1
|
Su R, Zhao D, Zhang X, Zhang H, Cheng J, Xu L, Wu QL, Zeng J. Dissimilatory nitrate reduction pathways drive high nitrous oxide emissions and nitrogen retention under the flash drought in the largest freshwater lake in China. WATER RESEARCH 2025; 274:123075. [PMID: 39813892 DOI: 10.1016/j.watres.2024.123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/05/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Flash drought (FD) events induced by climate change may disrupt the normal hydrological regimes of floodplain lakes and affect the plant-microbe mediated dissimilatory nitrate reduction (DNR), i.e., denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA), thus having important consequences for nitrous oxide (N2O) emissions and nitrogen (N) retention. However, the responses of the DNR pathways in the floodplain lake to the record-breaking FD in 2022 in Yangtze River of China, as well as the underlying microbial mechanisms and feedbacks to climate change remain poorly understood. Here, we collected exposed sediments and Carex cinerascens-associated soils in the littoral wetlands of Poyang Lake during 2022 FD and the dry seasons prior to and after this event. The potential DNR rates and the synergistic metabolism of microbial guilds involved in DNR were investigated using 15N isotope pairing technique, high-throughput and metagenomic sequencing. We found that the in situ N2O fluxes in the littoral wetlands were highest during the flash drought, especially in the exposed sediments. The potential DNRA rates were highest under flash drought conditions, and DNRA dominated the DNR for both exposed sediments (80.4 %) and Carex cinerascens-associated soils (57.5 %). Nutrients (i.e., N and P) and DNRA bacterial communities played a key role in producing the extremely high N2O fluxes from exposed sediments, which could be explained by the synergistic metabolism of DNRA bacteria and denitrifiers through the exchange of the key intermediates in DNR. Therefore, the climate change-induced flash drought promoted greater nitrous oxide emissions and N retention in the littoral wetlands of Poyang Lake, producing a greater flux of greenhouse gas emissions and elevating the risk of lake eutrophication. Hence, flash droughts reinforce a positive feedback between climate change and nitrous oxide emission from these aquatic ecosystems.
Collapse
Affiliation(s)
- Rui Su
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China.
| | - Xiaomin Zhang
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
| | - Hongjie Zhang
- Joint International Research Laboratory of Global Change and Water Cycle, the National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Junxiang Cheng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China
| | - Ligang Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Zeng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China.
| |
Collapse
|
2
|
Yuan H, Guan T, Liu E, Ji M, Yu J, Li B, Cai Y, Yuan Q, Li Q, Zeng Q, Wang Y. Regime difference between macrophyte and Cyanophyta dominance regulate microbial carbon sequestration mode in lake sediments. WATER RESEARCH 2024; 267:122481. [PMID: 39342711 DOI: 10.1016/j.watres.2024.122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Different nutrient load in the lake ecosystems trigger the regime difference and change of predominant biotype. The regulation of carbon (C) sequestration mode in the lacustrine sediments in response to this process need prudent clarification. Fluorescence measurements and high-throughput sequencing for functional genes cbbL and cbbM encoding C-fixing bacteria genus were executed for sediments from two representative regimes dominated by macrophyte and Cyanophyta, respectively. The results showed that humic-like and fulvic-acid like materials dominated the dissolved organic matter (DOM) from the algae and macrophyte-dominated lake regions, respectively. Microbial assimilation played critical influence on C fixation into the sediments in both of the two regimes. However, higher diversity was detected in macrophyte-dominated regime compared to that in Cyanophyta-dominated regime, suggesting that moderate nutrient levels facilitated the species richness of bacteria encoding functional genes concerning C fixation. Bacterial species and diversities varied between two regimes including predominant and rare taxa, suggesting that community structure alteration due to regime difference triggered the regulation the C sequestration mode and stability. Predominant genera manipulated the abundance of C-fixing bacteria genes in response to the regulation of nutrient levels. Noted that rare genera also responded to the regime difference and played key role in C sequestration into lacustrine sediments. Our results suggest that more abundant macrophyte-dominated regime facilitated the C sequestration in the lake ecosystems for atmospheric C reduction.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Tong Guan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Ming Ji
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Jianghua Yu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qianhui Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qiang Li
- Department of Natural Sciences, University of Houston-Downtown, Houston 77002, United States
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
3
|
Lu J, Qing C, Huang X, Zeng J, Zheng Y, Xia P. Seasonal dynamics and driving mechanisms of microbial biogenic elements cycling function, assembly process, and co-occurrence network in plateau lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175510. [PMID: 39147055 DOI: 10.1016/j.scitotenv.2024.175510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Microbial community diversity significantly varies with seasonality. However, little is known about seasonal variation of microbial community functions in lake sediments and their associated environmental influences. In this study, metagenomic sequencing of sediments collected from winter, summer, and autumn from Caohai Lake, Guizhou Plateau, were used to evaluate the composition and function of sediment microbial communities, the potential interactions of functional genes, key genes associated with seasons, and community assembly mechanisms. The average concentrations of nitrogen (TN) and phosphorus (TP) in lake sediments were higher, which were 6.136 and 0.501 g/kg, respectively. TN and organic matter (OM) were the primary factors associated with sediment community composition and functional profiles. The diversity and structure of the microbial communities varied with seasons, and Proteobacteria relative abundances were significantly lower in summer than in other seasons (58.43-44.12 %). Seasons were also associated with the relative abundances of functional genes, and in particular korA, metF, narC, nrfA, pstC/S, and soxB genes. Network complexity was highest in the summer and key genes in the network also varied across seasons. Neutral community model analysis revealed that the assembly mechanisms related to carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycle-related genes were primarily associated with random processes. In summary, diverse functional genes were identified in lake sediments and exhibited evidence for synergistic interactions (Positive proportion: 74.91-99.82 %), while seasonal factors influenced their distribution. The results of this study provide new insights into seasonal impacts on microbial-driven biogeochemical cycling in shallow lakes.
Collapse
Affiliation(s)
- Jiaowei Lu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Chun Qing
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Xianfei Huang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Jin Zeng
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yikun Zheng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Pinhua Xia
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
4
|
Zhao YF, Lai CY, Zhao HP. Innovative nitrogen transformation: Coexistence of DNRA and denitrification under high alkalinity in a hydrogen-based membrane biofilm reactor. CHEMOSPHERE 2024; 368:143705. [PMID: 39515532 DOI: 10.1016/j.chemosphere.2024.143705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Nitrate (NO3-) contamination has become a significant global environmental issue. Traditional nitrate reduction processes typically require external pH control to maintain neutral conditions and prevent nitrite accumulation. In this study, a hydrogen-based membrane biofilm reactor (H2-MBfR) was constructed without external pH regulation. The reactor relied on the alkalinity generated by the nitrate reduction process itself, maintaining a highly alkaline environment with stable denitrification and up to 60% ammonium conversion at pH levels reaching 11.70. The DNRA process was found to be independent of substrate type, inversely proportional to electron supply, and exhibited the highest reaction rate at pH 11, as confirmed by both ex-situ and in-situ batch experiments. Microbial community analysis indicated that Meiothermus was the predominant genus within the biofilm. This research reveals a novel nitrogen transformation phenomenon, demonstrating the coexistence of DNRA and denitrification processes under high alkalinity conditions in the H2-MBfR system. These findings offer new insights into nitrate reduction processes and suggest potential advancements in wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Yu-Fei Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310030, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310030, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310030, China.
| |
Collapse
|
5
|
Huang M, Zhao L, Wang Z, Sun X, Shang Q, Li Y, Li M, Geng H, Hu S, Yang Y. Effect of plant species on wastewater treatment performance of a subsurface vertical-flow constructed wetland with step-feeding at low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122546. [PMID: 39299120 DOI: 10.1016/j.jenvman.2024.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
To improve the treatment performance of constructed wetlands under low-temperature conditions, this study investigated the effects of plant species on wastewater treatment performance at low temperature and the associated microbiological characteristics in a subsurface vertical-flow constructed wetland (VFCW) with step-feeding. The results showed that the redox microenvironment in the VFCW filter with step-feeding could be restored and optimized by planting appropriate species that can tolerate low temperature, ensuring a high nitrification performance for the system. Correspondingly, the abundance and activity of three functional microbes (namely nitrifiers, denitrifiers, and anammox bacteria) increased to different degrees in the system, eventually ensuring ideal nitrogen removal by the VFCW. Compared with the VFCW planted with Phragmites australis and Acorus gramineus, the operation performance of the VFCW planted with Iris wilsonii could be recovered at low temperature, and its chemical oxygen demand, total phosphorus, total nitrogen, and ammonium nitrate removal rates could respectively reach 95.7%, 99.2%, 93.0%, and 94.4%, respectively. Moreover, nitrogen removal in the system relied on the nitrification/denitrification and partial denitrification - anaerobic ammonium oxidation processes. Nitrosomonas, Nitrospira, Thauera, and Candidatus Brocadia were the four dominant bacterial genera in the filter layer.
Collapse
Affiliation(s)
- Menglu Huang
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Zhen Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Ximing Sun
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Qiongqiong Shang
- Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang 330063, China.
