1
|
Puga A, Moreira MM, Sanromán MA, Pazos MM, Delerue-Matos C. Antidepressants and COVID-19: Increased use, occurrence in water and effects and consequences on aquatic environment. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175993. [PMID: 39244044 DOI: 10.1016/j.scitotenv.2024.175993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The COVID-19 pandemic changed the consumption of many drugs, among which antidepressants stand out. This review evaluated the frequency of antidepressant use before and after COVID-19. Once the most consumed antidepressants were identified, detecting a variation in the frequency of consumption on the different continents, an overview of their life cycle was carried out, specifying which antidepressants are mostly detected and the places where there is a greater concentration. In addition, the main metabolites of the most used antidepressants were also investigated. A correlation between the most consumed drugs and the most detected was made, emphasizing the lack of information on the occurrence of some of the most consumed antidepressants. Subsequently, studies on the effects on aquatic life were also reviewed, evaluated through different living beings (fish, crustaceans, molluscs, planktonic crustaceans and algae). Likewise, many of the most used antidepressants lack studies on potential adverse effects on aquatic living beings. This review underscores the need for further research, particularly focusing on the life cycle of the most prescribed antidepressants. In particular, it is a priority to know the occurrence and adverse effects in the aquatic environment of the most used antidepressants after the pandemic.
Collapse
Affiliation(s)
- Antón Puga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain.
| | - Manuela M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - M Angeles Sanromán
- CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta M Pazos
- CINTECX, University of Vigo, BIOSUV Group, Department of Chemical Engineering, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| |
Collapse
|
2
|
Telgmann L, Horn H. The behavior of pharmaceutically active compounds and contrast agents during wastewater treatment - Combining sampling strategies and analytical techniques: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174344. [PMID: 38964417 DOI: 10.1016/j.scitotenv.2024.174344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Increasing consumption of pharmaceuticals and the respective consequences for the aquatic environment have been the focus of many studies over the last thirty years. Various aspects in this field were investigated, considering diverse pharmaceutical groups and employing a wide range of research methodologies. Various questions from the perspectives of different research areas were devised and answered, resulting in a large mix of individual findings and conclusions. Collectively, the results of the studies offer a comprehensive overview. The large variety of methods and strategies, however, demands close attention when comparing and combining information from heterogeneous projects. This review critically examines the application of diverse sampling techniques as well as analytical methods in investigations concerning the behavior of pharmaceutically active compounds (PhACs) and contrast agents (CAs) in wastewater treatment plants (WWTPs). The combination of sampling and analysis is discussed with regard to its suitability for specific scientific problems. Different research focuses need different methods and answer different questions. An overview of studies dealing with the fate and degradation of PhACs and CAs in WWTPs is presented, discussing their strategic approaches and findings. This review includes surveys of anticancer drugs, antibiotics, analgesics and anti-inflammatory drugs, antidiabetics, beta blockers, hormonal contraceptives, lipid lowering agents, antidepressants as well as contrast agents for X-ray and magnetic resonance imaging.
Collapse
Affiliation(s)
- Lena Telgmann
- Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
| | - Harald Horn
- Department Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
3
|
Zhang Z, Shi H, Zhang K, An R, Wang C, Wang P, Chan SA, Song Y, Dai J, Zhao Y. Transcriptome-Guided Characterization of the Environmental Toxicity of Metformin: Disruption of Energy Homeostasis and Inhibition of Embryonic Development of Zebrafish at Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17580-17591. [PMID: 39319773 DOI: 10.1021/acs.est.4c05052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Metformin has been widely detected in aquatic ecosystems, yet the knowledge of its impact on aquatic organisms, particularly at environmentally relevant concentrations, remains limited. In the present study, we characterized the developmental toxicity of metformin in zebrafish, utilizing a transcriptome-guided toxicological assessment framework. Transcriptomic analysis conducted at metformin concentrations within the μg/L range revealed significant disruptions in biological processes associated with nucleotide, hydrocarbon, and amino acid metabolism, suggesting a significant disturbance in energy homeostasis. This observation was corroborated by energy-targeted metabolomic analysis, wherein a considerable number of metabolites involved in purine metabolism, pyrimidine metabolism, and the citrate cycle displayed significant alterations. Notably, most intermediates in the citrate cycle such as acetyl-CoA exhibited remarkable decreases. Additionally, our study identified significant impediments in zebrafish embryonic development, including decreased yolk extension progress, spontaneous contraction and body length, and increased yolk sac area and yolk/while body lipid content ratio, at metformin concentrations as low as 0.12 μg/L. Furthermore, the disruption of energy homeostasis by metformin was observed to persist into adulthood even after a prolonged recovery period. The present findings highlighted the disruptive effects of metformin on energy homeostasis and embryonic development in teleost at environmentally relevant concentrations, thereby prompting a reevaluation of its environmental risk to nontarget aquatic organisms.
Collapse
Affiliation(s)
- Ziyu Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruiqi An
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shen-An Chan
- Agilent Technologies Incorporated Company, Shanghai 200240, China
| | - Yue Song
- Agilent Technologies Incorporated Company, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Kang Q, Zhang B, Cao Y, Song X, Ye X, Li X, Wu H, Chen Y, Chen B. Causal prior-embedded physics-informed neural networks and a case study on metformin transport in porous media. WATER RESEARCH 2024; 261:121985. [PMID: 38968734 DOI: 10.1016/j.watres.2024.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 07/07/2024]
Abstract
This study introduces a novel approach to transport modelling by integrating experimentally derived causal priors into neural networks. We illustrate this paradigm using a case study of metformin, a ubiquitous pharmaceutical emerging pollutant, and its transport behaviour in sandy media. Specifically, data from metformin's sandy column transport experiment was used to estimate unobservable parameters through a physics-based model Hydrus-1D, followed by a data augmentation to produce a more comprehensive dataset. A causal graph incorporating key variables was constructed, aiding in identifying impactful variables and estimating their causal dynamics or "causal prior." The causal priors extracted from the augmented dataset included underexplored system parameters such as the type-1 sorption fraction F, first-order reaction rate coefficient α, and transport system scale. Their moderate impact on the transport process has been quantitatively evaluated (normalized causal effect 0.0423, -0.1447 and -0.0351, respectively) with adequate confounders considered for the first time. The prior was later embedded into multilayer neural networks via two methods: causal weight initialization and causal prior regularization. Based on the results from AutoML hyperparameter tuning experiments, using two embedding methods simultaneously emerged as a more advantageous practice since our proposed causal weight initialization technique can enhance model stability, particularly when used in conjunction with causal prior regularization. amongst those experiments utilizing both techniques, the R-squared values peaked at 0.881. This study demonstrates a balanced approach between expert knowledge and data-driven methods, providing enhanced interpretability in black-box models such as neural networks for environmental modelling.
Collapse
Affiliation(s)
- Qiao Kang
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Yiqi Cao
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Xing Song
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Xudong Ye
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Hongjing Wu
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada
| | - Yuanzhu Chen
- School of Computing, Queen's University, Kingston, ON, K7L 2N8, Canada
| | - Bing Chen
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, Newfoundland, A1B 3X5, Canada.
| |
Collapse
|
5
|
Ussery E, McMaster M, Palace V, Parrott J, Blandford NC, Frank R, Kidd K, Birceanu O, Wilson J, Alaee M, Cunningham J, Wynia A, Clark T, Campbell S, Timlick L, Michaleski S, Marshall S, Nielsen K. Effects of metformin on wild fathead minnows (Pimephales promelas) using in-lake mesocosms in a boreal lake ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172457. [PMID: 38649046 DOI: 10.1016/j.scitotenv.2024.172457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Due to its widespread use for the treatment of Type-2 diabetes, metformin is routinely detected in surface waters globally. Laboratory studies have shown that environmentally relevant concentrations of metformin can adversely affect the health of adult fish, with effects observed more frequently in males. However, the potential risk to wild fish populations has yet to be fully elucidated and remains a topic of debate. To explore whether environmentally relevant metformin exposure poses a risk to wild fish populations, the present study exposed wild fathead minnows (Pimephales promelas) to 5 or 50 μg/L metformin via 2 m diameter in-lake mesocosms deployed in a natural boreal lake in Northern Ontario at the International Institute for Sustainable Development - Experimental Lakes Area (IISD-ELA). Environmental monitoring was performed at regular intervals for 8-weeks, with fish length, weight (body, liver and gonad), condition factor, gonadosomatic index, liver-somatic index, body composition (water and biomolecules) and hematocrit levels evaluated at test termination. Metabolic endpoints were also evaluated using liver, brain and muscle tissue, and gonads were evaluated histologically. Results indicate that current environmental exposure scenarios may be sufficient to adversely impact the health of wild fish populations. Adult male fish exposed to metformin had significantly reduced whole body weight and condition factor and several male fish from the high-dose metformin had oocytes in their testes. Metformin-exposed fish had altered moisture and lipid (decrease) content in their tissues. Further, brain (increase) and liver (decrease) glycogen were altered in fish exposed to high-dose metformin. To our knowledge, this study constitutes the first effort to understand metformin's effects on a wild small-bodied fish population under environmentally relevant field exposure conditions.
