1
|
Boughman JW, Brand JA, Brooks RC, Bonduriansky R, Wong BBM. Sexual selection and speciation in the Anthropocene. Trends Ecol Evol 2024; 39:654-665. [PMID: 38503640 DOI: 10.1016/j.tree.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Anthropogenic change threatens global biodiversity by causing severe ecological disturbance and extinction. Here, we consider the effects of anthropogenic change on one process that generates biodiversity. Sexual selection (a potent evolutionary force and driver of speciation) is highly sensitive to the environment and, thus, vulnerable to anthropogenic ecological change. Anthropogenic alterations to sexual display and mate preference can make it harder to distinguish between conspecific and heterospecific mates or can weaken divergence via sexual selection, leading to higher rates of hybridization and biodiversity loss. Occasionally, anthropogenically altered sexual selection can abet diversification, but this appears less likely than biodiversity loss. In our rapidly changing world, a full understanding of sexual selection and speciation requires a global change perspective.
Collapse
Affiliation(s)
- Janette W Boughman
- Department of Integrative Biology & Evolution, Ecology and Behavior Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Västerbotten, SE-907 36, Sweden
| | - Robert C Brooks
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Römer CI, Ashauer R, Escher BI, Höfer K, Muehlebach M, Sadeghi-Tehran P, Sherborne N, Buchholz A. Fate of synthetic chemicals in the agronomic insect pest Spodoptera littoralis: experimental feeding-contact assay and toxicokinetic model. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:982-992. [PMID: 38691062 DOI: 10.1093/jee/toae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Insecticides prevent or reduce insect crop damage, maintaining crop quality and quantity. Physiological traits, such as an insect's feeding behavior, influence the way insecticides are absorbed and processed in the body (toxicokinetics), which can be exploited to improve species selectivity. To fully understand the uptake of insecticides, it is essential to study their total uptake and toxicokinetics independent of their toxic effects on insects. We studied the toxicokinetics (TK) of insecticidally inactive test compounds incorporating agro-like structural motifs in larvae of the Egyptian cotton leafworm (Spodoptera littoralis, Lepidoptera), and their distribution across all biological matrices, using laboratory experiments and modeling. We measured Spodoptera larval behavior and temporal changes of whole-body concentrations of test compounds during feeding on treated soybean leaf disks and throughout a subsequent depuration period. Differences in the distribution of the total quantities of compounds were found between the biological matrices leaf, larva, and feces. Rate constants for uptake and elimination of test compounds were derived by calibrating a toxicokinetic model to the whole-body concentrations. Uptake and elimination rate constants depended on the physicochemical properties of the test compounds. Increasing hydrophobicity increased the bioaccumulation potential of test compounds. Incomplete quantities in larval matrices indicated that some compounds may undergo biotransformation. As fecal excretion was a major elimination pathway, the variable time of release and number of feces pellets led to a high variability in the body burden. We provide quantitative models to predict the toxicokinetics and bioaccumulation potential of inactive insecticide analogs (parent compounds) in Spodoptera.
Collapse
Affiliation(s)
- Clara I Römer
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
- Department of Geosciences, Eberhard Karls University Tübingen, Environmental Toxicology, Tübingen 72076, Germany
| | - Roman Ashauer
- Syngenta Crop Protection AG, Basel 4058, Switzerland
- Environment Department, University of York, Wentworth Way, Heslington, York YO10 5NG, UK
| | - Beate I Escher
- Department of Geosciences, Eberhard Karls University Tübingen, Environmental Toxicology, Tübingen 72076, Germany
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Kristin Höfer
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | - Michel Muehlebach
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | - Pouria Sadeghi-Tehran
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| | | | - Anke Buchholz
- Syngenta Crop Protection AG, Research Biology & Chemistry, Stein CH-4332, Switzerland
| |
Collapse
|
3
|
Boff S, Ayasse M. Exposure to sublethal concentration of flupyradifurone alters sexual behavior and cuticular hydrocarbon profile in Heriades truncorum, an oligolectic solitary bee. INSECT SCIENCE 2024; 31:859-869. [PMID: 37602924 DOI: 10.1111/1744-7917.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
The aboveground oligolectic bee, Heriades truncorum, is a particularly good model for studying the impact of pesticides on sexual communication, since some aspects of its mating behavior have previously been described. We have tested (1) the interference of the pesticide flupyradifurone on male precopulatory behavior and male mating partner preferences, (2) the way that the pesticide interferes in male quality assessment by the female, and (3) the effects of the pesticide on the chemical compounds in the female cuticle. We exposed bees of both sexes to a sublethal concentration of flupyradifurone. Various behaviors were registered in a mating arena with two females (one unexposed and one exposed) and one male (either unexposed or exposed). Unexposed males were quicker to attempt to mate. Treatment also impacted precopulatory behavior and male quality assessment by females. Males approached unexposed females more quickly than insecticide-exposed ones. Females exposed to insecticide produced lower amounts of some cuticular hydrocarbons (sex pheromone candidates) and appeared less choosy than unexposed females. Our findings suggest that insecticide exposure affects sexual communication, playing a role both in male preference and in male quality assessment by the female.