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Mengxiao Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Siyu Hu
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin Engineering Center for Technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
6
|
Liang JF, Yao B, Zhang XY, Hu QW. Rapid Responses of Greenhouse Gas Emissions and Microbial Communities to Carbon and Nitrogen Addition in Sediments. Microorganisms 2024; 12:1940. [PMID: 39458250 PMCID: PMC11509545 DOI: 10.3390/microorganisms12101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024] Open
Abstract
Massive labile carbon and nitrogen inputs into lakes change greenhouse gas emissions. However, the rapid driving mechanism from eutrophic and swampy lakes is not fully understood and is usually contradictory. Thus, we launched a short-term and anaerobic incubation experiment to explore the response of greenhouse gas emissions and microbial communities to glucose and nitrate nitrogen (NO3--N) inputs. Glucose addition significantly increased CH4 and CO2 emissions and decreased N2O emissions, but there were no significant differences. NO3--N addition significantly promoted N2O emissions but reduced CH4 accumulative amounts, similar to the results of the Tax4Fun prediction. Bacterial relative abundance changed after glucose addition and coupled with the abundance of denitrification genes (nirS and nirK) decreased while maintaining a negative impact on N2O emissions, considerably increasing methanogenic bacteria (mcrA1) while maintaining a positive impact on CH4 emissions. Structural equation modeling showed that glucose and NO3--N addition directly affected MBC content and greenhouse gas emissions. Further, MBC content was significantly negative with nirS and nirK, and positive with mcrA1. These results significantly deepen the current understanding of the relationships between labial carbon, nitrogen, and greenhouse emissions, further highlighting that labile carbon input is the primary factor driving greenhouse gas emissions from eutrophic shallow lakes.
Collapse
Affiliation(s)
- Jin-Feng Liang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Bo Yao
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Ya Zhang
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya 572000, China
| | - Qi-Wu Hu
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
7
|
Yuan H, Yuan Q, Guan T, Cai Y, Liu E, Li B, Wang Y. Biotic regulation of phoD-encoding gene bacteria on organic phosphorus mineralization in lacustrine sediments with distinct trophic levels. WATER RESEARCH 2024; 260:121980. [PMID: 38909425 DOI: 10.1016/j.watres.2024.121980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Organic phosphorus (Po) mineralization hydrolyzed by alkaline phosphatase (APase) can replenish bioavailable P load in the sediment water ecosystem of lakes. However, the understanding about the interaction between P load and bacteria community encoding APase generation in the sediment are still limited. Different P pools in the sediments from Taihu Lake, China were measured using sequential extraction procedure. The APAase activity (APA) were obtained accompanying with enzymatic dynamical parameters Vmax and Km. The abundances and diversity of gene phoD-harboring bacterial communities were assessed using high throughput sequencing. The analysis results showed the decrease of potentially bioavailable P fractions including MgCl2-P and Fe-P along sampling gradient southwards together with active P concentrations in the water. Conversely, increasing APA and absolute abundance of phoD gene were found with the decreasing of P loads southwards. Positive correlation (p < 0.05) between absolute abundance and APA indicated that phoD-encoding bacteria manipulated the APA and Po mineralization. Negative correlation (p < 0.01) suggested that the APA was restrained by high P load and was promoted under low P condition. However, higher Vmax and Km values suggested that high mineralization potential of Po maintained the high concentrations of potentially bioavailable P even the APA was restricted. The abundance increase of predominant genus Cobetia (from 15.51 to 24.34 %) mirrored by the reduced Calothrix abundance (from 24.65 to 1036 %) was speculated to be responsible for the APA promotion under low P condition. Higher diversity indices in the high P scenario suggested that high P load stimulated the ecological diversity of gene phoD-encoding bacteria community. Generally, rare taxa such as Burkholderia having high connected degrees in bacterial communities together with abundant genera synergistically manipulated the phoD gene abundance and APase generation. Interaction between P fractions and bacteria encoding phoD gene determined the eutrophication status in the lacustrine ecosystem.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Qianhui Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tong Guan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Bin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
8
|
Yuan B, Guo M, Zhou X, Li M, Xie S. Spatiotemporal patterns and co-occurrence patterns of dissimilatory nitrate reduction to ammonium community in sediments of the Lancang River cascade reservoirs. Front Microbiol 2024; 15:1411753. [PMID: 38962138 PMCID: PMC11219630 DOI: 10.3389/fmicb.2024.1411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate reduction pathway in freshwater sediments. Many studies have focused on the DNRA process in various natural habitats. However, the joint operation of cascade reservoirs will affect the physical and chemical properties of sediments, which may change the DNRA process and bacterial community pattern in the surface sediments of cascade reservoirs. Our study was the first to investigate the spatiotemporal distribution patterns of potential DNRA rate, nrfA gene abundances, and DNRA bacterial community diversity in surface sediments of the Lancang River cascade reservoirs. The results of slurry incubation experiments combined with the 15N isotope tracer experiment ascertained that the potential rates of DNRA were 0.01-0.15 nmol-N cm-3 h-1, and qPCR results indicated that the abundance range of nrfA was 1.08 × 105-2.51 × 106 copies g-1 dry weight. High throughput sequencing of the nrfA gene revealed that the relative abundance of Anaeromyxobacter (4.52% on average), Polyangium (4.09%), Archangium (1.86%), Geobacter (1.34%), and Lacunisphaera (1.32%) were high. Pearson and RDA correlation analysis exhibited that nrfA gene abundance was positively correlated with altitude, pH, OC, and sand concentration. Anaeromyxobacter was positively correlated with reservoir age and DNRA potential rate. The deterministic environmental selection process plays a crucial role in the formation of the DNRA bacterial community. Network analysis displayed that the dominant DNRA genus was the key population of the DNRA microbial community in the sediments of Lancang River cascade reservoirs. This study reveals that the variation of DNRA bacterial activity and community structure is largely driven by the construction of cascade reservoirs, and provides a new idea for further understanding the characteristics of the DNRA community in the cascade reservoir ecosystem.
Collapse
Affiliation(s)
- Bo Yuan
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Mengjing Guo
- Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Xiaode Zhou
- Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Miaojie Li
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
9
|
Saghaï A, Hallin S. Diversity and ecology of NrfA-dependent ammonifying microorganisms. Trends Microbiol 2024; 32:602-613. [PMID: 38462391 DOI: 10.1016/j.tim.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Nitrate ammonifiers are a taxonomically diverse group of microorganisms that reduce nitrate to ammonium, which is released, and thereby contribute to the retention of nitrogen in ecosystems. Despite their importance for understanding the fate of nitrate, they remain a largely overlooked group in the nitrogen cycle. Here, we present the latest advances on free-living microorganisms using NrfA to reduce nitrite during ammonification. We describe their diversity and ecology in terrestrial and aquatic environments, as well as the environmental factors influencing the competition for nitrate with denitrifiers that reduce nitrate to gaseous nitrogen species, including the greenhouse gas nitrous oxide (N2O). We further review the capacity of ammonifiers for other redox reactions, showing that they likely play multiple roles in the cycling of elements.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
10
|
Yuan H, Li B, Cai Y, Liu E, Zeng Q. Biotic and Abiotic Regulations of Carbon Fixation into Lacustrine Sediments with Different Nutrient Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5844-5855. [PMID: 38506747 DOI: 10.1021/acs.est.3c09834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Lake sediments play a critical role in organic carbon (OC) conservation. However, the biogeochemical processes of the C cycle in lake ecosystems remain limitedly understood. In this study, Fe fractions and OC fractions, including total OC (TOC) and OC associated with iron oxides (TOCFeO), were measured for sediments from a eutrophic lake in China. The abundance and composition of bacterial communities encoding genes cbbL and cbbM were obtained by using high-throughput sequencing. We found that autochthonous algae with a low C/N ratio together with δ13C values predominantly contributed to the OC burial in sediments rather than terrigenous input. TOCFeO served as an important C sink deposited in the sediments. A significantly positive correlation (r = 0.92, p < 0.001) suggested the remarkable regulation of complexed FeO (Fep) on fixed TOC fractions, and the Fe redox shift triggered the loss of deposited OC. It should be noted that a significant correlation was not found between the absolute abundance of C-associating genera and TOC, as well as TOCFeO, and overlying water. Some rare genera, including Acidovora and Thiobacillus, served as keystone species and had a higher connected degree than the genera with high absolute abundance. These investigations synthetically concluded that the absolute abundance of functional genes did not dominate CO2 fixation into the sediments via photosynthesis catalyzed by the C-associating RuBisCO enzyme. That is, rare genera, together with high-abundance genera, control the C association and fixation in the sediments.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
11
|
Deng D, He G, Ding B, Liu W, Yang Z, Ma L. Denitrification dominates dissimilatory nitrate reduction across global natural ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17256. [PMID: 38532549 DOI: 10.1111/gcb.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are three competing processes of microbial nitrate reduction that determine the degree of ecosystem nitrogen (N) loss versus recycling. However, the global patterns and drivers of relative contributions of these N cycling processes to soil or sediment nitrate reduction remain unknown, limiting our understanding of the global N balance and management. Here, we compiled a global dataset of 1570 observations from a wide range of terrestrial and aquatic ecosystems. We found that denitrification contributed up to 66.1% of total nitrate reduction globally, being significantly greater in estuarine and coastal ecosystems. Anammox and DNRA could account for 12.7% and 21.2% of total nitrate reduction, respectively. The contribution of denitrification to nitrate reduction increased with longitude, while the contribution of anammox and DNRA decreased. The local environmental factors controlling the relative contributions of the three N cycling processes to nitrate reduction included the concentrations of soil organic carbon, ammonium, nitrate, and ferrous iron. Our results underline the dominant role of denitrification over anammox and DNRA in ecosystem nitrate transformation, which is crucial to improving the current global soil N cycle model and achieving sustainable N management.
