1
|
Shoman N, Solomonova E, Akimov A, Rylkova O, Mansurova I. Activation of stress reactions in the dinophyte microalga Prorocentrum cordatum as a consequence of the toxic effect of ZnO nanoparticles and zinc sulfate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106964. [PMID: 38781690 DOI: 10.1016/j.aquatox.2024.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
According to the results of the experimental study, the main regularities of changes in morphological, structural-functional and fluorescent indices of P. cordatum were established when zinc oxide nanoparticles ZnO NPs (0.3-6.4 mg L-1) and Zn in form of salt (0.09-0.4 mg L-1) were added to the medium. The studied pollutants have cytotoxic (growth inhibition, development of oxidative stress, destruction of cytoplasmic organelles, disorganization of mitochondria) and genotoxic (changes in the morphology of nuclei, chromatin condensation) effects on microalgae, affecting almost all aspects of cell functioning. Despite the similar mechanism of action of zinc sulfate and ZnO NPs on P. cordatum cells, the negative effect of ZnO NPs is also due to the inhibition of photosynthetic activity of cells (significant decrease in the maximum quantum yield of photosynthesis and electron transport rate), reduction of chlorophyll concentration from 3.5 to 1.8 pg cell-1, as well as mechanical effect on cells: deformation and damage of cell membranes, aggregation of NPs on the cell surface. Apoptosis-like signs of cell death upon exposure to zinc sulfate and ZnO NPs were identified by flow cytometry and laser scanning confocal microscopy methods: changes in cell morphology, cytoplasm retraction, development of oxidative stress, deformation of nuclei, and disorganization of mitochondria. It was shown that the first signs of cell apoptosis appear at 0.02 mg L-1 Zn and 0.6 mg L-1 ZnO NPs after 72 h of exposure. At higher concentrations of pollutants, a dose-dependent decrease in algal enzymatic activity (up to 5 times relative to control) and mitochondrial membrane potential (up to 4 times relative to control), and an increase in the production of reactive oxygen species (up to 4-5 times relative to control) were observed. The results of the presented study contribute to the disclosure of fundamental mechanisms of toxic effects of pollutants and prediction of ways of phototrophic microorganisms reaction to this impact.
Collapse
Affiliation(s)
- Natalia Shoman
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Ave., Sevastopol, Russia.
| | - Ekaterina Solomonova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Ave., Sevastopol, Russia
| | - Arkady Akimov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Ave., Sevastopol, Russia
| | - Olga Rylkova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Ave., Sevastopol, Russia
| | - Irina Mansurova
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2, Nakhimov Ave., Sevastopol, Russia
| |
Collapse
|
2
|
Brunelli A, Cazzagon V, Faraggiana E, Bettiol C, Picone M, Marcomini A, Badetti E. An overview on dispersion procedures and testing methods for the ecotoxicity testing of nanomaterials in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171132. [PMID: 38395161 DOI: 10.1016/j.scitotenv.2024.171132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Considerable efforts have been devoted to develop or adapt existing guidelines and protocols, to obtain robust and reproducible results from (eco)toxicological assays on engineered nanomaterials (NMs). However, while many studies investigated adverse effects of NMs on freshwater species, less attention was posed to the marine environment, a major sink for these contaminants. This review discusses the procedures used to assess the ecotoxicity of NMs in the marine environment, focusing on the use of protocols and methods for preparing NMs dispersions and on the NMs physicochemical characterization in exposure media. To this purpose, a critical analysis of the literature since 2010 was carried out, based on the publication of the first NMs dispersion protocols. Among the 89 selected studies, only <5 % followed a standardized dispersion protocol combined with NMs characterization in ecotoxicological media, while more than half used a non-standardized dispersion method but performed NMs characterization. In the remaining studies, only partial or no information on dispersion procedures or on physicochemical characterization was provided. This literature review also highlighted that metal oxides NMs were the most studied (42 %), but with an increasing interest in last years towards nanoplastics (14 %) and multicomponent nanomaterials (MCNMs, 7 %), in line with the growing attention on these emerging contaminants. For all these NMs, primary producers as algae and bacteria were the most studied groups of marine species, in addition to mollusca, while organisms at higher trophic levels were less represented, likely due to challenges in evaluating adverse effects on more complex organisms. Thus, despite the wide use of NMs in different applications, standard dispersion protocols are not often used for ecotoxicity testing with marine species. However, the efforts to characterize NMs in ecotoxicological media recognize the importance of following conditions that are as standardized as possible to support the ecological hazard assessment of NMs.
Collapse
Affiliation(s)
- Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Eleonora Faraggiana
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Marco Picone
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| |
Collapse
|
3
|
Wu X, Tong Y, Li T, Guo J, Liu W, Mo J. Metabolomic Response of Thalassiosira weissflogii to Erythromycin Stress: Detoxification Systems, Steroidal Metabolites, and Energy Metabolism. PLANTS (BASEL, SWITZERLAND) 2024; 13:354. [PMID: 38337887 PMCID: PMC10856835 DOI: 10.3390/plants13030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
Erythromycin, a macrolide antibiotic, is a prioritized pollutant that poses a high risk to environmental health. It has been detected in different environmental matrices and can cause undesired effects in aquatic organisms, particularly freshwater algae, which are primary producers. However, the impact of erythromycin on marine algae remains largely unexplored. Erythromycin has been reported to induce hormetic effects in the marine diatom Thalassiosira weissflogii (T. weissflogii). These effects are associated with the molecular pathways and biological processes of ribosome assembly, protein translation, photosynthesis, and oxidative stress. However, the alterations in the global gene expression have yet to be validated at the metabolic level. The present study used non-targeted metabolomic analysis to reveal the altered metabolic profiles of T. weissflogii under erythromycin stress. The results showed that the increased cell density was possibly attributed to the accumulation of steroidal compounds with potential hormonic action at the metabolic level. Additionally, slight increases in the mitochondrial membrane potential (MMP) and viable cells were observed in the treatment of 0.001 mg/L of erythromycin (an environmentally realistic level). Contrarily, the 0.75 and 2.5 mg/L erythromycin treatments (corresponding to EC20 and EC50, respectively) showed decreases in the MMP, cell density, and viable algal cells, which were associated with modified metabolic pathways involving ATP-binding cassette (ABC) transporters, the metabolism of hydrocarbons and lipids, thiamine metabolism, and the metabolism of porphyrin and chlorophyll. These findings suggest that metabolomic analysis, as a complement to the measurement of apical endpoints, could provide novel insights into the molecular mechanisms of hormesis induced by antibiotic agents in algae.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Tong Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China;
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| |
Collapse
|
4
|
Pino-Otín MR, Lorca G, Langa E, Roig F, Terrado EM, Ballestero D. Assessing the Ecotoxicity of Eight Widely Used Antibiotics on River Microbial Communities. Int J Mol Sci 2023; 24:16960. [PMID: 38069283 PMCID: PMC10707202 DOI: 10.3390/ijms242316960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Global prevalence of antibiotic residues (ABX) in rivers requires ecotoxicological impact assessment. River microbial communities serve as effective bioindicators for this purpose. We quantified the effects of eight commonly used ABXs on a freshwater river microbial community using Biolog EcoPlates™, enabling the assessment of growth and physiological profile changes. Microbial community characterization involved 16S rRNA gene sequencing. The river community structure was representative of aquatic ecosystems, with the prevalence of Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. Our findings reveal that all ABXs at 100 µg/mL reduced microbial community growth and metabolic capacity, particularly for polymers, carbohydrates, carboxylic, and ketonic acids. Chloramphenicol, erythromycin, and gentamicin exhibited the highest toxicity, with chloramphenicol notably impairing the metabolism of all studied metabolite groups. At lower concentrations (1 µg/mL), some ABXs slightly enhanced growth and the capacity to metabolize substrates, such as carbohydrates, carboxylic, and ketonic acids, and amines, except for amoxicillin, which decreased the metabolic capacity across all metabolites. We explored potential correlations between physicochemical parameters and drug mechanisms to understand drug bioavailability. Acute toxicity effects at the river-detected low concentrations (ng/L) are unlikely. However, they may disrupt microbial communities in aquatic ecosystems. The utilization of a wide array of genetically characterized microbial communities, as opposed to a single species, enables a better understanding of the impact of ABXs on complex river ecosystems.