Collapse
Affiliation(s)
- Erin Ussery
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Mark McMaster
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Vince Palace
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Joanne Parrott
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Nicholas C Blandford
- University of Manitoba, Winnipeg, Manitoba, Canada; International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Richard Frank
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Karen Kidd
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Oana Birceanu
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | - Joanna Wilson
- McMaster University, Department of Biology, Hamilton, Ontario, Canada
| | - Mehran Alaee
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Jessie Cunningham
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Abby Wynia
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Thomas Clark
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Sheena Campbell
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Lauren Timlick
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Sonya Michaleski
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Stephanie Marshall
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Burlington, Ontario, Canada
| | - Kristin Nielsen
- University of Texas at Austin, Department of Marine Science, Port Aransas, TX, USA
| |
Collapse
|
6
|
Dong L, Li S, Huang J, Li WJ, Ali M. Co-occurrence, toxicity, and biotransformation pathways of metformin and its intermediate product guanylurea: Current state and future prospects for enhanced biodegradation strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171108. [PMID: 38395159 DOI: 10.1016/j.scitotenv.2024.171108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Accumulation of metformin and its biotransformation product "guanylurea" are posing an increasing concern due to their low biodegradability under natural attenuated conditions. Therefore, in this study, we reviewed the unavoidable function of metformin in human body and the route of its release in different water ecosystems. In addition, metformin and its biotransformation product guanylurea in aquatic environments caused certain toxic effects on aquatic organisms which include neurotoxicity, endocrine disruption, production of ROS, and acetylcholinesterase disturbance in aquatic organisms. Moreover, microorganisms are the first to expose and deal with the release of these contaminants, therefore, the mechanisms of biodegradation pathways of metformin and guanylurea under aerobic and anaerobic environments were studied. It has been reported that certain microbes, such as Aminobacter sp. and Pseudomonas putida can carry potential enzymatic pathways to degrade the dead-end product "guanylurea", and hence guanylurea is no longer the dead-end product of metformin. However, these microbes can easily be affected by certain geochemical cycles, therefore, we proposed certain strategies that can be helpful in the enhanced biodegradation of metformin and its biotransformation product guanylurea. A better understanding of the biodegradation potential is imperative to improve the use of these approaches for the sustainable and cost-effective remediation of the emerging contaminants of concern, metformin and guanylurea in the near future.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China; School of Life Science, Jiaying University, Meizhou, China
| | - Jie Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China; Advanced Water Technology Laboratory, National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
7
|
Zhou Y, Yue Y, Chen X, Wu F, Li W, Li P, Han J. Physiological-biochemical responses and transcriptomic analysis reveal the effects and mechanisms of sulfamethoxazole on the carbon fixation function of Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170460. [PMID: 38286284 DOI: 10.1016/j.scitotenv.2024.170460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
The occurrence of sulfamethoxazole (SMX) is characterized by low concentration and pseudo-persistence. However, the toxic effects and mechanisms of SMX, especially for low concentration and long-term exposure, are still not clear. This study investigated the effects and mechanisms of SMX on carbon fixation-related biological processes of Chlorella pyrenoidosa at population, physiological-biochemical, and transcriptional levels. Results showed that 1-1000 μg/L SMX significantly inhibited the dry weight and carbon fixation rate of C. pyrenoidosa during 21 d. The upregulation of superoxide dismutase (SOD) and catalase (CAT) activities, as well as the accumulation of malondialdehyde (MDA) demonstrated that SMX posed oxidative damage to C. pyrenoidosa. SMX inhibited the activity of carbonic anhydrase (CA), and consequently stimulated the activity of Rubisco. Principal component analysis (PCA) revealed that SMX concentration was positively correlated with Rubisco and CAT while exposure time was negatively correlated with CA. Transcriptional analysis showed that the synthesis of chlorophyll-a was stabilized by regulating the diversion of protoporphyrin IX and the chlorophyll cycle. Meanwhile, multiple CO2 compensation mechanisms, including photorespiratory, C4-like CO2 compensation and purine metabolism pathways were triggered in response to the CO2 requirements of Rubisco. This study provides a scientific basis for the comprehensive assessment of the ecological risk of SMX.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu 213032, China
| | - Yujiao Yue
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Xinyang Chen
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Feifan Wu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Pingping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| |
Collapse
|
8
|
Yan H, Zhang T, Yang Y, Li J, Liu Y, Qu D, Feng L, Zhang L. Occurrence of iodinated contrast media (ICM) in water environments and their control strategies with a particular focus on iodinated by-products formation: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119931. [PMID: 38154220 DOI: 10.1016/j.jenvman.2023.119931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Iodinated contrast media (ICM), one of the pharmaceutical and personal care products (PPCPs), are frequently detected in various water bodies due to the strong biochemical stability and recalcitrance to conventional water treatment. Additionally, ICM pose a risk of forming iodinated by-products that can be detrimental to the aquatic ecosystem. Consequently, effectively removing ICM from aqueous environments is a significant concern for environmental researchers. This article provides a comprehensive review of the structural characteristics of ICM, their primary source (e.g., domestic and hospital wastewater), detected concentrations in water environments, and ecological health hazards associated with them. The current wastewater treatment technologies for ICM control are also reviewed in detail with the aim of providing a reference for future research. Prior researches have demonstrated that traditional treatment processes (such as physical adsorption, biochemical method and chemical oxidation method) have inadequate efficiencies in the removal of ICM. Currently, the application of advanced oxidation processes to remove ICM has become extensive, but there are some issues like poor deiodination efficiency and the risk of forming toxic intermediates or iodinated by-products. Conversely, reduction technologies have a high deiodination rate, enabling the targeted removal of ICM. But the subsequent treatment issues related to iodine (such as I- and OI-) are often underestimated, potentially generating iodinated by-products during the subsequent treatment processes. Hence, we proposed using combined reduction-oxidation technologies to remove ICM and achieved synchronous control of iodinated by-products. In the future, it is recommended to study the degradation efficiency of ICM and the control efficiency of iodinated by-products by combining different reduction and oxidation processes.
Collapse
Affiliation(s)
- Hao Yan
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Yang
- University of Science and Technology of China, Anhui 230026, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dan Qu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
9
|
Fan S, Xu H, Zhang Q, Xu A, Geissen SU, Lebedev AT, Zhang Y. Kinetic constants and transformation products of ornidazole during ozonation. CHEMOSPHERE 2024; 349:140783. [PMID: 38043618 DOI: 10.1016/j.chemosphere.2023.140783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Ornidazole (ONZ), a nitroimidazole antibiotic detected in water bodies, may negatively impact the aquatic ecosystem. Its reaction kinetics during ozonation which is a feasible and applicable technology to control the contamination of emerging contaminants, however, has not been reported in literature. In this study, we measured the apparent second-order kinetic constant of ONZ with ozone molecules via the excessive ozone method and the competing method which led to an average value of 103.8 ± 2.7 M-1 s-1 at pH 7. The apparent second-order kinetic constant of ONZ with HO• was calculated to be 4.65 × 109 M-1 s-1 with the concept of Rct measured via para-chlorobenzoic acid as a probe. The transformation products (TPs) of ONZ during ozonation at pH 3 and pH 11 were separately analyzed with HPLC-MS/MS and some unique products were found at pH 11, reflecting the influence of HO•. The toxicity of individual TPs was predicted with the tool of T.E.S.T. It was found that 62% of 21 identified TPs could be more toxic than ONZ in terms of at least one acute toxicity endpoint, including chlorinated amines and N-oxides. The analysis with a respirometer further revealed that the toxicity of mixing TPs generated at HO• rich conditions was slightly lower than O3 dominated conditions. In general, this study provides the basic kinetic data for designing ozonation processes to eliminate ONZ and the important reference for understanding the toxicity evolution of ONZ during ozonation.
Collapse
Affiliation(s)
- Siyan Fan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Haiyang Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qiqi Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Sven Uwe Geissen
- Technische Universität Berlin, Chair of Environmental Process Engineering, Sekr. KF2, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Albert T Lebedev
- Department of Organic Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
10
|
Blewett TA, Ackerly KL, Schlenker LS, Martin S, Nielsen KM. Implications of biotic factors for toxicity testing in laboratory studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168220. [PMID: 37924878 DOI: 10.1016/j.scitotenv.2023.168220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
There is an emerging call from scientists globally to advance the environmental relevance of laboratory studies, particularly within the field of ecotoxicology. To answer this call, we must carefully examine and elucidate the shortcomings of standardized toxicity testing methods that are used in the derivation of toxicity values and regulatory criteria. As a consequence of rapidly accelerating climate change, the inclusion of abiotic co-stressors are increasingly being incorporated into toxicity studies, with the goal of improving the representativeness of laboratory-derived toxicity values used in ecological risk assessments. However, much less attention has been paid to the influence of biotic factors that may just as meaningfully impact our capacity to evaluate and predict risks within impacted ecosystems. Therefore, the overarching goal is to highlight key biotic factors that should be taken into consideration during the experimental design and model selection phase. SYNOPSIS: Scientists are increasingly finding that lab reared results in toxicology might not be reflective of the external wild environment, we highlight in this review some key considerations when working between the lab and field.
Collapse
Affiliation(s)
- Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Canada.
| | - Kerri Lynn Ackerly
- The University of Texas at Austin, Marine Science Institute, United States of America
| | - Lela S Schlenker
- East Carolina University, Department of Biology, United States of America
| | - Sidney Martin
- University of Alberta, Department of Biological Sciences, Canada
| | - Kristin M Nielsen
- The University of Texas at Austin, Marine Science Institute, United States of America
| |
Collapse
|
11
|
Fu GL, Meng QY, Chen Y, Xin JZ, Liu JH, Dang W, Lu HL. Metformin exposure altered intestinal microbiota composition and metabolites in amphibian larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115617. [PMID: 37866109 DOI: 10.1016/j.ecoenv.2023.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The antidiabetic pharmaceutical metformin (MET) is largely unmetabolized by the human body. Its residues are readily detectable in various aquatic environments and may have adverse impacts on the growth and survival of aquatic species. To date, its toxicological effects have scarcely been explored in non-fish species. Here, we exposed the tadpoles of black-spotted pond frog (Pelophylax nigromaculatus) to different concentrations (0, 1, 10 and 100 μg/L) of MET for 30 days and measured the body size, intestinal microbiota and metabolites to evaluate potential effects of MET exposure in amphibian larvae. MET exposure did not affect the growth and intestinal microbial diversity of tadpoles. However, intestinal microbial composition changed significantly, with some pathogenic bacteria (e.g., bacterial genera Salmonella, Comamonas, Stenotrophomonas, Trichococcus) increasing and some beneficial bacteria (e.g., Blautia, Prevotella) decreasing in MET-exposed tadpoles. The levels of some intestinal metabolites associated with growth and immune performance also changed significantly following MET exposure. Overall, our results indicated that exposure to MET, even at environmentally relevant concentrations, would cause intestinal microbiota dysbiosis and metabolite alteration, thereby influencing the health status of non-target aquatic organisms, such as amphibians.
Collapse
Affiliation(s)
- Guang-Li Fu
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qin-Yuan Meng
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Yu Chen
- Zhejiang Dapanshan National Nature Reserve, Jinhua 322300, Zhejiang, China
| | - Jin-Zhao Xin
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jia-Hui Liu
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Wei Dang
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Hong-Liang Lu
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
12
|
Yanwen Z, Feng C, Wei L, Jian Q, Liang X, Qianyu L, Yinlong Z. Photocatalytic degradation of a typical macrolide antibiotic roxithromycin using polypropylene fibre sheet supported N-TiO 2/graphene oxide composite materials. ENVIRONMENTAL TECHNOLOGY 2023; 44:3354-3366. [PMID: 35323102 DOI: 10.1080/09593330.2022.2057239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The post-treatment of recycling the fine photocatalyst nanoparticles restricts their application. In this study, a new photocatalytic material was synthesized by immobilizing the N-doped TiO2 and graphene oxide (GO) composite on polypropylene (PP) (N-TiO2/GO/PP) fibre sheet, and characterized based on X-ray diffraction spectroscopy (XRD), Raman spectroscopy and Scanning Electron Microscope (SEM). The photocatalytic activity was evaluated using roxithromycin (ROX) as a typical antibiotic pollutant. XRD, Raman spectra and SEM images proved that N-TiO2/GO/PP fibre sheet was successfully synthesized. The photocatalytic degradation of 10 mg L-1 ROX can reach up to 90% and the degradation rate constant was 0.2299 h-1 in surface water with the application amount of TiO2/GO/PP fibre sheet of 24.6 cm × 2.7 cm and reaction time of 9 h under the irradiation of simulated sunlight. The application amount of TiO2/GO/PP fibre sheet, initial concentration of ROX and water matrix significantly affect the degradation of ROX. A low concentration of natural organic matter (NOM) slightly promoted the degradation of ROX, while a high concentration of NOM significantly inhibited the degradation of ROX. Alkaline condition (pH 8-9) is favourable for the photocatalytic degradation of ROX by TiO2/GO/PP fibre sheet. The photocatalytic reactivity of the TiO2/GO/PP fibre sheet showed no significant decrease after three runs. Two primary degradation products of ROX were identified and they showed lower ecotoxicity than ROX. The results demonstrate that the new synthesized TiO2/GO/PP fibre sheet shows promising application prospects in the treatment of antibiotics in wastewater and surface waters.