Collapse
Affiliation(s)
- Danli Deng
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Gang He
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Bangjing Ding
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Zhengjian Yang
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
| | - Lin Ma
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
12
|
She Y, Qi X, Xin X, He Y, Wang W, Li Z. Non-rhizosphere reinforces the contributions of Feammox and anammox to nitrogen loss than rhizosphere in riparian zones. ENVIRONMENTAL RESEARCH 2023; 239:117317. [PMID: 37806475 DOI: 10.1016/j.envres.2023.117317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The emergence of anaerobic ammonium oxidation (anammox) coupled to iron reduction (named Feammox) refreshes the microbial pathways for nitrogen (N) loss. However, the ecological role of Feammox, compared with conventional denitrification and anammox, in microbial N attenuation in ecosystems remains unclear. Here, the specific contribution of Feammox to N loss and the underlying microbiome interactive characteristics in a riparian ecosystem were investigated through 15N isotope tracing and molecular analysis. Feammox was highlighted in the riparian interface soils and maximally contributed 14.2% of N loss. Denitrification remained the dominant contributor to N loss (68.0%-95.3%), followed by anammox (5.7%-19.1%) and Feammox (0-14.2%). The rates of Feammox and anammox significantly decreased in rhizosphere soils (0.15 ± 0.08 μg N g-1 d -1 for Feammox, 0.80 ± 0.39 μg N g-1 d -1 for anammox) compared with those in non-rhizosphere soils; however, the activities of denitrification remarkably increased in the rhizosphere (13.17 ± 3.71 μg N g-1 d -1). In rhizosphere soils, the competition between bioavailable organic matter (e.g., amino acids and carbohydrates) and ammonium for electron acceptor [i.e., Fe(III)] was the vital inducement for restricted Feammox, while the nitrite consumption boosted by heterotrophic denitrifiers was responsible for weakened anammox. The functional gene of autotrophic Acidimicrobiaceae bacterium A6, instead of heterotrophic Geobacteraceae spp., was significantly positively correlated with Feammox activity. Rare iron-reducing bacteria showed higher node degrees in the non-rhizosphere network than in the rhizosphere network. A syntrophic relationship was found between iron-reducing bacteria (e.g., Anaeromyxobacter, Geobacter) and iron-oxidizing bacteria (e.g., Sideroxydans) in the non-rhizosphere network and facilitated the Feammox pathway. This study provides an in-depth exploration of microbial driven N loss in a riparian ecosystem and introduces new insights into riparian management practices toward high-efficient N pollution alleviation.
Collapse
Affiliation(s)
- Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Yanqing He
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Jiang X, Liu C, Cai J, Hu Y, Shao K, Tang X, Gong Y, Yao X, Xu Q, Gao G. Relationships between environmental factors and N-cycling microbes reveal the indirect effect of further eutrophication on denitrification and DNRA in shallow lakes. WATER RESEARCH 2023; 245:120572. [PMID: 37688860 DOI: 10.1016/j.watres.2023.120572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Traditional views indicate that eutrophication and subsequent algal blooms favor denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in lake ecosystems. However, lakes tend to show an increasing propensity for inorganic nitrogen (N) limitation as they become more eutrophic. Thus, the influence of further eutrophication on denitrification and DNRA in eutrophic lakes are unclear due to the uncertainty of N availability. To fill this gap, we investigated the genes abundance (AOA, AOB, nirS, nirK and nrfA) and the composition of N-cycling microbes through quantitative PCR and 16S rRNA sequencing analysis, respectively, in 15 shallow eutrophic lakes of the Yangtze-Huaihe River basin, China. The results indicated that denitrification and DNRA rates could be modulated mainly by their functional gene abundances (nirS, nirK and nrfA), followed by the environmental factors (sediment total organic carbon and nitrogen). Denitrification rates significantly increased from slightly to highly eutrophic lakes, but DNRA rates were not. An explanation is that nitrification provided ample nitrate for denitrification, and this cooperative interaction was indicated by the positive correlation of their gene abundances. In addition, Pseudomonas and Anaeromyxobacter was the dominant genus mediated denitrification and DNRA, showing the potential to perform facultative anaerobic and strict anaerobic nitrate reduction, respectively. High level of dissolved oxygen might favor the facultatively aerobic denitrifiers over the obligately anaerobic fermentative DNRA bacteria in these shallow lakes. Chlorophyll a had a weak but positive effect on the gene abundances for nitrification (AOA and AOB). Further eutrophication had an indirect effect on denitrification and DNRA rates through modulating the genes abundances of N-cycling microbes.
Collapse
Affiliation(s)
- Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Cai
- Xiangyang Polytechnic, Xiangyang 441050, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yi Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiujin Xu
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
14
|
Yuan H, Cai Y, Wang H, Liu E, Zeng Q. Impact of seasonal change on dissimilatory nitrate reduction to ammonium (DNRA) triggering the retention of nitrogen in lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118050. [PMID: 37141713 DOI: 10.1016/j.jenvman.2023.118050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Nitrogen (N) reduction processes including denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are critical for the eutrophication in the lake water. However, the understanding about the dominant pathways of N cycling keep limited due to the high complexity of N cycle processes in lacustrine environment. The N fractions in sediments collected from Shijiuhu Lake were measured using high-resolution (HR)-Peeper technique and chemical extraction method in varied seasons. The abundance and microbial community compositions of functional genes involved in various N-cycling processes were also obtained using high-throughput sequencing. The results showed that NH4+ concentrations in the pore water remarkably increased from the upper layer toward the deeper layer and from winter to spring. This trend suggested that higher temperature facilitated the accumulation of NH4+ in the water. Decreased NO3- concentrations were also detected at deeper sediment layers and higher temperature, indicating the intensification of N reduction on anaerobic conditions. The NH4+-N concentrations reduced in spring along with the slight change of NO3--N in solid sediment, indicating the desorption and release of mobile NH4+ from solid phase to the solution. Remarkably decreased absolute abundances of functional genes were found in spring with DNRA bacteria nrfA gene as dominant genus and Anaeromyxobacter as the most dominant bacterium (21.67 ± 1.03%). Higher absolute abundance (146.2-788.1 × 105 Copies/g) of nrfA gene relative to other genes was mainly responsible for the increase of bio-available NH4+ in the sediments. Generally, microbial DNRA pathway predominated the N reduction and retention processes in the lake sediment at higher temperature and water depth even experiencing the suppression of DNRA bacteria abundance. These results suggested the existence of ecological risk via N retention by the action of the DNRA bacteria in the sediment on the condition of higher temperature, further provided valuable information for N management of eutrophic lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
15
|
Shi Z, Yang Y, Fan Y, He Y, Li T. Dynamic Responses of Rhizosphere Microorganisms to Biogas Slurry Combined with Chemical Fertilizer Application during the Whole Life Cycle of Rice Growth. Microorganisms 2023; 11:1755. [PMID: 37512927 PMCID: PMC10386682 DOI: 10.3390/microorganisms11071755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Biogas slurry combined with chemical fertilizer (BCF) is widely used as a fertilizer in paddy fields and rhizosphere microorganisms are key players in plant growth and reproduction. However, the dynamic responses of rhizosphere microorganisms of field-grown rice to BCF application still remain largely unknown. In this study, a field experiment was conducted in two proximate paddy fields in Chongming Island to study the impacts of BCF on the changes in rhizosphere microorganisms during the whole rice growth, including seedling, tillering, booting, and grain-filling stages, with solely chemical fertilizer (CF) treatment as control. The results showed BCF could increase the N-, P-, and C- levels in paddy water as well as the rhizosphere microbial abundance and diversity compared with control. In particular, the phosphate-solubilizing- and cellulose-decomposing-bacteria (e.g., Bacillus) and fungi (e.g., Mortierella) were more abundant in the rhizosphere of BCF than those of CF. Moreover, these microbes increased markedly at the booting and grain-filling stages in BCF, which could promote rice to obtain available nutrients (P and C). It was noted that denitrifying-like bacteria (e.g., Steroidobacteraceae) decreased and dissimilatory nitrate reduction to ammonia-related bacteria (e.g., Geobacter, Anaeromyxobacter, and Ignavibacterium) increased at the booting and filling stages, which could promote N-availability. TP in paddy water of BCF was most correlated to the bacteria, while COD was the most critical regulator for the fungi. Furthermore, correlation network analysis showed nutrient-cycling-related microorganisms were more closely interconnected in BCF than those in CF. These findings showed the application of biogas slurry plus chemical fertilizer could regulate rhizosphere microorganisms towards a beneficial fertilizer use for rice growth.
