1
|
Abou Diwan M, Huet A, Poiriez J, Joly Condette C, Delanaud S, Sevin E, Corona A, Rhazi L, Depeint F, Ouadid-Ahidouch H, Gosselet F, Bach V, Candela P, Khorsi-Cauet H. Effects of Chlorpyrifos on gut dysbiosis and barriers integrity in women with a focus on pregnancy and prebiotic intervention: Insights from advanced in vitro human models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125533. [PMID: 39674256 DOI: 10.1016/j.envpol.2024.125533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Chlorpyrifos (CPF), a commonly used organophosphate pesticide, poses potential risks to human health, particularly affecting the gut microbiota (GM), intestinal barrier (IB), and blood-brain barrier (BBB). CPF-induced gut dysbiosis compromises the integrity of both the IB and the BBB, leading to increased intestinal permeability, inflammation, and bacterial translocation, all of which may impact neurological health. Although CPF's effects on the GM are documented, limited research explores how these impacts differ in women, particularly during pregnancy. To address this gap, this study investigates CPF's effects using three advanced human in vitro models: the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) to mimic the gut environment of women of child-bearing age and pregnant women, a Caco-2 model for the IB, and a BBB model to assess CPF's effects and the protective role of the prebiotic inulin. Microbiological analyses of SHIME® supernatants, including bacterial culture and quantification of short-chain fatty acids (SCFAs) and CPF metabolites, were conducted to assess gut composition and pesticide degradation. We also examined the effects of CPF-induced dysbiosis on IB and BBB permeability to FITC-Dextran, focusing on bacterial translocation after 4 h of exposure to CPF-treated SHIME® supernatants. Our results revealed significant intestinal imbalance, marked by an increase in potentially pathogenic bacteria in the GM of both non-pregnant and pregnant women exposed to CPF. This dysbiosis led to a significant shift in SCFAs ratio and increased IB permeability and bacterial translocation across the IB, but not the BBB. Notably, inulin supplementation restored GM balance and prevented bacterial translocation, highlighting its potential as a preventive measure against CPF-induced dysbiosis. This study enhances our understanding of the health risks associated with CPF exposure in women, with implications for maternal and fetal health, and underscores the importance of considering physiological states such as pregnancy in toxicological research.
Collapse
Affiliation(s)
- Maria Abou Diwan
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France; Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Avénie Huet
- Laboratoire de physiologie cellulaire et moléculaire (LPCM), UR UPJV 4667, Université Picardie Jules Verne, UPJV, 80039, Amiens, France
| | - Juliette Poiriez
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Claire Joly Condette
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Stéphane Delanaud
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Emmanuel Sevin
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Aurélie Corona
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Larbi Rhazi
- UP 2018.C103 Transformations & Agro-Ressources, Institut Polytechnique UniLaSalle, Beauvais, France
| | - Flore Depeint
- Institut Polytechnique UniLaSalle, Université d'Artois IDEALISS, URL 7519, 60000, Beauvais, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de physiologie cellulaire et moléculaire (LPCM), UR UPJV 4667, Université Picardie Jules Verne, UPJV, 80039, Amiens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Véronique Bach
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, 62300, Lens, France
| | - Hafida Khorsi-Cauet
- PERITOX-Périnatalité et Risques Toxiques-UMR_I 01 UPJV/INERIS, Centre Universitaire de Recherche en Santé, CURS-UPJV, Université Picardie Jules Verne, CEDEX 1, 80054, Amiens, France.
| |
Collapse
|
2
|
Chen L, Yan H, Di S, Guo C, Zhang H, Zhang S, Gold A, Wang Y, Hu M, Wu D, Johnson CH, Wang X, Zhu J. Mapping Pesticide-Induced Metabolic Alterations in Human Gut Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623895. [PMID: 39605636 PMCID: PMC11601348 DOI: 10.1101/2024.11.15.623895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Pesticides can modulate gut microbiota (GM) composition, but their specific effects on GM remain largely elusive. Our study demonstrated that pesticides inhibit or promote growth in various GM species, even at low concentrations, and can accumulate in GM to prolong their presence in the host. Meanwhile, the pesticide induced changes in GM composition are associated with significant alterations in gut bacterial metabolism that reflected by the changes of hundreds of metabolites. We generated a pesticide-GM-metabolites (PMM) network that not only reveals pesticide-sensitive gut bacteria species but also report specific metabolic changes in 306 pesticide-GM pairs (PGPs). Using an in vivo mice model, we further demonstrated a PGP's interactions and verified the inflammation-inducing effects of pesticides on the host through dysregulated lipid metabolism of microbes. Taken together, our findings generate a PMM interactions atlas, and shed light on the molecular level of how pesticides impact host health by modulating GM metabolism.
Collapse
Affiliation(s)
- Li Chen
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Hong Yan
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chao Guo
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Huan Zhang
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Shiqi Zhang
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Gold
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yu Wang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ming Hu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Dayong Wu
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
De Maria M, Garcia-Reyero N, Stacy NI, Abbott JR, Yu F, Pu R, Kroll KJ, Barboza FR, Walsh MT, Perez-Jimenez JG, Amador DAM, Hunter ME, Denslow ND. In vitro impacts of glyphosate on manatee lymphocytes. ENVIRONMENT INTERNATIONAL 2024; 193:109054. [PMID: 39537518 DOI: 10.1016/j.envint.2024.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/04/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Exposure to contaminants, such as the herbicide glyphosate, can suppress protective immune functions. Glyphosate is the herbicide most used worldwide and has been found in the plasma of more than 50 % of the Florida manatees (Trichechus manatus latirostris) and all-year-round in their aquatic environment. Our objectives were to analyze the consequences of glyphosate exposure on their immune responses via T-lymphocyte proliferation assays and transcriptomics. We isolated peripheral blood mononuclear cells (mainly lymphocytes) of free-ranging manatees and performed T-cell proliferation assays. We used transcriptomics to understand the consequences of glyphosate in vitro exposure. The three doses chosen ranged from environmentally relevant concentrations at 10 to 10,000 µg.L-1 that is considered an environmental contamination scenario. Glyphosate caused a dose-dependent reduction in T-lymphocyte proliferation, with a significant mean reduction of 27.3 % at 10,000 µg.L-1 and up to 51.5 % in some individuals. Additionally, T-lymphocyte proliferation was significantly reduced in mid-winter compared to early winter. Transcriptomic analysis of peripheral blood mononuclear cells indicated that all doses of glyphosate (10, 1,000, and 10,000 µg.L-1) resulted in up-regulation of genes related to acute phase inflammation and inhibition of the T-lymphocyte proliferation pathway. Exposure to this contaminant along with other environmental stressors, such as extreme winters and red tide, might further affect the adaptive immune response of this threatened species.
Collapse
Affiliation(s)
- Maite De Maria
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA; Cherokee Nation System Solutions, Contractor to the United States Geological Survey- Wetland and Aquatic Research Center, Gainesville, FL, USA.
| | - Natalia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University. Starkville, MS, USA
| | - Nicole I Stacy
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey R Abbott
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32611, USA; Department of Microbiology and Pathology, Washington State University, Pullman, WA 99163, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Ruyiu Pu
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Kroll
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Francisco R Barboza
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Estonia
| | - Michael T Walsh
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, USA
| | - Juan G Perez-Jimenez
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - David A Moraga Amador
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Margaret E Hunter
- United States Geological Survey, Wetland and Aquatic Research Center, Gainesville, USA.
| | - Nancy D Denslow
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Chen D, Woo JMP, Parks CG, Lawrence KG, O'Brien KM, Sandler RS, Sandler DP. Childhood and adolescent residential and farm pesticide exposures and inflammatory bowel disease incidence in a U.S. cohort of women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174475. [PMID: 38964382 PMCID: PMC11296211 DOI: 10.1016/j.scitotenv.2024.174475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND AIMS There are few known risk factors for inflammatory bowel disease (IBD), an autoimmune disease characterized by chronic intestinal inflammation. Use of specific pesticides has been associated with higher incidence of IBD among pesticide applicators and their spouses, but no study has examined pesticide exposure in early life, a period where the human immune system undergoes rapid changes. We evaluated pesticide use during childhood and adolescence and incidence of IBD among US women enrolled in the Sister Study. METHODS Incident IBD diagnoses between enrollment (2003-2009) and 2021 were identified and validated with medication use and colectomy/colostomy surgery. We estimated hazard ratios (HR) and 95 % confidence intervals (CI) for the relationship of childhood/adolescent residential and farm pesticide exposures with IBD incidence using Cox models, accounting for age, race and ethnicity, education, smoking, and birth year. RESULTS We identified 277 incident IBD cases among 48,382 eligible participants. IBD hazard was elevated among those whose childhood residence was regularly treated with pesticides, especially among those who ever personally applied pesticides (HR = 1.39, 95%CI: 0.65, 2.99). We observed a positive association between IBD and exposure to broadcast pesticide sprays before DDT was banned (>6 times vs. never HR = 1.56, 95%CI: 1.06, 2.31). Among participants who lived on a farm during childhood/adolescence for ≥1 year (N = 9162), IBD hazards were higher among those who were in crop fields during pesticide application (HR = 2.06, 95%CI: 0.94, 4.51) and who ever personally applied pesticides on crops (HR = 1.85, 95%CI: 0.81, 4.18) or livestock (HR = 2.58, 95%CI: 1.14, 5.83). CONCLUSION Early-life pesticide exposure may be a novel risk factor for IBD. Practices that reduce pesticide exposure during early life may help reduce the burden of this disease.
Collapse
Affiliation(s)
- Dazhe Chen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jennifer M P Woo
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Robert S Sandler
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
5
|
Dai H, Wang J, Li Y, Lv Z. Hawthorn-leaf flavonoid alleviate intestinal health and microbial dysbiosis problems induced by glyphosate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116901. [PMID: 39178762 DOI: 10.1016/j.ecoenv.2024.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Glyphosate is the active ingredient in the herbicide (i.e., Roundup, Touchdown and Erasure), the safety of which has become a social concern. Hawthorn-leaf flavonoid (HF) possesses various biological functions, including antioxidant, regulating lipid metabolism and intestinal microbiota. Whether HF could reduce the health risk of pure glyphosate to birds remain unknown. The experiment aimed to evaluate the effects of pure glyphosate (25 mg/kg added to water) on the intestinal health and microbiota of chicks and the protective roles of HF (60 mg/kg added to the diet). Exposure to glyphosate decreased growth performance, ileal morphology structure, and antioxidant capacity, and increased the serum level of lipid and pro-inflammatory factors. 16S rRNA sequencing indicated that glyphosate decreased bacterial richness and the abundance of Lactobacillus, and increased proportions of pathogens in the ileum. Metabolomic results revealed that glyphosate increased the level of the cholic acid and fatty acids in the ileac digesta. Meanwhile, glyphosate down-regulated the protein expression associated with lipid transport, antioxidant and tight junction in the ileal mucosal tissue, and up-regulated the pro-inflammatory, oxidative stress proteins. However, dietary HF supplementation effectively mitigated the adverse effects of glyphosate and improved intestinal health of chicks. Therefore, dietary HF can ameliorate the harmful effects of glyphosate on birds, which highlights the potential application of HF in reducing the health risks.