Collapse
Affiliation(s)
- Samuel Boff
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
4
|
Khan HAA. Lethal and Sublethal Effects of Cyromazine on the Biology of Musca domestica Based on the Age-Stage, Two-Sex Life Table Theory. TOXICS 2023; 12:2. [PMID: 38276715 PMCID: PMC10819214 DOI: 10.3390/toxics12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024]
Abstract
Cyromazine is a triazine insect growth regulator insecticide that is recommended for control of Musca domestica worldwide. Cyromazine is highly effective in causing mortality of M. domestica; however, some aspects of its lethal and sublethal effects on the biology of M. domestica are still unknown. The present study explored lethal and sublethal effects on several biological traits and population parameters of M. domestica. Concentration-response bioassays of cyromazine against third-instar larvae of M. domestica exhibited sublethal and lethal effects from concentrations of 0.03 (LC10), 0.06 (LC25), and 0.14 (LC50) μg/g of a larval medium. Exposure of M. domestica larvae to these concentrations resulted in reduced fecundity, survival, longevity and oviposition period, and delayed development of immature stages (i.e., egg hatch time and larval and pupal durations) in the upcoming generation of M. domestica. The values of population parameters such as intrinsic rate of increase, finite rate of increase, net reproductive rate, age-specific survival rate and fecundity, and age-stage life expectancy and reproductive value, analyzed using the age-stage and two-sex life table theory, were significantly reduced in a concentration-dependent manner in comparison with the control group. In conclusion, the study highlights the significant effects of cyromazine on the biology of M. domestica that could help suppress its population in cases of severe infestations.
Collapse
Affiliation(s)
- Hafiz Azhar Ali Khan
- Institute of Zoology, University of the Punjab, Lahore P.O. Box. 54590, Pakistan
| |
Collapse
|
5
|
Guo J, An J, Chang H, Li Y, Dang Z, Wu C, Gao Z. The Lethal and Sublethal Effects of Lambda-Cyhalothrin and Emamectin Benzoate on the Soybean Pest Riptortus pedestris (Fabricius). TOXICS 2023; 11:971. [PMID: 38133372 PMCID: PMC10747274 DOI: 10.3390/toxics11120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Riptortus pedestris (Fabricius, 1775) (Hemiptera: Alydidae) is a major soybean pest in East Asia that can cause soybean staygreen syndrome. To date, no insecticides have been registered for the control of R. pedestris in China, and these insects are primarily controlled in the field through the application of broad-spectrum insecticides including lambda-cyhalothrin (LCT) and emamectin benzoate (EMB). Here, the lethal and sublethal effects of LCT and EMB on R. pedestris were comprehensively evaluated. LCT and EMB were both found to exhibit high levels of toxicity and concentration-dependent repellent effects for R. pedestris. The exposure of third instar nymphs from the F0 generation to LC30 concentrations of LCT and EMB resulted in a significant increase in the duration of nymph development and adult pre-oviposition period (APOP), together with reductions in fifth instar nymph and adult body weight, longevity, oviposition days, fecundity, vitellarium length, lateral oviduct diameter, and vitellogenin (Vg) gene expression as compared to control treatment. Strikingly, these suppressive effects were transmitted to the F1 generation, which similarly experienced the prolongation of preadult development and the preoviposition period (TPOP). Relative to control-treated populations, the F1 generation for these insecticide-treated groups also exhibited significant decreases in population parameter values. Overall, these data offer new insight into the impact that LCT and EMB treatment can have on R. pedestris, providing a valuable foundation for the application of these pesticides in the context of integrated pest management strategies aimed at soybean crop preservation.
Collapse
Affiliation(s)
- Jianglong Guo
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.G.); (J.A.); (Y.L.); (Z.D.)
| | - Jingjie An
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.G.); (J.A.); (Y.L.); (Z.D.)
| | - Hong Chang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yaofa Li
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.G.); (J.A.); (Y.L.); (Z.D.)
| | - Zhihong Dang
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.G.); (J.A.); (Y.L.); (Z.D.)
| | - Chi Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zhanlin Gao
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding 071000, China; (J.G.); (J.A.); (Y.L.); (Z.D.)
| |
Collapse
|
6
|
Nath A, Gadratagi BG, Maurya RP, Ullah F, Patil NB, Adak T, Govindharaj GPP, Ray A, Mahendiran A, Desneux N, Chandra Rath P. Sublethal phosphine fumigation induces transgenerational hormesis in a factitious host, Corcyra cephalonica. PEST MANAGEMENT SCIENCE 2023; 79:3548-3558. [PMID: 37183345 DOI: 10.1002/ps.7542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/31/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The rice moth, Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae) is a pest of stored grains and widely used as a factitious host during the mass rearing of several natural enemies of crop pests. Hormesis is well-documented in pest insects, to some extent in natural enemies of pests. RESULTS We report transgenerational stimulatory effects of the widely used fumigant, phosphine. The study reports the consequences of sublethal, low lethal and median lethal concentrations (LC5 , LC25 and LC50 ) and untreated control for two sequential generations of the species (G1 to G2 ). In this study, we investigated the life-history traits, nutrient reserves (protein, lipid and carbohydrate) and larval gut microbiome (using 16 s rRNA V3-V4 metagenomics sequencing) of C. cephalonica. Stimulatory effects were observed for various biological traits of C. cephalonica, notably adult longevity, emergence and increased egg hatchability when exposed to LC5 of phosphine. The total protein, lipid and carbohydrate contents of C. cephalonica also were found to be significantly increased by LC5 in both generations. The microbial diversity of LC5 treated larval gut was higher and found to be different from the rest of the treatments. This is the first report showing hormesis to a fumigant insecticide. CONCLUSION Our findings increase knowledge on the interaction between hormesis, nutrient reserves and gut bacteria in C. cephalonica exposed to insecticides. Overall, the present study establishes phosphine-induced hormesis at LC5 in the host C. cephalonica, which might help improve the quality of mass rearing of various natural enemies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anshuman Nath
- Department of Entomology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, India
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Ravi Prakash Maurya
- Department of Entomology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Naveenkumar B Patil
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Totan Adak
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Aishwarya Ray
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
- Department of Entomology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - Annamalai Mahendiran
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Prakash Chandra Rath
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
7
|
Ju D, Liu YX, Liu X, Dewer Y, Mota-Sanchez D, Yang XQ. Exposure to lambda-cyhalothrin and abamectin drives sublethal and transgenerational effects on the development and reproduction of Cydia pomonella. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114581. [PMID: 36731179 DOI: 10.1016/j.ecoenv.2023.114581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The codling moth Cydia pomonella (Lepidoptera: Tortricidae) is a major invasive pest of pome fruits and walnuts worldwide. Lambda-cyhalothrin (LCT) and abamectin (AM) have been frequently used in C. pomonella control, but control of this pest is very difficult because shortly after hatching, larvae of this insect bore tunnels and hide inside host plant fruit. In this study, a simulated field spray bioassay method was developed against neonate larvae of C. pomonella and concentration-response bioassays were conducted to evaluate the susceptibility of the neonate larvae to LCT and AM. Exposure of neonate larvae to sublethal concentration (LC30) of LCT or AM significantly reduced the survival rate of larvae (4th and 5th instars), lowered the mean weight of larvae and pupae, and decreased the daily maximal number of eggs laid and the total number of eggs laid (fecundity) per female. The sublethal effects, including reduced body mass, mean fecundity and net reproductive rate, extended mean generation time, and shortened oviposition period, were also found in transgenerational offspring. Furthermore, the transgenerational maternal effects were more obvious for AM than LCT, in comparison to the control. Additionally, the estimated population size was decreased by exposure to LC30 of LCT and AM, and the observed reduction of fecundity and population size within and across generations was likely the result of the downregulation of the reproduction-related vitellogenin gene (CpVg) after exposure to LC30 of LCT and AM. These results provide a better understanding of the overall effects of LCT and AM on C. pomonella and the transgenerational effects which should be taken into consideration when using insecticides in order to control C. pomonella.