Collapse
Affiliation(s)
- Zhenbao Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanmei Yang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Yehong Fan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Yan He
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Tian Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
16
|
Yuan H, Cai Y, Wang H, Liu E, Li Q, Zeng Q. How phoD-harboring functional microbial populations trigger the release risk of phosphorus in water sediment system of Shijiuhu Lake, China after experiencing the transseasonal shift. WATER RESEARCH 2023; 240:120107. [PMID: 37244018 DOI: 10.1016/j.watres.2023.120107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Excessive phosphorus (P) enrichment is the critical cause of eutrophication in the lake water. Organic P (Po) mineralization processes induced by alkaline phosphatase (APase) regulated by phoD-encoding microorganisms in the lake ecosystems was still ambiguous due to the transseasonal shift of water temperatures and depths. Different P pools in the water and sediments of Shijiuhu Lake at varied seasons were measured using chemical extraction methods and solution 31P NMR. The alkaline phosphatase activity (APA) in the sediments were assessed together with enzyme kinetic parameters. The abundances and compositions of microbial communities encoding functional gene phoD were also obtained using high-throughput sequencing. The results showed that Po concentrations remarkably increased from winter toward spring when having higher water depths due to the terrigenous input and biomass deposition. Noteworthy elevation in the PO43- concentration was observed in the interstitial water during the spring, particularly at around 5 cm sediment depth with value reaching as high as 0.43 mg/L. The degradation and mineralization of momoesters and diesters with higher concentrations in the sediments of spring aggravated the PO43- load in the interstitial water. Higher APA reaching 91.6 μg/(g·h) in spring was responsible for the mineralization of Po. Remarkably upwards increasing of absolute abundance of phoD-encoding gene in spring reaching up to 2.6 times of that in winter facilitated the generation of APA in spring. Cobetia and Calothrix followed by Aquabacterium and Mitsuaria were the most abundant phoD-encoding genera with relative abundance > 4%. Weakly positive correlation between dominant bacterial genera and APA and P fractions suggested that low-abundance genera was also involved in the APA generation and Po hydrolysis. These results indicate that spring with high water temperature and depth facilitate the mineralization of Po in the sediment and increase of labile PO43- load in the water, further provide valuable information for the management of eutrophic lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan 250359, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, United States
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
17
|
Yang L, Han D, Jin D, Zhang J, Shan Y, Wan M, Hu Y, Jiao W. Soil physiochemical properties and bacterial community changes under long-term polycyclic aromatic hydrocarbon stress in situ steel plant soils. CHEMOSPHERE 2023; 334:138926. [PMID: 37182712 DOI: 10.1016/j.chemosphere.2023.138926] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
In situ soils were collected at two depths in Jinan and Hangzhou steel plants, which both have a long history of operation and polycyclic aromatic hydrocarbons (PAHs) contamination. The richness of 16 S rRNA gene and bacterial community of the soil were determined by real-time PCR and high-throughput sequencing. Soil physicochemical properties, PAHs contamination characteristics, and their interrelationships were also analyzed. In general, the PAHs contamination decreased with increasing soil depths. The physicochemical properties and PAH concentration of soil had synergistic impacts on the composition of the bacterial community. The long-term higher PAHs stress in Hangzhou contaminated soil (982 mg kg-1) increased the bacterial abundance and diversity, while that of Jinan contaminated soil (63 mg kg-1) decreased bacterial abundance and diversity. The pH value, sand content of the soil were positively correlated (P < 0.05) with the bacterial diversity including Simpson, Shannon, Observed_species and Chao1 indexes., and the other soil properties exhibited negative correlations with different strengths. The abundances of Curvibacter, Pseudomonas, Thiobacillus, Lysobacter, and Limnobacter were positively correlated with the PAHs concentration (P < 0.01). Additionally, the network structure of the PAHs-contaminated soils was more complex compared to that of uncontaminated soils, with stronger linkages and correlations between the different bacteria. These findings provide a theoretical basis for microbial remediation of PAHs-polluted soil.
Collapse
Affiliation(s)
- Liuqing Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jingran Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongping Shan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengxue Wan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yongfei Hu
- College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
18
|
Wang Y, Cao X, Yu H, Xu Y, Peng J, Qu J. Nitrate with enriched heavy oxygen isotope linked to changes in nitrogen source and transformation as groundwater table rises. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131527. [PMID: 37163892 DOI: 10.1016/j.jhazmat.2023.131527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Nitrate is a significant constituent of the total nitrogen pool in shallow aquifers and poses an escalating threat to groundwater resources, making it crucial to comprehend the source, conversion, and elimination of nitrogen using appropriate techniques. Although dual-isotope dynamics in nitrate have been widely used, uncertainties remain regarding the asynchronously temporal changes in δ18O-NO3- and δ15N-NO3- observed in hypoxic aquifers. This study aimed to investigate changes in nitrogen sources and transformations using temporal changes in field-based NO3- isotopic composition, hydro-chemical variables, and environmental DNA profiling, as the groundwater table varied. The results showed that the larger enrichment in δ18O-NO3- (+13‰) compared with δ15N-NO3- (-2‰) on average during groundwater table rise was due to a combination of factors, including high 18O-based atmospheric N deposition, canopies nitrification, and soil nitrification transported vertically by rainfalls, and 18O-enriched O2 produced through microbial and root respiration within denitrification. The strong association between functional gene abundance and nitrogen-related indicators suggests that anammox was actively processed with nitrification but in small bacterial population during groundwater table rise. Furthermore, bacterial species associated with nitrogen-associated gradients provided insight into subsurface nitrogen transformation, with Burkholderiaceae species and Pseudorhodobacter potentially serving as bioindicators of denitrification, while Candidatus Nitrotogn represents soil nitrification. Fluctuating groundwater tables can cause shifts in hydro-chemical and isotopic composition, which in turn can indicate changes in nitrogen sources and transformations. These changes can be used to improve input sources for mixture models and aid in microbial remediation of nitrate.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Xu
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Yuan S, Han X, Yin X, Su P, Zhang Y, Liu Y, Zhang J, Zhang D. Nitrogen transformation promotes the anaerobic degradation of PAHs in water level fluctuation zone of the Three Gorges Reservoir in Yangtze River, China: Evidences derived from in-situ experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161034. [PMID: 36549540 DOI: 10.1016/j.scitotenv.2022.161034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose a great threat to human health and ecological system safety. The interception of nitrogen is common found in the riparian zone. However, there is no evidence on how nitrogen addition affects the anaerobic degradation of PAHs in soil of the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) in Yangtze River, China. Here, we investigated the PAHs degradation rate, the variation of key functional genes and microbial communities after nitrogen addition in soil that experienced a flooding period of water-level-fluctuation. The results revealed that the ∑16PAHs were decreased 16.19 %-36.65 % and more 3-5-rings PAHs were biodegraded with nitrogen addition in WLFZ. The most genes involved in PAHs-anaerobic degradation and denitrification were up-regulated by nitrate addition, and phyla Firmicutes, Actinobacteria and Proteobacteria were more advantages in nitrogen addition groups. The Tax4Fun based genome function analysis revealed that the microbial activity of PAHs-degradation increased with nitrate addition. The co-occurrence network analysis indicated that nitrogen addition accelerated the metabolism of nitrogen and PAHs. It is the first time to provide the direct experimental evidences that nitrogen transformation in the WLFZ soil promotes anaerobic PAHs degradation. This work is of importance to understand the effect of nitrogen intercepted in the WLFZ soil of TGR in Yangtze River, China.
Collapse
Affiliation(s)
- Shupei Yuan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xinkuan Han
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China; College of Life Sciences, Luoyang Normal University, Luoyang 471022, People's Republic of China
| | - Xiangyang Yin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Peixing Su
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yiying Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yinfei Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Juntong Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
20
|
Jiang X, Liu C, Hu Y, Shao K, Tang X, Zhang L, Gao G, Qin B. Climate-induced salinization may lead to increased lake nitrogen retention. WATER RESEARCH 2023; 228:119354. [PMID: 36435160 DOI: 10.1016/j.watres.2022.119354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Salinization caused by climate change and nitrogen (N) pollution are both important environmental threats for inland lakes. However, evaluating their interactive effects continues to be challenging. Here, field observation and microcosmic experiments were conducted in six lakes of East Asia with the different salinity and climate characteristics, to explore the response of the key N cycle processes related to N fate to the climate-induced change in salinity. The results indicated that increased salinity inhibited denitrification, which was the outcome of two cumulative effects: the long-term microbial adaptation effect and the direct salinity stress. Whereas increased salinity had unsignificant or positive effects on dissimilatory nitrate reduction to ammonium. It had caused that N retention capacity is relatively stronger in saline than freshwater lakes. Inland lakes are long-term basin-wide integrators of climatic conditions that drying (salinization) and wetting (desalination) with climate change. In semi-arid regions of East Asia, lake shrinkage, salinization and increasing temperature driven by climate warming and drying may exert a negative impact on N pollution through concentrating, decreasing denitrification and increasing ammonium release from sediment. The threat of climate change on these lakes is not just the quantity of water, but its quality.