Collapse
Affiliation(s)
- María Rosa Pino-Otín
- Faculty of Health Sciences, San Jorge University, 50830 Zaragoza, Spain; (G.L.); (E.L.); (F.R.); (E.M.T.); (D.B.)
| | | | | | | | | | | |
Collapse
|
5
|
You X, Cao X, Zhang X, Liu Y, Sun W. Differential toxicity of various mineral nanoparticles to Synechocystis sp.: With and without ciprofloxacin. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132319. [PMID: 37611388 DOI: 10.1016/j.jhazmat.2023.132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Mineral nanoparticles (M-NPs) are ubiquitous in aquatic environments, but their potential harms to primary producers and impacts on the toxicity of coexisting pollutants are largely unknown. Herein, the toxicity mechanisms of various M-NPs (i.e., SiO2, Fe2O3, Al2O3, and TiO2 NPs) to Synechocystis sp. in absence and presence of ciprofloxacin (CIP) were comprehensively investigated. The heteroaggregation of cells and M-NPs can hinder substrate transfer or light acquisition. The attraction between Synechocystis sp. and M-NPs increased in the order of SiO2 < Fe2O3 < Al2O3 ≈ TiO2 NPs. Therefore, SiO2 and Fe2O3 NPs exerted slight effects on physiology and proteome of Synechocystis sp.. Al2O3 NPs with the rod-like shape caused physical damage to cells. Differently, TiO2 NPs with photocatalytic activities provided photogenerated electrons for Synechocystis sp., promoting photosynthesis and the Calvin cycle for CO2 fixation. SiO2, Fe2O3, and Al2O3 NPs alleviated the toxicity of CIP in an adsorption-depended manner. Conversely, the combination of CIP and TiO2 NPs exerted more pronounced toxic effects compared to their individuals, and CIP disturbed the extracellular electron transfer from TiO2 NPs to cells. The findings highlight the different effects of TiO2 NPs from other M-NPs on cyanobacteria, either alone or in combination with CIP, and improve the understanding of toxic mechanisms of M-NPs.
Collapse
Affiliation(s)
- Xiuqi You
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Xiaoqiang Cao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xuan Zhang
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Yi Liu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
6
|
Mo J, Lv R, Qin X, Wu X, Chen H, Yan N, Shi J, Wu Y, Liu W, Kong RYC, Guo J. Mechanistic insights into hormesis induced by erythromycin in the marine alga Thalassiosira weissflogii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115242. [PMID: 37441949 DOI: 10.1016/j.ecoenv.2023.115242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Erythromycin (ERY) is a typical macrolide antibiotic with large production and extensive use on a global scale. Detection of ERY in both freshwaters and coaster seawaters, as well as relatively high ecotoxicity of ERY have been documented. Notably, hormesis has been reported on several freshwater algae under ERY stress, where growth was promoted at relatively lower exposures but inhibited at higher treatment levels. On the contrary, there is limited information of ERY toxicity in marine algae, hampering the risk assessment on ERY in the coaster waters. The presence of hormesis may challenge the current concept of dose-response adopted in chemical risk assessment. Whether and how exposure to ERY can induce dose-dependent toxicity in marine algae remain virtually unknown, especially at environmentally relevant concentrations. The present study used a model marine diatom Thalassiosira weissflogii (T. weissflogii) to reveal its toxicological responses to ERY at different biological levels and decipher the underlying mechanisms. Assessment of multiple apical endpoints shows an evident growth promotion following ERY exposure at an environmentally relevant concentration (1 µg/L), associated with increased contents reactive oxygen species (ROS) and chlorophyll-a (Chl-a), activated signaling pathways related to ribosome biosynthesis and translation, and production of total soluble protein. By contrast, growth inhibition in the 750 and 2500 µg/L treatments was attributed to reduced viability, increased ROS formation, reduced content of total soluble protein, inhibited photosynthesis, and perturbed signaling pathways involved in xenobiotic metabolism, ribosome, metabolism of amino acid, and nitrogen metabolism. Measurements of multiple apical endpoints coupled with de novo transcriptomics analysis applied in the present study, a systems biology approach, can generate detailed mechanistic information of chemical toxicity including dose-response and species sensitivity difference used in environmental risk assessment.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region.
| | - Runnan Lv
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xian Qin
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Haibo Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Yinglin Wu
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang, Guangdong 524048, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Richard Y C Kong
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
7
|
Seoane M, Conde-Pérez K, Esperanza M, Cid Á, Rioboo C. Unravelling joint cytotoxicity of ibuprofen and oxytetracycline on Chlamydomonas reinhardtii using a programmed cell death-related biomarkers panel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106455. [PMID: 36841069 DOI: 10.1016/j.aquatox.2023.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceutical active compounds (PhACs) are emerging contaminants that pose a growing concern due to their ubiquitous presence and harmful impact on aquatic ecosystems. Among PhACs, the anti-inflammatory ibuprofen (IBU) and the antibiotic oxytetracycline (OTC) are two of the most used compounds whose presence has been reported in different aquatic environments worldwide. However, there is still scarce information about the cellular and molecular alterations provoked by IBU and OTC on aquatic photosynthetic microorganisms as microalgae, even more if we refer to their potential combined toxicity. To test the cyto- and genotoxicity provoked by IBU, OTC and their binary combination on Chlamydomonas reinhardtii, a flow cytometric panel was performed after 24 h of single and co-exposure to both contaminants. Assayed parameters were cell vitality, metabolic activity, intracellular ROS levels, and other programmed cell death (PCD)-related biomarkers as cytoplasmic and mitochondrial membrane potentials and caspase-like and endonuclease activities. In addition, a nuclear DNA fragmentation analysis by comet assay was carried out. For most of the parameters analysed (vitality, metabolic activity, cytoplasmic and mitochondrial membrane potentials, and DNA fragmentation) the most severe damages were observed in the cultures exposed to the binary mixture (IBU+OTC), showing a joint cyto- and genotoxicity effect. Both PhACs and their mixture caused a remarkable decrease in cell proliferation and metabolic activity and markedly increased intracellular ROS levels, parallel to a noticeable depolarization of cytoplasmic and mitochondrial membranes. Moreover, a strong increase in both caspase and endonuclease activities as well as a PCD-related loss of nuclear DNA integrity was observed in all treatments. Results analysis showed that the PhACs caused cell death on this non-target organism, involving mitochondrial membrane depolarization, enhanced ROS production and activation of PCD process. Thus, PCD should be an applicable toxicological target for unraveling the harmful effects of co-exposure to PhACs in aquatic organisms as microalgae.