Collapse
Affiliation(s)
- Zhou Yanwen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing, People's Republic of China
| | - Cai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Li Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Qiu Jian
- Jiangsu Shuangliang Environmental Technology Co. Ltd., Wuxi, People's Republic of China
| | - Xu Liang
- Jiangsu Shuangliang Environmental Technology Co. Ltd., Wuxi, People's Republic of China
| | - Liu Qianyu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhang Yinlong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Sanusi IO, Olutona GO, Wawata IG, Onohuean H. Occurrence, environmental impact and fate of pharmaceuticals in groundwater and surface water: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90595-90614. [PMID: 37488386 DOI: 10.1007/s11356-023-28802-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
In many nations and locations, groundwater serves as the population's primary drinking water supply. However, pharmaceuticals found in groundwater and surface waters may affect aquatic ecosystems and public health. As a result, their existence in natural raw waters are now more widely acknowledged as a concern. This review summarises the evidence of research on pharmaceuticals' occurrence, impact and fate, considering results from different water bodies. Also, various analytical techniques were reviewed to compare different pharmaceuticals' detection frequencies in water bodies. These include liquid chromatography-mass spectrometry (LC-MS), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and gas chromatography-mass spectrometry (GC-MS). However, owing to LC-MS's high sensitivity and specification, it is the most reported instrument used for analysis. The PRISMA reviewing methodology was adopted based on relevant literature in order to focus on aim of the review. Among other pharmaceuticals reviewed, sulfamethoxazole was found to be the most frequently detected drug in wastewater (up to 100% detection frequency). The most reported pharmaceutical group in this review is antibiotics, with sulfamethoxazole having the highest concentration among the analysed pharmaceuticals in groundwater and freshwater (up to 5600 ng/L). Despite extensive study and analysis on the occurrence and fate of pharmaceuticals in the environment, appropriate wastewater management and disposal of pharmaceuticals in the water environment are not still monitored regularly. Therefore, there is a need for mainstream studies tailored to the surveillance of pharmaceuticals in water bodies to limit environmental risks to human and aquatic habitats in both mid and low-income nations.
Collapse
Affiliation(s)
- Idris Olatunji Sanusi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda.
| | - Godwin Oladele Olutona
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Industrial Chemistry Programme, College of Agriculture Engineering and Science, Bowen University, Iwo, Nigeria
- Department of Basic Science, School of Science and Technology, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Ibrahim Garba Wawata
- Department of Basic Science, School of Science and Technology, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pure and Applied Chemistry, Kebbi State University of Science and Technology, Aliero, PMB +243 1144, Birnin Kebbi, Nigeria
| | - Hope Onohuean
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| |
Collapse
|
14
|
Yu X, Yu F, Li Z, Shi T, Xia Z, Li G. Occurrence, distribution, and ecological risk assessment of artificial sweeteners in surface and ground waters of the middle and lower reaches of the Yellow River (Henan section, China). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52609-52623. [PMID: 36840868 DOI: 10.1007/s11356-023-26073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
As a new class of water contaminants, artificial sweeteners (ASs) have attracted much attention due to their environmental persistence and potential adverse effects to human and the environment. This study systematically investigated the occurrence and distribution of four commonly used ASs in the effluent of wastewater treatment plants (WWTPs), surface water and groundwater in the middle and lower reaches of the Yellow River (Henan section). Sucralose (SUC) was dominant in WWTP effluents and had the highest mass loading. Acesulfame (ACE), cyclamate (CYC), saccharin (SAC), and SUC were consistently detected in surface water at concentrations ranging from 1.364 ng/L (CYC) to 7786 ng/L (ACE). Spatial analysis showed that the pollution level of ASs in the trunk stream was lower than that in most tributaries. The total concentrations of ASs detected in surface water ranged between 308.7 and 10,498 ng/L, while in groundwater, the total concentration of ASs detected was between ND-4863 ng/L. ACE and SUC are the main pollutants in surface water and groundwater within this survey area. The risk assessment showed that the risks of the four target ASs to aquatic organisms were negligible (risk quotient (RQ) values < 0.1), and the maximum risk quotient of the mixtures (MRQ) values of all rivers were all much less than 0.1.
Collapse
Affiliation(s)
- Xiaopeng Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Furong Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
- Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, Ministry of Natural Resources, Zhengzhou, 450046, Henan, China
- Collaborative Innovation Center for Efficient Utilization of Water Resources, Zhengzhou, 450046, Henan, China
| | - Zhiping Li
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, Ministry of Natural Resources, Zhengzhou, 450046, Henan, China.
- Collaborative Innovation Center for Efficient Utilization of Water Resources, Zhengzhou, 450046, Henan, China.
| | - Tongyang Shi
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Zhiguo Xia
- School of Mining Engineering, University of Science and Technology Liaoning, Anshan, 114051, Liaoning, China
| | | |
Collapse
|
15
|
Chen Y, Tan Y, Wang Y, Ma Y, Li P, Du Z, Yang L, Wu L, Cui S, Ding Y, Qi X, Zhang Z. Estimating Sources, Fluxes, and Ecological Risks of Antibiotics in the Wuhan Section of the Yangtze River, China: A Year-Long Investigation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:605-619. [PMID: 36582153 DOI: 10.1002/etc.5553] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
To our knowledge, ours is the first study to investigate the annual fluxes, environmental fate, and ecological risks of five categories of antibiotics from the Wuhan section of the Yangtze River (China). All the 24 antibiotics we tested for were detected in water, with total concentrations of 17.11-867.2 ng/L (mean: 63.69 ng/L), and 19 antibiotics were detected in sediment, at 0.02-287.7 ng/g (mean: 16.54 ng/g). Sulfonamides, amphenicols, and macrolides were the three most prominent antibiotic classes in water, and fluoroquinolones were the most prominent in sediment. Farming activities (animal husbandry and aquaculture) are proposed as the largest contributors to antibiotic pollution in the Wuhan section of the Yangtze River according to the Unmix model, followed by municipal wastewater and mixed sources. Higher pollution levels were observed downstream (combined discharge of these sources). Monthly monitoring data (12 months) were used to estimate antibiotic annual fluxes, with 101.5 t (uncertainty: 5.6%) in the Wuhan section of the Yangtze River. Risk assessments showed that erythromycin, clarithromycin, and azithromycin posed medium and high ecological risks and were found in 9%-35% and 1.8%-3.7% of all water samples, respectively; enrofloxacin, clarithromycin, azithromycin, florfenicol, and thiamphenicol posed medium resistance risks in 1.9%-16.7% of waters in the Wuhan section of the Yangtze River. Our results have filled data gaps on antibiotic sources, annual fluxes, and resistance risk in the Wuhan section of the Yangtze River and demonstrated the importance of further management of antibiotic use in the studied areas. Environ Toxicol Chem 2023;42:605-619. © 2022 SETAC.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Ping Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zhenjie Du
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Xuebin Qi
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
- The James Hutton Institute, Aberdeen, UK
| |
Collapse
|
16
|
Sims N, Holton E, Archer E, Botes M, Wolfaardt G, Kasprzyk-Hordern B. In-situ multi-mode extraction (iMME) sampler for a wide-scope analysis of chemical and biological targets in water in urbanized and remote (off-the-grid) locations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160034. [PMID: 36356746 DOI: 10.1016/j.scitotenv.2022.160034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Chemical pollution (including chemicals of emerging concern - CECs) continues to gain increasing attention as a global threat to human health and the environment, with numerous reports on the adverse and sometimes devastating effects upon ecosystems the presence of these chemicals can have. Whilst many studies have investigated presence of CECs in aquatic environments, these studies have been often focused on higher income countries, leaving significant knowledge gaps for many low-middle income countries. This study proposes a new integrated powerless, in-situ multi-mode extraction (iMME) sampler for the analysis of chemicals (105 CECs) and biological (5 genes) markers in water in contrasting settings: an urbanized Avon River in the UK and remote Olifants River in Kruger National Park in South Africa. The overarching goal was to develop a sampling device that maintains integrity of a diverse range of analytes via analyte immobilization using polymeric and glass fibre materials, without access to power supply or cold chain (continuous chilled storage) for sample transportation. Chemical analysis was achieved using ultra-performance liquid chromatography coupled with tandem mass spectrometry. Several mobile CECs showed low stability in river water, at room temperature and typical 24 h sampling/transport time. It is therefore recommended that, in the absence of cooling, environmental water samples are spiked with internal standards on site, immediately after collection and analyte immobilization option is considered, in order to allow fully quantitative analysis. iMME has proven effective in immobilization, concentration and increased stability of CECs at room temperature (and at least 7 days storage) allowing for sample collection at remote locations. The results from the River Avon and Olifants River sampling indicate that the pristine environment of Olifants catchment is largely unaffected by CECs common in the urbanized River Avon in the UK with a few exceptions: lifestyle chemicals (e.g., caffeine, nicotine and their metabolites), paracetamol and UV filters due to tourism and carbamazepine due to its persistent nature. iMME equipped with an additional gene extraction capability provides an exciting new opportunity of comprehensive biochemical profiling of aqueous samples with one powerless in-situ device. Further work is required to provide full integration of the device and comprehensive assessment of performance in both chemical and biological targets.
Collapse
Affiliation(s)
- Natalie Sims
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Elizabeth Holton
- Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK
| | - Edward Archer
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marelize Botes
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre for Doctoral Training in Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
17
|
Yu X, Yu F, Li Z, Zhan J. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of the middle and lower reaches of the Yellow River (Henan section). JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130369. [PMID: 36444065 DOI: 10.1016/j.jhazmat.2022.130369] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are commonly seen emerging organic contaminants in aquatic environments. The transects for the occurrence and distribution of 24 PPCPs along the middle and lower reaches of the Yellow River (Henan section) were investigated in this study. All 24 targeted compounds were detected in surface water, with concentrations in the range from not detected (ND) to 527.4 ng/L. Among these PPCPs, caffeine is found to have the highest concentration and its detection frequency is 100%. The total PPCP concentration ranged from 136 ng/L to 916 ng/L (median, 319.5 ng/L). Spatial analysis showed that the pollution level of PPCPs in the trunk stream was lower than that in most tributaries in the middle and lower reaches of the Yellow River (Henan section). The ecotoxicological risk assessment indicated that norfloxacin, azithromycin, estrone, and triclosan posed high risks to aquatic organisms (RQ > 1), roxithromycin and oxytetracycline imposed moderate risks (0.1 ≤ RQ < 1), and the tributary Jindi River had the highest mixed risk (MRQ = 222).