Collapse
Affiliation(s)
- Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changqing Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Boqiang Qin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
21
|
She Y, Qi X, Xin X, He Y, Wang W, Li Z. Insights into microbial interactive mechanism regulating dissimilatory nitrate reduction processes in riparian freshwater aquaculture sediments. ENVIRONMENTAL RESEARCH 2023; 216:114593. [PMID: 36252838 DOI: 10.1016/j.envres.2022.114593] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Aquaculture can substantially alter the accumulation and cycling of nutrients in sediments. However, the microbial mechanisms mediating sediment dissimilatory nitrate (NO3-) reduction in freshwater aquaculture ponds are still unclear, which rule the removal and retention of N element. In the present study, three microbial NO3- reduction processes in riparian aquaculture pond sediments (i.e., crab, shrimp and fish ponds) and natural freshwater sediments (i.e., lakes and rivers) were investigated via isotopic tracing and molecular analyses. The potential rates of denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) significantly increased in the aquaculture ponds compared with the natural freshwaters. Denitrification contributed 90.40-94.22% to the total NO3- reduction (product as N2), followed by 2.49-5.82% of anammox (product as N2) and 2.09-5.18% of DRNA (product as NH4+). The availability of C and N substrates, rather than functional gene abundance, regulated the activities of NO3- reductions and microbiome composition. Microbial mechanism based on network analysis indicated that heterotrophic denitrifiers and DNRA bacteria (e.g., Bacillus, Micromonospora, Mycobacterium and Brachybacterium) determined the community structure and function for N conversions in aquaculture ponds, whereas the such microbial network in natural freshwater sediments was manipulated by autotrophic denitrifiers (e.g., Desulfuromonas, Polaromonas, Solitalea). Collectively, this study provides an in-depth exploration of microbial nitrogen removal in freshwater aquaculture areas and supports management strategies for N pollution caused by reclamation for aquaculture in riparian zones.
Collapse
Affiliation(s)
- Yuecheng She
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| | - Yanqing He
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhengkui Li
- State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China; School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
22
|
Zhao Y, Chen Z, Wang Q, Zhang C, Ji M. A new insight to explore toxic Cd(II) affecting denitrification: Reaction kinetic, electron behavior and microbial community. CHEMOSPHERE 2022; 305:135419. [PMID: 35752314 DOI: 10.1016/j.chemosphere.2022.135419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Denitrification process is a crucial step in nitrogen removal and is more vulnerable to external shocks due to the fact that anoxic process is always located before aerobic process in conventional sewage treatment. This study aims to elaborate the nitrogen conversion characteristics by investigating denitrification kinetics, electron behavior and microbial community under Cd(II) shock. Reaction kinetics showed that 10 mg/L of Cd(II) accelerated nitrate reduction rate by 52.29% but 80 mg/L of Cd(II) severely decelerated it by 95.41% with the accumulation of nitrite. High concentration of COD (C/N = 10.4) in the system caused by Cd(II) disrupting the integrity of cell membrane (lactate dehydrogenase increased by 328.7%) was proved to induce occurrence of Dissimilatory Nitrate Reduction to Ammonia (DNRA). The electron transport system activity (ETSA), electron consumption and electron distribution were combined to reveal the electron behavior regulated by Cd(II). The electron ratio of nitrate reductase to nitrite reductase increased from 1.48 (control) to 3.91 and 3.52 (40 and 80 mg/L of Cd(II)) indicated the electrons allocating tendency and further explained the nitrite accumulation. High concentration of Cd(II) also decreased ETSA by weakening the physiological activities of flavin adenine dinucleotide, flavin mononucleotide and cytochrome c or hindered the microbes to secrete these electron carriers. Furthermore, Cd(II) inhibited dominant bacteria genera containing napA gene (Azospirillum and Thauera) and nirS gene (unclassified_c_Betaproteobacteria). Enterobacteriaceae family was found to dominate the DNRA process.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Zhihui Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
23
|
Wang A, Li X, Hao X, Luo X, Chen W, Huang Q. Ammonia level influences the assembly of dissimilatory nitrate reduction to ammonia bacterial community in soils under different heavy metal remediation treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156393. [PMID: 35660450 DOI: 10.1016/j.scitotenv.2022.156393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal remediation treatments might influence functional microbial community assembly. Dissimilatory nitrate reduction to ammonia (DNRA) contributes to the nitrogen retention processes in soil ecosystems. We assumed that remediation might reduce heavy metal toxicity and increase some available nutrients for the DNRA microbes, thus balancing the deterministic and stochastic process for DNRA community assembly. Here, we investigated the process of DNRA bacterial community assembly under different heavy metal remediation treatments (including control, biochar, limestone, rice straw, rice straw + limestone, and biochar + limestone) in an Alfisol soil. The abundance of DNRA bacteria diverged across treatments. The α-diversity of the DNRA bacterial community was correlated with pH, available phosphorus (AP), ammonium (NH4+), and extractable Fe (EFe). Metal Cd and Fe significantly affected the abundance of the nrfA gene. The β-diversity was associated with pH, NH4+, and EFe. Deterministic processes dominantly drove the assembly processes of the DNRA bacterial community. NH4+ level played an essential role in the assembly processes than the other soil physicochemical properties and metal availability. High, moderate, and low levels of NH4+ could advocate stochastic process plus selection, heterogeneous selection to stochastic process, and heterogeneous selection, respectively. Network analysis highlighted a predominant role of NH4+ in regulating DNRA bacterial community assembly. However, the relative abundance of modules and some keystone species also were influenced by pH and EFe, respectively. Therefore, the DNRA bacterial community assembly under different heavy metal remediation treatments in this study was dominantly driven by nitrogen availability. pH, phosphorus, and metal availability were auxiliary regulators on DNRA bacterial community.
Collapse
Affiliation(s)
- Achen Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Yuan H, Jia B, Zeng Q, Zhou Y, Wu J, Wang H, Fang H, Cai Y, Li Q. Dissimilatory nitrate reduction to ammonium (DNRA) potentially facilitates the accumulation of phosphorus in lake water from sediment. CHEMOSPHERE 2022; 303:134664. [PMID: 35460675 DOI: 10.1016/j.chemosphere.2022.134664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/20/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) and phosphorus (P) are crucial nutrients for eutrophication in the lacustrine ecosystem and attract the attention worldwide. However, the interaction between them need further clarification. This study aimed to assess the influence of dissimilatory nitrate reduction to ammonia (DNRA) on the cycle of P in lacustrine sediment. Different fractions of N and P in the pore water were measured using high-resolution in-situ measurement techniques, HR-Peeper and DGT, coupling with sequential extraction for solid sediment from a shallow freshwater lake. The results showed that elevated nitrate (NO3-) reduction via DNRA rather than denitrification was verified at deeper sediment layer, suggesting the generation of inorganic ammonia (NH4+) as electron donor under anaerobic episodes. High abundance of DNRA bacteria (nrfA gene) obtained using high-throughput sequencing analysis were detected at upper layer and responsible for the accumulation of NH4+ in the sediment coupling with chemolithoautotrophic metabolism. Additionally, significant desorption of ionic ferrous iron (Fe2+) and dissolved reactive phosphate (DRP) from solid phase and the enrichment in the solution was simultaneously detected. Higher concentration of solid Fe bound P (Fe-P) at deeper layer indicated the potential re-oxidation of Fe2+ as electron donor during DNRA process and sorption of DRP toward the Fe-containing minerals. However, obvious evidence of desorption proved by DGT indicated that higher NH4+ concentrations favored the reduction of Fe(III) oxy(hydr)oxides and the desorption of DRP into the pore water and diffusion toward the overlying water. Finally, noteworthy S2- release from solid sediment was speculated to stimulate the DNRA and facilitated the accumulation of NH4+ in the solution, which further induced the enrichment of DRP in water from the solid phase. Overall, DNRA potentially facilitates the accumulation of P in lake water, and the synchronous control of N and P is important for the eutrophication management and restoration of lake eutrophication.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Bingchan Jia
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yanwen Zhou
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing, 210013, China
| | - Juan Wu
- Gaochun District Water Authority Bureau, Nanjing, 211300, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| |
Collapse
|
25
|
Gao J, Liu G, Li X, Tang M, Cao X, Zhou Y, Song C. Organic carbon quantity and composition jointly modulate the differentiation of nitrate reduction pathways in sediments of the Chinese eutrophic lake, Lake Chaohu. WATER RESEARCH 2022; 220:118720. [PMID: 35700644 DOI: 10.1016/j.watres.2022.118720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Twelve sampling sites from two basins of Lake Chaohu were studied seasonally from June 2020 to April 2021 in Hefei City (China) to better understand the effect of organic carbon (C) quantity and composition on nitrate (NO3--N) reduction pathways. Serious algal bloom in the west basin of Lake Chaohu (WLC) resulted in higher organic C accumulation and NO3--N deficiency in interstitial water compared to the east basin of Lake Chaohu (ELC), jointly leading to a high C/NO3--N ratio. This triggered dissimilatory nitrate reduction to ammonium (DNRA) over denitrification in terms of higher DNRA rate, nitrogen retaining index (NRI), and nrfA gene abundance mediating DNRA. Furthermore, high oxygen-alkyl C and abundance of functional genes mediating labile organic C decomposition and DNRA suggested that the alkyl carbon-oxygen bond was responsible for DNRA induction. Different bacterial community composition and diversity involved in C and nitrogen (N) metabolism in two basins indicated that bacteria in sediments of WLC were more active in NO3--N reduction. Spearman correlation analysis showed that the less represented genera, such as Thiobacillus and Clostridium, were positively correlated with both organic C and NO3--N reduction rates, respectively. Hence, organic C composition could affect NO3--N reduction function by shaping the specific bacterial community.