Collapse
Affiliation(s)
- Di Ju
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Yu-Xi Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xue Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618 Giza, Egypt
| | - David Mota-Sanchez
- Department of Entomology, Michigan State University, East Lansing, MI 48824, United States
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China.
| |
Collapse
|
8
|
Yao Q, Liang Z, Chen B. Evidence for the Participation of Chemosensory Proteins in Response to Insecticide Challenge in Conopomorpha sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1360-1368. [PMID: 36622209 DOI: 10.1021/acs.jafc.2c05973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemosensory proteins (CSPs) are a type of efficient transporters that can bind various hydrophobic compounds. Previous research has shown that the expression levels of some insect CSPs were significantly increased after insecticide treatment. However, the role of CSPs in response to insecticide challenge is unclear. Conopomorpha sinensis is the most destructive borer pest of litchi (Litchi chinensis) and longan (Euphoria longan) in the Asia-Pacific region. Here, we studied the expression patterns and potential functions of 12 CSP genes (CsCSPs) from C. sinensis in response to λ-cyhalothrin exposure. The spatiotemporal distribution of CsCSPs suggested that they were predominantly expressed in the female abdomen, female legs, and male legs. The expression levels of CsCSPs were affected in a time-dependent manner after λ-cyhalothrin treatment in both sexes of C. sinensis adults. Compared to the control group, the expression levels of CsCSP1, CsCSP2, CsCSP9, and CsCSP12 in females were significantly increased by 2-4 times, while only one CsCSP, three CsCSPs, and two CsCSPs were significantly upregulated in males at three time points post-treatment. The sex-biased variance of CSP expression may be related to sex-specific detoxification enzymatic activities and survival rates of C. sinensis in response to insecticide challenge. Homology modeling and molecular docking analyses showed that the binding energy value of CsCSP1-12 to λ-cyhalothrin was negative and the binding energy between CsCSP9 and λ-cyhalothrin was the lowest (-11.35 kJ/mol). Combined with expression alterations of CsCSP1-12, the results indicate that CsCSP1, CsCSP2, CsCSP9, and CsCSP12 were involved in binding and ferrying of λ-cyhalothrin in C. sinensis.
Collapse
Affiliation(s)
- Qiong Yao
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhantu Liang
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bingxu Chen
- Guangdong Provincial Key Laboratory of New High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Kouamé RMA, Guglielmo F, Abo K, Ouattara AF, Chabi J, Sedda L, Donnelly MJ, Edi C. Education and Socio-economic status are key factors influencing use of insecticides and malaria knowledge in rural farmers in Southern Côte d'Ivoire. BMC Public Health 2022; 22:2443. [PMID: 36577975 PMCID: PMC9795670 DOI: 10.1186/s12889-022-14446-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/25/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Insecticides play a key role in rural farming; however, their over- or misuse has been linked with a negative impact on malaria vector control policies. This study was conducted amongst agricultural communities in Southern Côte d'Ivoire to identify which insecticides are used by local farmers and how it relates to the perception of farmers on malaria. Understanding the use of insecticides may help in designing awareness programme on mosquito control and pesticides management. METHODS A questionnaire was administered to 1399 farming households across ten villages. Farmers were interviewed on their education, farming practices (e.g. crops cultivated, insecticides use), perception of malaria, and the different domestic strategies of mosquito control they use. Based on some pre-defined household assets, the socioeconomic status (SES) of each household was estimated. Statistical associations were calculated between different variables, showing significant risk factors. RESULTS The educational level of farmers was significantly associated with their SES (p < 0.0001). Most of the householders (88.82%) identified mosquitoes as the principal cause of malaria, with good knowledge of malaria resulting as positively related to high educational level (OR = 2.04; 95%CI: 1.35, 3.10). The use of indoor chemical compounds was strongly associated to the SES of the households, their education level, their use of ITNs and insecticide in agricultural (p < 0.0001). Indoor application of pyrethroid insecticides was found to be widespread among farmers as well as the use of such insecticide for crops protection. CONCLUSION Our study shows that the education level remains the key factor influencing the use of insecticides by farmers and their awareness of malaria control. We suggest that better communication tailored to education level and including SES, controlled availability and access to chemical products, should be considered when designing campaigns on use of pesticides and vector borne disease control for local communities.