Collapse
Affiliation(s)
- Xiaopeng Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China
| | - Furong Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, Ministry of Natural Resources, Zhengzhou 450046, Henan, China; Collaborative Innovation Center for Efficient Utilization of Water Resources, Zhengzhou 450046, Henan, China
| | - Zhiping Li
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China; Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, Ministry of Natural Resources, Zhengzhou 450046, Henan, China; Collaborative Innovation Center for Efficient Utilization of Water Resources, Zhengzhou 450046, Henan, China.
| | - Jiang Zhan
- Yellow River Engineering Consulting Co., Ltd, Zhengzhou 450045, Henan, China; Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources (under construction), Zhengzhou 450003, Henan, China
| |
Collapse
|
18
|
Barros S, Alves N, Pinheiro M, Ribeiro M, Morais H, Montes R, Rodil R, Quintana JB, Coimbra AM, Santos MM, Neuparth T. Are Fish Populations at Risk? Metformin Disrupts Zebrafish Development and Reproductive Processes at Chronic Environmentally Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1049-1059. [PMID: 36580485 DOI: 10.1021/acs.est.2c05719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The antidiabetic drug Metformin (MET), one of the most prevalent pharmaceuticals in the environment, is currently detected in surface waters in the range of ng/L to low μg/L. As current knowledge regarding the long-term effects of environmentally relevant concentrations of MET in nontarget organisms is limited, the present study aimed at investigating the generational effects of MET, in concentrations ranging from 390 to 14 423 ng/L in the model organism Danio rerio (up to 9 mpf), including the effects on its nonexposed offspring (until 60 dpf). We integrate several apical end points, i.e., embryonic development, survival, growth, and reproduction, with qRT-PCR and RNA-seq analyses to provide additional insights into the mode of action of MET. Reproductive-related parameters in the first generation were particularly sensitive to MET. MET parental exposure impacted critical molecular processes involved in the metabolism of zebrafish males, which in turn affected steroid hormone biosynthesis and upregulated male vtg1 expression by 99.78- to 155.47-fold at 390 and 14 432 MET treatment, respectively, pointing to an estrogenic effect. These findings can potentially explain the significant decrease in the fertilization rate and the increase of unactivated eggs. Nonexposed offspring was also affected by parental MET exposure, impacting its survival and growth. Altogether, these results suggest that MET, at environmentally relevant concentrations, severely affects several biological processes in zebrafish, supporting the urgent need to revise the proposed Predicted No-Effect Concentration (PNEC) and the Environmental Quality Standard (EQS) for MET.
Collapse
Affiliation(s)
- Susana Barros
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, 5000-801 Vila Real, Portugal
| | - Nélson Alves
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marlene Pinheiro
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marta Ribeiro
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hugo Morais
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Ana M Coimbra
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, 5000-801 Vila Real, Portugal
- Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, 5000-801 Vila Real, Portugal
| | - Miguel M Santos
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIIMAR─Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
19
|
Gao Z, Li P, Lin H, Lin W, Ren Y. Biomarker selection strategies based on compound stability in wastewater-based epidemiology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5516-5529. [PMID: 36418835 PMCID: PMC9684832 DOI: 10.1007/s11356-022-24268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The specific compositions of human excreta in sewage can be used as biomarkers to indicate the disease prevalence, health status, and lifestyle of the population living in the investigated catchment. It is important for guiding and evaluating public health policies as well as promoting human health development. Among several parameters of wastewater-based epidemiology (WBE), the decay of biomarkers during transportation in sewer and storage plays a crucial role in the back-calculation of population consumption. In this paper, we summarized the stability data of common biomarkers in storage at different temperatures and in-sewer transportation. Among them, cardiovascular drugs and antidiabetic drugs are very stable which can be used as biomarkers; most of the illicit drugs are stable except for cocaine, heroin, and tetrahydrocannabinol which could be substituted by their metabolites as biomarkers. There are some losses for part of antibiotics and antidepressants even in frozen storage. Rapid detection of contagious viruses is a new challenge for infectious disease control. With the deeper and broader study of biomarkers, it is expected that the reliable application of the WBE will be a useful addition to epidemiological studies.
Collapse
Affiliation(s)
- Zhihan Gao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ping Li
- Datansha Branch of Guangzhou Sewage Treatment Co., Ltd, Guangzhou, 510163, China
| | - Han Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institution, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Rosales-Pérez KE, Orozco-Hernández JM, Islas-Flores H, Galar-Martínez M, Hernández-Navarro MD. Chronic exposure to realistic concentrations of metformin prompts a neurotoxic response in Danio rerio adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157888. [PMID: 35952892 DOI: 10.1016/j.scitotenv.2022.157888] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Metformin (MET) is among the most consumed drugs around the world, and thus, it is considered the uppermost drug in mass discharged into water settings. Nonetheless, data about the deleterious consequences of MET on water organisms are still scarce and require further investigation. Herein, we aimed to establish whether or not chronic exposure to MET (1, 20, and 40 μg/L) may alter the swimming behavior and induce neurotoxicity in Danio rerio adults. After 4 months of exposure, MET-exposed fish exhibited less swimming activity when compared to control fish. Moreover, compared with the control group, MET significantly inhibited the activity of AChE and induced oxidative damage in the brain of fish. Concerning gene expression, MET significantly upregulated the expression of Nrf1, Nrf2, BAX, p53, BACE1, APP, PSEN1, and downregulated CASP3 and CASP9. Although MET did not overexpress the CASP3 gene, we saw a meaningful rise in the activity of this enzyme in the blood of fish exposed to MET compared to the control group, which we then confirmed by a high number of apoptotic cells in the TUNEL assay. Our findings demonstrate that chronic exposure to MET may impair fish swimming behavior, making them more vulnerable to predators.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
21
|
Barros S, Ribeiro M, Coimbra AM, Pinheiro M, Morais H, Alves N, Montes R, Rodil R, Quintana JB, Santos MM, Neuparth T. Metformin disrupts Danio rerio metabolism at environmentally relevant concentrations: A full life-cycle study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157361. [PMID: 35843324 DOI: 10.1016/j.scitotenv.2022.157361] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 05/20/2023]
Abstract
Metformin (MET), an anti-diabetic pharmaceutical of large-scale consumption, is increasingly detected in surface waters. However, current knowledge on the long-term effects of MET on non-target organisms is limited. The present study aimed to investigate the effects of MET in the model freshwater teleost Danio rerio, following a full life-cycle exposure to environmentally relevant concentrations (390 to 14 423 ng/L). Considering that the mode of action (MoA) of MET on non-target organisms remains underexplored and that MET may act through similar human pathways, i.e., lipid and energy metabolisms, biochemical markers were used to determine cholesterol and triglycerides levels, as well as mitochondrial complex I activity in zebrafish liver. Also, the hepatosomatic index as an indication of metabolic disruption, and the expression levels of genes involved in MET's putative MoA, i.e. acaca, acadm, cox5aa, idh3a, hmgcra, prkaa1, were determined, the last by qRT-PCR. A screening of mRNA transcripts, associated with lipid and energy metabolisms, and other signaling pathways potentially involved in MET-induced toxicity were also assessed using an exploratory RNA-seq analysis. The findings here reported indicate that MET significantly disrupted critical biochemical and molecular processes involved in zebrafish metabolism, such as cholesterol and fatty acid biosynthesis, mitochondrial electron transport chain and tricarboxylic acid cycle, concomitantly to changes on the hepatosomatic index. Likewise, MET impacted other relevant pathways mainly associated with cell cycle, DNA repair and steroid hormone biosynthesis, here reported for the first time in a non-target aquatic organism. Non-monotonic dose response curves were frequently detected in biochemical and qRT-PCR data, with higher effects observed at 390 and 2 929 ng/L MET treatments. Collectively, the results suggest that environmentally relevant concentrations of MET severely disrupt D. rerio metabolism and other important biological processes, supporting the need to revise the proposed environmental quality standard (EQS) and predicted no-effect concentration (PNEC) for MET.
Collapse
Affiliation(s)
- Susana Barros
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, 5000-801 Vila Real, Portugal
| | - Marta Ribeiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana M Coimbra
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Pavilhão 2, 5000-801 Vila Real, Portugal; Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| | - Marlene Pinheiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hugo Morais
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nélson Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Miguel M Santos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Teresa Neuparth
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
22
|
He Y, Zhang Y, Ju F. Metformin Contamination in Global Waters: Biotic and Abiotic Transformation, Byproduct Generation and Toxicity, and Evaluation as a Pharmaceutical Indicator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13528-13545. [PMID: 36107956 DOI: 10.1021/acs.est.2c02495] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metformin is the first-line antidiabetic drug and one of the most prescribed medications worldwide. Because of its ubiquitous occurrence in global waters and demonstrated ecotoxicity, metformin, as with other pharmaceuticals, has become a concerning emerging contaminant. Metformin is subject to transformation, producing numerous problematic transformation byproducts (TPs). The occurrence, removal, and toxicity of metformin have been continually reviewed; yet, a comprehensive analysis of its transformation pathways, byproduct generation, and the associated change in adverse effects is lacking. In this review, we provide a critical overview of the transformation fate of metformin during water treatments and natural processes and compile the 32 organic TPs generated from biotic and abiotic pathways. These TPs occur in aquatic systems worldwide along with metformin. Enhanced toxicity of several TPs compared to metformin has been demonstrated through organism tests and necessitates the development of complete mineralization techniques for metformin and more attention on TP monitoring. We also assess the potential of metformin to indicate overall contamination of pharmaceuticals in aquatic environments, and compared to the previously acknowledged ones, metformin is found to be a more robust or comparable indicator of such overall pharmaceutical contamination. In addition, we provide insightful avenues for future research on metformin.
Collapse
Affiliation(s)
- Yuanzhen He
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yanyan Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
- Research Center for Industries of the Future (RCIF), School of Engineering, Westlake University, Hangzhou 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| |
Collapse
|
23
|
Wu Y, Chen M, Lee HJ, A. Ganzoury M, Zhang N, de Lannoy CF. Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review. ACS ES&T ENGINEERING 2022; 2:1574-1598. [PMID: 36120114 PMCID: PMC9469769 DOI: 10.1021/acsestengg.2c00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of organic micropollutants (OMPs) and their persistence in water supplies have raised serious concerns for drinking water safety and public health. Conventional water treatment technologies, including adsorption and biological treatment, are known to be insufficient in treating OMPs and have demonstrated poor selectivity toward a wide range of OMPs. Pressure-driven membrane filtration has the potential to remove many OMPs detected in water with high selectivity as a membrane's molecular weight cutoff (MWCO), surface charge, and hydrophilicity can be easily tailored to a targeted OMP's size, charge and octanol-water partition coefficient (Kow). Over the past 10 years, polymeric (nano)composite microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) membranes have been extensively synthesized and studied for their ability to remove OMPs. This review discusses the fate and transport of emerging OMPs in water, an assessment of conventional membrane-based technologies (NF, reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and UF membrane-based hybrid processes) for their removal, and a comparison to the state-of-the-art nanoenabled membranes with enhanced selectivity toward specific OMPs in water. Nanoenabled membranes for OMP treatment are further discussed with respect to their permeabilities, enhanced properties, limitations, and future improvements.