Collapse
Affiliation(s)
- Hongjian Dai
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yujie Li
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Duan T, Alim A, Tian H, Li T. Roundup-Induced Gut Dysbiosis, Irrelevant to Aromatic Amino Acid Deficiency, Impairs the Gut Function in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39302074 DOI: 10.1021/acs.jafc.4c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Glyphosate, the most popular herbicide globally, has long been considered safe for mammals. However, whether glyphosate can disturb gut microbiota via inhibiting aromatic amino acid (AAA) synthesis has been under debate recently. Here, we evaluated the impacts of chronic exposure to Roundup on gut health with the addition of AAA and explored the mechanism behind Roundup-induced gut dysfunction by performing fecal microbiota transplantation. 500 mg/kg·bw of Roundup, independent of AAA deficiency, caused severe damage to gut function, as characterized by gut microbial dysbiosis, oxidative stress damage, intestinal inflammation, and histopathological injury, particularly in female rats. Notably, similar to Roundup, Roundup-shaped gut microbiome evidently damaged serum, cecum, and colon profiling of oxidative stress biomarkers (malonaldehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), glutathione (GSH), and H2O2). Moreover, it induced 0.65-, 3.29-, and 2.36-fold increases in colonic IL-1β, IL-6, and TNF-α levels, and 0.34-fold decreases in the IL-10 level. Upon transplanting healthy fecal microbiota to Roundup-treated rats, they exhibited a healthier gut microenvironment with mitigated inflammation, oxidative damage, and intestinal injury. Overall, our findings provide new insights into the safety of Roundup, highlight the crucial role of gut microbiota in Roundup-induced gut dysfunction, and pave the way for developing gut-microbiota-based strategies to address Roundup-related safety issues.
Collapse
Affiliation(s)
- Tianchi Duan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Aamina Alim
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Honglei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
7
|
Galli FS, Mollari M, Tassinari V, Alimonti C, Ubaldi A, Cuva C, Marcoccia D. Overview of human health effects related to glyphosate exposure. FRONTIERS IN TOXICOLOGY 2024; 6:1474792. [PMID: 39359637 PMCID: PMC11445186 DOI: 10.3389/ftox.2024.1474792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Glyphosate is a chemical compound derived from glycine, marketed as a broad-spectrum herbicide, and represents one of the most widely used pesticides in the world. For a long time, it was assumed that glyphosate was harmless, either due to its selective enzymatic acting method on plants, and because commercial formulations were believed to contain only inert chemicals. Glyphosate is widely spread in the environment, the general population is daily exposed to it via different routes, including the consumption of both plant, and non-plant based foods. Glyphosate has been detected in high amounts in workers' urine, but has been detected likewise in bodily fluids, such as blood and maternal milk, and also in 60%-80% of general population, including children. Considering its massive presence, daily exposure to glyphosate could be considered a health risk for humans. Indeed, in 2015, the IARC (International Agency for Research on Cancer) classified glyphosate and its derivatives in Group 2A, as probable human carcinogens. In 2022, nevertheless, EFSA (European Food Safety Authority) stated that the available data did not provide sufficient evidence to prove the mutagenic/carcinogenic effects of glyphosate. Therefore, the European Commission (EC) decided to renew the approval of glyphosate for another 10 years. The purpose of this review is to examine the scientific literature, focusing on potential risks to human health arising from exposure to glyphosate, its metabolites and its commercial products (e.g., Roundup®), with particular regard to its mutagenic and carcinogenic potential and its effects as endocrine disrupter (ED) especially in the human reproductive system.
Collapse
Affiliation(s)
- Flavia Silvia Galli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Marta Mollari
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cristian Alimonti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Alessandro Ubaldi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Camilla Cuva
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| |
Collapse
|
8
|
Seneff S, Kyriakopoulos AM, Nigh G. Is autism a PIN1 deficiency syndrome? A proposed etiological role for glyphosate. J Neurochem 2024; 168:2124-2146. [PMID: 38808598 DOI: 10.1111/jnc.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Greg Nigh
- Immersion Health, Portland, Oregon, USA
| |
Collapse
|
9
|
Ignácio ADC, Guerra AMDR, de Souza-Silva TG, Carmo MAVD, Paula HADA. Effects of glyphosate exposure on intestinal microbiota, metabolism and microstructure: a systematic review. Food Funct 2024; 15:7757-7781. [PMID: 38994673 DOI: 10.1039/d4fo00660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Glyphosate is the most commercialized herbicide in Brazil and worldwide, and this has become a worrying scenario in recent years. In 2015 glyphosate was classified as potentially carcinogenic by the World Health Organization, which opened avenues for numerous debates about its safe use regarding non-target species' health, including humans. This review aimed to observe the impacts of glyphosate and its formulations on the gut microbiota, as well as on the gut microstructure and animal metabolism. A systematic review was conducted based on the PRISMA recommendations, and the search for original articles was performed in Pubmed/Medline, Scopus and Web of Science databases. The risk of bias in the studies was assessed using the SYRCLE strategy. Our findings revealed that glyphosate and its formulations are able to induce intestinal dysbiosis by altering bacterial metabolism, intestinal permeability, and mucus secretion, as well as causing damage to the microvilli and the intestinal lumen. Additionally, immunological, enzymatic and genetic changes were also observed in the animal models. At the metabolic level, damage was observed in lipid and energy metabolism, the circulatory system, cofactor and vitamin metabolism, and replication, repair, and translation processes. In this context, we pointed out that the studies revealed that these alterations, caused by glyphosate-based herbicides, can lead to intestinal and systemic diseases, such as Crohn's disease and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | - Thaiany Goulart de Souza-Silva
- Institute of Biological Science, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Araújo Vieira do Carmo
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| | - Hudsara Aparecida de Almeida Paula
- Faculty of Nutrition, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, Centro, CEP: 37130-001, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Otaru S, Jones LE, Carpenter DO. Associations between urine glyphosate levels and metabolic health risks: insights from a large cross-sectional population-based study. Environ Health 2024; 23:58. [PMID: 38926689 PMCID: PMC11210132 DOI: 10.1186/s12940-024-01098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND The prevalence of metabolic syndrome (MetS) in American adults increased from 37.6% in the 2011-12 period to 41.8% in 2017-2018. Environmental exposure, particularly to common compounds such as glyphosate, has drawn increasing attention as a potential risk factor. METHODS We employed three cycles of data (2013-2018) from the National Health and Nutrition Examination Survey (NHANES) in a cross-sectional study to examine potential associations between urine glyphosate measurements and MetS incidence. We first created a MetS score using exploratory factor analysis (EFA) of the International Diabetes Federation (IDF) criteria for MetS, with data drawn from the 2013-2018 NHANES cycles, and validated this score independently on an additional associated metric, the albumin-to-creatinine (ACR) ratio. The score was validated via a machine learning approach in predicting the ACR score via binary classification and then used in multivariable regression to test the association between quartile-categorized glyphosate exposure and the MetS score. RESULTS In adjusted multivariable regressions, regressions between quartile-categorized glyphosate exposure and MetS score showed a significant inverted U-shaped or saturating dose‒response profile, often with the largest effect for exposures in quartile 3. Exploration of potential effect modification by sex, race, and age category revealed significant differences by race and age, with older people (aged > 65 years) and non-Hispanic African American participants showing larger effect sizes for all exposure quartiles. CONCLUSIONS We found that urinary glyphosate concentration is significantly associated with a statistical score designed to predict MetS status and that dose-response coefficient is nonlinear, with advanced age and non-Hispanic African American, Mexican American and other Hispanic participants exhibiting greater effect sizes.
Collapse
Affiliation(s)
- Sarah Otaru
- Department of Environmental Health Sciences, University at Albany, State University of New York, 1 University Place, Rensselaer, NY, USA
- Institute for Health and the Environment (IHE), 5 University Place, Rensselaer, NY, USA
| | - Laura E Jones
- Institute for Health and the Environment (IHE), 5 University Place, Rensselaer, NY, USA.
- Center for Biostatistics, Bassett Research Institute, 1 Atwell Rd., Cooperstown, NY, USA.
- Department of Epidemiology and Biostatistics, School of Public Health, State University of New York, 1 University Place, Rensselaer, NY, USA.
| | - David O Carpenter
- Department of Environmental Health Sciences, University at Albany, State University of New York, 1 University Place, Rensselaer, NY, USA
- Institute for Health and the Environment (IHE), 5 University Place, Rensselaer, NY, USA
| |
Collapse
|
11
|
Chen D, Parks CG, Hofmann JN, Beane Freeman LE, Sandler DP. Pesticide use and inflammatory bowel disease in licensed pesticide applicators and spouses in the Agricultural Health Study. ENVIRONMENTAL RESEARCH 2024; 249:118464. [PMID: 38354883 PMCID: PMC11065595 DOI: 10.1016/j.envres.2024.118464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Pesticide exposure has been linked to some autoimmune diseases and colorectal cancer, possibly via alteration of gut microbiota or other mechanisms. While pesticides have been linked to gut dysbiosis and inflammation in animal models, few epidemiologic studies have examined pesticides in relation to inflammatory bowel disease (IBD). OBJECTIVES We evaluated use of pesticides and incident IBD in 68,480 eligible pesticide applicators and spouses enrolled in the Agricultural Health Study. METHODS Self-reported IBD cases were identified from follow-up questionnaires between enrollment (1993-1997) and 2022. We evaluated IBD incidence in relation to self-reported ever use of 50 pesticides among applicators and spouses. We also explored associations with intensity-weighted lifetime days (IWLD) of pesticide use among male applicators. Covariate-adjusted hazard ratios (HR) and 95% confidence intervals (CI) were calculated using Cox regression. RESULTS We identified 454 IBD cases, including 227 among male applicators. In analyses with applicators and spouses combined, associations were positive (HR > 1.2) for ever vs. never use of five organochlorine insecticides, three organophosphate insecticides, one fungicide, and five herbicides. HRs were highest for dieldrin (HR = 1.59, 95%CI: 1.03, 2.44), toxaphene (HR = 1.61, 95%CI: 1.17, 2.21), parathion (HR = 1.42, 95%CI: 1.03, 1.95), and terbufos (HR = 1.53, 95%CI: 1.19, 1.96). We had limited power in many IWLD of pesticide use analyses and did not find clear evidence of exposure-response trends; however, we observed elevated HRs in all tertiles of IWLD use of terbufos compared to never use (T1 vs. never use HR = 1.52, 95%CI: 1.03, 2.24; T2 vs. never use HR = 1.53, 95%CI: 1.04, 2.26; T3 vs. never use HR = 1.51, 95%CI: 1.03, 2.23). CONCLUSIONS Exposure to specific pesticides was associated with elevated hazards of IBD. These findings may have public health importance given the widespread use of pesticides and the limited number of known modifiable environmental risk factors for IBD.