Collapse
Affiliation(s)
- Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Kelly Conde-Pérez
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, A Coruña 15071, Spain.
| |
Collapse
|
8
|
Solomonova ES, Shoman NY, Akimov AI, Rylkova OA. Comparative Assessment of Stress Responses of the Microalgae Prorocentrum cordatum (Ostenfeld) Dodge and Dunaliella salina (Teod.) to the Presence of Copper Nanoparticles. Microbiology (Reading) 2023. [DOI: 10.1134/s0026261722602482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
9
|
Zhang Y, Guo P, Wu Y, Wang M, Deng J, Su H, Sun Y. Effects of natural nanoparticles on the acute toxicity, chronic effect, and oxidative stress response of phenicol antibiotics in Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21535-21547. [PMID: 36272006 DOI: 10.1007/s11356-022-23695-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Natural nanoparticles (NNP) are ubiquitous in natural water and can interact with other contaminants, causing ecotoxic effects on aquatic nontarget organisms. However, the impact of NNPs on the ecotoxicity of antibiotics remains largely unknown. This work investigated the acute toxicity, chronic effect, and oxidative response and damage in Daphnia magna co-exposed to phenicol antibiotics (chloramphenicol, thiamphenicol) and different concentrations of NNPs (10 mg/L: environmentally relevant concentration; 100 mg/L: a high concentration that caused no apparent immobilization in D. magna). The results showed that the acute toxicity of chloramphenicol was increased by 10 mg/L NNPs but decreased by 100 mg/L NNPs; both concentrations of NNPs increased and decreased acute toxicities of thiamphenicol and chloramphenicol + thiamphenicol treatments, respectively. After long-term exposure, phenicol antibiotics (1 μg/L) and NNP (10 mg/L) mixtures in environmentally relevant concentrations significantly affected the reproduction of D. magna but did not influence their growth. The catalase activity, reduced glutathione level, and malonaldehyde content in D. magna also varied with the NNPs concentrations. Notably, the lowest concentration of thiamphenicol and chloramphenicol + thiamphenicol combined with NNPs significantly increased the malondialdehyde content in D. magna compared with the control, indicating membrane lipid peroxidation occurred in daphnids. This study suggests that the toxic effects of contaminants and NNPs on aquatic organisms should be considered thoroughly to avoid underestimating the hazard of these pollutants in the actual aquatic environment.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Peiyong Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China.
| | - Yanmei Wu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Meixian Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Jun Deng
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Haitao Su
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| | - Yinshi Sun
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
10
|
Solomonova E, Shoman N, Akimov A, Rylkova O. Differential responses of Pleurochrysis sp. (Haptophyta) to the effect of copper and light intensity. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:1085-1094. [PMID: 36059160 DOI: 10.1071/fp22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The effect of light, copper ions, copper oxide nanoparticles on the change in the structural, functional, cytometric, fluorescent parameters of coccolithophore Pleurochrysis sp. was investigated. The culture Pleurochrysis sp. was represented by two cell forms: (1) covered with coccoliths; and (2) not covered, the ratio of which depends from growth conditions. An increase in light from 20 to 650μEm-2 s-1 led to a decrease in the concentration of cells covered with coccoliths from 90 to 35%. With an increase in light, the decrease in the values of variable chlorophyll a fluorescence was observed, a decrease in the chlorophyll concentration was noted, and an increase in cell volumes and their granularity due to coccoliths 'overproduction' was recorded. A tolerance of Pleurochrysis sp. to the effect of copper was registered, both in the ionic form and in the form of a nanopowder. This is probably due to the morphological (presence of coccoliths) and physiological (ligand production) peculiarities of species. Copper did not affect the ratio of cells covered with coccoliths; its value was about 85%. Growth inhibition, a 2-fold decrease in the intracellular chlorophyll content, a decrease in F v /F m , and a pronounced cell coagulation were recorded at the maximum Cu2+ concentration (625μgL-1 ). The mechanical effect was registered of CuO nanoparticles on the surface of Pleurochrysis sp. coccosphere, which results in the emergence of destroyed and deformed coccoliths. A hypothesis is proposed considering the protective function of coccoliths acting as a barrier when the cells are exposed to nanoparticles and copper ions.
Collapse
Affiliation(s)
- Ekaterina Solomonova
- Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, Leninsky Avenue, 38, Moscow 119991, Russian Federation
| | - Natalia Shoman
- Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, Leninsky Avenue, 38, Moscow 119991, Russian Federation
| | - Arkadii Akimov
- Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, Leninsky Avenue, 38, Moscow 119991, Russian Federation
| | - Olga Rylkova
- Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of the Russian Academy of Sciences, Leninsky Avenue, 38, Moscow 119991, Russian Federation
| |
Collapse
|
11
|
Shoman N, Solomonova E, Akimov A, Rylkova OA, Meger Y. Responses of Prorocentrum cordatum (Ostenfeld) Dodge, 1975 (Dinoflagellata) to copper nanoparticles and copper ions effect. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1625-1637. [PMID: 36389098 PMCID: PMC9530086 DOI: 10.1007/s12298-022-01228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
In the present study, changes were determined in morphological, structural-functional, and fluorescent parameters of Prorocentrum cordatum with the addition of CuO nanoparticles (NPs) and copper ions (CuSO4). A stimulating effect of low Cu2+ concentrations (30 μg L-1) on algal growth characteristics was observed. Higher Cu2+ concentration of 60-600 μg L-1 and CuO NPs concentration of 100-520 μg L-1 inhibited algal growth. Ionic copper is more toxic to P. cordatum than NPs. After 72 h of algae cultivation in the medium supplemented with CuSO4 and CuO NPs, EC50 values (calculated based on cell abundance) were of 60 and 300 μg L-1 (in terms of copper ions), respectively. Reduction in algal growth rate is due to disruption in cell cycle, changes in nuclear morphology, chromatin dispersion, and DNA damage. The studied pollutants slightly affected the efficiency of P. cordatum photosynthetic apparatus. Addition of the pollutants resulted in an increased production of reactive oxygen species (ROS). At a concentration of Cu2+ of 120 μg L-1 and a concentration of CuO NPs 0-300 μg L-1 of CuO NPs increase in ROS production is short-term with a decrease at later stages of the experiment. This is probably due to the activation of antioxidant mechanisms in cells and an increase in the concentration of carotenoids (peridinin) in cells. The high values of ROS production persisted throughout the experiment at sublethal copper concentrations (400-600 μg L-1 of CuSO4 and 520 μg L-1 of CuO NPs). Sublethal concentrations of pollutants caused restructuring of cell membranes in P. cordatum. Shedding of cell membranes (ecdysis) and formation of immobile stages (temporary or resting cysts) were recorded. The pronounced mechanical impact of NPs on the cell surface was observed such as-deformation and damage of a cell wall, its "wrinkling" and shrinkage, and adsorption of NP aggregates.