Collapse
Affiliation(s)
- Junkai Gao
- College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guanglong Liu
- College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaowen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | | | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
26
|
Pang Y, Hu L, Wang J. Mixotrophic denitrification using pyrite and biodegradable polymer composite as electron donors. BIORESOURCE TECHNOLOGY 2022; 351:127011. [PMID: 35307522 DOI: 10.1016/j.biortech.2022.127011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The denitrification performance of a novel mixotrophic system using pyrite (FeS2) and biodegradable polymer composite (PLA/PHBV/rice hulls, PPRH) as electron donors was investigated. After 12-day operation, the average nitrate removal rate (16.3-40.6 mg-N/L/d) in the mixotrophic system was 37% higher than the combined rate in the single heterotrophic and autotrophic system. The XPS analysis identified the formation of SO42-, S2- and Fe(Ш) on the pyrite surface during mixotrophic operation. The predicted microbial function analysis by PICRUSt2 revealed that the genes involved in S-oxidation, denitrification and carbon fixation were notably enriched in the mixotrophic system, indicating the increasing contribution of autotrophic S-oxidizing denitrification to total nitrate removal. Moreover, network analysis suggested the synergistic interactions among heterotrophic denitrifiers, S-oxidizing denitrifiers, sulfate reducers, Fe(II)-oxidizing denitrifiers and Fe(Ш) reducers. This study provides novel insights into the molecular mechanism of C, N, S and Fe cycle in the pyrite/PPRH based mixotrophic denitrification system.
Collapse
Affiliation(s)
- Yunmeng Pang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China
| | - Liang Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
27
|
Zhang T, Zhuang X, Ahmad S, Lee T, Cao C, Ni SQ. Investigation of dissimilatory nitrate reduction to ammonium (DNRA) in urban river network along the Huangpu River, China: rates, abundances, and microbial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23823-23833. [PMID: 34820753 DOI: 10.1007/s11356-021-17475-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an essential intermediate step in the nitrogen cycle, and different sediment physicochemical properties can affect the DNRA process. But the detailed research on the environmental nitrogen cycling in urban river networks based on DNRA communities and the functional gene nrfA is lacking. In this study, the flow line of the Huangpu River in Shanghai was analyzed using isotope tracer, quantitative real-time PCR, and high-throughput sequencing techniques to evaluate the role of DNRA on the stability of the river network and marine. The significant positive correlation between the rate of DNRA and sediment organic carbon was identified. At the genus level, Anaeromyxobacter is the most dominant. Notably, both heterotrophic and autotrophic DNRA species were discovered. This study added diversity to the scope of urban freshwater river network ecosystem studies by investigating the distribution of DNRA bacteria along the Huangpu River. It provided new insights into the biological nitrogen cycle of typical urban inland rivers in eastern China.
Collapse
Affiliation(s)
- Tong Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, Jiangsu, China
- Institute of Light Textile and Medicial Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250061, Shandong, China
- State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, China
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Pusan, 609-735, Republic of Korea
| | - Chengbo Cao
- Institute of Light Textile and Medicial Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250061, Shandong, China.
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China.
- Suzhou Research Institute, Shandong University, Suzhou, 215123, Jiangsu, China.
- State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China.
| |
Collapse
|
28
|
Gao D, Hou L, Liu M, Zheng Y, Yin G, Niu Y. N 2O emission dynamics along an intertidal elevation gradient in a subtropical estuary: Importance of N 2O consumption. ENVIRONMENTAL RESEARCH 2022; 205:112432. [PMID: 34843720 DOI: 10.1016/j.envres.2021.112432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Studying nitrous oxide (N2O) production and consumption processes along an intertidal elevation gradient can improve the understanding of N2O dynamics among coastal wetlands. A natural-abundance isotope technique was applied to characterize the processes responsible for N2O emission in high, middle and low intertidal zones in the Yangtze Estuary. The results showed that N2O emission rates in high tidal zones (0.84 ± 0.35 nmol g-1 h-1) were significantly higher than those in middle (0.21 ± 0.04 nmol g-1 h-1) and low tidal zones (0.26 ± 0.05 nmol g-1 h-1). Gross N2O production and consumption rates were greater in high and low tidal zones than in middle tidal zones, whereas N2O consumption proportions generally increased from high to low tidal zones. N2O consumption was quite pronounced, implying that N2O emission in estuarine wetlands accounts for only a small fraction of the total production. Higher degrees of N2O consumption were the pivotal driver of less N2O emission in low tidal zones. Bacterial denitrification (>84%) was the dominant pathway, although hydroxylamine (NH2OH) oxidation/fungal denitrification contributed substantially to N2O production in high tidal flats. The contribution to N2O production exhibited a decrease in NH2OH oxidation/fungal denitrification and an increase in bacterial denitrification with decreasing elevation. Changes in N2O dynamics along the elevation gradient were affected by carbon and nitrogen substrate availabilities as well as the redox environments. Overall, our findings highlight the importance of N2O consumption in controlling N2O emission in intertidal wetlands, especially with higher inundation frequencies and durations.
Collapse
Affiliation(s)
- Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, College of Geographical Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
29
|
Huang F, Lin X, Yin K. Effects of marine produced organic matter on the potential estuarine capacity of NO x- removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151471. [PMID: 34748840 DOI: 10.1016/j.scitotenv.2021.151471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Dissolved inorganic nitrogen (DIN) is very high in the Pearl River Estuary (PRE) and nitrate (NOx-) removal processes such as denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) are important for determining export of DIN to coastal waters. However, fluxes of NOx- removal and influencing factors in the PRE are still unclear. We conducted 4 cruises at 11 sites in the PRE to investigate potential NOx- removal rates, their contributions, and corresponding gene abundances, and controlling factors in surface sediments (0-5 cm). The results showed that the potential rates of denitrification, anammox, and DNRA as well as their contributions varied spatially and seasonally. Denitrification (1.98 ± 1.7 μg N g-1 d-1) was the major NOx- removal processes (68.43 ± 14.61%) while DNRA (0.45 ± 0.28 μg N g-1 d-1) contributed 22.61 ± 14.89% in NOx- removal. The NOx- removal processes and corresponding gene abundances were correlated with the chlorophyll concentrations in both overlying water and sediment, indicating that marine-produced organic matter was the major driver for benthic NOx- removal processes. In addition, water column turbidity had important effects on primary production, which affects benthic N processes. Our study provides evidences for that the turbidity-regulated primary production in overlying water is the primary driver for benthic NOx- removal processes. The contribution of sediment NOx- removal fluxes to water column NOx- concentration was low in the upper estuary and increased in the lower estuary where marine produced chlorophyll a was higher. However, daily fluxes of NOx- removal were estimated to account for only 0.18-7.22% (mean 1.85 ± 1.62%) of NOx- in the whole overlying water column. This suggests that most riverine NOx- was exported out into the adjacent coastal waters.