Collapse
Affiliation(s)
- Dazhe Chen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Hepatotoxicity, Nephrotoxicity, Hemotoxicity, Carcinogenicity, and Clinical Cases of Endocrine, Reproductive, Cardiovascular, and Pulmonary System Intoxication. ACS Pharmacol Transl Sci 2024; 7:1205-1236. [PMID: 38751624 PMCID: PMC11092036 DOI: 10.1021/acsptsci.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Glyphosate (GLP) is an active agent of GLP-based herbicides (GBHs), i.e., broad-spectrum and postemergent weedkillers, commercialized by Monsanto as, e.g., Roundup and RangerPro formulants. The GBH crop spraying, dedicated to genetically engineered GLP-resistant crops, has revolutionized modern agriculture by increasing the production yield. However, abusively administered GBHs' ingredients, e.g., GLP, polyoxyethyleneamine, and heavy metals, have polluted environmental and industrial areas far beyond farmlands, causing global contamination and life-threatening risk, which has led to the recent local bans of GBH use. Moreover, preclinical and clinical reports have demonstrated harmful impacts of GLP and other GBH ingredients on the gut microbiome, gastrointestinal tract, liver, kidney, and endocrine, as well as reproductive, and cardiopulmonary systems, whereas carcinogenicity of these herbicides remains controversial. Occupational exposure to GBH dysregulates the hypothalamic-pituitary-adrenal axis, responsible for steroidogenesis and endocrinal secretion, thus affecting hormonal homeostasis, functions of reproductive organs, and fertility. On the other hand, acute intoxication with GBH, characterized by dehydration, oliguria, paralytic ileus, as well as hypovolemic and cardiogenic shock, pulmonary edema, hyperkalemia, and metabolic acidosis, may occur fatally. As no antidote has been developed for GBH poisoning so far, the detoxification is mainly symptomatic and supportive and requires intensive care based on gastric lavage, extracorporeal blood filtering, and intravenous lipid emulsion infusion. The current review comprehensively discusses the molecular and physiological basics of the GLP- and/or GBH-induced diseases of the endocrine and reproductive systems, and cardiopulmonary-, nephro-, and hepatotoxicities, presented in recent preclinical studies and case reports on the accidental or intentional ingestions with the most popular GBHs. Finally, they briefly describe modern and future healthcare methods and tools for GLP detection, determination, and detoxification. Future electronically powered, decision-making, and user-friendly devices targeting major GLP/GBH's modes of actions, i.e., dysbiosis and the inhibition of AChE, shall enable self-handled or point-of-care professional-assisted evaluation of the harm followed with rapid capturing GBH xenobiotics in the body and precise determining the GBH pathology-associated biomarkers levels.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio
& Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- ENSEMBLE sp. z o. o., 01-919 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
13
|
Palus K, Chmielewska-Krzesińska M, Jana B, Całka J. Glyphosate-induced changes in the expression of galanin and GALR1, GALR2 and GALR3 receptors in the porcine small intestine wall. Sci Rep 2024; 14:8905. [PMID: 38632282 PMCID: PMC11024183 DOI: 10.1038/s41598-024-59581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Glyphosate is the active ingredient of glyphosate-based herbicides and the most commonly used pesticide in the world. The goal of the present study was to verify whether low doses of glyphosate (equivalent to the environmental exposure) evoke changes in galanin expression in intramural neurons in the small intestine in pigs and to quantitatively determine changes in the level of galanin receptor encoding mRNA (GALR1, GALR2, GALR3) in the small intestine wall. The experiment was conducted on 15 sexually immature gilts divided into three study groups: control (C)-animals receiving empty gelatin capsules; experimental 1 (G1)-animals receiving a low dose of glyphosate (0.05 mg/kg b.w./day); experimental 2 (G2)-animals receiving a higher dose of glyphosate (0.5 mg/kg b.w./day) orally in gelatine capsules for 28 days. Glyphosate ingestion led to an increase in the number of GAL-like immunoreactive intramural neurons in the porcine small intestine. The results of RT-PCR showed a significant increase in the expression of mRNA, which encodes the GAL-receptors in the ileum, a decreased expression in the duodenum and no significant changes in the jejunum. Additionally, intoxication with glyphosate increased the expression of SOD2-encoding mRNA in the duodenum and decreased it in the jejunum and ileum, but it did not affect SOD1 expression. The results suggest that it may be a consequence of the cytotoxic and/or neurotoxic properties of glyphosate and/or its ability to induce oxidative stress.
Collapse
MESH Headings
- Animals
- Female
- Galanin/metabolism
- Glyphosate/metabolism
- Glyphosate/toxicity
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Receptor, Galanin, Type 2/drug effects
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- RNA, Messenger/metabolism
- Sus scrofa/genetics
- Swine
- Receptor, Galanin, Type 1/drug effects
- Receptor, Galanin, Type 1/genetics
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 3/drug effects
- Receptor, Galanin, Type 3/genetics
- Receptor, Galanin, Type 3/metabolism
- Herbicides/toxicity
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Małgorzata Chmielewska-Krzesińska
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-078, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
14
|
Bhardwaj G, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Tonk RK, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Thangavelu L, Saleem S. The hidden threat: Environmental toxins and their effects on gut microbiota. Pathol Res Pract 2024; 255:155173. [PMID: 38364649 DOI: 10.1016/j.prp.2024.155173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota (GM), which consists of a complex and diverse ecosystem of bacteria, plays a vital role in overall wellness. However, the delicate balance of this intricate system is being compromised by the widespread presence of environmental toxins. The intricate connection between contaminants in the environment and human well-being has garnered significant attention in recent times. Although many environmental pollutants and their toxicity have been identified and studied in laboratory settings and animal models, there is insufficient data concerning their relevance to human physiology. Consequently, research on the toxicity of environmental toxins in GM has gained prominence in recent years. Various factors, such as air pollution, chemicals, heavy metals, and pesticides, have a detrimental impact on the composition and functioning of the GM. This comprehensive review aims to comprehend the toxic effects of numerous environmental pollutants, including antibiotics, endocrine-disrupting chemicals, heavy metals, and pesticides, on GM by examining recent research findings. The current analysis concludes that different types of environmental toxins can lead to GM dysbiosis and have various potential adverse effects on the well-being of animals. We investigate the alterations to the GM composition induced by contaminants and their impact on overall well-being, providing a fresh perspective on research related to pollutant exposure.
Collapse
Affiliation(s)
- Gautam Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar sector-3, M-B Road, New Delhi 110017, India.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Lakshmi Thangavelu
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia.
| |
Collapse
|
15
|
Huang P, Gao J, Du J, Nie Z, Li Q, Sun Y, Xu G, Cao L. Prometryn exposure disrupts the intestinal health of Eriocheir sinensis: Physiological responses and underlying mechanism. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109820. [PMID: 38145793 DOI: 10.1016/j.cbpc.2023.109820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Most toxicity studies of prometryn in non-target aquatic animals have focused on hepatotoxicity, cardiotoxicity, embryonic developmental and growth toxicity, while studies on the molecular mechanisms of intestinal toxicity of prometryn are still unknown. In the current study, the intestinal tissues of the Chinese mitten crab (Eriocheir sinensis) were used to uncover the underlying molecular mechanisms of stress by 96-h acute in vivo exposure to prometryn. The results showed that prometryn activated the Nrf2-Keap1 pathway and up-regulated the expression of downstream antioxidant genes. Prometryn induced the expression of genes associated with non-specific immunity and autophagy, and induced apoptosis through the MAPK pathway. Interestingly, the significant up-or down-regulation of the above genes mainly occurred at 12 h- 24 h after exposure. Intestinal flora sequencing revealed that prometryn disrupted the intestinal normal barrier function mainly by reducing beneficial bacteria abundance, which further weakened the intestinal resistance to exogenous toxicants and caused an inflammatory response. Correlation analyses found that differential flora at the genus level had potential associations with gut stress-related genes. In conclusion, our study contributes to understanding the molecular mechanisms behind the intestinal stress caused by herbicides on aquatic crustaceans.
Collapse
Affiliation(s)
- Peng Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
16
|
Liang X, Liang J, Zhang S, Yan H, Luan T. Di-2-ethylhexyl phthalate disrupts hepatic lipid metabolism in obese mice by activating the LXR/SREBP-1c and PPAR-α signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169919. [PMID: 38199361 DOI: 10.1016/j.scitotenv.2024.169919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP), a widely utilized plasticizer, has been described as a potential obesogen based on in vivo disruption of hepatic lipid homeostasis and in vitro promotion of lipid accumulation. However, limited literature exists regarding the specific ramifications of DEHP exposure on obese individuals, and the precise mechanisms underlying the adverse effects of DEHP exposure remain unclear. This study aimed to assess the impact of DEHP on hepatic lipid metabolism in obese mice by comparing them to normal mice. Following a 10-week DEHP exposure period, the obese mice exhibited higher blood lipid levels, more severe hepatic steatosis, and more infiltrations of inflammatory cells in liver tissue than normal mice. Interestingly, the body weight of the mice exhibited no significant alteration. In addition, transcriptomic analyses revealed that both lipogenesis and fatty acid oxidation contributed to hepatic lipid metabolism dysregulation following DEHP exposure. More specifically, alterations in the transcription of genes associated with hepatic lipid metabolism were linked to the different responses to DEHP exposure observed in normal and obese mice. Additionally, the outcomes of in vitro experiments validated the in vivo findings and demonstrated that DEHP exposure could modify hepatic lipid metabolism in normal mice by activating the LXR/SREBP-1c signaling pathway to promote lipogenesis. At the same time, DEHP exposure led to inhibition of the Camkkβ/AMPK pathway to suppress β-fatty acid oxidation. Conversely, in obese mice, DEHP exposure was found to be associated with the stimulation of both lipogenesis and fatty acid oxidation via activation of the LXR/SREBP-1c and PPAR-α signaling pathways, respectively. The findings presented in this study first elucidate the contrasting mechanisms underlying DEHP-induced liver damage in obese and normal mice, thereby offering valuable insights into the pathogenesis of DEHP-induced liver damage in individuals with obesity.
Collapse
Affiliation(s)
- Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Jiehua Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengqi Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haowei Yan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China.; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
17
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
18
|
Li J, Bi H. Clarification of the molecular mechanisms underlying glyphosate-induced major depressive disorder: a network toxicology approach. Ann Gen Psychiatry 2024; 23:8. [PMID: 38297317 PMCID: PMC10829247 DOI: 10.1186/s12991-024-00491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Major depressive disorder (MDD) is predicted to become the second most common cause of disability in the near future. Exposure to glyphosate (Gly)-based herbicides has been linked to the onset of MDD. However, the underlying mechanisms remain unclear. The aim of this study was to investigate the potential molecular mechanisms of MDD induced by Gly using network toxicology approach. The MDD dataset GSE76826 from the Gene Expression Omnibus database was referenced to identify differentially expressed genes (DEGs) in peripheral blood leukocytes of MDD patients and controls. The potential intersection targets of Gly-induced MDD were screened by network toxicology. The intersection targets were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and to construct protein-protein interaction networks. The binding potentials of hub targets with Gly were validated by molecular docking. In total, 1216 DEGs associated with Gly-induced MDD were identified. Subsequent network pharmacology further refined the search to 43 targets. GO and KEGG enrichment analyses revealed multiple signaling pathways involved in GLY-induced MDD. Six potential core targets (CD40, FOXO3, FOS, IL6, TP53, and VEGFA) were identified. Finally, molecular docking demonstrated that Gly exhibited strong binding affinity to the core targets. The results of this study identified potential molecular mechanisms underlying Gly induced MDD and provided new insights for prevention and treatment.