Collapse
Affiliation(s)
- Natalia Shoman
- Algae Ecological Physiology Department, Moscow Representative Office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russian Federation
| | - Ekaterina Solomonova
- Algae Ecological Physiology Department, Moscow Representative Office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russian Federation
| | - Arkadii Akimov
- Algae Ecological Physiology Department, Moscow Representative Office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russian Federation
| | - Olga A. Rylkova
- Department of Biotechnology and Phytoresources, Moscow Representative Office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russian Federation
| | - Yakov Meger
- Sevastopol State University, Sevastopol, Russian Federation
| |
Collapse
|
12
|
Trovão M, Schüler LM, Machado A, Bombo G, Navalho S, Barros A, Pereira H, Silva J, Freitas F, Varela J. Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production. Mar Drugs 2022; 20:440. [PMID: 35877733 PMCID: PMC9318807 DOI: 10.3390/md20070440] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Microalgae have become a promising novel and sustainable feedstock for meeting the rising demand for food and feed. However, microalgae-based products are currently hindered by high production costs. One major reason for this is that commonly cultivated wildtype strains do not possess the robustness and productivity required for successful industrial production. Several strain improvement technologies have been developed towards creating more stress tolerant and productive strains. While classical methods of forward genetics have been extensively used to determine gene function of randomly generated mutants, reverse genetics has been explored to generate specific mutations and target phenotypes. Site-directed mutagenesis can be accomplished by employing different gene editing tools, which enable the generation of tailor-made genotypes. Nevertheless, strategies promoting the selection of randomly generated mutants avoid the introduction of foreign genetic material. In this paper, we review different microalgal strain improvement approaches and their applications, with a primary focus on random mutagenesis. Current challenges hampering strain improvement, selection, and commercialization will be discussed. The combination of these approaches with high-throughput technologies, such as fluorescence-activated cell sorting, as tools to select the most promising mutants, will also be discussed.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Lisa M. Schüler
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Adriana Machado
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
13
|
Wu D, Zhang J, Du W, Yin Y, Guo H. Toxicity mechanism of cerium oxide nanoparticles on cyanobacteria Microcystis aeruginosa and their ecological risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34010-34018. [PMID: 35031986 DOI: 10.1007/s11356-021-18090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The extensive application of cerium oxide nanoparticles (CeO2 NPs), a type of rare earth nanomaterial, led to pollution into aquatic environments. Cyanobacteria, a significant component of freshwater ecosystems, can interact with CeO2 NPs. However, little attention has been paid as to whether CeO2 NPs will have adverse effects on cyanobacteria. In the present study, Microcystis aeruginosa (FACHB-942) was exposed to different concentrations (0, 1, 10, and 50 mg/L) of CeO2 NPs. Results showed 50 mg/L CeO2 NPs inhibited algal growth (11.48% ± 5.76%), suppressed photosynthesis and induced the generation of reactive oxygen species (ROS) after 72 h exposure. The toxicity mechanism is the adsorption of CeO2 NPs on cell surface, the ROS formation and the intracellular Ce. Additionally, the intracellular microcystins (MCs) content was significantly induced (11.84% ± 1.47%) by 50 mg/L CeO2 NPs, while no significance was found in 1 and 10 mg/L CeO2 NP treatments. Results indicated high concentrations of CeO2 NPs could be toxic to algae through the adverse effects on algal growth and photosynthesis. Moreover, the promoted MCs production could also pose a threat to freshwater ecosystems due to the possible release into the environment.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Juanjuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- Joint International Research Centre for Critical Zone Science, University of Leeds and Nanjing University, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Jiang B, Shen Y, Lu X, Du Y, Jin N, Li G, Zhang D, Xing Y. Toxicity assessment and microbial response to soil antibiotic exposure: differences between individual and mixed antibiotics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:460-473. [PMID: 35166274 DOI: 10.1039/d1em00405k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing amounts of antibiotics are introduced into soils, raising great concerns on their ecotoxicological impacts on the soil environment. This work investigated the individual and joint toxicity of three antibiotics, tetracycline (TC), sulfonamide (SD) and erythromycin (EM) via a whole-cell bioreporter assay. TC, SD and EM in aqueous solution demonstrated cytotoxicity, whilst soil exposure showed genotoxicity, indicating that soil particles possibly affected the bioavailability of antibiotics. Toxicity of soils exposed to TC, SD and EM changed over time, demonstrating cytotoxic effects within 14-d exposure and genotoxic effects after 30 days. Joint toxicity of TC, SD and EM in soils instead showed cytotoxicity, suggesting a synergetic effect. High-throughput sequencing suggested that the soil microbial response to individual antibiotics and their mixtures showed a different pattern. Soil microbial community composition was more sensitive to TC, in which the abundance of Pseudomonas, Pirellula, Subdivision3_genera_incertae_sedis and Gemmata varied significantly. Microbial community functions were significantly shifted by EM amendments, including signal transduction mechanisms, cytoskeleton, cell wall/membrane/envelope biogenesis, transcription, chromatin structure and dynamics, and carbohydrate transport and metabolism. This work contributes to a better understanding of the ecological effects and potential risks of individual and joint antibiotics on the soil environment.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yaoxin Shen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Xin Lu
- Petrochina North China Gas Marketing Company, Beijing, 100029, PR China
| | - Yufan Du
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Naifu Jin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
15
|
Yu C, Pang H, Wang JH, Chi ZY, Zhang Q, Kong FT, Xu YP, Li SY, Che J. Occurrence of antibiotics in waters, removal by microalgae-based systems, and their toxicological effects: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151891. [PMID: 34826467 DOI: 10.1016/j.scitotenv.2021.151891] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 05/27/2023]
Abstract
Global antibiotics consumption has been on the rise, leading to increased antibiotics release into the environment, which threatens public health by selecting for antibiotic resistant bacteria and resistance genes, and may endanger the entire ecosystem by impairing primary production. Conventional bacteria-based treatment methods are only moderately effective in antibiotics removal, while abiotic approaches such as advanced oxidation and adsorption are costly and energy/chemical intensive, and may cause secondary pollution. Considered as a promising alternative, microalgae-based technology requires no extra chemical addition, and can realize tremendous CO2 mitigation accompanying growth related pollutants removal. Previous studies on microalgae-based antibiotics removal, however, focused more on the removal performances than on the removal mechanisms, and few studies have concerned the toxicity of antibiotics to microalgae during the treatment process. Yet understanding the removal mechanisms can be of great help for targeted microalgae-based antibiotics removal performances improvement. Moreover, most of the removal and toxicity studies were carried out using environment-irrelevant high concentrations of antibiotics, leading to reduced guidance for real-world situations. Integrating the two research fields can be helpful for both improving antibiotics removal and avoiding toxicological effects to primary producers by the residual pollutants. This study, therefore, aims to build a link connecting the occurrence of antibiotics in the aquatic environment, the removal of antibiotics by microalgae-based processes, and the toxicity of antibiotics to microalgae. Distribution of various categories of antibiotics in different water environments were summarized, together with the antibiotics removal mechanisms and performances in microalgae-based systems, and the toxicological mechanisms and toxicity of antibiotics to microalgae after either short-term or long-term exposure. Current research gaps and future prospects were also analyzed. The review could provide much valuable information to the related fields, and provoke interesting thoughts on integrating microalgae-based antibiotics removal research and toxicity research on the basis of environmentally relevant concentrations.
Collapse
Affiliation(s)
- Chong Yu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hao Pang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Jing-Han Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China.
| | - Zhan-You Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Dalian 116023, PR China
| | - Fan-Tao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China
| | - Yong-Ping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, PR China; Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Shu-Ying Li
- Dalian SEM Bioengineer and Biotech Co. Ltd., Dalian 116620, PR China
| | - Jian Che
- Dalian Xinyulong Marine Biological Seed Technology Co. Ltd., Dalian 116222, PR China
| |
Collapse
|
16
|
Thiagarajan V, Seenivasan R, Jenkins D, Chandrasekaran N, Mukherjee A. Mixture toxicity of TiO 2 NPs and tetracycline at two trophic levels in the marine ecosystem: Chlorella sp. and Artemia salina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152241. [PMID: 34921881 DOI: 10.1016/j.scitotenv.2021.152241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Increasing usage of both nanomaterials and pharmaceuticals and their unabated release to the marine ecosystem pose a serious concern nowadays. The toxicity of the mixture of TiO2 NPs and tetracycline (TC) in the marine species are not very well covered in prior literature. The current study explores the joint toxic effects of TiO2 NPs and TC in a simulated marine food chain: Chlorella sp. and Artemia salina. Chlorella sp. was interacted with pristine TiO2 NPs (0.05, 05, and 5 mg/L), TC (0.5 mg/L), and their combinations for 48 h. The toxicity induced in Chlorella sp. by pristine TiO2 NPs through oxidative stress and chloroplast damage was not significantly changed in the presence of TC. Principal component analysis for the toxicity parameters revealed a strong association between growth inhibition and adsorption/internalization. In the second trophic level (A. salina), the waterborne exposure of TC additively increased the toxicity of TiO2 NPs. Both adsorption and degradation played a major role in the removal of TC from the suspension, resulting in additive toxic effects in both Chlorella sp. and A. salina. Compared to the waterborne exposure, the foodborne exposure of TiO2 NPs and TC induced lesser toxic effects owing to reduced uptake and accumulation in A. salina. Biomagnification results indicate that the dietary transfer of TiO2 NPs and TC does not pose a serious environmental threat in this two-level marine food chain.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, India
| | - R Seenivasan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, UK
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, India.
