J, Liu C, Chen Y. Thermodynamic and kinetic coupling modeling for thallium(I) sorption at a heterogeneous titanium dioxide interface. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128230. [PMID: 35030487 DOI: 10.1016/j.jhazmat.2022.128230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The transformations of monovalent thallium (Tl) in an aqueous environment may be affected significantly by Tl(I) partitioning at the solid-water interface during sorption. Models used to quantify the kinetics of Tl(I) adsorption on heterogeneous adsorbents and formation of multiple complexes under a wide range of water chemistry conditions can accurately predict the environmental fate of thallium. In this study, Tl(I) sorption on representative titanium dioxide at different solution pH values and loading concentrations was investigated with two unified adsorption models, diffuse layer modeling and kinetics modeling. Three Tl(I) surface complexes, TiOTl, TiOHTl+, and TiOTlOH-, were used in the diffuse layer model and successfully described batch adsorption and the results of spectroscopic analyses. The contribution of TiOHTl+ to the adsorption capacity was much higher than those of TiOTl and TiOTlOH- under neutral and weakly alkaline conditions, while the species TiOTlOH- predominated among Tl(I) complexes in strongly alkaline environments. The adsorption and desorption rate coefficients derived from thermodynamics and kinetics coupling modeling suggested the influence of different complex characteristics on adsorption and desorption of Tl(I). Our results provide a comprehensive model for predicting the dynamic binding behavior of Tl at heterogeneous solid-water interfaces.
Collapse
Affiliation(s)
- Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jiaming Xiong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Juchao Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hainan Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jinni Yao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yao Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
41
|
Zhong Q, Qi J, Liu J, Wang J, Lin K, Ouyang Q, Zhang X, Wei X, Xiao T, El-Naggar A, Rinklebe J. Thallium isotopic compositions as tracers in environmental studies: A review. ENVIRONMENT INTERNATIONAL 2022; 162:107148. [PMID: 35219934 DOI: 10.1016/j.envint.2022.107148] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Thallium is a highly poisonous heavy metal. Since Tl pollution control has been neglected worldwide until the present, countless Tl pollutants have been discharged into the environment, endangering the safety of drinking water, farmland soil, and food chain, and eventually posing a great threat to human health. However, the source, occurrence, pathway and fate of Tl in the environment remains understudied. As Tl in non-contaminated systems and from anthropogenic origin exhibits generally different isotopic signatures, which can provide fingerprint information and a novel way for tracing the anthropogenic Tl sources and understanding the environmental processes. This review summarizes: (i) the state-of-the-art development in highly-precise determination analytical method of Tl isotopic compositions, (ii) Tl isotopic fractionation induced by the low-temperature surface biogeochemical process, (iii) Tl isotopic signature of pollutants derived from anthropogenic activities and isotopic fractionation mechanism of Tl related to the high-temperature industrial activities, and (iv) application of Tl isotopic composition as a new tracer emerging tracer for source apportionment of Tl pollution. Finally, the limitations and possible future research about Tl isotopic application in environmental contamination is also proposed: (1) Tl fractionation mechanism in different environmental geochemistry processes and industrial activities should be further probed comprehensively; (2) Tl isotopes for source apportionment should be further applied in other different high Tl-contaminated scenarios (e.g., agricultural systems, water/sediment, and atmosphere).
Collapse
Affiliation(s)
- Qiaohui Zhong
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jianying Qi
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, China
| | - Ke Lin
- Nanyang Technological University, Singapore 639798, Singapore
| | - Qi'en Ouyang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xian Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Ali El-Naggar
- University of Alberta, Edmonton, Alberta T6G 2E3, Canada; Ain Shams University, Cairo 11241, Egypt, Department of Soil Sciences Faculty of Agriculture
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
42
|
Hsu YC, Thia E, Chen PJ. Monitoring of ion release, bioavailability and ecotoxicity of thallium in contaminated paddy soils under rice cultivation conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126513. [PMID: 34246523 DOI: 10.1016/j.jhazmat.2021.126513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Paddy soils contaminated by thallium (Tl) have been frequently reported; however, their ecotoxicological impact in the paddy field is less known. We used a novel soil-fish exposure system with larvae of rice fish medaka (Oryzias latipes) to assess the bioavailability of Tl from soils to fish and causal toxicity under simulated conditions of rice cultivation. Two acidic soils [Pingzhen (Pc) and Sankengtzu (Sk)] spiked with monovalent Tl [Tl(I), 75-250 mg/kg] released higher Tl+ into pore or overlying waters than neutral soils [Sangkang (Su)], which resulted in higher mortality to exposed fish. The addition of K fertilizers into the system did not significantly reduce Tl release and fish mortality, but a drainage/re-flooding treatment worked effectively. The acidic Pc soil contaminated with low Tl(I) (2.5 and 15 mg/kg) caused higher sublethal toxicity in medaka than the neutral Su soil, including altered growth and swimming behavior with increased Tl body burden. These Tl-induced effects by low-Tl soils were significantly alleviated by K addition. The Tl/K ratios in aqueous phases were correlated with the mortality or Tl body burden in exposed fish. This study provides useful bio-analytical evidence that can help assess the ecological risks of Tl pollution in paddy field-related ecosystems.