Collapse
Affiliation(s)
- Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou, 221000, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou, 221000, China.
| |
Collapse
|
19
|
Hembach N, Drechsel V, Sobol M, Kaster AK, Köhler HR, Triebskorn R, Schwartz T. Effect of glyphosate, its metabolite AMPA, and the glyphosate formulation Roundup ® on brown trout ( Salmo trutta f. fario) gut microbiome diversity. Front Microbiol 2024; 14:1271983. [PMID: 38298542 PMCID: PMC10829098 DOI: 10.3389/fmicb.2023.1271983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Glyphosate is used worldwide as a compound of pesticides and is detectable in many environmental compartments. It enters water bodies primarily through drift from agricultural areas so that aquatic organisms are exposed to this chemical, especially after rain events. Glyphosate is advertised and sold as a highly specific herbicide, which interacts with the EPSP synthase, an enzyme of the shikimate metabolism, resulting in inhibition of the synthesis of vital aromatic amino acids. However, not only plants but also bacteria can possess this enzyme so that influences of glyphosate on the microbiomes of exposed organisms cannot be excluded. Those influences may result in subtle and long-term effects, e.g., disturbance of the symbiotic interactions of bionts with microorganisms of their microbiomes. Mechanisms how the transformation product aminomethylphosphonic acid (AMPA) of glyphosate might interfere in this context have not understood so far. In the present study, molecular biological fingerprinting methods showed concentration-dependent effects of glyphosate and AMPA on fish microbiomes. In addition, age-dependent differences in the composition of the microbiomes regarding abundance and diversity were detected. Furthermore, the effect of exposure to glyphosate and AMPA was investigated for several fish pathogens of gut microbiomes in terms of their gene expression of virulence factors associated with pathogenicity. In vitro transcriptome analysis with the fish pathogen Yersinia ruckeri revealed that it is questionable whether the observed effect on the microbiome is caused by the intended mode of action of glyphosate, such as the inhibition of EPSP synthase activity.
Collapse
Affiliation(s)
- N. Hembach
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Karlsruhe, Germany
| | - V. Drechsel
- Institute of Evolution and Ecology, Animal Physiological Ecology, University of Tübingen, Tübingen, Germany
| | - M. Sobol
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces, Karlsruhe, Germany
| | - A.-K. Kaster
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces, Karlsruhe, Germany
| | - H.-R. Köhler
- Institute of Evolution and Ecology, Animal Physiological Ecology, University of Tübingen, Tübingen, Germany
| | - R. Triebskorn
- Institute of Evolution and Ecology, Animal Physiological Ecology, University of Tübingen, Tübingen, Germany
| | - T. Schwartz
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Karlsruhe, Germany
| |
Collapse
|
20
|
Dos Santos Azevedo AS, da Silva JG, Dos Santos JC, de Oliveira Silva MR, de Almeida SMV, de Azevedo RDS, de Sá Leitão Câmara de Araújo M. Biochemical and teratogenic effects of a mixture of pyriproxyfen and glyphosate. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109766. [PMID: 37844749 DOI: 10.1016/j.cbpc.2023.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/23/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
The mixture of agrochemicals can be made to improve pest control or accidentally. In this way, the effects on non-target organisms are a critical aspect of the environment and heath. Thus, this work aimed to show how a mixture of pyriproxyfen, and glyphosate can impair biochemical routes and embryonic development. Zebrafish embryos 0-72 hpf were exposed to 0.001-1 μg/mL of pyriproxyfen, glyphosate, and a mixture of both pesticides. The ADMETox was evaluated in silico. The FET-test was used to estimate teratogenic effects. The biochemical effects were estimated using AChE, SOD, and CAT as parameters. ROS generation was estimated using 30 μM H2DCF-DA and 5 μM DHE. The ADMETox reveals that intestinal absorption and P-glycoprotein are the main sites for PPx and Gly adsorption. The distribution parameters were diverse. PPx + Gly at 0.1 μg/mL leads to 50 % of lethality and at 1 μg/mL 100 % of lethality. PPx + Gly leads to a 22 % of lack of somite formation at 1 μg/mL. The heart rate was reduced by >10 % in all concentrations tested. The AChE has a decrease with IC20 19.6 μM and IC50 261.5 μM. SOD showed a reduction of 28 % to PPx and CAT was reduced by 58 % to PPx + Gly and Gly at 1 μg/mL. Glyphosate does not increase unspecific ROS generation. The superoxide generation was 2× higher in the PPx + Gly at 1 μg/mL. Summarily, was observed that the mixture of PPx + Gly potentiated the toxic effects. This finding suggests a possible synergism between the PPx and Gly even at lower concentrations.
Collapse
Affiliation(s)
- Angélica Sabrina Dos Santos Azevedo
- Programa de Pós-graduação em Saúde e Desenvolvimento Socioambiental - PPGSDS, Universidade de Pernambuco - UPE, Campus Garanhuns, Brazil; Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Brazil
| | - Josefa Gerlane da Silva
- Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Brazil
| | | | | | - Sinara Monica Vitalino de Almeida
- Programa de Pós-graduação em Saúde e Desenvolvimento Socioambiental - PPGSDS, Universidade de Pernambuco - UPE, Campus Garanhuns, Brazil; Laboratório de Biologia Celular e Molecular, Universidade de Pernambuco - UPE, Campus Garanhuns, Brazil
| | | | | |
Collapse
|
21
|
Tizhe EV, Igbokwe IO, Njokwu COI, Fatihu MY, Tizhe UD, Ibrahim NDG. Effect of Zinc Supplementation on Altered Calcium Homeostasis, Parathyroid Gland, Bone, and Skeletal Muscle Histology Induced by Subchronic Oral Exposure to Glyphosate-Based Herbicide (GOBARA ®) in Wistar Rats. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241265854. [PMID: 39070950 PMCID: PMC11282526 DOI: 10.1177/2632010x241265854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Objectives The study was carried out to assess the effect of zinc supplementation on changes in calcium homeostasis, and parathyroid gland, bone, and skeletal muscle histology in rats exposed to subchronic oral glyphosate-based herbicide (GBH, GOBARA®) toxicity. Methods Sixty male Wistar rats in 6 equal groups (DW, Z, G1, G2, ZG1, ZG2) were used: DW and Z were given 2 mL/kg distilled water and 50 mg/kg of zinc chloride (2%), respectively; G1 and G2 received 187.5 mg/kg and 375 mg/kg of glyphosate (in GBH), respectively; ZG1 and ZG2 were pretreated with 50 mg/kg of zinc chloride before receiving glyphosate, 1 hour later, at 187.5 and 375 mg/kg, respectively. Treatments were by gavage once daily for 16 weeks. Serum calcium, vitamin D, and parathormone were estimated. Histopathological examination of parathyroid gland, femoral bone and biceps femoris muscle was done. Results GBH exposure caused significant (P = .0038) decrease in serum calcium concentration in G1, significant (P = .0337) decrease in serum vitamin D concentration in G1, significant increases in parathormone in G1 (P = .0168) and G2 (P = .0079) compared to DW. Significant (P > .05) changes did not occur in the other parameters of G2 compared to DW. Dose-dependent effect in GBH exposure was not observed after comparing G1 and G2. Necrotic changes occurred in parathyroid gland cells, osteocytes, and muscle cells in G1 and G2. In ZG1 and ZG2, significant (P > .05) variations in the parameters were not observed and tissue lesions were absent. Conclusion Subchronic GBH exposure impaired calcium homeostasis observed as hypocalcemia, hypovitaminemia D, and secondary hyperparathyroidism and caused tissue damage in parathyroid gland, bone, and muscle of rats and these were mitigated by zinc chloride pretreatment.
Collapse
Affiliation(s)
- Emmanuel Vandi Tizhe
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Ikechukwu Onyebuchi Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Celestine Onwu-Ibe Njokwu
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Mohammed Yakasai Fatihu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ussa Delia Tizhe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Najume Dogon-Giginya Ibrahim
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
22
|
Ramya Ranjan Nayak SP, Boopathi S, Haridevamuthu B, Arockiaraj J. Toxic ties: Unraveling the complex relationship between endocrine disrupting chemicals and chronic kidney disease. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122686. [PMID: 37802289 DOI: 10.1016/j.envpol.2023.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Environmental pollution is inherently linked to several metabolic diseases and high mortality. The kidney is more susceptible to environmental pollutants compared to other organs as it is involved in concentrating and filtering most of these toxins. Few epidemiological studies revealed the intrinsic relationship between exposure to Endocrine Disrupting Chemicals (EDCs) and CKD development. Though EDCs have the potential to cause severe pathologies, the specific molecular mechanisms by which they accelerate the progression of CKD remain elusive. In particular, our understanding of how pollutants affect the progression of chronic kidney disease (CKD) through the gut-kidney axis is currently limited. EDCs modulate the composition and function of the gut microbial community and favor the colonization of harmful gut pathogens. This alteration leads to an overproduction of uremic toxin and membrane vesicles. These vesicles carry several inflammatory molecules that exacerbate inflammation and renal tissue damage and aggravate the progression of CKD. Several experimental studies have revealed potential pathways by which uremic toxin further aggravates CKD. These include the induction of membrane vesicle production in host cells, which can trigger inflammatory pathways and insulin resistance. Reciprocally, CKD can also modulate gut bacterial composition that might further aggravate CKD condition. Thus, EDCs pose a significant threat to kidney health and the global CKD burden. Understanding this complicated issue necessitates multidisciplinary initiatives such as strict environmental controls, public awareness, and the development of novel therapeutic strategies targeting EDCs.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Seenivasan Boopathi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
23
|
Li W, Lei D, Huang G, Tang N, Lu P, Jiang L, Lv J, Lin Y, Xu F, Qin YJ. Association of glyphosate exposure with multiple adverse outcomes and potential mediators. CHEMOSPHERE 2023; 345:140477. [PMID: 37858770 DOI: 10.1016/j.chemosphere.2023.140477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Glyphosate (GLY) is a widely used herbicide with potential adverse effects on public health. However, the current epidemiological evidence is limited. This study aimed to investigate the potential associations between exposure to GLY and multiple health outcomes. The data on urine GLY concentration and nine health outcomes, including type 2 diabetes mellitus (T2DM), hypertension, cardiovascular disease (CVD), obesity, chronic kidney disease (CKD), hepatic steatosis, cancers, chronic obstructive pulmonary disease (COPD), and neurodegenerative diseases (NGDs), were extracted from NHANES (2013-2016). The associations between GLY exposure and each health outcome were estimated using reverse-scale Cox regression and logistic regression. Furthermore, mediation analysis was conducted to identify potential mediators in the significant associations. The dose-response relationships between GLY exposure with health outcomes and potential mediators were analyzed using restricted cubic spline (RCS) regression. The findings of the study revealed that individuals with higher urinary concentrations of GLY had a higher likelihood of having T2DM, hypertension, CVD and obesity (p < 0.001, p = 0.005, p < 0.001 and p = 0.005, respectively). In the reverse-scale Cox regression, a notable association was solely discerned between exposure to GLY and the risk of T2DM (adjusted HR = 1.22, 95% CI: 1.10, 1.36). Consistent outcomes were also obtained via logistic regression analysis, wherein the adjusted OR and 95% CI for T2DM were determined to be 1.30 (1.12, 1.52). Moreover, the present investigation identified serum high-density lipoprotein cholesterol (HDL) as a mediator in this association, with a mediating effect of 7.14% (p = 0.040). This mediating effect was further substantiated by RCS regression, wherein significant dose-response associations were observed between GLY exposure and an increased risk of T2DM (p = 0.002) and reduced levels of HDL (p = 0.001). Collectively, these findings imply an association between GLY exposure and an increased risk of T2DM in the general adult population.