Collapse
Affiliation(s)
- Ruth M A Kouamé
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d'Ivoire.,Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan, Côte d'Ivoire
| | - Federica Guglielmo
- Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Kouabénan Abo
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d'Ivoire
| | - Allassane F Ouattara
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan, Côte d'Ivoire.,Université Nangui Abrogoua, 02 BP 801, Abidjan, Côte d'Ivoire
| | - Joseph Chabi
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Luigi Sedda
- Lancaster Ecology and Epidemiology Group, Lancaster Medical School, Lancaster University, Furness Building, Lancaster, LA1 4YG, United Kingdom
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Vector Biology Department, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Constant Edi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan, Côte d'Ivoire.
| |
Collapse
|
10
|
Boff S, Conrad T, Raizer J, Wehrhahn M, Bayer M, Friedel A, Theodorou P, Schmitt T, Lupi D. Low toxicity crop fungicide (fenbuconazole) impacts reproductive male quality signals leading to a reduction of mating success in a wild solitary bee. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Samuel Boff
- University of Würzburg, Biocentre Animal Ecology and Tropical Biology Würzburg Germany
- University of Milan Department of Food, Environmental and Nutritional Sciences Milan Italy
| | - Taina Conrad
- University of Bayreuth Department of Evolutionary Animal Ecology Bayreuth Germany
| | - Josué Raizer
- Federal University of Grande Dourados Faculty of Biology and Environmental Sciences Dourados Brazil
| | - Marten Wehrhahn
- University of Würzburg, Biocentre Animal Ecology and Tropical Biology Würzburg Germany
| | - Melis Bayer
- Ludwig Maximillians University Department of Neurobiology Munich Germany
| | - Anna Friedel
- Martin Luther University Halle‐Wittenberg Institute of Biology, General Zoology Halle (Saale) Germany
| | - Panagiotis Theodorou
- Martin Luther University Halle‐Wittenberg Institute of Biology, General Zoology Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Thomas Schmitt
- University of Würzburg, Biocentre Animal Ecology and Tropical Biology Würzburg Germany
| | - Daniela Lupi
- University of Milan Department of Food, Environmental and Nutritional Sciences Milan Italy
| |
Collapse
|
11
|
Straub L, Minnameyer A, Camenzind D, Kalbermatten I, Tosi S, Van Oystaeyen A, Wäckers F, Neumann P, Strobl V. Thiamethoxam as an inadvertent anti-aphrodisiac in male bees. Toxicol Rep 2022; 9:36-45. [PMID: 34987978 PMCID: PMC8693414 DOI: 10.1016/j.toxrep.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
There is consensus that neonicotinoids can impact non-target animal fertility. Thiamethoxam reduced both mating success and sperm physiology in bumblebees. Queens mated by exposed males had 50% less total living sperm in their spermatheca. Thiamethoxam may act as anti-aphrodisiac, thereby limiting conservation efforts.
Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g−1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | | | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Gregarines modulate insect responses to sublethal insecticide residues. Oecologia 2021; 198:255-265. [PMID: 34851452 PMCID: PMC8803800 DOI: 10.1007/s00442-021-05086-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/18/2021] [Indexed: 10/25/2022]
Abstract
Throughout their lifetime, insects face multiple environmental challenges that influence their performance. Gregarines are prevalent endoparasites in most invertebrates that affect the fitness of their hosts, but are often overlooked in ecological studies. Next to such biotic factors, a current common challenge is anthropogenic pollution with pesticides, which causes a major threat to non-target organisms that are readily exposed to lethal or sublethal concentrations. In a laboratory study, we investigated whether the presence of gregarines modulates the food consumption and life history traits of a (non-target) leaf beetle species, Phaedon cochleariae, in response to sublethal insecticide exposure. We show that the larval food consumption of the herbivore was neither affected by gregarine infection nor sublethal insecticide exposure. Nevertheless, infection with gregarines led to a delayed development, while insecticide exposure resulted in a lower body mass of adult males and a reduced reproduction of females. Individuals exposed to both challenges suffered most, as they had the lowest survival probability. This indicates detrimental effects on the population dynamics of non-target insects infected with naturally occurring gregarines that face additional stress from agrochemical pollution. Moreover, we found that the infection load with gregarines was higher in individuals exposed to sublethal insecticide concentrations compared to unexposed individuals. To counteract the global decline of insects, the potential of natural parasite infections in modulating insect responses to anthropogenic and non-anthropogenic environmental factors should be considered in ecological risk assessment.
Collapse
|
13
|
Sessa L, Calderón-Fernández GM, Abreo E, Altier N, Mijailovsky SJ, Girotti JR, Pedrini N. Epicuticular hydrocarbons of the redbanded stink bug Piezodorus guildinii (Heteroptera: Pentatomidae): sexual dimorphism and alterations in insects collected in insecticide-treated soybean crops. PEST MANAGEMENT SCIENCE 2021; 77:4892-4902. [PMID: 34164908 DOI: 10.1002/ps.6528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND The redbanded stink bug Piezodorus guildinii (Heteroptera: Pentatomidae) is one of the most important species affecting soybean crops in southern South America. Capillary gas chromatography coupled to mass spectrometry was used to characterize the epicuticular hydrocarbon profiles of field-collected insects, and to identify differences in their composition between fifth-instar nymphs and adults, males and females, and between bugs collected in insecticide-treated and insecticide-free soybean crops. RESULTS Straight chain saturated n-C27 and n-C29, and monomethyl and dimethyl chains of C31 and C33 were the most abundant compounds. A group of volatile hydrocarbons with n-C13 and n-C15 as the predominant compounds were also detected. The hydrocarbon pattern was different between nymphs and adults, either males or females. Heneicosene was almost exclusively detected in adult males and was the most important component to differentiate between both sexes, followed by tricosadiene. The total hydrocarbon amount was significantly higher in nymphs, males and females collected in insecticide-treated fields compared with insects obtained from untreated fields. CONCLUSION Differences were found in the epicuticular hydrocarbon pattern among nymphs and adults, as well as sexual dimorphism in adult stink bugs. Interestingly, an alteration was also found in the hydrocarbon profile of insects collected in insecticide-treated soybean crops and its relevance is discussed within a pest management context.