| |
Collapse
|
17
|
Wang X, Lin Y, Zheng Y, Meng F. Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118541. [PMID: 34800588 DOI: 10.1016/j.envpol.2021.118541] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are widely applied to prevent and treat diseases occurred in mariculture. The often-open nature of mariculture production systems has led to antibiotic residue accumulation in the culturing and adjacent environments, which can adversely affect aquatic ecosystems, and even human. This review summarizes the occurrence, environmental behavior, and ecological effects of antibiotics in mariculture systems based on peer-reviewed papers. Forty-five different antibiotics (categorized into ten groups) have been detected in mariculture systems around the world, which is far greater than the number officially allowed. Indiscriminate use of antibiotics is relatively high among major producing countries in Asia, which highlights the need for stricter enforcement of regulations and policies and effective antibiotic removal methods. Compared with other environmental systems, some environmental characteristics of mariculture systems, such as high salinity and dissolved organic matter (DOM) content, can affect the migration and transformation processes of antibiotics. Residues of antibiotics favor the proliferation of antibiotic resistance genes (ARGs). Antibiotics and ARGs alter microbial communities and biogeochemical cycles, as well as posing threats to marine organisms and human health. This review may provide a valuable summary of the effects of antibiotics on mariculture systems.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Yang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
18
|
Mao Y, Yu Y, Ma Z, Li H, Yu W, Cao L, He Q. Azithromycin induces dual effects on microalgae: Roles of photosynthetic damage and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112496. [PMID: 34243111 DOI: 10.1016/j.ecoenv.2021.112496] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are frequently detected in aquatic ecosystems, posing a potential threat to the freshwater environment. However, the response mechanism of freshwater microalgae to antibiotics remains inadequately understood. Here, the impacts of azithromycin (a broadly used antibiotic) on microalgae Chlorella pyrenoidosa were systematically studied. The results revealed that high concentrations (5-100 μg/L) of azithromycin inhibited algal growth, with a 96-h half maximal effective concentration of 41.6 μg/L. Azithromycin could weaken the photosynthetic activities of algae by promoting heat dissipation, inhibiting the absorption and trapping of light energy, impairing the reaction centre, and blocking electron transfer beyond QA. The blockage of the electron transport chain in the photosynthetic process further induced the generation of reactive oxygen species (ROS). The increases in the activities of superoxide dismutase, peroxidase and glutathione played important roles in antioxidant systems but were still not enough to scavenge the excessive ROS, thus resulting in the oxidative damage indicated by the elevated malondialdehyde level. Furthermore, azithromycin reduced the energy reserves (protein, carbohydrate and lipid) and impaired the cellular structure. In contrast, a hormesis effect on algal growth was found when exposed to low concentrations (0.5 and 1 μg/L) of azithromycin. Low concentrations of azithromycin could induce the activities of the PSII reaction centre by upregulating the mRNA expression of psbA. Additionally, increased chlorophyll b and carotenoids could improve the absorption of light energy and decrease oxidative damage, which further contributed to the increase in energy reserves (protein, carbohydrate and lipid). The risk quotients of azithromycin calculated in this study were higher than 1, suggesting that azithromycin could pose considerable ecological risks in real environments. The present work confirmed that azithromycin induced dual effects on microalgae, which provided new insight for understanding the ecological risk of antibiotics.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China; Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China; Lingzhi Environmental Protection Co., Ltd, Wuxi 214200, China
| | - Yang Yu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Zixin Ma
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Li Cao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
19
|
Sharma L, Siedlewicz G, Pazdro K. The Toxic Effects of Antibiotics on Freshwater and Marine Photosynthetic Microorganisms: State of the Art. PLANTS 2021; 10:plants10030591. [PMID: 33801134 PMCID: PMC8004086 DOI: 10.3390/plants10030591] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022]
Abstract
Antibiotic residues have been commonly detected worldwide in freshwater, estuarine, and marine ecosystems. The review summarizes the up-to-date information about the toxic effects of over 60 antibiotics on nontarget autotrophic microorganisms with a particular focus on marine microalgae. A comprehensive overview of the available reports led to the identification of significant knowledge gaps. The data on just one species of freshwater green algae (Raphidocelis subcapitata) constitute 60% of the total information on the toxicity of antibiotics, while data on marine species account for less than 14% of the reports. Moreover, there is a clear knowledge gap regarding the chronic effects of antibiotic exposure (only 9% of studies represent exposition time values longer than 7 days). The review summarizes the information on different physiological endpoints, including processes involved in photosynthesis, photoprotective and antioxidant mechanisms. Currently, the hazard assessment is mostly based on the results of the evaluation of individual chemicals and acute toxicity tests of freshwater organisms. Future research trends should involve chronic effect studies incorporating sensitive endpoints with the application of environmentally relevant concentrations, as well as studies on the mixture effects and combined environmental factors influencing toxicity.
Collapse
|
20
|
Roy B, Suresh PK, Chandrasekaran N, Mukherjee A. Antibiotic tetracycline enhanced the toxic potential of photo catalytically active P25 titanium dioxide nanoparticles towards freshwater algae Scenedesmus obliquus. CHEMOSPHERE 2021; 267:128923. [PMID: 33190912 DOI: 10.1016/j.chemosphere.2020.128923] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) often co-exist with the other co-contaminants like antibiotics. The antibiotics can potentially modify the toxic effects of the co-contaminants like the NPs in the environment. Hence, the present study aims to understand the toxic potential of a binary mixture of tetracycline (TC) and TiO2 NPs to a model freshwater alga - Scenedesmus obliquus. Since, TiO2 NPs are known to be photo-catalytically active, non-irradiated (NI-TiO2 NPs), UVA pre-irradiated (UVA-TiO2 NPs), and UVB pre-irradiated (UVB-TiO2 NPs) TiO2 NPs was mixed separately with TC and their toxicity evaluated. It was observed that the cell viability for the three experimental groups decreased significantly (p < 0.001) with respect to the individual NPs-treated algae. Abbott's model suggested that the interaction between TC and Ni-TiO2 NPs was additive for all the concentrations of NI-TiO2 NPs tested. However, in the case of both the UV pre-irradiated NPs, the interaction was additive for the lower concentration (1.56 μM) and synergistic for both the higher concentrations (3.13, and 6.26 μM). At the concentrations tested the cell membrane damage and intracellular uptake of NPs increased significantly (p < 0.05) for the mixture in comparison with the individual NPs treated algae. This study suggested that even a non-lethal concentration of TC (EC10 = 0.135 μM) increased the toxic potential of the TiO2 NPs significantly and when this antibiotic was used in combination with the UV pre-irradiated NPs, toxicity even increased to a higher level.