Collapse
Affiliation(s)
| | - Daizai Lei
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Guangyi Huang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Ningning Tang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Peng Lu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Li Jiang
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Jian Lv
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Yunru Lin
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China
| | - Fan Xu
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China.
| | - Yuan-Jun Qin
- Department of Ophthalmology, The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530021, China; Department of Ophthalmology, Renmin Hospital of Wuhan University, China.
| |
Collapse
|
24
|
Bulc M, Całka J, Palus K. Changes in the Phenotype of Intramural Inhibitory Neurons of the Porcine Descending Colon Resulting from Glyphosate Administration. Int J Mol Sci 2023; 24:16998. [PMID: 38069321 PMCID: PMC10707063 DOI: 10.3390/ijms242316998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Environmental contamination and the resulting food contamination represent a serious problem and pose a major threat to animal and human health. The gastrointestinal tract is directly exposed to a variety of substances. One is glyphosate, whose presence in the soil is commonly observed. This study demonstrates the effects of low and high glyphosate doses on the populations of intramural neurons of the porcine descending colon. An analysis was performed on neurons ex-pressing the vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, a neuronal isoform of nitrogen oxide synthase, and galanin. Even a low dose of glyphosate increased the number of neurons immunoreactive against the studied substances. However, the changes depended on both the plexus analysed and the substance tested. Meanwhile, a high glyphosate dose resulted in quantitative changes (an increase in the number) within neurons immunoreactive against all the studied neuropeptides/enzymes in the myenteric plexus and both submucosal plexuses. The response of the enteric nervous system in the form of an increase in the number of neurons immunoreactive against neuroprotective substances may suggest that glyphosate has a toxic effect on enteric neurons which attempt to increase their survivability through the released neuroprotective substances.
Collapse
Affiliation(s)
- Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 13, 10-718 Olsztyn, Poland; (J.C.); (K.P.)
| | | | | |
Collapse
|
25
|
Hou X, Nan H, Chen X, Ge F, Liu Y, Li F, Zhang D, Tian J. Slow release of attapulgite based nano-enabled glyphosate improves soil phosphatase activity, organic P-pool and proliferation of dominant bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122408. [PMID: 37597734 DOI: 10.1016/j.envpol.2023.122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Glyphosate (Glp) was encapsulated onto the dopamine-modified attapulgite to develop an attapulgite-based nano-enabled Glp (DGlp) in this study with comparable weed control effects to pure Glp and commercial Glp solutions. Within 24 hours, the active Glp molecule was slowly released from DGlp at a maximum remaining rate of over 90%, and then degraded similarly to Glp solution in soil. The addition of DGlp improved soil available phosphorus (P) contents, phosphatase activity, and enzyme extractable P fraction. However, compared to Glp solution, DGlp addition had no effect on the transformation of soil inorganic P fractions. The 16S rRNA sequencing and co-occurrence network results revealed that DGlp had no significant effect on the soil bacterial diversity but diminished the complexity of soil bacterial network. According to the Mantel test, DGlp addition stimulated soil phosphatase activity and proliferation of dominant bacterial taxa (Proteobacteria and Firmicutes) capable of degrading Glp. Proteobacteria and Firmicutes that had been extensively recruited and enriched for their phosphatase activities may have mobilized reactive enzyme-P, significantly enhancing the transformation of reactive organic P and P-pool in soil. These results contributed to our understanding of the ecotoxicity and environmental impacts of nano-enabled Glp prior to its successful and sustainable application in agriculture.
Collapse
Affiliation(s)
- Xuejuan Hou
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Hui Nan
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Xin Chen
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China.
| |
Collapse
|
26
|
Rana I, Nguyen PK, Rigutto G, Louie A, Lee J, Smith MT, Zhang L. Mapping the key characteristics of carcinogens for glyphosate and its formulations: A systematic review. CHEMOSPHERE 2023; 339:139572. [PMID: 37474029 DOI: 10.1016/j.chemosphere.2023.139572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Glyphosate was classified as a probable human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC) partially due to strong mechanistic evidence in 2015. Since then, numerous studies of glyphosate and its formulations (GBF) have emerged. These studies can be evaluated for cancer hazard identification with the newly described ten key characteristics (KC) of carcinogens approach. Our objective was to assess all in vivo, ex vivo, and in vitro mechanistic studies of human and experimental animals (mammals) that compared exposure to glyphosate/GBF with low/no exposure counterparts for evidence of the ten KCs. A protocol with our methods adhering to PRISMA guidelines was registered a priori (INPLASY202180045). Two blinded reviewers screened all in vivo, ex vivo, and in vitro studies of glyphosate/GBF exposure in humans/mammals reporting any KC-related outcome available in PubMed before August 2021. Studies that met inclusion criteria underwent data extraction conducted in duplicate for each KC outcome reported along with key aspects of internal/external validity, results, and reference information. These data were used to construct a matrix that was subsequently analyzed in the program R to conduct strength of evidence and quality assessments. Of the 2537 articles screened, 175 articles met inclusion criteria, from which we extracted >50,000 data points related to KC outcomes. Data analysis revealed strong evidence for KC2, KC4, KC5, KC6, KC8, limited evidence for KC1 and KC3, and inadequate evidence for KC7, KC9, and KC10. Notably, our in-depth quality analyses of genotoxicity (KC2) and endocrine disruption (KC8) revealed strong and consistent positive findings. For KC2, we found: 1) studies conducted in humans and human cells provided stronger positive evidence than counterpart animal models; 2) GBF elicited a stronger effect in both human and animal systems when compared to glyphosate alone; and 3) the highest quality studies in humans and human cells consistently revealed strong evidence of genotoxicity. Our analysis of KC8 indicated that glyphosate's ability to modulate hormone levels and estrogen receptor activity is sensitive to both exposure concentration and formulation. The modulations observed provide clear evidence that glyphosate interacts with receptors, alters receptor activation, and modulates the levels and effects of endogenous ligands (including hormones). Our findings strengthen the mechanistic evidence that glyphosate is a probable human carcinogen and provide biological plausibility for previously reported cancer associations in humans, such as non-Hodgkin lymphoma. We identified potential molecular interactions and subsequent key events that were used to generate a probable pathway to lymphomagenesis.
Collapse
Affiliation(s)
- Iemaan Rana
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Patton K Nguyen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Gabrielle Rigutto
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Allen Louie
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Jane Lee
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States.
| |
Collapse
|
27
|
Berg SZ, Berg J. Melanin: a unifying theory of disease as exemplified by Parkinson's, Alzheimer's, and Lewy body dementia. Front Immunol 2023; 14:1228530. [PMID: 37841274 PMCID: PMC10570809 DOI: 10.3389/fimmu.2023.1228530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Melanin, a ubiquitous dark pigment, plays important roles in the immune system, including scavenging reactive oxygen species formed in response to ultraviolet radiation absorption, absorbing metals, thermal regulation, drug uptake, innate immune system functions, redox, and energy transduction. Many tissue types, including brain, heart, arteries, ovaries, and others, contain melanin. Almost all cells contain precursors to melanin. A growing number of diseases in which there is a loss of melanin and/or neuromelanin are increasingly thought to have infectious etiologies, for example, Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body Dementia (LBD), and vitiligo. AD, PD, LBD, and vitiligo have been linked with herpesvirus, which enters melanosomes and causes apoptosis, and with gut dysbiosis and inflammation. Herpesvirus is also linked with gut dysbiosis and inflammation. We theorize that under normal healthy states, melanin retains some of the energy it absorbs from electromagnetic radiation, which is then used to fuel cells, and energy from ATP is used to compliment that energy supply. We further theorize that loss of melanin reduces the energy supply of cells, which in the case of AD, PD, and LBD results in an inability to sustain immune system defenses and remove the plaques associated with the disease, which appear to be part of the immune system's attempt to eradicate the pathogens seen in these neurodegenerative diseases. In addition, in an attempt to explain why removing these plaques does not result in improvements in cognition and mood and why cognitions and moods in these individuals have ebbs and flows, we postulate that it is not the plaques that cause the cognitive symptoms but, rather, inflammation in the brain resulting from the immune system's response to pathogens. Our theory that energy retained in melanin fuels cells in an inverse relationship with ATP is supported by studies showing alterations in ATP production in relationship to melanin levels in melanomas, vitiligo, and healthy cells. Therefore, alteration of melanin levels may be at the core of many diseases. We propose regulating melanin levels may offer new avenues for treatment development.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
28
|
Villatoro-Castañeda M, Forsburg ZR, Ortiz W, Fritts SR, Gabor CR, Carlos-Shanley C. Exposure to Roundup and Antibiotics Alters Gut Microbial Communities, Growth, and Behavior in Rana berlandieri Tadpoles. BIOLOGY 2023; 12:1171. [PMID: 37759571 PMCID: PMC10525943 DOI: 10.3390/biology12091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
The gut microbiome is important for digestion, host fitness, and defense against pathogens, which provides a tool for host health assessment. Amphibians and their microbiomes are highly susceptible to pollutants including antibiotics. We explored the role of an unmanipulated gut microbiome on tadpole fitness and phenotype by comparing tadpoles of Rana berlandieri in a control group (1) with tadpoles exposed to: (2) Roundup® (glyphosate active ingredient), (3) antibiotic cocktail (enrofloxacin, sulfamethazine, trimethoprim, streptomycin, and penicillin), and (4) a combination of Roundup and antibiotics. Tadpoles in the antibiotic and combination treatments had the smallest dorsal body area and were the least active compared to control and Roundup-exposed tadpoles, which were less active than control tadpoles. The gut microbial community significantly changed across treatments at the alpha, beta, and core bacterial levels. However, we did not find significant differences between the antibiotic- and combination-exposed tadpoles, suggesting that antibiotic alone was enough to suppress growth, change behavior, and alter the gut microbiome composition. Here, we demonstrate that the gut microbial communities of tadpoles are sensitive to environmental pollutants, namely Roundup and antibiotics, which may have consequences for host phenotype and fitness via altered behavior and growth.