Collapse
Affiliation(s)
- Yichen Wu
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Ming Chen
- School
of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Hye-Jin Lee
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
- Department
of Chemical and Biological Engineering, and Institute of Chemical
Process (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Mohamed A. Ganzoury
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Nan Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | | |
Collapse
|
24
|
Hou M, Li X, Fu Y, Wang L, Lin D, Wang Z. Degradation of iodinated X-ray contrast media by advanced oxidation processes: A literature review with a focus on degradation pathways. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Zou J, Yao B, Yan S, Song W. Determination of trace organic contaminants by a novel mixed-mode online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119112. [PMID: 35271954 DOI: 10.1016/j.envpol.2022.119112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, a novel mixed-mode online solid-phase extraction (SPE) method was developed to recover miscellaneous trace organic contaminants (TrOCs) from environmental water samples. Six kinds of sorbents, including C18 substances, hypercross-linked polymers (2), cation-exchange resins, anion-exchange resins, and graphitized nonporous carbons, were packed into a single online SPE cartridge. Furthermore, a fully automated analytic method was established by coupling this mixed-mode online SPE with liquid chromatography tandem mass spectrometry (online SPE-LC-MS/MS). Sixty-nine TrOCs with diverse properties were selected to examine the performance of this mixed-mode SPE cartridge in comparison with solo-mode online SPE cartridges. The method quantification limit (MQL) and the relative recovery coefficient of TrOCs in diverse water matrices, including groundwater, surface water and sewage effluent were evaluated. The MQL of most TrOCs was lower than 10 ng L-1. The relative recovery coefficients for most TrOCs in the groundwater (50/69) and surface water (38/69) matrix fit in the satisfactory range. Moreover, mixed-mode online SPE coupled with LC-high-resolution MS was applied for a suspect screening of TrOCs in sewage effluents. A series of highly polar TrOCs that had scarcely been reported by previous studies were identified by this practical and easily accessible method. Finally, this novel mixed-mode online SPE with LC-MS/MS method was applied to quantify the TrOCs in the environmental water samples.
Collapse
Affiliation(s)
- Jianmin Zou
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China
| | - Bo Yao
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
26
|
Shi Y, Geng J, Li X, Qian Y, Li H, Wang L, Wu G, Yu Q, Xu K, Ren H. Effects of DOM characteristics from real wastewater on the degradation of pharmaceutically active compounds by the UV/H 2O 2 process. J Environ Sci (China) 2022; 116:220-228. [PMID: 35219420 DOI: 10.1016/j.jes.2021.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The characteristics of dissolved organic matter (DOM) can significantly affect the degradation of target compounds by the advanced oxidation processes. In this study, the effects of the different hydrophobicity/hydrophilicity fractions, molecular weight (MW) fractions, fluorescence components and molecular components of DOM extracted from municipal wastewater on the degradation of 4 pharmaceutically active compounds (PhACs), including carbamazepine, clofibric acid, atenolol and erythromycin by the UV/H2O2 process were investigated. The results showed that the degradation rate constants of 4 PhACs decreased dramatically in the presence of DOM. The linear regressions of 4 PhACs degradation as a function of specific fluorescence intensity (SFI) are exhibited during the degradation of 4 PhACs and the SFI may be used to evaluate effect of DOM on target compounds in wastewater. The hydrophobic acid (HPO-A) exhibited the strongest inhibitory effect on degradation of 4 PhACs during oxidation process. The small MW fractions of DOM significantly inhibited the degradation of 4 PhACs during oxidation process. Among three fluorescence components, hydrophobic humic-like substances may significantly inhibit the degradation of 4 PhACs during oxidation process. At the molecular level, the formulas may be derived from terrestrial sources. CHO compound may significantly inhibit the degradation of 4 PhACs during oxidation process on formula classes. The unsaturated hydrocarbons, carbohydrates and tannins compounds may significantly inhibit the effectiveness of the UV/H2O2 process on compound classes.
Collapse
Affiliation(s)
- Yufei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China.
| | - Xiang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China
| | - Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China
| | - Hongzhou Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210008, China
| |
Collapse
|
27
|
Tong Y, Qi M, Sun P, Qin W, Zhu Y, Wang X, Xu Y, Zhang W, Yang J. Estimation of Unintended Treated Wastewater Contributions to Streams in the Yangtze River Basin and the Potential Human Health and Ecological Risk Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5590-5601. [PMID: 35427135 DOI: 10.1021/acs.est.1c02131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
"Clean water and sanitation" is one of the United Nations Sustainable Development Goals. One primary objective of wastewater treatment is to remove contaminants such as pathogens, nutrient, and organic matter from wastewater, while not all contaminants could be removed effectively. Wastewater treatment plants would inevitably represent concentrated point sources of residual contaminant loadings into surface waters. This study focuses on the populated Yangtze River Basin where emerging contaminants are frequently detected in the rivers in the recent years. A python-based ArcGIS model is developed to estimate the contributions of effluent discharges in water supply sources and quantify fate and environmental risks of human-derived contaminants in the river network. We find that one-third of the river networks are potentially influenced by the effluents through local or upstream inputs. Average fraction of unintended wastewater reuse in water supply intakes is estimated to be lower than 3% under the average flow scenario with an average traveling time of 0.05 day from the nearest effluent input site to water supply intakes. However, under low flow scenario, the percentage of effluent discharge would increase largely, leading to substantial increases in human health and ecological risks. This study provides a systematic investigation to understand extents of impacts of effluent inputs in river networks as well as identify the opportunities to improve the water management in the densely populated regions.
Collapse
Affiliation(s)
- Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Miao Qi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wanxiao Qin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yanxue Xu
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Wei Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Jingjing Yang
- Chinese Academy for Environmental Planning, Beijing 100012, China
| |
Collapse
|
28
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Rosales-Pérez KE, Orozco-Hernández JM, García-Medina S, Islas-Flores H, Galar-Martínez M. Chronic exposure to environmentally relevant concentrations of guanylurea induces neurotoxicity of Danio rerio adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153095. [PMID: 35038519 DOI: 10.1016/j.scitotenv.2022.153095] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have shown guanylurea (GUA) alters the growth and development of fish, induces oxidative stress, and disrupts the levels and expression of several genes, metabolites, and proteins related to the overall fitness of fish. Nonetheless, up to date, no study has assessed the potential neurotoxic effects that GUA may induce in non-target organisms. To fill the current knowledge gaps about the effects of this metabolite in the central nervous system of fish, we aimed to determine whether or not environmentally relevant concentrations of this metabolite may disrupt the behavior, redox status, AChE activity in Danio rerio adults. In addition, we also meant to assess if 25, 50, and 200 μg/L of GUA can alter the expression of several antioxidant defenses-, apoptosis-, AMPK pathway-, and neuronal communication-related genes in the brain of fish exposed for four months to GUA. Our results demonstrated that chronic exposure to GUA altered the swimming behavior of D. rerio, as fish remained more time frozen and traveled less distance in the tank compared to the control group. Moreover, this metabolite significantly increased the levels of oxidative damage biomarkers and inhibited the activity of acetylcholinesterase of fish in a concentration-dependent manner. Concerning gene expression, environmentally relevant concentrations of GUA downregulated the expression GRID2IP, PCDH17, and PCDH19, but upregulated Nrf1, Nrf2, p53, BAX, CASP3, PRKAA1, PRKAA2, and APP in fish after four months of exposure. Collectively, we can conclude that GUA may alter the homeostasis of several essential brain biomarkers, generating anxiety-like behavior in fish.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| |
Collapse
|
29
|
He Y, Jin H, Gao H, Zhang G, Ju F. Prevalence, production, and ecotoxicity of chlorination-derived metformin byproducts in Chinese urban water systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151665. [PMID: 34785232 DOI: 10.1016/j.scitotenv.2021.151665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The widely used antidiabetic drug metformin has become an emerging contaminant of water systems. In a prior study, we demonstrated the marked mammalian toxicity of the disinfection-derived byproducts (DBPs) Y (yellow, C4H6ClN5) and C (colorless, C4H6ClN3), and here assess the distribution, formation, and ecotoxicity of these in Chinese urban water systems. A national tap water assessment showed that metformin and C concentrations were higher in large, dense urban areas and surface water sources than in sparsely populated areas and groundwater sources. Water types' analysis clearly showed that C derived from chlorination of metformin-contaminated water (up to 4308.5 ng/L) circulated from domestic water (0.7-9.7 ng/L) via sewage (2.3 ng/L in effluent) to surface water (0.6-3.5 ng/L). Simulated disinfection and aqueous stability results systematically showed rapid formation and 24 h stability of both byproducts, indicating high exposure odds for water users. Both byproducts showed clear but distinct toxic effects on the growth (72 h IC50, 0.6 mg/L for Y and 4.4 mg/L for C) and photosynthesis of the microalgae Pseudokirchneriella subcapitata at milligram levels. Combinedly, our work reveals that metformin byproducts have been disseminated to urban water cycle and contaminated tap water, increasing potential toxic risk for drinking water. Its outcomes provide a preliminary reference for future studies on the environmental fate and ecotoxicological effects of unintended DBPs formed in the chlorination of metformin-contaminated water.
Collapse
Affiliation(s)
- Yuanzhen He
- Fudan University, 220 Handan Road, Shanghai 200433, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Hui Jin
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Han Gao
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Guoqing Zhang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
30
|
Kan X, Feng S, Mei X, Sui Q, Zhao W, Lyu S, Sun S, Zhang Z, Yu G. Quantitatively identifying the emission sources of pharmaceutically active compounds (PhACs) in the surface water: Method development, verification and application in Huangpu River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152783. [PMID: 34990669 DOI: 10.1016/j.scitotenv.2021.152783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 05/13/2023]
Abstract
Recognizing the main sources of pharmaceutically active compounds (PhACs) found in surface waters has been a challenge to the effective control of PhAC contamination from the sources. In the present study, a novel method based on Characteristic Matrix (ChaMa) model of indicator PhACs to quantitatively identify the contribution of multiple emission sources was developed, verified, and applied in Huangpu River, Shanghai. Carbamazepine (CBZ), caffeine (CF) and sulfadiazine (SDZ) were proposed as indicators. Their occurrence patterns in the corresponding emission sources and the factor analysis of their composition in the surface water samples were employed to construct the ChaMa model and develop the source apportionment method. Samples from typical emission sources were collected and analyzed as hypothetical surface water samples, to verify the method proposed. The results showed that the calculated contribution proportions of emission sources to the corresponding source samples were 45%-85%, proving the feasibility of the method. Finally, the method was applied to different sections in Huangpu River, and the results showed that livestock wastewater was the dominant emission source, accounting for 55%-73% in the upper reach of Huangpu River. Untreated municipal wastewater was dominant in the middle and lower reaches of Huangpu River, accounting for 76%-94%. This novel source apportionment method allows the quantitative identification of the contribution of multiple PhAC emission sources. It can be replicated in other regions where the occurrence of localized indicators was available, and will be helpful to control the contamination of PhACs in the water environment from the major sources.