Collapse
Affiliation(s)
- Barsha Roy
- School of Biosciences and Technology, VIT, Vellore, 632014, India
| | - P K Suresh
- School of Biosciences and Technology, VIT, Vellore, 632014, India
| | | | | |
Collapse
|
21
|
Mojiri A, Baharlooeian M, Zahed MA. The Potential of Chaetoceros muelleri in Bioremediation of Antibiotics: Performance and Optimization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030977. [PMID: 33499398 PMCID: PMC7908223 DOI: 10.3390/ijerph18030977] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/03/2022]
Abstract
Antibiotics are frequently applied to treat bacterial infections in humans and animals. However, most consumed antibiotics are excreted into wastewater as metabolites or in their original form. Therefore, removal of antibiotics from aquatic environments is of high research interest. In this study, we investigated the removal of sulfamethoxazole (SMX) and ofloxacin (OFX) with Chaetoceros muelleri, a marine diatom. The optimization process was conducted using response surface methodology (RSM) with two independent parameters, i.e., the initial concentration of antibiotics and contact time. The optimum removal of SMX and OFX were 39.8% (0.19 mg L−1) and 42.5% (0.21 mg L−1) at the initial concentration (0.5 mg L−1) and contact time (6.3 days). Apart from that, the toxicity effect of antibiotics on the diatom was monitored in different SMX and OFX concentrations (0 to 50 mg L−1). The protein (mg L−1) and carotenoid (μg L−1) content increased when the antibiotic concentration increased up to 20 mg L−1, while cell viability was not significantly affected up to 20 mg L−1 of antibiotic concentration. Protein content, carotenoid, and cell viability decreased during high antibiotic concentrations (more than 20 to 30 mg L−1). This study revealed that the use of Chaetoceros muelleri is an appealing solution to remove certain antibiotics from wastewater.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan
- Correspondence:
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr 64199-34619, Iran;
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran;
| |
Collapse
|
22
|
Guo J, Ma Z, Peng J, Mo J, Li Q, Guo J, Yang F. Transcriptomic analysis of Raphidocelis subcapitata exposed to erythromycin: The role of DNA replication in hormesis and growth inhibition. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123512. [PMID: 32738783 DOI: 10.1016/j.jhazmat.2020.123512] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of hormesis in the algal growth inhibition test is a major challenge in the dose-response characterization, whereas the molecular mechanism remains unraveled. The aim of this study is therefore to investigate the changes in the molecular pathways in a model green alga Raphidocelis subcapitata treated with erythromycin (ERY; 4, 80, 120 μg L-1) by transcriptomic analysis. After 7 day exposure, ERY at 4 μg L-1 caused hormetic effects (21.9 %) on cell density, whereas 52.0 % and 65.4 % were inhibited in two higher exposures. By using adj p < 0.05 and absolute log2 fold change> 1 as a cutoff, we identified 218, 950, and 2896 differentially expressed genes in 4, 80, 120 μg L-1 treatment groups, respectively. In two higher ERY treated groups, genes involved in phases I, II & III metabolism processes and porphyrin and chlorophyll metabolism pathway were consistently suppressed. Interestingly, genes (e.g., pri2, mcm2, and mcm6) enriched in DNA replication process were up-regulated in 4 μg L-1 group, whereas these genes were all repressed in 120 μg L-1 group. Alteration trend in gene expression was consistent with algal growth. Taken together, our results unveiled the molecular mechanism of action in ERY- stimulated/ inhibited growth in green alga.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Zhihua Ma
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jianglin Peng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jipu Guo
- State Grid Shaanxi Electric Power Research Institute, Xi'an, 710100, China
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
23
|
Míguez L, Esperanza M, Seoane M, Cid Á. Assessment of cytotoxicity biomarkers on the microalga Chlamydomonas reinhardtii exposed to emerging and priority pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111646. [PMID: 33396166 DOI: 10.1016/j.ecoenv.2020.111646] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Contamination of aquatic ecosystems linked to anthropogenic activity is currently a major concern; therefore, ecotoxicological studies are needed to assess its effect on organisms. The main objective of this study was to investigate the effects of different pollutants on microalgae in search of sensitive biomarkers that can promote a common cytotoxic response regardless of the contaminant. Cultures of the freshwater microalga Chlamydomonas reinhardtii were exposed for 24 h to four chemicals, three emerging pollutants (benzophenone-3, bisphenol A and oxytetracycline) and one priority substance (atrazine). A cytometric panel was carried out to assess toxicity biomarkers including cellular growth, inherent cell properties, viability, vitality, cytoplasmic membrane potential and ROS levels. Lipid peroxidation, photosynthetic efficiency and transcriptional responses of photosynthesis- and oxidative stress-related genes using RT-qPCR were also studied. Some toxicity responses showed a similar pattern; a decrease in growth rate, vitality and photosynthetic efficiency and an increase in autofluorescence and in the number of cells with depolarised cytoplasmic membrane and were found for all chemicals tested. However, ATZ and OTC provoked a decrease in cell size, whereas BP-3 and BPA caused an increase in cell size, intracellular complexity and ROS levels and a decrease in cell viability. Assayed pollutants generally promoted an overexpression of genes related to cellular antioxidant defence system and a subexpression of photosynthesis-related genes. In addition to the traditional growth endpoint, cell vitality, autofluorescence and gene expression of catalase, glutathione peroxidase and Fe-superoxide dismutase were significantly affected for all chemicals tested, showing a common cytotoxic response. Among the tested substances, BP-3 provoked the strongest cytotoxic alterations on this microalga, pointing out that some emerging contaminants could be more harmful to organisms than priority pollutants.
Collapse
Affiliation(s)
- Laura Míguez
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
24
|
Xiong JQ, Ru S, Zhang Q, Jang M, Kurade MB, Kim SH, Jeon BH. Insights into the effect of cerium oxide nanoparticle on microalgal degradation of sulfonamides. BIORESOURCE TECHNOLOGY 2020; 309:123452. [PMID: 32371321 DOI: 10.1016/j.biortech.2020.123452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Nanoparticles have been commercially used worldwide; however, there is a lack of information of their environmental impacts and ecotoxicity. In this study, the effect of cerium oxide nanoparticle (CeO2NP) on a green microalga Scenedesmus obliquus, and microalgal biodegradation of four sulfonamides (sulfamethazine, sulfamethoxazole, sulfadiazine, and sulfamethoxazole) was investigated. There is insignificant inhibition of microalgal growth induced by CeO2NP; however, it substantially influenced the expression of genes involved in key cellular metabolic activities of S. obliquus. For example, genes involved in photosynthetic activity (psbA) and energy production (ATPF0C) were downregulated with exposure to CeO2NP. The low concentrations of CeO2NP improved microalgal degradation of sulfonamides. This may be because of the upregulated genes encoding hydrogenase and oxidoreductase. The exploration of this study has provided a new understanding of the environmental impacts of CeO2NP on microalgae-based biotechnologies for treatment of wastewater containing emerging organic contaminants.
Collapse
Affiliation(s)
- Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Qing Zhang
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
25
|
Zhang Y, Zhang X, Guo R, Zhang Q, Cao X, Suranjana M, Liu Y. Effects of florfenicol on growth, photosynthesis and antioxidant system of the non-target organism Isochrysis galbana. Comp Biochem Physiol C Toxicol Pharmacol 2020; 233:108764. [PMID: 32294556 DOI: 10.1016/j.cbpc.2020.108764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022]
Abstract
Florfenicol (FFC) is one of the most universally used antibiotics in aquaculture, which is substitute for chloramphenicol extensively, while the massive residues in aquatic environment were assumed to threaten the non-target organisms. Present research investigated the effects of florfenicol on growth, chlorophyll content, photosynthesis, and antioxidant ability of Isochrysis galbana. The results showed that FFC at 0.001-1 mg/L stimulated the growth of I. galbana and increased the content of chlorophyll. In addition, photosynthesis of I. galbana was inhibited and the photosynthetic parameters were uplifted with the increased exposure duration and FFC concentration. Furthermore, superoxide dismutase (SOD), catalase (CAT) activity significantly dropped at 0.01-20 mg/L FFC, while the contents of malondialdehyde (MDA), glutathione (GSH) and reactive oxygen species (ROS) increased after 72 h exposure, indicating that FFC at high concentrations caused a serious oxidative stress on algae. The simultaneous increase of ROS disrupted the equilibration between oxidants and antioxidant systems. Under the high concentration of FFC, the excessive of ROS was generated in algae which affected the membrane permeability and further decreased the cell biomass. Present study showed that acute exposure (72 h) at the environmental relevant concentration (0.01 mg/L) cannot induce the physiological dysfunction of the microalgae I. galbana, but the feeding concentration (20 mg/L) can. Additionally, this study hinted the possible negative impacts on ecosystems with the chronic exposure even at low FFC concentration or with the uncontrolled use of FFC.