Collapse
Affiliation(s)
- Lucía Sessa
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria (INIA), Las Brujas, Uruguay
| | - Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria (INIA), Las Brujas, Uruguay
| | - Nora Altier
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria (INIA), Las Brujas, Uruguay
| | - Sergio J Mijailovsky
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
14
|
Hamida ZC, Farine JP, Ferveur JF, Soltani N. Pre-imaginal exposure to Oberon® disrupts fatty acid composition, cuticular hydrocarbon profile and sexual behavior in Drosophila melanogaster adults. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108981. [PMID: 33493665 DOI: 10.1016/j.cbpc.2021.108981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Oberon® is a commercial formulation of spiromesifen, a pesticide inhibitor of lipid biosynthesis via acetyl CoA carboxylase, widely used in agricultural crop protection. However, its mode of action requires further analysis. We currently examined the effect of this product on Drosophila melanogaster as a non-target and model organism. Different concentrations of spiromesifen were administered by ingestion (and contact) during pre-imaginal development, and we evaluated its delayed action on adults. Our results suggest that spiromesifen induced insecticidal activity on D. melanogaster. Moreover, spiromesifen treatment significantly increased the duration of larval and pupal development at all tested concentrations while it shortened longevity in exposed males as compared to control males. Also, pre-imaginal exposure to spiromesifen quantitatively affected fatty acids supporting its primary mode of action on lipid synthesis. In addition, this product was found to modify cuticular hydrocarbon profiles in exposed female and male flies as well as their sexual behavior and reproductive capacity.
Collapse
Affiliation(s)
- Z C Hamida
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria; Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J P Farine
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - J F Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - N Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria.
| |
Collapse
|
15
|
Abstract
Human and animal welfare primarily depends on the availability of food and surrounding environment. Over a century and half, the quest to identify agents that can enhance food production and protection from vector borne diseases resulted in the identification and use of a variety of pesticides, of which the pyrethroid based ones emerged as the best choice. Pesticides while improved the quality of life, on the other hand caused enormous health risks. Because of their percolation into drinking water and food chain and usage in domestic settings, humans unintentionally get exposed to the pesticides on a daily basis. The health hazards of almost all known pesticides at a variety of doses and exposure times are reported. This review provides a comprehensive summation on the historical, epidemiological, chemical and biological (physiological, biochemical and molecular) aspects of pyrethroid based insecticides. An overview of the available knowledge suggests that the synthetic pyrethroids vary in their chemical and toxic nature and pose health hazards that range from simple nausea to cancers. Despite large number of reports, studies that focused on identifying the health hazards using doses that are equivalent or relevant to human exposure are lacking. It is high time such studies are conducted to provide concrete evidence on the hazards of consuming pesticide contaminated food. Policy decisions to decrease the residual levels of pesticides in agricultural products and also to encourage organic farming is suggested.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
16
|
Wolz M, Schrader A, Müller C. Direct and delayed effects of exposure to a sublethal concentration of the insecticide λ-cyhalothrin on food consumption and reproduction of a leaf beetle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143381. [PMID: 33172643 DOI: 10.1016/j.scitotenv.2020.143381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic pollution such as the application of pesticides poses a major threat to many (non-target) organisms. However, little is known about the persistence of harmful effects or potential recovery in response to a period of exposure to a sublethal insecticide dose. Adults of the mustard leaf beetle, Phaedon cochleariae (Coleoptera: Chrysomelidae), were either exposed to a sublethal concentration of the pyrethroid λ-cyhalothrin for two weeks or kept unexposed as control. During, immediately after and at a delayed time after the exposure, consumption and reproduction, i.e., number of eggs laid and hatching success, were assessed. In addition, long-term effects on unexposed offspring were investigated. Exposure to λ-cyhalothrin reduced the consumption during the insecticide exposure, but led to compensatory feeding in females at a delayed time after exposure. The reproductive output of females was impaired during and directly after λ-cyhalothrin exposure. At the delayed time point there was no clear evidence for a recovery, as the reproduction of heavier females was still negatively affected, while lighter females showed an enhanced reproduction. Persistent negative effects on unexposed offspring had been found when collected from parents directly after a λ-cyhalothrin exposure period. In contrast, in the present experiment neither negative effects on life-history traits nor on consumption were observed in unexposed offspring derived from parents at the delayed time after λ-cyhalothrin exposure. Moreover, eggs of offspring from insecticide-exposed parents showed a higher hatching success than those of offspring of unexposed parents, which may indicate transgenerational hormesis. Our results highlight that λ-cyhalothrin exposure has persistent negative effects on fitness parameters of the exposed generation. However, offspring may not be harmed if their parents had sufficient time to recover after such an insecticide exposure. Taken together, our study emphasises that the time-course of exposure to this anthropogenic pollution is crucial when determining the consequences on life-history.