Collapse
Affiliation(s)
- Yu-Chang Hsu
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Eveline Thia
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
43
|
She J, Liu J, He H, Zhang Q, Lin Y, Wang J, Yin M, Wang L, Wei X, Huang Y, Chen C, Lin W, Chen N, Xiao T. Microbial response and adaption to thallium contamination in soil profiles. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127080. [PMID: 34523503 DOI: 10.1016/j.jhazmat.2021.127080] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Thallium (Tl) is a trace metal with high toxicity. Comprehensive investigation of spatial distribution of Tl and microorganism is still limited in soils from mining area. In this study, 16S rRNA sequencing and network analysis were used for deciphering the co-occurrence patterns of bacterial communities in two different types of soil profiles around a typical Tl-bearing pyrite mine. The results showed that geochemical parameters (such as pH, S, Tl, Fe and TOM) were the driving forces for shaping the vertical distribution of microbial community. According to network analysis, a wide diversity of microbial modules were present in both soil profiles and affected by depth, significantly associated with variations in Tl geochemical fractionation. Phylogenetic information further unveiled that the microbial modules were mainly dominated by Fe reducing bacteria (FeRB), Fe oxidizing bacteria (FeOB), S oxidizing bacteria and Mn reducing bacteria. The results of metagenome indicated that Fe, Mn and S cycle in soil are closely involved in the biogeochemical cycle of Tl. The findings of co-occurrence patterns in the bacterial network and correlation between microorganisms and different geochemical fractions of Tl may benefit the strategy of bioremediation of Tl-contaminated soils with indigenous microbes.
Collapse
Affiliation(s)
- Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Hongping He
- Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yeliang Huang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Changzhi Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenli Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Nan Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
44
|
Fan Y, Chen X, Chen Z, Zhou X, Lu X, Liu J. Pollution characteristics and source analysis of heavy metals in surface sediments of Luoyuan Bay, Fujian. ENVIRONMENTAL RESEARCH 2022; 203:111911. [PMID: 34419467 DOI: 10.1016/j.envres.2021.111911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 05/16/2023]
Abstract
The concentrations of eight heavy metals, V, Cr, Co, Ni, Cu, Zn, Cd, and Pb, were analyzed to explore the environmental pollution characteristics, ecological risk levels, and sources of heavy metals in the surface sediments of Luoyuan Bay in Fujian Province. The results indicated that the mean concentrations of V, Cr, Co, Ni, Cu, Zn, Cd, and Pb were 110.44, 97.76, 17.35, 41.99, 36.78, 137.26, 0.09, and 35.81 mg⋅kg-1, respectively. The mean concentrations of Cr, Cu, and Zn exceeded the first category of the marine sediment quality standards, indicating a moderate regional comprehensive potential ecological hazard level. Due to variable hydrodynamic conditions, high concentrations of heavy metals were observed in the north and low concentrations were observed in the south, with high values generally recorded near steel plants and shipyard docks. Correlation and principal component analyses revealed that the V, Al, Co, Ni, and Pb originated from the weathering and erosion of rocks, and industrial wastewater discharge. Contrastingly, Cu, Zn, Cr, and Cd were mainly associated with the transportation and repair of ships, and marine aquaculture activities.