Collapse
Affiliation(s)
- Xiping Kan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengya Feng
- School of Mathematics, East China University of Science and Technology, Shanghai 200237, China
| | - Xuebing Mei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuying Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ziwei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Lu S, Lin C, Lei K, Xin M, Gu X, Lian M, Wang B, Liu X, Ouyang W, He M. Profiling of the spatiotemporal distribution, risks, and prioritization of antibiotics in the waters of Laizhou Bay, northern China. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127487. [PMID: 34655873 DOI: 10.1016/j.jhazmat.2021.127487] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
We investigated the spatiotemporal distributions, risks, and prioritization of 15 widely used antibiotics in Laizhou Bay (LZB). Water samples (145) were collected from LZB and its estuaries and analyzed. Twelve antibiotics, with total concentrations of 241-1450 and 69-289 ng L-1 in estuarine water and seawater, respectively, were detected, with the contributions of norfloxacin, ciprofloxacin, and amoxicillin exceeding 70%. Amoxicillin was firstly determined, which contributed to 20% and 46% of the total antibiotics during summer and spring, respectively. Higher antibiotic concentrations were observed in the sea located adjacent to aquaculture bases and the Yellow River Estuary, which are significantly influenced by mariculture and riverine inputs, respectively. Veterinary antibiotics showed higher total concentrations in summer compared to spring, indicating a higher degree of their usage in mariculture in summer. The antibiotic mixtures posed high risk to algae and low to medium risks to crustaceans and fish. Amoxicillin and norfloxacin were identified as high-risk pollutants. Additionally, amoxicillin and ciprofloxacin showed medium to high resistance development risks. Previous studies on antibiotics in the LZB did not determined amoxicillin and thus underestimated antibiotic contamination, ecological risk, and resistance development risk. Amoxicillin, norfloxacin, and ciprofloxacin should be prioritized in risk management.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Kai Lei
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ming Xin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiang Gu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xitao Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Mengchang He
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
32
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Islas-Flores H, Hernández-Navarro MD, García-Medina S, Galar-Martínez M. Oxidative stress as a potential mechanism by which guanylurea disrupts the embryogenesis of Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149432. [PMID: 34365262 DOI: 10.1016/j.scitotenv.2021.149432] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Metformin is one the most prescribed drug to treat type 2 diabetes. In wastewater treatment plants, this drug is bacterially transformed to guanylurea, which occurs at higher concentrations in the aquatic environments than its parent compound. Since there is a huge knowledge gap about the toxicity of this metabolite on aquatic organisms, we aimed to investigate the impact of guanylurea on the embryonic development and oxidative stress biomarkers of zebrafish (Danio rerio). For this effect, zebrafish embryos (4 h post fertilization) were exposed to 25, 50, 100, 200, 250, 25,000, 50,000, 75,000 μg/L guanylurea until 96 h post fertilization. Guanylurea led to a significant delay in the hatching process in all exposure groups. Furthermore, this transformation product affected the embryonic development of fish, inducing severe body alterations and consequently leading to their death. The most pronounced malformations were malformation of tail, scoliosis, pericardial edema, yolk deformation and craniofacial malformation. Concerning oxidative stress response, we demonstrated that guanylurea induced the antioxidant activity of superoxide dismutase, catalase, and glutathione peroxidase in zebrafish embryos. In addition, the levels of lipid peroxidation, protein carbonyl and hydroperoxide content were also increased in the embryos exposed to this transformation product. However, the integrated biomarker response (IBR) analysis carried out in this study demonstrated that oxidative damage biomarkers got more influence over the embryos than antioxidant enzymes. Thus, we can conclude that guanylurea induces oxidative stress in zebrafish embryos, and that this transformation product impair the normal development of this freshwater organism.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
33
|
Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S, Islas-Flores H, Hernández-Navarro MD, Galar-Martínez M. Antidiabetic drug metformin disrupts the embryogenesis in zebrafish through an oxidative stress mechanism. CHEMOSPHERE 2021; 285:131213. [PMID: 34246938 DOI: 10.1016/j.chemosphere.2021.131213] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the consumption of metformin has increased not only due to the higher prevalence of type 2 diabetes, but also due to their usage for other indications such as cancer and polycystic ovary syndrome. Consequently, metformin is currently among the highest drug by weight released into the aquatic environments. Since the toxic effects of this drug on aquatic species has been scarcely explored, the aim of this work was to investigate the influence of metformin on the development and redox balance of zebrafish (Danio rerio) embryos. For this purpose, zebrafish embryos (4 hpf) were exposed to 1, 10, 20, 30, 40, 50, 75 and 100 μg/L metformin until 96 hpf. Metformin significantly accelerated the hatching process in all exposure groups. Moreover, this drug induced several morphological alterations on the embryos, affecting their integrity and consequently leading to their death. The most frequent malformations found on the embryos included malformation of tail, scoliosis, pericardial edema and yolk deformation. Regarding oxidative balance, metformin significantly induced the activity of antioxidant enzymes and the levels of oxidative damage biomarkers. However, our IBR analisis demonstrated that oxidative damage biomarkers got more influence over the embryos. Together these results demonstrated that metformin may affect the embryonic development of zebrafish and that oxidative stress may be involved in the generation of this embryotoxic process.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de, CP, 07700, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de, CP, 07700, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de, Mexico
| |
Collapse
|
34
|
Fan D, Yin W, Gu W, Liu M, Liu J, Wang Z, Shi L. Occurrence, spatial distribution and risk assessment of high concern endocrine-disrupting chemicals in Jiangsu Province, China. CHEMOSPHERE 2021; 285:131396. [PMID: 34237498 DOI: 10.1016/j.chemosphere.2021.131396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) have attracted much concern because of the environmental and health risks they pose. Here we used liquid chromatography coupled with quadrupole-Orbitrap high-resolution mass spectrometry to quantify 10 types of EDCs at 118 sampling sites in Jiangsu Province, China, and then evaluated their respective environmental risk using a conservative risk quotient method. The results show that, in surface water, the targeted nonylphenol (NP), 4-tert-octylphenol (4-t-OP), and (2-ethylhexyl)phthalate (DEHP) were ranked highest, having mean concentrations above 300 ng/L. In comparison, both 4-t-OP and DEHP were also ranked highest, with mean concentrations above 100 ng/g, in the sediment samples. Moreover, the ∑10EDCs concentration in the Huai River Basin was similar to that in the Yangtze River Basin. Notably, Huai'an city had the maximum mean concentration for EDCs in the Huai River Basin, followed by Xuzhou city and Suqian city, while Yangzhou city ranked highest in the Yangtze River Basin. Furthermore, the corresponding risk distribution revealed that (1) NP, bisphenol A (BPA), and 4-t-OP are of medium to high risk in 70%, 100% and 95% of the surface water samples, and likewise in 45%, 88% and 100% of the sediment samples, respectively; the maximum RQ value for NP in surface water samples reached 74.9; (2) DEHP belongs to the high-risk category in all samples (100%), whose maximum RQ reached 54.7. To our best knowledge, this is the first study to report on the occurrence, spatial distribution, and risk assessment of EDCs of high concern in Jiangsu Province, China.
Collapse
Affiliation(s)
- Deling Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Wei Yin
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Wen Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Mingqing Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Jining Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Zhen Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Lili Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
35
|
Li Y, Feng Y, Yang B, Yang Z, Shih K. Activation of dissolved molecular oxygen by ascorbic acid-mediated circulation of copper(II): Applications and limitations. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Sumpter JP, Runnalls TJ, Donnachie RL, Owen SF. A comprehensive aquatic risk assessment of the beta-blocker propranolol, based on the results of over 600 research papers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148617. [PMID: 34182447 DOI: 10.1016/j.scitotenv.2021.148617] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive aquatic environmental risk assessment (ERA) of the human pharmaceutical propranolol was conducted, based on all available scientific literature. Over 200 papers provided information on environmental concentrations (77 of which provided river concentrations) and 98 dealt with potential environmental effects. The median concentration of propranolol in rivers was 7.1 ng/L (range of median values of individual studies 0.07 to 89 ng/L), and the highest individual value was 590 ng/L. Sixty-eight EC50 values for 35 species were available. The lowest EC50 value was 0.084 mg/L. A species sensitivity distribution (SSD) provided an HC50 value of 6.64 mg/L and an HC5 value of 0.22 mg/L. Thus, there was a difference of nearly 6 orders of magnitude between the median river concentration and the HC50 value, and over 4 orders of magnitude between the median river concentration and the HC5 value. Even if an assessment factor of 100 was applied to the HC5 value, to provide considerable protection to all species, the safety margin is over 100-fold. However, nearly half of all papers reporting effects of propranolol did not provide an EC50 value. Some reported that very low concentrations of propranolol caused effects. The lowest concentration reported to cause an effect - in fact, a range of biochemical and physiological effects on mussels - was 0.3 ng/L. In none of these 'low concentration' papers was a sigmoidal concentration-response relationship obtained. Although inclusion of data from these papers in the ERA cause a change in the conclusion reached, we are sceptical of the repeatability of these 'low concentration' results. We conclude that concentrations of propranolol present currently in rivers throughout the world do not constitute a risk to aquatic organisms. We discuss the need to improve the quality of ecotoxicology research so that more robust ERAs acceptable to all stakeholders can be completed.
Collapse
Affiliation(s)
- John P Sumpter
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom.
| | - Tamsin J Runnalls
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom
| | - Rachel L Donnachie
- Institute of Environment, Health and Societies, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, United Kingdom; Now at Imperial College London, Exhibition Road, South Kensington, London SW7 2A2, United Kingdom
| | - Stewart F Owen
- AstraZeneca, Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom
| |
Collapse
|
37
|
Cai Z, Song Y, Jin X, Wang CC, Ji H, Liu W, Sun X. Highly efficient AgBr/h-MoO 3 with charge separation tuning for photocatalytic degradation of trimethoprim: Mechanism insight and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146754. [PMID: 33812120 DOI: 10.1016/j.scitotenv.2021.146754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
A highly solar active AgBr/h-MoO3 composite was constructed by a facile precipitation method, and the charge separation tuning was achieved by photoreduction of AgBr. The photoreduced Ag0 on AgBr/h-MoO3 acted as charge transfer bridge to form Z-scheme heterostructure, while the high degree of Ag reduction converted the material into type-II heterostructure. The synthesized optimal material promoted charge separation and visible light activity due to the incorporation of highly solar active AgBr, which showed ca. 2 times activity on trimethoprim (TMP) degradation than h-MoO3. The contribution of reactive species on TMP degradation followed the order of O2- >1O2 > h+, which agree well with the proposed charge separation mechanism. The photocatalytic degradation mechanism of TMP was proposed based on the radical quenching, intermediate analysis and DFT calculation. The toxicity analysis based on QSAR calculation showed that part of the degradation intermediates are more toxic than TMP, thus sufficient mineralization are required to eliminate the potential risks of treated water. Moreover, the material showed high stability and activity after four reusing cycles, and it is applicable to treat contaminants in various water matrix. This work is expected to provide new insight into the charge separation tuning mechanism for the AgX based heterojunction, and rational design of highly efficient photocatalysts for organic contaminants degradation by solar irradiation.