Collapse
Affiliation(s)
- Marina Wolz
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 24, 33615 Bielefeld, Germany
| | - Alia Schrader
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 24, 33615 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 24, 33615 Bielefeld, Germany.
| |
Collapse
|
17
|
Chi W, Mingyuan H, Fengshou D, Jun X, Xiaohu W, Bing C, Changbin W, Tian S, Yongquan Z, Xingang L. The influence of tolfenpyrad on fitness, development, and reproduction in parents and offspring of Coccinella septempunctata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111875. [PMID: 33454577 DOI: 10.1016/j.ecoenv.2020.111875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Coccinella septempunctata (ladybird) is one of the foremost natural predators that feed on aphids. Thus, C. septempunctata serves as an effective biological control agent in integrated pest management (IPM) programs. To supplement the activity of biological control agents, IPM programs often incorporate chemical pesticides to bolster crop protection. To evaluate the effects of a potent insecticide, tolfenpyrad, on C. septempunctata, we tested the sublethal effects of tolfenpyrad on all developmental stages of the life cycle of C. septempunctata and its effects on the next generation. For sublethal testing of the parent generation, the LR50 of tolfenpyrad for C. septempunctata was determined to range from 1.04 to 8.43 g a.i. /hm2 within a set exposure period, while the hazard quotient (HQ) values were above our threshold value of 2 during the entire observation period. These data indicated a potential toxicity risk from tolfenpyrad exposure. The no observed effect application rates (NOERs) of tolfenpyrad on parents (F0) were determined for survival (0.485 g a.i. /hm2), developmental time of pupation (0.242 g a.i. /hm2), and fecundity (0.485 g a.i. /hm2). Application of sublethal doses to unexposed progeny (F1) of exposed parents, prolonged the L1 (1st instar of larvae) and L2 (2nd instar of larvae) stage, while the total longevity, intrinsic rate of increase (r), finite rate of increase (γ), net reproductive rate (R0), and mean generation time (T) were significantly reduced. These results demonstrated the negative influence of sublethal concentrations of tolfenpyrad on C. septempunctata and its persistent effects on subsequent generations.
Collapse
Affiliation(s)
- Wu Chi
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Beijing ECO-SAF Technology Co., Ltd, Beijing 1011021, PR China
| | - He Mingyuan
- Beijing ECO-SAF Technology Co., Ltd, Beijing 1011021, PR China
| | - Dong Fengshou
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xu Jun
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Wu Xiaohu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Cai Bing
- Beijing ECO-SAF Technology Co., Ltd, Beijing 1011021, PR China
| | - Wang Changbin
- Beijing ECO-SAF Technology Co., Ltd, Beijing 1011021, PR China
| | - Sun Tian
- Beijing ECO-SAF Technology Co., Ltd, Beijing 1011021, PR China
| | - Zheng Yongquan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Liu Xingang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
18
|
Mbande A, Tedder M, Chidawanyika F. Offspring diet supersedes the transgenerational effects of parental diet in a specialist herbivore Neolema abbreviata under manipulated foliar nitrogen variability. INSECT SCIENCE 2020; 27:361-374. [PMID: 30298557 DOI: 10.1111/1744-7917.12644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Diet quality influences organismal fitness within and across generations. For herbivorous insects, the transgenerational effects of diet remain relatively underexplored. Using a 3 × 3 × 2 factorial experiment, we evaluated how N enrichment in parental diets of Neolema abbreviata (Larcordaire) (Coleoptera: Chrysomelidae), a biological control agent for Tradescantia fluminensis Vell. (Commelinaceae), may influence life history and performance of F1 and F2 offspring under reciprocal experiments. We found limited transgenerational effects of foliar nitrogen variability among life-history traits in both larvae and adults. Larval weight gain and mortality were responsive to parental diet contrary to feeding damage, pupal weight and duration taken to pupate. There were significant parental diet × test interactions in larval feeding damage, weight gain, pupal weight and time to pupation. Generally, offspring from parents under high N plants performed better even under low N test plants. Adult traits including oviposition selection, feeding weight and longevity did not respond to the effects of parental diet nor its interaction with test diet as was the case in the larval stage. However, the main effects of test diet were more important in determining adult performance in both generations suggesting limited sensitivity to parental diet in the adult stage. Our results show conflicting responses to parental diet between larvae and adults of the same generation among an insect species with both actively feeding larval and adult life stages. These transgenerational effects, or lack thereof, may have implications on the field performance of N. abbrevita under heterogeneous nutritional landscapes.
Collapse
Affiliation(s)
- Abongile Mbande
- Weeds Division, Plant Protection Research Institute, Agricultural Research Council, Hilton, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Michelle Tedder
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Frank Chidawanyika
- Weeds Division, Plant Protection Research Institute, Agricultural Research Council, Hilton, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
19
|
Friedli A, Williams GR, Bruckner S, Neumann P, Straub L. The weakest link: Haploid honey bees are more susceptible to neonicotinoid insecticides. CHEMOSPHERE 2020; 242:125145. [PMID: 31678852 DOI: 10.1016/j.chemosphere.2019.125145] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 05/03/2023]
Abstract
Neonicotinoid insecticides are currently of major concern for the health of wild and managed insects that provide key ecosystem services like pollination. Even though sublethal effects of neonicotinoids are well known, there is surprisingly little information on how they possibly impact developmental stability, and to what extent genetics are involved. This holds especially true for haploid individuals because they are hemizygous at detoxification loci and may be more susceptible. Here we take advantage of haplodiploidy in Western honey bees, Apis mellifera, to show for the first time that neonicotinoids affect developmental stability in diploid females (workers), and that haploid males (drones) are even more susceptible. Phenotypic fore wing venation abnormalities and fluctuating wing asymmetry, as measures of developmental instability, were significantly increased under field-realistic neonicotinoid-exposure of colonies. The higher susceptibility of haploid drones suggests that heterozygosity can play a key role in the ability to buffer the sublethal effects of neonicotinoids. Aiming to improve conservation efforts, our findings highlight the urgent need to better understand the role that genetics plays at enabling non-target organisms to cope with insecticide exposure.