Collapse
Affiliation(s)
- Yifei Fan
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, Fujian, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Xiuling Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, Fujian, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, Fujian, China.
| | - Zhibiao Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, Fujian, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Xiaoxiao Zhou
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, Fujian, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Xin Lu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, Fujian, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| | - Jie Liu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, Fujian, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, Fujian, China
| |
Collapse
|
45
|
Kim YH, Ra WJ, Cho S, Choi S, Soh B, Joo Y, Lee KW. Method Validation for Determination of Thallium by Inductively Coupled Plasma Mass Spectrometry and Monitoring of Various Foods in South Korea. Molecules 2021; 26:6729. [PMID: 34771138 PMCID: PMC8588170 DOI: 10.3390/molecules26216729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
Thallium (Tl) is a rare element and one of the most harmful metals. This study validated an analytical method for determining Tl in foods by inductively coupled plasma mass spectrometry (ICP-MS) based on food matrices and calories. For six representative foods, the method's correlation coefficient (R2) was above 0.999, and the method limit of detection (MLOD) was 0.0070-0.0498 μg kg-1, with accuracy ranging from 82.06% to 119.81% and precision within 10%. We investigated 304 various foods in the South Korean market, including agricultural, fishery, livestock, and processed foods. Tl above the MLOD level was detected in 148 samples and was less than 10 μg kg-1 in 98% of the samples. Comparing the Tl concentrations among food groups revealed that fisheries and animal products had higher Tl contents than cereals and vegetables. Tl exposure via food intake did not exceed the health guidance level.
Collapse
Affiliation(s)
- Yeon-Hee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Wook-Jin Ra
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Solyi Cho
- Advanced Food Safety Research Group, School of Food Science and Technology, Chung-Ang University, Anseong-si 17546, Korea
| | | | - Bokyung Soh
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Yongsung Joo
- Department of Statistics, Dongguk University-Seoul, Seoul 04620, Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
46
|
Wei X, Wang J, She J, Sun J, Liu J, Wang Y, Yang X, Ouyang Q, Lin Y, Xiao T, Tsang DCW. Thallium geochemical fractionation and migration in Tl-As rich soils: The key controls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146995. [PMID: 33905923 DOI: 10.1016/j.scitotenv.2021.146995] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/13/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Thallium (Tl) pollution caused by mining and processing of Tl-enriched ores has become an increasing concern. This study explored the geochemical fractionation and vertical transfer of Tl in a soil profile (200 cm) from a representative Tl-As mineralized area, Southwest China. The results showed that the soils were heavily enriched by Tl and As, with concentration ranging from 3.91-17.3 and 1830-8840 mg/kg (6.79 and 2973 mg/kg in average), respectively. Approximately 50% of Tl occurred in geochemically mobile fractions in the topsoil, wherein the reducible fraction was the most enriched fraction. Further characterization using LA-ICP-MS and TEM revealed that enriched Tl and As in soils were mainly inherited from the weathering of mine tailing piles upstream. XPS characterization indicated that Fe oxides herein may play a critical role in the oxidation of Tl(I) to Tl(III) which provoked further adsorption of Tl onto Fe oxides, thereby facilitating Tl enrichment in the reducible fraction. The findings highlight that the pivotal role of Fe oxides from mineralized area in the co-mobility and migration of Tl and As in the depth profile.
Collapse
Affiliation(s)
- Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Yuxuan Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi''en Ouyang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuyang Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resource, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
47
|
Yang X, Li J, Liang T, Yan X, Zhong L, Shao J, El-Naggar A, Guan CY, Liu J, Zhou Y. A combined management scheme to simultaneously mitigate As and Cd concentrations in rice cultivated in contaminated paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125837. [PMID: 34492794 DOI: 10.1016/j.jhazmat.2021.125837] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 06/13/2023]
Abstract
Paddy soils in southern China are heavily co-polluted by arsenic (As) and cadmium (Cd). The accumulation of these contaminants in rice grains may pose a high health risk. We evaluated the impact of adjusted water management practice (i.e., conventional irrigation and aerobic treatment after heading stage) and the application of two immobilization agents (i.e., CaO and Fe2O3) on the accumulation of As and Cd in rice grains of three rice varieties (i.e., Jinyou-463, Jinyou-268, and Mabayouzhan). The different schemes were tested via conducting a field experiment in paddy soil in Shaoguan, Guangdong Province, China. The results showed that the combined scheme (selecting Jinyou-268, aerobic water management after the heading stage, and 0.09% CaO and 0.5% Fe2O3 amendments) exhibited the best performance in the reduction of As and Cd accumulation in rice grains. This combined scheme decreased the grain As concentration by 26.19% and maintained the Cd at a low level (0.056 mg/kg) as compared to the use of local conventional irrigation patterns. Moreover, health risk assessment demonstrated that by applying the optimal scheme, neither As nor Cd content in rice had carcinogenic risk. However, the grain As remains at a high non-carcinogenic risk. We suggest that future field study design should fully incorporate the uncertainty of the natural environment to make the research conclusions more feasible for popularization and utilization. This study demonstrated an approach of utilizing the synergy effects of various measures for safe rice production in fields subjected to As and Cd contaminations.