Collapse
Affiliation(s)
- Zhengqing Cai
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies, East China University of Science and Technology, Shanghai 200237, China
| | - Yougui Song
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies, East China University of Science and Technology, Shanghai 200237, China
| | - Xibiao Jin
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies, East China University of Science and Technology, Shanghai 200237, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haodong Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xianbo Sun
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
38
|
Sengar A, Vijayanandan A. Comprehensive review on iodinated X-ray contrast media: Complete fate, occurrence, and formation of disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144846. [PMID: 33736235 DOI: 10.1016/j.scitotenv.2020.144846] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 05/22/2023]
Abstract
Iodinated contrast media (ICM) are drugs which are used in medical examinations for organ imaging purposes. Wastewater treatment plants (WWTPs) have shown incapability to remove ICM, and as a consequence, ICM and their transformation products (TPs) have been detected in environmental waters. ICM show limited biotransformation and low sorption potential. ICM can act as iodine source and can react with commonly used disinfectants such as chlorine in presence of organic matter to yield iodinated disinfection byproducts (IDBPs) which are more cytotoxic and genotoxic than conventionally known disinfection byproducts (DBPs). Even highly efficient advanced treatment systems have failed to completely mineralize ICM, and TPs that are more toxic than parent ICM are produced. This raises issues regarding the efficacy of existing treatment technologies and serious concern over disinfection of ICM containing waters. Realizing this, the current review aims to capture the attention of scientific community on areas of less focus. The review features in depth knowledge regarding complete environmental fate of ICM along with their existing treatment options.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
39
|
Duan L, Zhang Y, Wang B, Zhou Y, Wang F, Sui Q, Xu D, Yu G. Seasonal occurrence and source analysis of pharmaceutically active compounds (PhACs) in aquatic environment in a small and medium-sized city, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144272. [PMID: 33465629 DOI: 10.1016/j.scitotenv.2020.144272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 05/08/2023]
Abstract
Pharmaceutically active compounds (PhACs) have been widely reported in most megacities in China but seldom in small and median-sized cities. The aim of this study is to investigate occurrence and distribution characteristics of PhACs in a typical small and medium-sized city in China and analyze their sources. 33 PhACs and 4 chiral drugs were selected for a four-season monitoring campaign in Wujin District, Jiangsu Province, a typical small and median-sized city, in 2018. PhACs concentration level in surface water, ranging from ng L-1 to μg L-1, was lower than in large-sized cities and areas in China. Impact from agricultural sources should be concerned in the study area: (1) Significant correlation between concentrations of antibiotics and NH4-N in surface water indicated the potential impact from agricultural sources (fishponds and livestock farms); (2) Government regulating measures on livestock and poultry farms since January 2018 have effectively decreased macrolides and lincosamides emissions into surface water. As for source analysis, CF/CBZ (Caffeine/Carbamazepine) was a feasible indicator to trace untreated wastewater and enantiomeric fraction values of metoprolol (MTP) were also suggested to be helpful for identifying untreated wastewater. The results of both two indicators indicated more input of untreated wastewater to surface water in the northeast area and upstream of Wuyi Canal. To our best knowledge, this is the first study to systematically analyze PhACs in aquatic environment for a small and medium-sized city in China.
Collapse
Affiliation(s)
- Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Yizhe Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| | - Yitong Zhou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fang Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qian Sui
- School of Resources and Environmental Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Dongjiong Xu
- Changzhou Environmental Monitoring Center, Changzhou 213001, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China
| |
Collapse
|
40
|
Gutiérrez-Noya VM, Gómez-Oliván LM, Ramírez-Montero MDC, Islas-Flores H, Galar-Martínez M, García-Medina S. Survival and malformations rates, oxidative status in early life stages of Cyprinus carpio due to exposure to environmentally realistic concentrations of paracetamol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144585. [PMID: 33454465 DOI: 10.1016/j.scitotenv.2020.144585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Paracetamol (PCM) is among the most consumed analgesic and antipyretic drugs worldwide. Due to its high consumption, this drug has been reported ubiquitously on different water bodies, posing a real threat to aquatic organisms. Until now, several studies have pointed out that PCM may induce oxidative stress, histological damage and developmental disorders on different aquatic species. Nonetheless, there is still a huge knowledge gap about the toxic effects that PCM may induce in species of commercial interest such as the common carp Cyprinus carpio. The aim of this study was to evaluate survival and malformation rates induced by PCM (0.5 μg/L - 3.5 μg/L) in early life stages of common carp. Furthermore, oxidative stress biomarkers were evaluated at 72 and 96 h post fecundation. PCM reduced the survival rate of the embryos of up to 90%, as concentration increased. LC50 and EC50m were 1.29 μg/L and 2.84 μg/L, respectively. Biomarkers of cellular oxidation and antioxidant enzymes were modified in a concentration-dependent way with respect to the control group (p < 0.05). The main developmental alterations observed were lordosis, scoliosis, craniofacial malformations, hypopigmentation, growth retardation, pericardial edema and rachyschisis. These data indicate that environmentally realistic concentrations of PCM could be hazardous and affects the development in early stages of C. carpio. Moreover, our findings also indicate that C. carpio embryos may be a useful in vivo model to evaluate embryonic and teratogenic effects of drugs such as PCM.
Collapse
Affiliation(s)
- Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - María Del Carmen Ramírez-Montero
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP, 07700, Mexico
| |
Collapse
|
41
|
Li Z, Yu X, Yu F, Huang X. Occurrence, sources and fate of pharmaceuticals and personal care products and artificial sweeteners in groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20903-20920. [PMID: 33666841 DOI: 10.1007/s11356-021-12721-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Groundwater is considered as the main source for supplying the public drinking water in many countries and regions; however, pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) found in groundwater can exert harmful effects on human health and aquatic ecosystems, and therefore, they are of persistent concern. The recent data on the occurrence of a series of PPCPs (including antibiotics, excitants and lipid regulators) and ASs often detected in groundwater are reviewed, in which the PPCPs and ASs occur in groundwater at the concentration from several nanograms to several micrograms per litre. In addition, the spatio-temporal distribution characteristics of PPCPs and ASs are discussed and the main sources and possibly pollution pathways of PPCPs and ASs in groundwater are summarised and analysed. Additionally, the adsorption, migration and degradation of PPCPs and ASs in underground environments are evaluated. Due to the long residence time in groundwater, pollutants are likely to threaten the freshwater body for decades under certain conditions. Therefore, according to the current level of pollution, it is necessary to improve and enhance the supervision on PPCP and AS pollutants and prevent and control groundwater pollution.
Collapse
Affiliation(s)
- Zhiping Li
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Xiaopeng Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| | - Furong Yu
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China.
| | - Xin Huang
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, Henan, China
| |
Collapse
|
42
|
Yao B, Yan S, Lian L, Liu D, Cui J, Song W. Occurrence, distribution, and potential health risks of psychoactive substances in Chinese surface waters. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124851. [PMID: 33370654 DOI: 10.1016/j.jhazmat.2020.124851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Ten psychoactive substances (PSs) and metabolites were identified and quantified in 217 surface water samples collected across China to reveal the occurrence, distribution, and potential health risks in Chinese surface waters. The results showed the ubiquitous occurrence of caffeine (CFI), paraxanthine (PXT) and cotinine (CTN) at all the monitored sites, the concentrations of which ranged from not detected to 3460 ng L-1, while the remaining PSs were detected at trace levels (<50 ng L-1). High concentrations of diet-related PSs (CTN, CFI, and PXT) typically occurred in areas with high population densities. Traditional drugs tended to occur in megacities and the illegal manufacturing bases of the illicit drugs. Emerging drugs were found to be very popular across the whole country, with no significant differences among the samples. The risk assessment results suggest that drinking water containing these PS residues posed no potential human health risk in any life stage. However, the age-dependent risk quotients (RQs) of the 5 assessed PSs for the 12 age intervals ranged from < 1.0 × 10-7 to 0.005. In terms of the evaluated life stages, the RQs for early stages (from birth to <2 years) were significantly higher than the RQs for other stages.
Collapse
Affiliation(s)
- Bo Yao
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China; Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 PR China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 PR China
| | - Lushi Lian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 PR China
| | - Daxi Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiansheng Cui
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 PR China.
| |
Collapse
|
43
|
Luo Y, Shi W, You M, Zhang R, Li S, Xu N, Sun W. Polybrominated diphenyl ethers (PBDEs) in the Danjiangkou Reservoir, China: identification of priority PBDE congeners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12587-12596. [PMID: 33083955 DOI: 10.1007/s11356-020-11254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Although the production of polybrominated diphenyl ethers (PBDEs) has been phased out over the past decade worldwide, they are still potentially hazardous to the environment due to their persistence and toxicity. This study investigated the levels of 55 PBDEs in water and sediments from the Danjiangkou Reservoir, China. The levels of PBDEs were in the range of not detected (ND)-286.67 ng/L in water and ND-236.04 ng/g in sediments. BDE209 was the predominant PBDE congener and constituted 15-50% and 44-68% of the total PBDEs in water and sediments, respectively. Commercial pentaBDE products (70-5DE, DE-71) were the dominant source of tetraBDE, pentaBDE, and hexaBDE, while commercial octaBDE (79-8DE) and decaBDE (102E and 82-0DE) products were the main sources of nonaBDE and decaBDE in water. PBDEs in sediments mainly stemmed from commercial decaBDE products and combustion sources. BDE-209 posed high ecological risks to aquatic organisms and dominated the total ecological risks of PBDEs. No cancer risks and non-cancer risks were observed for PBDEs. A ranking method based on four criteria, i.e., detection frequency, concentration, ecological risk, and health risks, was proposed, and 17 PBDEs were identified as high priority PBDEs for future monitoring and management in the Danjiangkou Reservoir.
Collapse
Affiliation(s)
- Yaomin Luo
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wanzi Shi
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mingtao You
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Ruijie Zhang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China.
| |
Collapse
|
44
|
Zhu F, Wang S, Liu Y, Wu M, Wang H, Xu G. Antibiotics in the surface water of Shanghai, China: screening, distribution, and indicator selecting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9836-9848. [PMID: 33156500 DOI: 10.1007/s11356-020-10967-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The widespread existence of antibiotics has caused inevitable influence on ecology and humans. In this study, we screened the most commonly used antibiotics, and 64 antibiotics were detected in Shanghai, an international metropolis. Most of the target substances were detected in all 46 water samples including main rivers and districts in Shanghai, with concentrations ranging from 0.02 to 502.43 ng L-1. In particular, sulfadiazine (502.43 ng L-1) had the highest maximum concentration. Besides, risk quotients based on fish suggested that sulfonamides had a medium risk (0.12) in Shanghai. Correlation studies had shown that most compounds with frequencies exceeding 60% were significantly positively correlated with the total concentration. Based on further analysis, sulfadiazine, sulfamerazine, and sulfapyridine were screened as indicators to reflect the pollution status of antibiotics in Shanghai for a long time. The screening conditions for these indicators include detection rate (> 60%), maximum concentration (> 100 ng L-1), RQ (> 0.01), and correlation (> 0). In addition, population density may be the main factor for antibiotic pollution through regional comparison. In a word, this work can systematically reflect the overall situation of Shanghai antibiotics and provide support for global data comparison in the future. Meanwhile, we provided the potential indicators that can be applied in the long term and economical monitoring of antibiotics.
Collapse
Affiliation(s)
- Feng Zhu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Siqi Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yujie Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Hongyong Wang
- Shanghai Institute of Applied Radiation, Shanghai University, 20 Chengzhong Road, Shanghai, 200444, China.