Collapse
Affiliation(s)
- Andrea Friedli
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Geoffrey R Williams
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Selina Bruckner
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland.
| |
Collapse
|
20
|
Alves SN, Pujoni DGF, Mocelin G, Melo AL, Serrão JE. Evaluation of Culex quinquefasciatus wings asymmetry after exposure of larvae to sublethal concentration of ivermectin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3483-3488. [PMID: 31820251 DOI: 10.1007/s11356-019-06963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The surviving insects submitted to chemical control have morphological alterations that impact on their mechanisms of resistance and their final development. Those changes are detected and measured using physical features related to symmetry, specifically named fluctuating asymmetry. This is detected when deviations from the perfect bilateral symmetry for specific morphological characteristic is influenced by genetics or environmental stress. Thus, in this paper we analyze the wing in adult of Culex quinquefasciatus (Diptera - Culicidae) after larvae exposure to ivermectin LC50. Three hundred larvae of C. quinquefasciatus were exposed to ivermectin in 1.5 μg/L (LC50) concentration during 30 min, and three hundred larvae were exposed to distilled pure water as control group. For fluctuating asymmetry, adult males and adult females were selected from each group (n = 83) from the untreated group and (n = 79) from treated group. Wings from adults of each group were mounted in glass microscope slides and coverslip in Canada's balsam and analyzed with a stereomicroscope with a video camera attached. The treatment effect on M3 + 4 was marginally significant with higher asymmetry values in the control group. The data obtained here suggest the importance of future experiments to elucidate the mechanisms associated with FA. Moreover, according to the results obtained, it may be suggested that FA is present in females in ornaments, or secondary sexual characters, as an indicator of phenotypic quality of the partners.
Collapse
Affiliation(s)
- Stênio Nunes Alves
- Campus Centro-Oesde Dona Lindu, Federal University of São João del Rei, Av. Sebastião Gonçalves Coelho, 400 - Chanadour, Divinópolis, MG, 35501-296, Brazil.
| | - Diego G F Pujoni
- Department of Ecology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Giovani Mocelin
- Federal University of Paraná, Jardim das Américas, Curitiba, PR, 81531-990, Brazil
| | - Alan L Melo
- Department of Parasitology, Federal University of Minas Gerais, Av. Antônio Carlos, 6627-Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - José E Serrão
- Department of Animal Biology, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| |
Collapse
|
21
|
Ferdenache M, Bezzar-Bendjazia R, Marion-Poll F, Kilani-Morakchi S. Transgenerational effects from single larval exposure to azadirachtin on life history and behavior traits of Drosophila melanogaster. Sci Rep 2019; 9:17015. [PMID: 31745147 PMCID: PMC6863814 DOI: 10.1038/s41598-019-53474-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/01/2019] [Indexed: 01/07/2023] Open
Abstract
Azadirachtin is one of the successful botanical pesticides in agricultural use with a broad-spectrum insecticide activity, but its possible transgenerational effects have not been under much scrutiny. The effects of sublethal doses of azadirachtin on life-table traits and oviposition behaviour of a model organism in toxicological studies, D. melanogaster, were evaluated. The fecundity and oviposition preference of flies surviving to single azadirachtin-treated larvae of parental generation was adversely affected and resulted in the reduction of the number of eggs laid and increased aversion to this compound over two successive generations. In parental generation, early exposure to azadirachtin affects adult's development by reducing the number of organisms, delay larval and pupal development; male biased sex ratio and induced morphological alterations. Moreover, adult's survival of the two generations was significantly decreased as compared to the control. Therefore, Single preimaginal azadirachtin treatment can affect flies population dynamics via transgenerational reductions in survival and reproduction capacity as well as reinforcement of oviposition avoidance which can contribute as repellent strategies in integrated pest management programs. The transgenerational effects observed suggest a possible reduction both in application frequency and total amount of pesticide used, would help in reducing both control costs and possible ecotoxicological risks.
Collapse
Affiliation(s)
- M Ferdenache
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria
- Evolution, Génomes, Comportement, Ecologie. CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - R Bezzar-Bendjazia
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria
| | - F Marion-Poll
- Evolution, Génomes, Comportement, Ecologie. CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
- AgroParisTech, Paris, France
| | - S Kilani-Morakchi
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria.
| |
Collapse
|
22
|
Timing of sub-lethal insecticide exposure determines parasite establishment success in an insect-helminth model. Parasitology 2019; 147:120-125. [PMID: 31559931 DOI: 10.1017/s0031182019001331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Environmental toxicants are pervasive in nature, but sub-lethal effects on non-target organisms and their parasites are often overlooked. Particularly, studies on terrestrial hosts and their parasites exposed to agricultural toxicants are lacking. Here, we studied the effect of sequence and timing of sub-lethal exposures of the pyrethroid insecticide alpha-cypermethrin on parasite establishment using the tapeworm Hymenolepis diminuta and its intermediate insect host Tenebrio molitor as a model system. We exposed T. molitor to alpha-cypermethrin (LD20) before and after experimental H. diminuta infection and measured the establishment success of larval tapeworms. Also, we conducted in vitro studies quantifying the direct effect of the insecticide on parasite viability. Our results showed that there was no direct lethal effect of alpha-cypermethrin on H. diminuta cysticercoids at relevant concentrations (LD10 to LD90 of the intermediate host). However, we observed a significantly increased establishment of H. diminuta in beetles exposed to alpha-cypermethrin (LD20) after parasite infection. In contrast, parasite establishment was significantly lower in beetles exposed to the insecticide before parasite infection. Thus, our results indicate that environmental toxicants potentially impact host-parasite interactions in terrestrial systems, but that the outcome is context-dependent by enhancing or reducing parasite establishment depending on timing and sequence of exposure.