Collapse
Affiliation(s)
- Yingqi Zhang
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Xianyu Zhang
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Rui Guo
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Qian Zhang
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China.
| | - Xupeng Cao
- Dalian institute of chemical physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Mehjabin Suranjana
- Agroforestry and Environmental Sciences, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Ying Liu
- College of Marine Science and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| |
Collapse
|
26
|
Wu Y, Wan L, Zhang W, Ding H, Yang W. Resistance of cyanobacteria Microcystis aeruginosa to erythromycin with multiple exposure. CHEMOSPHERE 2020; 249:126147. [PMID: 32062559 DOI: 10.1016/j.chemosphere.2020.126147] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Here we report a set of experiments in which water blooming cyanobacteria Microcystis aeruginosa was repeatedly exposed to erythromycin. Growth inhibition increased with increasing erythromycin concentration (1-150 μg/L) upon first exposure. Maximum inhibition rate (76.06%), occurred under 150 μg/L erythromycin. Moreover, 96-h 50% effective concentration (EC50) was 22.97 μg/L, indicating that the growth of M. aeruginosa was affected by erythromycin under common environmental concentrations. Photosynthesis was hindered by chlorophyll and photosystem II limitations. Malondialdehyde, reactive oxygen species, and superoxide dismutase contents increased significantly under certain concentrations of erythromycin, but superoxide dismutase was suppressed by 150 μg/L erythromycin. Synthesis of intracellular and extracellular microcystins was promoted by 10-60 and by 20-60 μg/L erythromycin, respectively, but both were inhibited by 100-150 μg/L. Principal component analysis and Pearson's correlation revealed the accumulation of reactive oxygen species as the dominant mechanism of erythromycin toxicity to cells. M. aeruginosa repeatedly subjected to erythromycin exposure showed obvious resistance against the antibiotic, especially when treated twice with 60 μg/L erythromycin. The 96-h EC50 was 81.29 μg/L. As compared to the first exposure to erythromycin, photosynthetic and antioxidant activities increased, while growth inhibition and oxidation stress decreased upon multiple exposures. Production and release of microcystins were enhanced by repeated exposure to the antibiotic. Thus, erythromycin persistence in water should be examined, as repeated exposure may lead to serious environmental and human health hazards.
Collapse
Affiliation(s)
- Yixiao Wu
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Liang Wan
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Weihao Zhang
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China.
| | - Huijun Ding
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Provincial Institute of Water Sciences, Nanchang, 330029, China
| | - Wenfeng Yang
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
27
|
Zhao G, Wu D, Cao S, Du W, Yin Y, Guo H. Effects of CeO 2 Nanoparticles on Microcystis aeruginosa Growth and Microcystin Production. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:834-839. [PMID: 32306073 DOI: 10.1007/s00128-020-02842-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The interaction between metal oxide nanoparticles and toxin-producing cyanobacteria is relatively unknown. The present work exposed Microcystis sp.7806 to different concentrations of cerium oxide nanoparticles (CeO2 NPs) (1 mg/L, 10 mg/L and 50 mg/L), and evaluated the growth, photosynthetic activity, reactive oxygen species level, and the extra-(intra-) cellular microcystin-LR (MC-LR) contents. The particle size, zeta potential and cerium ions released into the medium were analyzed. Results showed 10 mg/L NP treatment promoted algae growth but slightly inhibited the photosynthetic yield of algae, and the 50 mg/L treatment reduced algae biomass. The algal cells remarkably responded to oxidative stress at higher concentrations (10 mg/L and 50 mg/L). CeO2 NPs largely increased the intracellular MC-LR content at 50 mg/L, and significantly reduced the extracellular MC-LR content at any concentration. This demonstrates CeO2 NPs may pose an ecological risk potential during harmful algal blooms by stimulating toxin production.
Collapse
Affiliation(s)
- Guiqi Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Di Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Shenglai Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
28
|
Lu W, Asraful Alam M, Liu S, Xu J, Parra Saldivar R. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO 2 from livestock farms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135247. [PMID: 31839294 DOI: 10.1016/j.scitotenv.2019.135247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Development of renewable and clean energy as well as bio-based fine chemicals technologies are the keys to overcome the problems such as fossil depletion, global warming, and environment pollution. To date, cultivation of microalgae using wastewater is regarded as a promising approach for simultaneous nutrients bioremediation and biofuels production due to their high photosynthesis efficiency and environmental benefits. However, the efficiency of nutrients removal and biomass production strongly depends on wastewater properties and microalgae species. Moreover, the high production cost is still the largest limitation to the commercialization of microalgae biofuels. In this review paper, the state-of-the-art algae species employed in livestock farm wastes have been summarized. Further, microalgae cultivation systems and impact factors in livestock wastewater to microalgae growth have been thoroughly discussed. In addition, technologies reported for microalgal biomass harvesting and CO2 mass transfer enhancement in the coupling process were presented and discussed. Finally, this article discusses the potential benefits and challenges of coupling nutrient bioremediation, CO2 capture, and microalgal production. Possible engineering measures for cost-effective nutrients removal, carbon fixation, microalgal biofuels and bioproducts production are also proposed.
Collapse
Affiliation(s)
- Weidong Lu
- School of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China; Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Jinliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Roberto Parra Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| |
Collapse
|
29
|
Li J, Min Z, Li W, Xu L, Han J, Li P. Interactive effects of roxithromycin and freshwater microalgae, Chlorella pyrenoidosa: Toxicity and removal mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110156. [PMID: 31958625 DOI: 10.1016/j.ecoenv.2019.110156] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Roxithromycin (ROX) has received increasing concern due to its large usage, ubiquitous detection in environment and high ecotoxicology risk. This study investigated the acute and chronic effects of ROX on the growth, chlorophyll, antioxidant enzymes, and malonaldehyde (MDA) content of Chlorella pyrenoidosa, as well as the removal mechanism of ROX during microalgae cultivation. The calculated 96 h median effective concentration of ROX on yield (EyC50) and specific growth rate (ErC50) of C. pyrenoidosa was 0.81 and 2.87 mg/L, respectively. After 96 h exposure, 1.0 ~ 2.0 mg/L of ROX significantly inhibited the synthesis of chlorophyll and promoted the activities of SOD and CAT (p < 0.05). The MDA content increased with the ROX concentration increasing from 0.5 ~ 1.0 mg/L, and then decreased to 105.76% of the control exposure to 2.0 mg/L ROX, demonstrating the oxidative damage could be moderated by the upregulation of SOD and CAT activities. During the 21 d chronic exposure, low concentration of ROX (0.1 and 0.25 mg/L) showed no significant effect on the growth and chlorophyll content of algae during the first 14 d, but significantly inhibited the growth of algae and the synthesis of chlorophyll at 21 d (p < 0.05 or p < 0.01). 1.0 mg/L ROX significantly inhibited the growth of microalgae during 3 ~ 21 d and the synthesis of chlorophyll at 7 ~ 21 d. High concentration and long-term exposure of low concentration of ROX caused the SOD and CAT activities and MDA content to increase, demonstrating a higher level of oxidative damage of microalgae. During the first 14 d, abiotic removal of ROX played a more important role, contributing about 12.21% ~ 21.37% of ROX removal. After 14 d, the biodegradation of ROX by C. pyrenoidosa gradually became a more important removal mechanism, contributing about 45.99% ~ 53.30% of ROX removal at 21 d. Bio-adsorption and bioaccumulation both played minor roles in the removal of ROX during algae cultivation.