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| |
Collapse
|
45
|
Shao XT, Cong ZX, Liu SY, Wang Z, Zheng XY, Wang DG. Spatial analysis of metformin use compared with nicotine and caffeine consumption through wastewater-based epidemiology in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111623. [PMID: 33396143 DOI: 10.1016/j.ecoenv.2020.111623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 05/08/2023]
Abstract
Monitoring the consumption of pharmaceuticals and licit drugs is important for assessing the needs of public health owing to the impact on individuals as well as society. The present work applied wastewater-based epidemiology to profile the spatial patterns of metformin, nicotine, and caffeine use and their correlations. Influent wastewater samples were collected from 27 wastewater treatment plants in 22 typical Chinese cities that covered all geographic regions of the country. The consumption of metformin ranged from 0.02 g/d/1000 inh to 8.92 g/d/1000 inh, whereas caffeine and nicotine consumption ranged from 4.33 g/d/1000 inh to 394 g/d/1000 inh and 0.17 g/d/1000 inh to 1.88 g/d/1000 inh, respectively. There were significant regional differences in the consumption of caffeine, with the highest consumption in East China and the lowest consumption in Northeast China. The consumption and concentration of caffeine were related to the gross domestic product and per capita disposable income of urban residents, respectively. There was a correlation between the concentrations of caffeine and cotinine (a nicotine metabolite), thereby indicating that individuals that use one of these substances are likely to use the other substance. A significant relationship was found between the concentration of metformin and cotinine, thereby implying that the use of tobacco may be correlated with type 2 diabetes. Co-analysis of these substances in wastewater may provide a more accurate picture of substance use situations within different communities and provide more information on human health, human behavior, and the economy. This report describes the newest study related to the consumption of metformin among the general population in China.
Collapse
Affiliation(s)
- Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Zi-Xiang Cong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Si-Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China
| | - Zhuang Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, No. 219 Ningliu Road, Nanjing 210044, China
| | - Xiao-Yu Zheng
- Institute of Forensic Science, Ministry of Public Security, China
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, China.
| |
Collapse
|
46
|
Parrott JL, Pacepavicius G, Shires K, Clarence S, Khan H, Gardiner M, Sullivan C, Alaee M. Fathead minnow exposed to environmentally relevant concentrations of metformin for one life cycle show no adverse effects. Facets (Ott) 2021. [DOI: 10.1139/facets-2020-0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metformin is a glucose-lowering drug taken for diabetes. It is excreted by humans in urine and detected in municipal wastewater effluents and rivers. Fathead minnows ( Pimephales promelas) were exposed over a life cycle to measured concentrations of metformin: 3.0, 31, and 322 μg/L. No significant changes were observed in survival, maturation, growth, condition factor, or liver size. Relative ovary size of females exposed to 322 μg/L metformin was significantly larger than controls. There was no induction of vitellogenin in plasma of minnows, and gonad maturation was not statistically different from controls. The start of breeding was delayed by 9–10 d in the mid- and high metformin treatments (statistically significant only in the mid-concentration), but numbers and quality of eggs were not statistically different from controls. There were no effects of metformin on survival or growth of offspring. Exposure to metformin at environmentally relevant concentrations (i.e., 3.0 and 31 μg/L metformin) caused no adverse effects in fathead minnows exposed for a life cycle, with the exception of a delay in time to first breeding (that did not impact overall egg production). The results of the study are important to help understand whether metformin concentrations in rivers and lakes can harm fishes.
Collapse
Affiliation(s)
- Joanne L. Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Grazina Pacepavicius
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Kallie Shires
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Stacey Clarence
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Hufsa Khan
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Madelaine Gardiner
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Cheryl Sullivan
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Mehran Alaee
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
47
|
Shi Y, Shen G, Geng J, Fu Y, Li S, Wu G, Wang L, Xu K, Ren H. Predictive models for the degradation of 4 pharmaceutically active compounds in municipal wastewater effluents by the UV/H 2O 2 process. CHEMOSPHERE 2021; 263:127944. [PMID: 32854006 DOI: 10.1016/j.chemosphere.2020.127944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutically active compounds (PhACs) have been frequently detected in aquatic environment and raised concerns because of their environmental persistence and potential ecological risk, especially carbamazepine (CBZ), erythromycin (ERY), atenolol (ATL) and clofibric acid (CA). The UV/H2O2 advanced oxidation process was considered as an effective process to remove pharmaceuticals in wastewater. Because of the diverse structure of pharmaceuticals and the various wastewater matrices, this study established two models to predict the degradation of 4 PhACs in wastewater by UV/H2O2. Besides, the degradation pathway and toxicity of 4 PhACs by UV/H2O2 were explored. The degradation of 4 PhACs by UV/H2O2 followed the pseudo first-order kinetics pattern. The degradation rate of pharmaceuticals decreased as CBZ > ATL > CA > ERY. A kinetic model combining the steady state concentrations of HO∙ successfully predicted the degradation process of pharmaceuticals in 14 secondary municipal wastewater effluents. Also, a water matrix prediction model by response surface methodology (RSM) was established to estimate the degradation of pharmaceuticals well. A detailed and systematic comparison of two models in the objectives of models, predicting target contaminants, types of wastewater and parameters of models was made. In addition, the tentative transformation pathways of 4 PhACs by UV/H2O2 were proposed. 4 PhACs after UV/H2O2 treatment enhanced the toxicity, and prolongation of treatment time can reduce the toxicity on the luminescence.
Collapse
Affiliation(s)
- Yufei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Guochen Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| | - Yingying Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shengnan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
48
|
Yang J, Huang Y, Chen Y, Hassan M, Zhang X, Zhang B, Gin KYH, He Y. Multi-phase distribution, spatiotemporal variation and risk assessment of antibiotics in a typical urban-rural watershed. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111156. [PMID: 32866891 DOI: 10.1016/j.ecoenv.2020.111156] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
The widespread consumption and continuous discharge of antibiotics have threatened the ecological health of urban-rural watershed. In this study, multi-phase distribution, spatiotemporal variation and ecological risk of 18 antibiotics in rivers and lakes from Suzhou City were investigated based on urban-rural gradient. The total antibiotic concentration in surface water, suspended particulate matter (SPM) and sediments was 39.28-2578 ng/L, 6.16-171.09 ng/L and 12.67-2249 ng/g, respectively. High detection frequency (>76%) and concentration of antibiotics in multi-phase suggested universal pollution. Quinolones (QNs) and tetracycline (TCs) were the dominant antibiotics detected. The partitioning coefficient (KP) value of SPM-water was 1.43-29.93 times larger than sediment-water, indicating that SPM can greatly affect the fate and distribution of antibiotics. Significant positive correlations between antibiotics and environmental parameters (e.g. TOC, TP and TN) revealed combined contamination and similar pollution sources. Antibiotic pollution exhibited evident spatiotemporal variation. For spatial variation, urban area showed more serious antibiotic pollution and greater ecological risk than rural and suburb areas, especially for sediments. Besides, antibiotic level and risk in rivers were higher than lakes. For seasonal variation, in case of surface water, rural area exhibited higher content in winter, while greater content was detected in autumn and spring in urban and suburb areas, respectively. The highest antibiotic content in SPM and sediments was all measured in winter owing to weak degradation ability. Ecological risk assessment based on risk quotients (RQs) indicated that norfloxacin (NFX), ciprofloxacin (CFX) and anhydroerythromycin (ETM-H2O) in surface water presented medium to high risk throughout the entire year, while sulfadiazine (SDZ) and enrofloxacin (EFX) in sediments showed higher accumulation potential. Thus, these five antibiotics were selected as the priority antibiotics for pollution control. In short, this study improves the understanding of antibiotic fates in the urban-rural watershed and provides scientific basis for the authorities to regulate antibiotic pollution.
Collapse
Affiliation(s)
- Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore, 138602, Singapore
| | - Yuansheng Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Muhammad Hassan
- Ecology and Chemical Engineering Department, South Ural State University, Lenin Prospect 76, Chelyabinsk, 454080, Russian Federation
| | - Xiaofan Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 1-Create Way, #15-02 Create Tower, Singapore, 138602, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; China-UK Low Carbon College, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
49
|
Sadutto D, Picó Y. Sample Preparation to Determine Pharmaceutical and Personal Care Products in an All-Water Matrix: Solid Phase Extraction. Molecules 2020; 25:E5204. [PMID: 33182304 PMCID: PMC7664861 DOI: 10.3390/molecules25215204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmaceuticals and personal care products (PPCPs) are abundantly used by people, and some of them are excreted unaltered or as metabolites through urine, with the sewage being the most important source to their release to the environment. These compounds are in almost all types of water (wastewater, surface water, groundwater, etc.) at concentrations ranging from ng/L to µg/L. The isolation and concentration of the PPCPs from water achieves the appropriate sensitivity. This step is mostly based on solid-phase extraction (SPE) but also includes other approaches (dispersive liquid-liquid microextraction (DLLME), buckypaper, SPE using multicartridges, etc.). In this review article, we aim to discuss the procedures employed to extract PPCPs from any type of water sample prior to their determination via an instrumental analytical technique. Furthermore, we put forward not only the merits of the different methods available but also a number of inconsistencies, divergences, weaknesses and disadvantages of the procedures found in literature, as well as the systems proposed to overcome them and to improve the methodology. Environmental applications of the developed techniques are also discussed. The pressing need for new analytical innovations, emerging trends and future prospects was also considered.
Collapse
Affiliation(s)
- Daniele Sadutto
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| | - Yolanda Picó
- Food and Environmental Safety Research Group, Desertification Research Centre—CIDE (CSIC-UV-GV), University of Valencia (SAMA-UV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Spain
| |
Collapse
|
50
|
Li S, Wen J, He B, Wang J, Hu X, Liu J. Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114371. [PMID: 32217417 DOI: 10.1016/j.envpol.2020.114371] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
Owing to the substantial consumption of caffeinated food, beverages, and medicines worldwide, caffeine is considered the most representative pharmaceutically active compound (PhAC) pollutant based on its high abundance in the environment and its suitability as an indicator of the anthropogenic inputs of PhACs in water bodies. This review presents a worldwide analysis of 132 reports of caffeine residues in freshwater environments. The results indicated that more than 70% of the studies reported were from Asia and Europe, which have densely populated and industrially developed areas. However, caffeine pollution was also found to affect areas isolated from human influence, such as Antarctica. In addition, the maximum concentrations of caffeine in raw wastewater, treated wastewater, river, drinking water, groundwater, lake, catchment, reservoir, and rainwater samples were reported to be 3.60 mg/L, 55.5, 19.3, 3.39, 0.683, 174, 44.6, 4.87, and 5.40 μg/L, respectively. The seasonal variation in caffeine residues in the freshwater environment has been demonstrated. In addition, despite the fact that there was a small proportion of wastewater treatment plants in which the elimination rates of caffeine were below 60%, wastewater treatment is generally believed to have a high caffeine removal efficiency. From a pharmacy perspective, we proposed to adopt effective measures to minimize the environmental risks posed by PhACs, represented by caffeine, through a new concept known as ecopharmacovigilance (EPV). Some measures of EPV aimed at caffeine pollution have been advised, as follows: improving knowledge and perceptions about caffeine pollution among the public; listing caffeine as a high-priority PhAC pollutant, which should be targeted in EPV practices; promoting green design and production, rational consumption, and environmentally preferred disposal of caffeinated medicines, foods, and beverages; implementing intensive EPV measures in high-risk areas and during high-risk seasons; and integrating EPV into wastewater treatment programs.
Collapse
Affiliation(s)
- Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jing Wen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, 430070, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|