Collapse
|
23
|
Müller T, Römer CI, Müller C. Parental sublethal insecticide exposure prolongs mating response and decreases reproductive output in offspring. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| | - Clara Isis Römer
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| | - Caroline Müller
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| |
Collapse
|
24
|
Müller T, Gesing MA, Segeler M, Müller C. Sublethal insecticide exposure of an herbivore alters the response of its predator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:39-45. [PMID: 30654252 DOI: 10.1016/j.envpol.2018.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Sublethal insecticide exposure poses risks for many non-target organisms and is a challenge for successful implementation of integrated pest management (IPM) programs. Next to detrimental effects of short-term insecticide exposure on fitness-related traits of organisms, also properties such as chemical signaling traits can be altered, which mediate intra- and interspecific communication. We investigated the effects of different durations of larval sublethal exposure to the pyrethroid lambda-cyhalothrin on performance traits of larvae and adults of the herbivorous mustard leaf beetle, Phaedon cochleariae. Moreover, by applying a direct contact and olfactometer bioassays, we determined the reaction of a generalist predator, the ant Myrmica rubra, towards insecticide-exposed and unexposed herbivore larvae and their secretions. Already short-term sublethal insecticide exposure of a few days caused a prolonged larval development and a reduced adult body mass of males. These effects may result from an insecticide-induced reduction in energy reserves. Furthermore, ants responded more frequently to insecticide-exposed than to unexposed larvae of P. cochleariae and their secretions. This increased responsiveness of ants towards insecticide-exposed larvae may be due to an insecticide-induced change in synthesis of chrysomelidial and epichrysomelidial, the dominant compounds of the larval secretion, which act defensive against various generalist predators. In conclusion, the results highlight that short-term insecticide exposure can impair the fitness of an herbivorous species due to both direct toxic effects and an increased responsiveness of predators. Consequently, exposure of single non-target species can have consequences for ecological communities in both natural habitats and IPM programs.
Collapse
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Matthias Alexander Gesing
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Markus Segeler
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
25
|
Jiang J, Zhang Z, Yu X, Yu C, Liu F, Mu W. Sublethal and transgenerational effects of thiamethoxam on the demographic fitness and predation performance of the seven-spot ladybeetle Coccinella septempunctata L. (Coleoptera: Coccinellidae). CHEMOSPHERE 2019; 216:168-178. [PMID: 30368081 DOI: 10.1016/j.chemosphere.2018.10.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Seven-spot ladybird beetles, Coccinella septempunctata L., are critical aphidophagous predators in the agricultural environment. Thiamethoxam, a neonicotinoid insecticide, is commonly used for controlling pests but impairs their natural enemies at the same time. To improve effective IPM (integrated pest management) strategies, we evaluated the sublethal and transgenerational effects of thiamethoxam on C. septempunctata. Our results showed that thiamethoxam at doses of 0.1 × LC10 (0.053 mg L-1) and LC10 (0.53 mg L-1) significantly reduced adult emergence, fecundity and fertility of the parental generation. In unexposed progeny (F1) of thiamethoxam-exposed parents, at the two doses 0.1 × LC10 and LC10, the larval stage was prolonged, and total longevity was decreased by 18.76 and 24.46%, respectively. The higher concentrations (0.1 × LC10 and LC10) also decreased the fecundity by 33.74 and 46.56%, respectively, and the oviposition period by 19.67 and 25.01%, respectively. In addition, demographic parameters including the intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0), and mean generation time (T) were significantly reduced when exposed to LC10. Moreover, the predation activity of the F1 generation was reduced by the transgenerational effects of LC10. These results disclose negative influence of thiamethoxam at sublethal concentrations on this ladybird predator and its subsequent generation.
Collapse
Affiliation(s)
- Jiangong Jiang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Yu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018 Shandong, PR China
| | - Caihong Yu
- College of Chemistry and Environment Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Feng Liu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
26
|
Meyling NV, Arthur S, Pedersen KE, Dhakal S, Cedergreen N, Fredensborg BL. Implications of sequence and timing of exposure for synergy between the pyrethroid insecticide alpha-cypermethrin and the entomopathogenic fungus Beauveria bassiana. PEST MANAGEMENT SCIENCE 2018; 74:2488-2495. [PMID: 29603560 DOI: 10.1002/ps.4926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Combining low doses of chemical insecticides with entomopathogens constitutes a sustainable pest control method, but the significance of the timing and sequence of exposures needs clarification. We studied lethal effects of combinations of the entomopathogenic fungus Beauveria bassiana (KVL03-122) and the pyrethroid alpha-cypermethrin on the beetle Tenebrio molitor under varying timing and sequence of exposure. Synergy over time was evaluated in relation to the model of independent action (IA). We expected that increased progression of disease caused by B. bassiana would make beetles more susceptible to the insecticide, leading to enhanced synergy. RESULTS Synergistic effects between B. bassiana and alpha-cypermethrin were observed when B. bassiana was applied first, but only when the interval between applications was >48 h. With 72 h between exposures, mortality had increased to 100% after 8 days, in contrast to the 60% mortality expected. No synergy was observed when the insecticide was applied prior to fungal exposure within 24 h. CONCLUSION The sequence and timing of exposure do matter to achieve synergistic mortality by combining B. bassiana and alpha-cypermethrin, and the IA model proved to be a strong tool with which to evaluate the interactions of the two stressors over time. Pest control strategies could include B. bassiana followed by low-dose exposures to alpha-cypermethrin after 2-3 days. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nicolai V Meyling
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Samuel Arthur
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kathrine E Pedersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Suraj Dhakal
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Brian L Fredensborg
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
27
|
|
28
|
|