Collapse
Affiliation(s)
- Melissa Villatoro-Castañeda
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| | - Zachery R. Forsburg
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
- Archbold Biological Station, 123 Main Dr., Venus, FL 33960, USA
| | - Whitney Ortiz
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Sarah R. Fritts
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| | - Caitlin R. Gabor
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| | - Camila Carlos-Shanley
- Department of Biology, Texas State University, 601 University Dr., San Marcos, TX 78666, USA; (M.V.-C.); (Z.R.F.); (W.O.); (S.R.F.); (C.C.-S.)
| |
Collapse
|
29
|
Rani S, Sørensen MT, Estellé J, Noel SJ, Nørskov N, Krogh U, Foldager L, Højberg O. Gastrointestinal Microbial Ecology of Weaned Piglets Fed Diets with Different Levels of Glyphosate. Microbiol Spectr 2023; 11:e0061523. [PMID: 37318372 PMCID: PMC10433988 DOI: 10.1128/spectrum.00615-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Glyphosate possesses antimicrobial properties, and the present study investigated potential effects of feed glyphosate on piglet gastrointestinal microbial ecology. Weaned piglets were allocated to four diets (glyphosate contents [mg/kg feed]: 0 mg/kg control [CON; i.e., basal diet with no glyphosate added], 20 mg/kg as Glyphomax commercial herbicide [GM20], and 20 mg/kg [IPA20] and 200 mg/kg [IPA200] as glyphosate isopropylamine [IPA] salt). Piglets were sacrificed after 9 and 35 days of treatment, and stomach, small intestine, cecum, and colon digesta were analyzed for glyphosate, aminomethylphosphonic acid (AMPA), organic acids, pH, dry matter content, and microbiota composition. Digesta glyphosate contents reflected dietary levels (on day 35, 0.17, 16.2, 20.5, and 207.5 mg/kg colon digesta, respectively). Overall, we observed no significant glyphosate-associated effects on digesta pH, dry matter content, and-with few exceptions-organic acid levels. On day 9, only minor gut microbiota changes were observed. On day 35, we observed a significant glyphosate-associated decrease in species richness (CON, 462; IPA200, 417) and in the relative abundance of certain Bacteroidetes genera: CF231 (CON, 3.71%; IPA20, 2.33%; IPA200, 2.07%) and g_0.24 (CON, 3.69%; IPA20, 2.07%; IPA200, 1.75%) in cecum. No significant changes were observed at the phylum level. In the colon, we observed a significant glyphosate-associated increase in the relative abundance of Firmicutes (CON, 57.7%; IPA20, 69.4%; IPA200, 66.1%) and a decrease in Bacteroidetes (CON, 32.6%; IPA20, 23.5%). Significant changes were only observed for few genera, e.g., g_0.24 (CON, 7.12%; IPA20, 4.59%; IPA200, 4.00%). In conclusion, exposing weaned piglets to glyphosate-amended feed did not affect gastrointestinal microbial ecology to a degree that was considered actual dysbiosis, e.g., no potential pathogen bloom was observed. IMPORTANCE Glyphosate residues can be found in feed made from genetically modified glyphosate-resistant crops treated with glyphosate or from conventional crops, desiccated with glyphosate before harvest. If these residues affect the gut microbiota to an extent that is unfavorable to livestock health and productivity, the widespread use of glyphosate on feed crops may need to be reconsidered. Few in vivo studies have been conducted to investigate potential impact of glyphosate on the gut microbial ecology and derived health issues of animals, in particular livestock, when exposed to dietary glyphosate residues. The aim of the present study was therefore to investigate potential effects on the gastrointestinal microbial ecology of newly weaned piglets fed glyphosate-amended diets. Piglets did not develop actual gut dysbiosis when fed diets, containing a commercial herbicide formulation or a glyphosate salt at the maximum residue level, defined by the European Union for common feed crops, or at a 10-fold-higher level.
Collapse
Affiliation(s)
- Sundas Rani
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | | | - Jordi Estellé
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Samantha Joan Noel
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Natalja Nørskov
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Uffe Krogh
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Leslie Foldager
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Ole Højberg
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
30
|
Muñoz JP, Silva-Pavez E, Carrillo-Beltrán D, Calaf GM. Occurrence and exposure assessment of glyphosate in the environment and its impact on human beings. ENVIRONMENTAL RESEARCH 2023; 231:116201. [PMID: 37209985 DOI: 10.1016/j.envres.2023.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
Glyphosate is a broad-spectrum and one of the most widely used herbicides in the world, which has led to its high environmental dissemination. In 2015, the International Agency for Research on Cancer stated that glyphosate was a probable human carcinogen. Since then, several studies have provided new data about the environmental exposure of glyphosate and its consequences on human health. Thus, the carcinogenic effects of glyphosate are still under debate. This work aimed to review glyphosate occurrence and exposure since 2015 up to date, considering studies associated with either environmental or occupational exposure and the epidemiological assessment of cancer risk in humans. These articles showed that herbicide residues were detectable in all spheres of the earth and studies on the population showed an increase in the concentration of glyphosate in biofluids, both in the general population and in the occupationally exposed population. However, the epidemiological studies under review provided limited evidence for the carcinogenicity of glyphosate, which was consistent with the International Agency for Research on Cancer classification as a probable carcinogen.
Collapse
Affiliation(s)
- Juan P Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile.
| | - Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de La Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Diego Carrillo-Beltrán
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
31
|
Nasr Z, Schoeps VA, Ziaei A, Virupakshaiah A, Adams C, Casper TC, Waltz M, Rose J, Rodriguez M, Tillema JM, Chitnis T, Graves JS, Benson L, Rensel M, Krupp L, Waldman AT, Weinstock-Guttman B, Lotze T, Greenberg B, Aaen G, Mar S, Schreiner T, Hart J, Simpson-Yap S, Mesaros C, Barcellos LF, Waubant E. Gene-environment interactions increase the risk of paediatric-onset multiple sclerosis associated with household chemical exposures. J Neurol Neurosurg Psychiatry 2023; 94:518-525. [PMID: 36725329 PMCID: PMC10272045 DOI: 10.1136/jnnp-2022-330713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND We previously reported an association between household chemical exposures and an increased risk of paediatric-onset multiple sclerosis. METHODS Using a case-control paediatric multiple sclerosis study, gene-environment interaction between exposure to household chemicals and genotypes for risk of paediatric-onset multiple sclerosis was estimated.Genetic risk factors of interest included the two major HLA multiple sclerosis risk factors, the presence of DRB1*15 and the absence of A*02, and multiple sclerosis risk variants within the metabolic pathways of common household toxic chemicals, including IL-6 (rs2069852), BCL-2 (rs2187163) and NFKB1 (rs7665090). RESULTS 490 paediatric-onset multiple sclerosis cases and 716 controls were included in the analyses. Exposures to insect repellent for ticks or mosquitos (OR 1.47, 95% CI 1.06 to 2.04, p=0.019), weed control products (OR 2.15, 95% CI 1.51 to 3.07, p<0.001) and plant/tree insect or disease control products (OR 3.25, 95% CI 1.92 to 5.49, p<0.001) were associated with increased odds of paediatric-onset multiple sclerosis. There was significant additive interaction between exposure to weed control products and NFKB1 SNP GG (attributable proportions (AP) 0.48, 95% CI 0.10 to 0.87), and exposure to plant or disease control products and absence of HLA-A*02 (AP 0.56; 95% CI 0.03 to 1.08). There was a multiplicative interaction between exposure to weed control products and NFKB1 SNP GG genotype (OR 2.30, 95% CI 1.00 to 5.30) but not for other exposures and risk variants. No interactions were found with IL-6 and BCL-2 SNP GG genotypes. CONCLUSIONS The presence of gene-environment interactions with household toxins supports their possible causal role in paediatric-onset multiple sclerosis.
Collapse
Affiliation(s)
- Zahra Nasr
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Vinicius Andreoli Schoeps
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Amin Ziaei
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Akash Virupakshaiah
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Cameron Adams
- Genetic Epidemiology and Genomics Laboratory, Divisions of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | | | - Michael Waltz
- University of Utah Health, Salt Lake City, Utah, USA
| | - John Rose
- University of Utah Health, Salt Lake City, Utah, USA
| | | | | | - Tanuja Chitnis
- Brigham and Women's Hospital, Harvard Medical school, Boston, Massachusetts, USA
| | | | - Leslie Benson
- Childrens Hospital Boston, Boston, Massachusetts, USA
| | | | - Lauren Krupp
- New York University Medical Center, New York City, New York, USA
| | - Amy T Waldman
- Division of Child Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Tim Lotze
- Texas Children's Hospital, Houston, Texas, USA
| | | | - Gregory Aaen
- Loma Linda University Children's Hospital, Loma Linda, California, USA
| | - Soe Mar
- Washington University in St. Louis, St Louis, Missouri, USA
| | | | - Janace Hart
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Steve Simpson-Yap
- Neuroepidemiology Unit, The University of Melbourne School of Population and Global Health, Melbourne, Carlton, Australia
- Clinical Outcomes Research Unit (CORe), Royal Melbourne Hospital, The University of Melbourne, Melbourne, Parkville, Australia
- Multiple Sclerosis Flagship, Menzies Institute for Medical Research, University of Tasmania, Tasmania, Hobart, Australia
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics (SPATT), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa F Barcellos
- Genetic Epidemiology and Genomics Laboratory, Divisions of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, California, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Emmanuelle Waubant
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
32
|
Lehman PC, Cady N, Ghimire S, Shahi SK, Shrode RL, Lehmler HJ, Mangalam AK. Low-dose glyphosate exposure alters gut microbiota composition and modulates gut homeostasis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104149. [PMID: 37196884 PMCID: PMC10330715 DOI: 10.1016/j.etap.2023.104149] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
The widespread use of glyphosate, a broad-spectrum herbicide, has resulted in significant human exposure, and recent studies have challenged the notion that glyphosate is safe for humans. Although the link between disease states and glyphosate exposure is increasingly appreciated, the mechanistic links between glyphosate and its toxic effects on human health are poorly understood. Recent studies have suggested that glyphosate may cause toxicity through modulation of the gut microbiome, but evidence for glyphosate-induced gut dysbiosis and its effect on host physiology at doses approximating the U.S. Acceptable Daily Intake (ADI = 1.75 mg/kg body weight) is limited. Here, utilizing shotgun metagenomic sequencing of fecal samples from C57BL/6 J mice, we show that glyphosate exposure at doses approximating the U.S. ADI significantly impacts gut microbiota composition. These gut microbial alterations were associated with effects on gut homeostasis characterized by increased proinflammatory CD4+IL17A+ T cells and Lipocalin-2, a known marker of intestinal inflammation.