Collapse
Affiliation(s)
- Jiping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, Jiangsu, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, Jiangsu, China
| | - Zhongfang Min
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, Jiangsu, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, Jiangsu, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, Jiangsu, China.
| | - Lijie Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, Jiangsu, China
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, Jiangsu, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, Jiangsu, China
| | - Pingping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
30
|
Nagarajan D, Kusmayadi A, Yen HW, Dong CD, Lee DJ, Chang JS. Current advances in biological swine wastewater treatment using microalgae-based processes. BIORESOURCE TECHNOLOGY 2019; 289:121718. [PMID: 31296361 DOI: 10.1016/j.biortech.2019.121718] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
There is an exponential increase in swine farms around the world to meet the increasing demand for proteins, resulting in a significant amount of swine/piggery wastewater. The wastewater produced in swine farms are rich in ammonia with high eutrophication potential and negative environmental impacts. Safe methods for treatment and disposal of swine wastewater have attracted increased research attention in the recent decades. Conventional wastewater treatment methods are limited by the high ammonia content and chemical/biological oxygen demand of swine wastewater. Recently, microalgal cultivation is being proposed for the phytoremediation of swine wastewater. Microalgae are tolerant to high ammonia levels seen in swine wastewater and they also ensure phosphorus removal simultaneously. This review first gives a brief overview on the conventional methods used for swine wastewater treatment. Microalgae-based processes for the clean-up of swine wastewater are discussed in detail, with their potential advantages and limitations. Future research perspectives are also presented.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Adi Kusmayadi
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Hong-Wei Yen
- Department of Chemical and Material Engineering, Tunghai University, Taichung, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
31
|
Miazek K, Brozek-Pluska B. Effect of PHRs and PCPs on Microalgal Growth, Metabolism and Microalgae-Based Bioremediation Processes: A Review. Int J Mol Sci 2019; 20:ijms20102492. [PMID: 31137560 PMCID: PMC6567089 DOI: 10.3390/ijms20102492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, the effect of pharmaceuticals (PHRs) and personal care products (PCPs) on microalgal growth and metabolism is reported. Concentrations of various PHRs and PCPs that cause inhibition and toxicity to growths of different microalgal strains are summarized and compared. The effect of PHRs and PCPs on microalgal metabolism (oxidative stress, enzyme activity, pigments, proteins, lipids, carbohydrates, toxins), as well as on the cellular morphology, is discussed. Literature data concerning the removal of PHRs and PCPs from wastewaters by living microalgal cultures, with the emphasis on microalgal growth, are gathered and discussed. The potential of simultaneously bioremediating PHRs/PCPs-containing wastewaters and cultivating microalgae for biomass production in a single process is considered. In the light of reviewed data, the feasibility of post-bioremediation microalgal biomass is discussed in terms of its contamination, biosafety and further usage for production of value-added biomolecules (pigments, lipids, proteins) and biomass as a whole.
Collapse
Affiliation(s)
- Krystian Miazek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Beata Brozek-Pluska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland.
| |
Collapse
|
32
|
Dissolved Organic Matter Modulates Algal Oxidative Stress and Membrane System Responses to Binary Mixtures of Nano-Metal-Oxides (nCeO 2, nMgO and nFe 3O 4) and Sulfadiazine. NANOMATERIALS 2019; 9:nano9050712. [PMID: 31067831 PMCID: PMC6566580 DOI: 10.3390/nano9050712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Joint biomarker responses, oxidative stress and membrane systems, were determined for nano-metal-oxides (nMeO, i.e., nCeO2, nMgO, and nFe3O4) and sulfadiazine (SDZ) exposed at relevant low concentrations to two freshwater microalgae Scenedesmus obliquus and Chlorella pyrenoidosa. The impacts of dissolved organic matter (DOM) on the joint biomarker responses were also investigated. Results indicated that the presence of SDZ significantly decreased the level of intercellular reactive oxygen species (ROS) in the algal cells exposed to each nMeO. Reduction of cell membrane permeability (CMP) and mitochondrial membrane potential (MMP) in the algal cells was observed when the algae were exposed to the mixture of SDZ and the nMeO. The degree of reduction of the ROS level, CMP, and MMP significantly went down with the addition of DOM to a certain extent. Changes in cellular oxidative stress and membrane function depended on the types of both nMeO and algal species. This contribution provides an insight into the hazard assessment of a mixture consisting of emerging contaminants and DOM, as they can coexist in the aquatic environment.
Collapse
|
33
|
Machado MD, Soares EV. Impact of erythromycin on a non-target organism: Cellular effects on the freshwater microalga Pseudokirchneriella subcapitata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:179-186. [PMID: 30682620 DOI: 10.1016/j.aquatox.2019.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/13/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The increasing and indiscriminate use of antibiotics is the origin of their introduction in aquatic systems through domestic and livestock effluents. The occurrence of erythromycin (ERY), a macrolide antibiotic, in water bodies raises serious concerns about its potential toxic effect in aquatic biota (non-target organisms), particularly in microalgae, the first organisms in contact with aquatic contaminants. This study aimed to evaluate the possible toxic effects of ERY on relevant cell targets of the freshwater microalga Pseudokirchneriella subcapitata. Algal cells incubated with significant environmental ERY concentrations presented disturbance of the photosynthetic apparatus (increased algal autofluorescence and reduction of chlorophyll a content) and mitochondrial function (hyperpolarization of mitochondrial membrane). These perturbations can apparently be attributed to the similarity of the translational machinery of these organelles (chloroplasts and mitochondria) with the prokaryotic cells. P. subcapitata cells treated with ERY showed a modification of metabolic activity (increased esterase activity) and redox state (alteration of intracellular levels of reactive oxygen species and reduced glutathione content) and an increased biovolume. ERY induced an algistatic effect: reduction of growth rate without loss of cell viability (plasma membrane integrity). The present study shows that chronic exposure (72 h), at low (μg L-1) ERY concentrations (within the range of concentrations detected in surface and ground waters), induce disturbances in the physiological state of the alga P. subcapitata. Additionally, this work alerts to the possible negative impact of the uncontrolled use of ERY on the aquatic systems.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory-CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Eduardo V Soares
- Bioengineering Laboratory-CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
34
|
Cheng DL, Ngo HH, Guo WS, Chang SW, Nguyen DD, Kumar SM. Microalgae biomass from swine wastewater and its conversion to bioenergy. BIORESOURCE TECHNOLOGY 2019; 275:109-122. [PMID: 30579101 DOI: 10.1016/j.biortech.2018.12.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 05/21/2023]
Abstract
Ever-increasing swine wastewater (SW) has become a serious environmental concern. High levels of nutrients and toxic contaminants in SW significantly impact on the ecosystem and public health. On the other hand, swine wastewater is considered as valuable water and nutrient source for microalgae cultivation. The potential for converting the nutrients from SW into valuable biomass and then generating bioenergy from it has drawn increasing attention. For this reason, this review comprehensively discussed the biomass production, SW treatment efficiencies, and bioenergy generation potentials through cultivating microalgae in SW. Microalgae species grow well in SW with large amounts of biomass being produced, despite the impact of various parameters (e.g., nutrients and toxicants levels, cultivation conditions, and bacteria in SW). Pollutants in SW can effectively be removed by harvesting microalgae from SW, and the harvested microalgae biomass elicits high potential for conversion to valuable bioenergy.
Collapse
Affiliation(s)
- D L Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea; Institution of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - S M Kumar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036, India
| |
Collapse
|