Collapse
Affiliation(s)
- Fangjuan Huang
- School of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Xianbiao Lin
- School of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Kedong Yin
- School of Marine Sciences, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
30
|
Li S, Pang Y, Ji G. Increase of N 2O production during nitrate reduction after long-term sulfide addition in lake sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118231. [PMID: 34571071 DOI: 10.1016/j.envpol.2021.118231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Microbial denitrification is a main source of nitrous oxide (N2O) emissions which have strong greenhouse effect and destroy stratospheric ozone. Though the importance of sulfide driven chemoautotrophic denitrification has been recognized, its contribution to N2O emissions in nature remains elusive. We built up long-term sulfide-added microcosms with sediments from two freshwater lakes. Chemistry analysis confirmed sulfide could drive nitrate respiration in long term. N2O accumulated to over 1.5% of nitrate load in both microcosms after long-term sulfide addition, which was up to 12.9 times higher than N2O accumulation without sulfide addition. Metagenomes were extracted and sequenced during microcosm incubations. 16 S rRNA genes of Thiobacillus and Defluviimonas were gradually enriched. The nitric oxide reductase with c-type cytochromes as electron donors (cNorB) increased in abundance, while the nitric oxide reductase receiving electrons from quinols (qNorB) decreased in abundance. cnorB genes similar to Thiobacillus were enriched in both microcosms. In parallel, enrichment was observed for enzymes involved in sulfur oxidation, which supplied electrons to nitrate respiration, and enzymes involved in Calvin Cycle, which sustained autotrophic cell growth, implying the coupling relationship between carbon, nitrogen and sulfur cycling processes. Our results suggested sulfur pollution considerably increased N2O emissions in natural environments.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
31
|
Pang Y, Wang J. Inhibition of ferrous iron (Fe 2+) to sulfur-driven autotrophic denitrification: Insight into microbial community and functional genes. BIORESOURCE TECHNOLOGY 2021; 342:125960. [PMID: 34560437 DOI: 10.1016/j.biortech.2021.125960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The effect of Fe2+ on the performance of sulfur-driven autotrophic denitrification (SDAD) using S0 as electron donor was evaluated. The experimental results showed that as initial Fe2+ concentration increased, nitrate (NO3-) removal rate significantly decreased. Fe2+ ion (0.1 mM and 1 Mm) inhibited SDAD rate (approximately 10% and 50%) and resulted in an accumulation of nitrite (NO2-) and nitrous oxide (N2O). The relative abundance of Thiobacillus was positively correlated with NO3- removal rate, whereas negatively correlated with Fe2+ concentration, suggesting that Fe2+ inhibited the sulfur-oxidizing denitrifying bacteria. Moreover, the abundance of bacterial 16S rRNA, denitrifying genes (narG, nirS, nirK and nosZ) and sulfur-oxidizing genes (soxB and dsrA) decreased with the increase of Fe2+ concentration, among them nosZ and soxB were the most sensitive genes to Fe2+, and nosZ/narG, soxB/(bacterial 16S rRNA) and soxB/nirK had influence on NO3- removal rate, while nosZ/(bacterial 16S rRNA) affected N2O accumulation rate.
Collapse
Affiliation(s)
- Yunmeng Pang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
32
|
Zhao B, Li X, Wang Y, Tan X, Qi W, Li H, Wei J, You Y, Shi W, Zhang Q. Dissimilatory nitrate reduction and functional genes in two subtropical rivers, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68155-68173. [PMID: 34264489 DOI: 10.1007/s11356-021-15197-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dissimilatory nitrate reduction processes, including denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA), are important pathways of nitrate transformation in the aquatic environments. In this study, we investigated potential rates of denitrification, anammox, and DNRA in the sediments of two subtropical rivers, Jinshui River and Qi River, with different intensities of human activities in their respective catchment, China. Our objectives were to assess the seasonality of dissimilatory nitrate reduction rates, quantify their respective contributions to nitrate reduction, and reveal the relationship between dissimilatory nitrate reduction rates, functional gene abundances, and physicochemicals in the river ecosystems. Our results showed higher rates of denitrification and anammox in the intensively disturbed areas in autumn and spring, and higher potential DNRA in the slightly disturbed areas in summer. Generally, denitrification, anammox, and DNRA were higher in summer, autumn, and spring, respectively. Relative contributions of nitrate reduction from denitrification, anammox, and DNRA were quite different in different seasons. Dissimilatory nitrate reduction rates and gene abundances correlated significantly with water temperature, dissolved organic carbon (DOC), sediment total organic carbon (SOC), NO3-, NH4+, DOC/NO3-, iron ions, and sulfide. Understanding dissimilatory nitrate reduction is essential for restoring nitrate reduction capacity and improving and sustaining ecohealth of the river ecosystems.
Collapse
Affiliation(s)
- Binjie Zhao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinshuai Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenhua Qi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongran Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junwei Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa, 850000, China
- College of Science, Tibet University, Lhasa, 850000, China
| | - Yong You
- College of Land and Resources, China West Normal University, Nanchong, 637009, China
| | - Wenjun Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
33
|
Tanvir RU, Hu Z, Zhang Y, Lu J. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118056. [PMID: 34488165 PMCID: PMC8547520 DOI: 10.1016/j.envpol.2021.118056] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 05/06/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) in freshwater bodies are mainly attributed to excess loading of nutrients [nitrogen (N) and phosphorus (P)]. This study provides a comprehensive review of how the existing nutrient (i.e., N and P) conditions and microbial ecological factors affect cyanobacterial community succession and cyanotoxin production in freshwaters. Different eutrophic scenarios (i.e., hypereutrophic vs. eutrophic conditions) in the presence of (i) high levels of N and P, (ii) a relatively high level of P but a low level of N, and (iii) a relatively high level of N but a low level of P, are discussed in association with cyanobacterial community succession and cyanotoxin production. The seasonal cyanobacterial community succession is mostly regulated by temperature in hypereutrophic freshwaters, where both temperature and nitrogen fixation play a critical role in eutrophic freshwaters. While the early cyanoHAB mitigation strategies focus on reducing P from water bodies, many more studies show that both N and P have a profound contribution to cyanobacterial blooms and toxin production. The availability of N often shapes the structure of the cyanobacterial community (e.g., the relative abundance of N2-fixing and non-N2-fixing cyanobacterial genera) and is positively linked to the levels of microcystin. Ecological aspects of cyanotoxin production and release, related functional genes, and corresponding nutrient and environmental conditions are also elucidated. Research perspectives on cyanoHABs and cyanobacterial community succession are discussed and presented with respect to the following: (i) role of internal nutrients and their species, (ii) P- and N-based control vs. solely P-based control of cyanoHABs, and (iii) molecular investigations and prediction of cyanotoxin production.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency (USEPA), Cincinnati, OH, 45268, USA.
| |
Collapse
|
34
|
Zhao Y, Duan FA, Cui Z, Hong J, Ni SQ. Insights into the vertical distribution of the microbiota in steel plant soils with potentially toxic elements and PAHs contamination after 60 years operation: Abundance, structure, co-occurrence network and functionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147338. [PMID: 33971607 DOI: 10.1016/j.scitotenv.2021.147338] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 05/14/2023]
Abstract
Both potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) are widely present in soil contaminated by steel industries. This study assessed the vertical variation (at 20 cm, 40 cm, 60 cm, 80 cm, 120 cm, and 150 cm depth) of bacterial abundance, community structure, functional genes related to PAHs degradation, and community co-occurrence patterns in an old steel plant soils which contaminated by PTEs and PAHs for 60 years. The excessive PAHs and PTEs in steel plant soils were benzo (a) pyrene, benzo (b) fluoranthene, dibenzo (a, h) anthracene, indeno (1,2,3-c, d) pyrene, and lead (Pb). The abundance and composition of bacterial community considerably changed with soil depth in two study areas with different pollution degrees. The results of co-occurrence network analysis indicated that the top genera in blast furnace zone identified as the potential keystone taxa were Haliangium, Blastococcus, Nitrospira, and Sulfurifustis. And in coking zone, the top genera were Gaiella. The predictions of bacterial metabolism function using PICRUSt showed that the PAHs-PTEs contaminated soil still had the potential for PAHs degradation, but most PTEs negatively correlated with PAHs degradation genes. The total sulfur (TS), acenaphthene (ANA), and Zinc (Zn) were the key factors to drive development of bacterial communities in the steel plant soils. As far as we know, this is the first investigation of vertical distribution and interaction of the bacterial microbiota in the aging soils of steel plant contaminated with PTEs and PAHs.
Collapse
Affiliation(s)
- Yiyi Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| | - Fu-Ang Duan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Zhaojie Cui
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Jinglan Hong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
35
|
Covatti G, Grischek T. Sources and behavior of ammonium during riverbank filtration. WATER RESEARCH 2021; 191:116788. [PMID: 33422978 DOI: 10.1016/j.watres.2020.116788] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/14/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Ammonium is an undesirable substance in the abstracted water of riverbank filtration (RBF) schemes, due mainly to the complications it causes during post-treatment. Based on the investigation of case studies from 40 sites around the world, an overview of the sources and behavior of ammonium during RBF is given. Typical concentrations of ammonium in the bank filtrate (BF) are between 0.1 and 1.7 mg/l. The most common source of ammonium in BF is the mineralization of organic nitrogen occurring in the riverbed, while the most common sink of ammonium is nitrification in the riverbed. Ammonium surface water concentrations do not directly translate to abstracted concentrations. Transformations in the riverbed play a critical role in determining ammonium concentrations, whereby riverbeds with high amounts of organic material will have more electron donor competitors for oxygen, thus limiting ammonium attenuation via nitrification.