Collapse
Affiliation(s)
- Peter C Lehman
- Department of Pathology, University of Iowa, Iowa City, USA
| | - Nicole Cady
- Program in Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
| | - Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, USA
| | | | - Rachel L Shrode
- Informatics Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, USA
| | - Ashutosh K Mangalam
- Department of Pathology, University of Iowa, Iowa City, USA; Department of Occupational and Environmental Health, University of Iowa, Iowa City, USA; Immunology Graduate Program. University of Iowa, Iowa City, USA.
| |
Collapse
|
33
|
Sena F, Cancela S, Bollati-Fogolín M, Pagotto R, Francia ME. Exploring Toxoplasma gondii´s Biology within the Intestinal Epithelium: intestinal-derived models to unravel sexual differentiation. Front Cell Infect Microbiol 2023; 13:1134471. [PMID: 37313339 PMCID: PMC10258352 DOI: 10.3389/fcimb.2023.1134471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
A variety of intestinal-derived culture systems have been developed to mimic in vivo cell behavior and organization, incorporating different tissue and microenvironmental elements. Great insight into the biology of the causative agent of toxoplasmosis, Toxoplasma gondii, has been attained by using diverse in vitro cellular models. Nonetheless, there are still processes key to its transmission and persistence which remain to be elucidated, such as the mechanisms underlying its systemic dissemination and sexual differentiation both of which occur at the intestinal level. Because this event occurs in a complex and specific cellular environment (the intestine upon ingestion of infective forms, and the feline intestine, respectively), traditional reductionist in vitro cellular models fail to recreate conditions resembling in vivo physiology. The development of new biomaterials and the advances in cell culture knowledge have opened the door to a next generation of more physiologically relevant cellular models. Among them, organoids have become a valuable tool for unmasking the underlying mechanism involved in T. gondii sexual differentiation. Murine-derived intestinal organoids mimicking the biochemistry of the feline intestine have allowed the generation of pre-sexual and sexual stages of T. gondii for the first time in vitro, opening a window of opportunity to tackling these stages by "felinizing" a wide variety of animal cell cultures. Here, we reviewed intestinal in vitro and ex vivo models and discussed their strengths and limitations in the context of a quest for faithful models to in vitro emulate the biology of the enteric stages of T. gondii.
Collapse
Affiliation(s)
- Florencia Sena
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Universidad de la República, Montevideo, Uruguay
| | - Saira Cancela
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
- Molecular, Cellular, and Animal Technology Program (ProTeMCA), Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Mariela Bollati-Fogolín
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
- Molecular, Cellular, and Animal Technology Program (ProTeMCA), Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - María E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
34
|
Almeida Roque AD, Neto FF, Cosio C, Barjhoux I, Ribeiro CADO, Rioult D. IMMUNOTOXICITY OF RELEVANT MIXTURES OF PESTICIDES AND METABOLITES ON THP-1 CELLS. Toxicology 2023:153557. [PMID: 37236337 DOI: 10.1016/j.tox.2023.153557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Pesticides are used to combat agricultural pests but also trigger side effects on non-target organisms. Particularly, immune system dysregulation is a major concern due to the organism's increased vulnerability to diseases, including cancer development. Macrophages play essential roles in innate and adaptive immunity and can undergo classical (M1) or alternative (M2) activation. The M1 pro-inflammatory phenotype has an antitumor role, while M2 favors tumor promotion. Although previous studies have linked pesticide exposure to immune compromise, macrophage polarization is still poorly studied. Here, we investigated the effects of 72 h-long exposure to the mixture of four pesticides widely used in Brazil (glyphosate, 2,4-D, mancozeb, and atrazine), and their main metabolites (aminomethylphosphonic acid, 2,4-diclorophenol, ethylenethiourea, and desethylatrazine) on human leukemia monocytic THP-1 cell line at concentrations based on the Acceptable Daily Intake (ADI) value established in the country. The data revealed immunotoxicity related to impaired cell metabolism in all exposed groups, decreased cell attachment (Pes: 10-1; Met: 10-1; Mix: all concentrations), and disturbance in nitric oxide (NO) levels (Met: 10-1, 101; Mix: all concentrations). The polarization of macrophages towards a more pro-tumor M2-like phenotype was also supported by decreased secretion of the pro-inflammatory cytokine TNF-α (Pes 100, 101) and increased IL-8 (Pes 101). These outcomes alert about the risk of pesticide exposure in the Brazilian population.
Collapse
Affiliation(s)
- Aliciane De Almeida Roque
- Federal University of Paraná, Department of Cell Biology, Laboratory of Cell Toxicology, PO Box: 19031, CEP: 81531-980, Curitiba, PR, Brazil.
| | - Francisco Filipak Neto
- Federal University of Paraná, Department of Cell Biology, Laboratory of Cell Toxicology, PO Box: 19031, CEP: 81531-980, Curitiba, PR, Brazil
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, 51097 Reims, France
| | - Iris Barjhoux
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, 51097 Reims, France
| | - Ciro Alberto de Oliveira Ribeiro
- Federal University of Paraná, Department of Cell Biology, Laboratory of Cell Toxicology, PO Box: 19031, CEP: 81531-980, Curitiba, PR, Brazil.
| | - Damien Rioult
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, 51097 Reims, France; Université de Reims Champagne-Ardenne, Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE - INERIS, 51097 Reims, France.
| |
Collapse
|
35
|
Ibarra-Mendoza B, Gomez-Gil B, Betancourt-Lozano M, Raggi L, Yáñez-Rivera B. Microbial gut dysbiosis induced by xenobiotics in model organisms and the relevance of experimental criteria: a minireview. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e7. [PMID: 39295907 PMCID: PMC11406412 DOI: 10.1017/gmb.2023.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 09/21/2024]
Abstract
The gut microbiota is a dynamic ecosystem involved in multiple physiological processes that affect host health. Several factors affect intestinal microbial communities including dietary exposure to xenobiotics, which is highly concerning due to their widespread distribution. Current knowledge of this topic comes from culture-dependent methods, 16S rRNA amplicon fingerprinting, and metagenomics, but a standardised procedures framework remains lacking. This minireview integrates 45 studies from a systematic search using terms related to gut microbiota and its disruption. Only publications encompassing dietary-oral exposure and experimental gut microbiota assessments were included. The results were divided and described according to the biological model used and the disruption observed in the gut microbiota. An overall dysbiotic effect was unclear due to the variety of contaminants and hosts evaluated and the experimental gaps between publications. More standardised experimental designs, including WGS and physiological tests, are needed to establish how a particular xenobiotic can alter the gut microbiota and how the results can be extrapolated.
Collapse
Affiliation(s)
| | - Bruno Gomez-Gil
- CIAD, A.C. Mazatlán Unit for Aquaculture and Environmental Management, Mazatlán, Mexico
| | | | - Luciana Raggi
- Universidad Michoacana de San Nicolás de Hidalgo - CONACYT, Mexico City, Mexico
| | - Beatriz Yáñez-Rivera
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México, Mazatlán, Mexico
| |
Collapse
|
36
|
Abou Diwan M, Lahimer M, Bach V, Gosselet F, Khorsi-Cauet H, Candela P. Impact of Pesticide Residues on the Gut-Microbiota–Blood–Brain Barrier Axis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24076147. [PMID: 37047120 PMCID: PMC10094680 DOI: 10.3390/ijms24076147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Accumulating evidence indicates that chronic exposure to a low level of pesticides found in diet affects the human gut-microbiota–blood–brain barrier (BBB) axis. This axis describes the physiological and bidirectional connection between the microbiota, the intestinal barrier (IB), and the BBB. Preclinical observations reported a gut microbial alteration induced by pesticides, also known as dysbiosis, a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs, such as the BBB. However, the interplay between pesticides, microbiota, the IB, and the BBB is still not fully explored. In this review, we first consider the similarities/differences between these two physiological barriers and the different pathways that link the gut microbiota and the BBB to better understand the dialogue between bacteria and the brain. We then discuss the effects of chronic oral pesticide exposure on the gut-microbiota-BBB axis and raise awareness of the danger of chronic exposure, especially during the perinatal period (pregnant women and offspring).
Collapse
Affiliation(s)
- Maria Abou Diwan
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Marwa Lahimer
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Véronique Bach
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
| | - Hafida Khorsi-Cauet
- PERITOX—Périnatalité et Risques Toxiques—UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, CEDEX 1, 80054 Amiens, France; (M.A.D.); (M.L.); (V.B.); (H.K.-C.)
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, University of Artois, 62300 Lens, France;
- Correspondence:
| |
Collapse
|
37
|
Bai G, Zou Y, Zhang W, Jiang X, Qin J, Teng T, Sun H, Shi B. Perinatal exposure to high concentration glyphosate-based herbicides induces intestinal apoptosis by activating endoplasmic reticulum stress in offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161223. [PMID: 36584959 DOI: 10.1016/j.scitotenv.2022.161223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate-based herbicides (GBHs), the most widely used pesticide worldwide, have been reported to impair organ function in humans and animals. However, research on the effect of maternal GBHs exposure on the intestinal health of offspring has received little attention. Based on the glyphosate limits defined by Codex Alimentarius Commission and European Food Safety Authority, this study established pregnant sow exposure models to investigate the influence of low (L-GBHs, 20 mg/kg) and high concentration GBHs (H-GBHs, 100 mg/kg) on the intestinal health of offspring and proposed the protective mechanism mediated by betaine. The results showed that the intestinal morphology and barrier function of suckling piglets were damaged in the H-GBHs group. H-GBHs increased the activity of glutathione peroxidase (GPX) and levels of methane dicarboxylic aldehyde (MDA), hydrogen peroxide (H2O2) and inflammatory factors (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10)) in suckling piglets and activated Nrf2-mediated antioxidant signaling pathway. Subsequently, we found that exposure to H-GBHs triggered endoplasmic reticulum stress (ERS) and further induced apoptosis by upregulating the expression of Bcl-2-associated X protein (Bax), Caspase3, Caspase9 and Caspase12. Moreover, H-GBHs exposure perturbed mitochondrial membrane fusion and electron transport in mitochondrial respiratory chains by increasing the mRNA expression of mitofusin-2 (MFN2) and succinate dehydrogenase subunit A (SDHA), causing mitochondrial dysfunction. Dietary supplementation with betaine provided modest protection against GBHs-induced intestinal damage in suckling piglets. These findings reveal the mechanism of GBHs-induced intestinal damage in offspring, improving our understanding of the risk of GBHs exposure in pregnant women and suggesting the potential protective effects of betaine against GBHs poisoning.
Collapse
Affiliation(s)
- Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingbin Zou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Wentao Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianwei Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
38
|
Cullen MG, Bliss L, Stanley DA, Carolan JC. Investigating the effects of glyphosate on the bumblebee proteome and microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161074. [PMID: 36566850 DOI: 10.1016/j.scitotenv.2022.161074] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally. It acts by inhibiting an enzyme in an aromatic amino acid synthesis pathway specific to plants and microbes, leading to the view that it poses no risk to other organisms. However, there is growing concern that glyphosate is associated with health effects in humans and an ever-increasing body of evidence that suggests potential deleterious effects on other animals including pollinating insects such as bees. Although pesticides have long been considered a factor in the decline of wild bee populations, most research on bees has focussed on demonstrating and understanding the effects of insecticides. To assess whether glyphosate poses a risk to bees, we characterised changes in survival, behaviour, sucrose solution consumption, the digestive tract proteome, and the microbiota in the bumblebee Bombus terrestris after chronic exposure to field relevant doses of technical grade glyphosate or the glyphosate-based formulation, RoundUp Optima+®. Regardless of source, there were changes in response to glyphosate exposure in important cellular and physiological processes in the digestive tract of B. terrestris, with proteins associated with oxidative stress regulation, metabolism, cellular adhesion, the extracellular matrix, and various signalling pathways altered. Interestingly, proteins associated with endocytosis, oxidative phosphorylation, the TCA cycle, and carbohydrate, lipid, and amino acid metabolism were differentially altered depending on whether the exposure source was glyphosate alone or RoundUp Optima+®. In addition, there were alterations to the digestive tract microbiota of bees depending on the glyphosate source No impacts on survival, behaviour, or food consumption were observed. Our research provides insights into the potential mode of action and consequences of glyphosate exposure at the molecular, cellular and organismal level in bumblebees and highlights issues with the current honeybee-centric risk assessment of pesticides and their formulations, where the impact of co-formulants on non-target organisms are generally overlooked.