Collapse
Affiliation(s)
- Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Junchun Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lirong Zhong
- Energy and Environment Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99354, United States
| | - Jinqiu Shao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Juan Liu
- Institute of Environmental Research at Greater Bay, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
48
|
Zhou Y, Wang J, Wei X, Ren S, Yang X, Beiyuan J, Wei L, Liu J, She J, Zhang W, Liu Y, Xiao T. Escalating health risk of thallium and arsenic from farmland contamination fueled by cement-making activities: A hidden but significant source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146603. [PMID: 33836379 DOI: 10.1016/j.scitotenv.2021.146603] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Soil-to-vegetable migration of toxic metal(loid)s is a pivotal pathway of human exposure to chemical intoxication. Thallium (Tl) and arsenic (As) are highly toxic metal(loid)s but their co-occurrence in soils and vegetables remain poorly understood. Herein, the present study focuses on potential health risk arising from co-occurrence of TlAs in various common vegetables cultivated in different farmlands around an industrial area featured by cement production activities. The results reveal obvious co-contamination of Tl (2.28 ± 1.39 mg/kg) and As (102.0 ± 66.7 mg/kg) in soils. Fine particles bearing sulfide and other minerals associated with Tl and As are detected in fly ash from cement plant, which can be migrated by wind over a long distance with hidden but inevitable pollution. Bioaccumulation Factor (BCF) and Enrichment Factor (EF) show that taro and corn preferentially accumulate Tl especially in underground parts. Hazard Quotient (HQ) indicates that consumption of these vegetables may result in chronic poisoning and/or even carcinogenic risk. The study highlights that the pathway and high risk of co-contamination of TlAs in the nearby farmlands posed by cement-making activities should be highly concerned.
Collapse
Affiliation(s)
- Yuchen Zhou
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Shixing Ren
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Lezhang Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Weilong Zhang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Yu Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
49
|
Cao Y, Khan A, Kurniawan TA, Soltani R, Albadarin AB. Synthesis of hierarchical micro-mesoporous LDH/MOF nanocomposite with in situ growth of UiO-66-(NH2)2 MOF on the functionalized NiCo-LDH ultrathin sheets and its application for thallium (I) removal. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Ahmed W, Mehmood S, Núñez-Delgado A, Qaswar M, Ali S, Ying H, Liu Z, Mahmood M, Chen DY. Fabrication, characterization and U(VI) sorption properties of a novel biochar derived from Tribulus terrestris via two different approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146617. [PMID: 34030312 DOI: 10.1016/j.scitotenv.2021.146617] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Water contamination due to radionuclides is considered a crucial environmental issue. In this study, Tribulus terrestris plant biomass was used as a precursor for obtaining biochar (BC), that was further modified by two different methods using FeCl3 to obtain two different magnetic biochars. Both (one-step biochar, called 1S-BC, and two-steps biochar, called 2S-BC) were studied to investigate their capability for adsorbing/removing uranium (VI) from aqueous solutions. The U(VI) removal efficacy of both biochars was tested for different values of pH, ionic strength, initial concentration of U(VI) and temperature. Experimental adsorption data fitted well to the Freundlich model (achieving as highest value for adsorption capacity KF = 49.56 mg g-1 (mg L-1)-1/n, R2 = 0.99). Thermodynamic studies revealed that adsorption was endothermic, characterized by inner-sphere complexation, and entropy-driven with a relatively increased randomness in the solid-solution interface. X-ray photoelectron spectroscopy (XPS) revealed that U(VI) sorption took place by surface complexation between U(VI) and oxygen containing functional groups on both biochars. Five consecutive regeneration cycles verified an excellent reusability for 1S-BC. The overall results allow to conclude that the FeCl3 modification of the biochar obtained from Tribulus terrestris plant biomass could give an efficient alternative adsorbent for U(VI) removal in a variety of environmental conditions, promoting protection of the environment and human health, as well as facilitating resource utilization and sustainable management of the materials studied.
Collapse
Affiliation(s)
- Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Sajid Mehmood
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Avelino Núñez-Delgado
- Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Muhammad Qaswar
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Sehrish Ali
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huang Ying
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zequan Liu
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Mohsin Mahmood
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest Agriculture and Forestry (A & F) University, Yangling 712100, China
| | - Di-Yun Chen
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|