Collapse
Affiliation(s)
- Gustavo Covatti
- Dresden University of Applied Sciences, Friedrich-List-Platz 1, 01069Dresden, Germany.
| | - Thomas Grischek
- Dresden University of Applied Sciences, Friedrich-List-Platz 1, 01069Dresden, Germany
| |
Collapse
|
36
|
Pang Y, Wang J, Li S, Ji G. Long-term sulfide input enhances chemoautotrophic denitrification rather than DNRA in freshwater lake sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116201. [PMID: 33321438 DOI: 10.1016/j.envpol.2020.116201] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Partitioning between nitrate reduction pathways, denitrification and dissimilatory nitrate reduction to ammonium (DNRA) determines the fate of nitrate removal and thus it is of great ecological importance. Sulfide (S2-) is a potentially important factor that influences the role of denitrification and DNRA. However, information on the impact of microbial mechanisms for S2- on the partitioning of nitrate reduction pathways in freshwater environments is still lacking. This study investigated the effects of long-term (108 d) S2- addition on nitrate reduction pathways and microbial communities in the sediments of two different freshwater lakes. The results show that the increasing S2- addition enhanced the coupling of S2- oxidation with denitrification instead of DNRA. The sulfide-oxidizing denitrifier, Thiobacillus, was significantly enriched in the incubations of both lake samples with S2- addition, which indicates that it may be the key genus driving sulfide-oxidizing denitrification in the lake sediments. During S2- incubation of the Hongze Lake sample, which had lower inherent organic carbon (C) and sulfate (SO42-), Thiobacillus was more enriched and played a dominant role in the microbial community; while during that of the Nansi Lake sample, which had higher inherent organic C and SO42-, Thiobacillus was less enriched, but increasing abundances of sulfate reducing bacteria (Desulfomicrobium, Desulfatitalea and Geothermobacter) were observed. Moreover, sulfide-oxidizing denitrifiers and sulfate reducers were enriched in the Nansi Lake control treatment without external S2- input, which suggests that internal sulfate release may promote the cooperation between sulfide-oxidizing denitrifiers and sulfate reducers. This study highlights the importance of sulfide-driven denitrification and the close coupling between the N and S cycles in freshwater environments, which are factors that have often been overlooked.
Collapse
Affiliation(s)
- Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, PR China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, PR China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
37
|
Nie WB, Ding J, Xie GJ, Yang L, Peng L, Tan X, Liu BF, Xing DF, Yuan Z, Ren NQ. Anaerobic Oxidation of Methane Coupled with Dissimilatory Nitrate Reduction to Ammonium Fuels Anaerobic Ammonium Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1197-1208. [PMID: 33185425 DOI: 10.1021/acs.est.0c02664] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) is critical for mitigating methane emission and returning reactive nitrogen to the atmosphere. The genomes of n-DAMO archaea show that they have the potential to couple anaerobic oxidation of methane to dissimilatory nitrate reduction to ammonium (DNRA). However, physiological details of DNRA for n-DAMO archaea were not reported yet. This work demonstrated n-DAMO archaea coupling the anaerobic oxidation of methane to DNRA, which fueled Anammox in a methane-fed membrane biofilm reactor with nitrate as only electron acceptor. Microelectrode analysis revealed that ammonium accumulated where nitrite built up in the biofilm. Ammonium production and significant upregulation of gene expression for DNRA were detected in suspended n-DAMO culture with nitrite exposure, indicating that nitrite triggered DNRA by n-DAMO archaea. 15N-labeling batch experiments revealed that n-DAMO archaea produced ammonium from nitrate rather than from external nitrite. Localized gradients of nitrite produced by n-DAMO archaea in biofilms induced ammonium production via the DNRA process, which promoted nitrite consumption by Anammox bacteria and in turn helped n-DAMO archaea resist stress from nitrite. As biofilms predominate in various ecosystems, anaerobic oxidation of methane coupled with DNRA could be an important link between the global carbon and nitrogen cycles that should be investigated in future research.
Collapse
Affiliation(s)
- Wen-Bo Nie
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Jie Ding
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Guo-Jun Xie
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Lu Yang
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Xin Tan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Bing-Feng Liu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - De-Feng Xing
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Nan-Qi Ren
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, Heilongjiang, China
| |
Collapse
|
38
|
Jiang X, Gao G, Zhang L, Tang X, Shao K, Hu Y, Cai J. Role of algal accumulations on the partitioning between N 2 production and dissimilatory nitrate reduction to ammonium in eutrophic lakes. WATER RESEARCH 2020; 183:116075. [PMID: 32745673 DOI: 10.1016/j.watres.2020.116075] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/08/2020] [Accepted: 06/15/2020] [Indexed: 05/24/2023]
Abstract
Cyanobacterial blooms change benthic nitrogen (N) cycling in eutrophic lake ecosystems by affecting organic carbon (OC) delivery and changing in nutrients availability. Denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are critical dissimilatory nitrate reduction pathways that determine N removal and N recycling in aquatic environments. A mechanistic understanding of the influence of algal accumulations on partitioning among these pathways is currently lacking. In the present study, a manipulative experiment in aquarium tanks was conducted to determine the response of dissimilatory nitrate reduction pathways to changes in algal biomass, and the interactive effects of OC and nitrate. Potential dinitrogen (N2) production and DNRA rates, and related functional gene abundances were determined during incubation of 3-4 weeks. The results indicated that high algal biomass promoted DNRA but not N2 production. The concentrations of dissolved organic carbon were the primary factor affecting DNRA rates. Low nitrate availability limited N2 production rates in treatments with algal pellets and without nitrate addition. Meanwhile, the AOAamoA gene abundance was significantly correlated with the nrfA and nirS gene abundances, suggesting that coupled nitrification-denitrification/DNRA was prevalent. Partitioning between N2 production and DNRA was positively correlated with the ratios of dissolved organic carbon to nitrate. Correspondingly, in Lake Taihu during summer to fall, the relatively high organic carbon/nitrate might favorably facilitate DNRA over denitrification, subsequently sustaining cyanobacterial blooms.
Collapse
Affiliation(s)
- Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jian Cai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Zhao Y, Bu C, Yang H, Qiao Z, Ding S, Ni SQ. Survey of dissimilatory nitrate reduction to ammonium microbial community at national wetland of Shanghai, China. CHEMOSPHERE 2020; 250:126195. [PMID: 32092567 DOI: 10.1016/j.chemosphere.2020.126195] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) process is an important nitrate reduction pathway in the environment. Numerous studies focused on the DNRA, especially in various natural habitats. However, little is known about the envrionmental parameters driving the DNRA process in anthropogenic ecosystem. Human activities put forward significant influence on nitrogen cycle and bacterial communities of sediment. This study aimed to assess the DNRA potential rates, nrfA gene abundance, DNRA bacterial community's diversity and influencing factors in a national wetland park near the Yangtze River estuary, Shanghai. The results of 15N isotope tracer experiments showed that DNRA potential rates from 0.13 to 0.44 μmol N/kg/h and contribution of nitrate reduction varied from 1.56% to 7.47%. The quantitative real-time PCR results showed that DNRA functional gene nrfA abundances ranged from 9.87E+10 to 1.98E+11 copies/g dry weight. The results of nrfA gene pyrosequencing analysis showed that Lacunisphaera (10.4-13.4%), Sorangium (7.1-10.7%), Aeromonas (4.2-6.8%), Corallococcus (1.8-6.9%), and Geobacter (3.3-6.6%) showed higher relative abundances in their genus levels. Combined with environmental parameters of sediments, redundancy analysis indicated that the nrfA functional gene was positively correlated with moisture content, the concentration of NO2--N and NO3-N; the DNRA rates was positively correlated with sediment organic carbon (SOC), C/NO3- ratio and salinity (ranked by explains %). This study is the first simultaneous determination of nitrate reduction pathways including denitrification, anammox and DNRA rates to assess the role of DNRA in a national wetland park and revealed the community abundance, diversity of DNRA bacteria and its relationship with environmental factors.
Collapse
Affiliation(s)
- Yiyi Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China; State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
| | - Cuina Bu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | | | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology Co., Ltd., Jinan, China
| | - Shaowu Ding
- Shandong Wanhao Fertilizer Co., Ltd., Jinan, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China; State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China.
| |
Collapse
|
40
|
Jiang X, Gao G, Zhang L, Tang X, Shao K, Hu Y. Denitrification and dissimilatory nitrate reduction to ammonium in freshwater lakes of the Eastern Plain, China: Influences of organic carbon and algal bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136303. [PMID: 31923673 DOI: 10.1016/j.scitotenv.2019.136303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/30/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) are critical dissimilatory nitrate reduction pathways that determine nitrogen (N) removal and internal recycling in aquatic environments. However, the relative important of DNRA, and the influences of environmental factors on DNF and DNRA, have not been widely studied in freshwater lakes. In our study, we used N isotope-tracing to investigate the potential rates of DNF and DNRA in 27 lakes from the Eastern Plain Lake Zone (EPL), China. In the EPL lakes, DNF was the dominant nitrate reduction process, however DNRA was still important, accounting for around 4.3%-21.9% of total nitrate reduction. The sediment organic carbon was the primary factor controlling the rates of dissimilatory nitrate reduction, accounting for 28.3% and 37.9% of the variance in DNF and DNRA rates, respectively. High algal biomass accelerated DNF rates, while indirectly affected DNRA via changing the quality of organic carbon. The greater contributions of DNRA to dissimilatory nitrate reduction were found in lakes with higher sulfate concentrations. DNRA coupled to sulfur cycling may play an important role in lakes with high sulfate concentrations and high sediment organic carbon. This study highlights the important role played by DNRA in total nitrate reduction pathways of freshwater lakes. Mitigation strategies for N pollution and algal blooms should not only target decrease of nutrient input, strategies should also create a suitable environment for improving N removal and inhibit N recycling.
Collapse
Affiliation(s)
- Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|