Collapse
Affiliation(s)
- Merissa G Cullen
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Liam Bliss
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Dara A Stanley
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 2, Ireland; Earth Institute, University College Dublin, Belfield, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
39
|
Meng QY, Kang CQ, Dang W, Melvin SD, Lu HL. Minor metabolomic disturbances induced by glyphosate-isopropylammonium exposure at environmentally relevant concentrations in an aquatic turtle, Pelodiscus sinensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106415. [PMID: 36746075 DOI: 10.1016/j.aquatox.2023.106415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The ecotoxicological and environmental impacts of glyphosate-based herbicides have received considerable attention due to their extensive use globally. However, the potential for adverse effects in cultured non-fish vertebrate species are commonly ignored. In this study, effects on growth, indicators of functional performance, gut microbial diversity, liver antioxidant responses and metabolite profiles were evaluated in soft-shelled turtle hatchlings (Pelodiscus sinensis) exposed to different concentrations of glyphosate-isopropylammonium (0, 0.02, 0.2, 2 and 20 mg/L). No significant changes in growth or functional performance (food intake, swimming speed), gut microbiota, and liver antioxidant responses (SOD and CAT activities, MDA content) were observed in exposed turtles. However, hepatic metabolite profiles revealed distinct perturbations that primarily involved amino acid metabolism in turtles exposed to environmentally relevant concentrations. Overall, our results suggested that metabolite profiles may be more sensitive than phenotypic or general physiological endpoints and gut microbiota profiling, and indicate a potential mechanism of hepatotoxicity caused by glyphosate-isopropylammonium based on untargeted metabolomics analysis. Furthermore, the toxicity of glyphosate at environmentally relevant concentrations might be relatively minor in aquatic turtle species.
Collapse
Affiliation(s)
- Qin-Yuan Meng
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chun-Quan Kang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wei Dang
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University, Southport, QLD 4222, Australia
| | - Hong-Liang Lu
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
40
|
Liu J, Yang G, Zhang H. Glyphosate-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160839. [PMID: 36521597 DOI: 10.1016/j.scitotenv.2022.160839] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate (GLY) exposure has been reported to damage organs in animals, in particular the liver, due to increased reactive oxygen species (ROS). Ferroptosis is defined as a new type of cell death that is characterized by the increase of ROS. The purpose of this study was to elucidate whether the relationship between ferroptosis and GLY-induced hepatotoxicity is of significance to enlarge the knowledge about GLY toxicity and consequences for human and animal health. To this end, in this study, we investigated the role of ferroptosis in GLY-induced hepatotoxicity both in vivo and in vitro. The results showed that GLY exposure triggered ferroptosis in L02 cells, but pretreatment with ferroptosis inhibitor ferrostatin (Fer-1) rescued ferroptosis-induced injury, thereby indicating that ferroptosis plays a key role in GLY-induced hepatotoxicity. Moreover, N-acetylcysteine, a glutathione (GSH) synthesis precursor, reversed GLY-triggered ferroptosis damage, thus indicating that GSH exhaustion may be a prerequisite for GLY-triggered hepatotoxicity. Mechanistically, GLY inhibited GSH biosynthesis via blocking the phosphorylation and nuclear translocation of Nrf2, which resulted in GSH depletion-induced hepatocyte ferroptosis. In a mouse model, GLY exposure triggered ferroptosis-induced liver damage, which can be rescued by pretreatment with Fer-1 or tBHQ (a specific agonist of Nrf2). To our knowledge, this is the first study to reveal that GLY-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity, which expands our knowledge about GLY toxicity in animal and human health.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, 271000 Tai'an City, Shandong Province, China.
| | - Guangcheng Yang
- College of Biological and Brewing Engineering, Taishan University, No. 525 Dongyue Street, 271000 Tai'an City, Shandong Province, China
| | - Hongna Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, No. 47 Xuefu Road, 050061 Shijiazhuang City, Hebei Province, China.
| |
Collapse
|
41
|
Rueda-Ruzafa L, Roman P, Cardona D, Requena M, Ropero-Padilla C, Alarcón R. Environmental pesticide exposure and the risk of irritable bowel syndrome: A case-control study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104076. [PMID: 36754128 DOI: 10.1016/j.etap.2023.104076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The agricultural model in southern Spain is highly productive, mainly due to the intensive cultivation under plastic. Despite strict pesticide regulation, human exposure to pesticides in the environment has been connected to an increase in diseases such as celiac disease. Certain pesticides have also been associated to the disruption of the intestinal microbiota, which has been tied to the development of irritable bowel syndrome (IBS). A case-control study was conducted in Andalusia, south Spain, to assess the prevalence and risk of IBS related to pesticide exposure. This research found a high prevalence of IBS in Andalusia between 2000 and 2021 in areas with high pesticide exposure using agronomic criteria. Furthermore, the odds ratio for IBS was significantly higher in the population with high pesticide exposure. This study suggests that pesticides may be involved in IBS, whereas more research is needed to determine the role of pesticides in IBS symptomatology.
Collapse
Affiliation(s)
- Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, Carretera Sacramento S/N, La Cañada, 04120 Almeria, Spain.
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, Carretera Sacramento S/N, La Cañada, 04120 Almeria, Spain; Health Research Center, University of Almeria, Carretera Sacramento S/N, La Cañada 04120, Spain.
| | - Diana Cardona
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, Carretera Sacramento S/N, La Cañada, 04120 Almeria, Spain; Health Research Center, University of Almeria, Carretera Sacramento S/N, La Cañada 04120, Spain.
| | - Mar Requena
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, Carretera Sacramento S/N, La Cañada, 04120 Almeria, Spain; Health Research Center, University of Almeria, Carretera Sacramento S/N, La Cañada 04120, Spain.
| | - Carmen Ropero-Padilla
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, Carretera Sacramento S/N, La Cañada, 04120 Almeria, Spain.
| | - Raquel Alarcón
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, Carretera Sacramento S/N, La Cañada, 04120 Almeria, Spain; Health Research Center, University of Almeria, Carretera Sacramento S/N, La Cañada 04120, Spain.
| |
Collapse
|
42
|
Palus K, Bulc M, Całka J. Glyphosate affects the neurochemical phenotype of the intramural neurons in the duodenum in the pig. Neurogastroenterol Motil 2023; 35:e14507. [PMID: 36502523 DOI: 10.1111/nmo.14507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glyphosate-based herbicides have been one of the most intensively used pollutants worldwide and food products containing glyphosate are an essential component of human and animal diet. The aim of present study was to determine the effect of glyphosate intoxication on the neurochemical properties of the enteric nervous system (ENS) neurons located in the wall of the porcine duodenum. METHODS Fifteen sexually immature gilts divided into 3 groups were used: control-animals receiving empty gelatin capsules; G1-animals receiving a low dose of glyphosate-corresponding to the theoretical maximum daily intake (TMDI) - 0.05 mg/kg bw/day; G2-animals receiving a higher dose of glyphosate-corresponding to the acceptable daily intake (ADI)-0.5 mg/kg/day in gelatin capsules orally for 28 days. After this time, the animals were euthanized and small intestine samples were collected. Frozen sections were then subjected to the procedure of double immunofluorescent staining. KEY RESULTS Glyphosate supplementation led to alterations in the neurochemical code of the ENS neurons in the porcine duodenum. Generally, increased population of neurons immunoreactive to PACAP, CGRP, CART, nNOS, and a decreased number of VAChT-like immunoreactive neurons were noted. CONCLUSIONS AND INFERENCES It may be a first preclinical symptom of digestive tract dysfunction in the course of glyphosate intoxication and further studies are needed to assess the toxicity and risks of glyphosate to humans.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
43
|
Wu J, Sun X, Wu C, Hong X, Xie L, Shi Z, Zhao L, Du Q, Xiao W, Sun J, Wang J. Single-cell transcriptome analysis reveals liver injury induced by glyphosate in mice. Cell Mol Biol Lett 2023; 28:11. [PMID: 36739397 PMCID: PMC9898913 DOI: 10.1186/s11658-023-00426-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/24/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glyphosate (GLY), as the active ingredient of the most widely used herbicide worldwide, is commonly detected in the environment and living organisms, including humans. Its toxicity and carcinogenicity in mammals remain controversial. Several studies have demonstrated the hepatotoxicity of GLY; however, the underlying cellular and molecular mechanisms are still largely unknown. METHODS Using single-cell RNA sequencing (scRNA-seq), immunofluorescent staining, and in vivo animal studies, we analyzed the liver tissues from untreated and GLY-treated mice. RESULTS We generated the first scRNA-seq atlas of GLY-exposed mouse liver. GLY induced varied cell composition, shared or cell-type-specific transcriptional alterations, and dysregulated cell-cell communication and thus exerted hepatotoxicity effects. The oxidative stress and inflammatory response were commonly upregulated in several cell types. We also observed activation and upregulated phagocytosis in macrophages, as well as proliferation and extracellular matrix overproduction in hepatic stellate cells. CONCLUSIONS Our study provides a comprehensive single-cell transcriptional picture of the toxic effect of GLY in the liver, which offers novel insights into the molecular mechanisms of the GLY-associated hepatotoxicity.
Collapse
Affiliation(s)
- Jiangpeng Wu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xiuping Sun
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Chunyi Wu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Lulin Xie
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Zixu Shi
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Liang Zhao
- Department of Pathology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
- Department of Pathology and Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China.
| | - Jichao Sun
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Jigang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China.
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
44
|
Mehtiyev T, Karaman EF, Ozden S. Alterations in cell viability, reactive oxygen species production, and modulation of gene expression involved in mitogen-activated protein kinase/extracellular regulating kinase signaling pathway by glyphosate and its commercial formulation in hepatocellular carcinoma cells. Toxicol Ind Health 2023; 39:81-93. [PMID: 36625791 DOI: 10.1177/07482337221149571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glyphosate (N-phosphonomethyl glycine) is a non-selective, organophosphate herbicide widely used in agriculture and forestry. We investigated the possible toxic effects of the glyphosate active compound and its commercial formulation (Roundup Star®) in the human hepatocellular carcinoma (HepG2) cell line, including their effects on the cytotoxicity, cell proliferation, reactive oxygen species (ROS) levels, and expression of oxidative stress-related genes such as HO-1, Hsp70 Nrf2, L-FABP, and Keap1. MTT and NRU tests indicated that the IC50 values of Roundup Star® were 219 and 140 μM, respectively, and because glyphosate failed to induce cell death at the studied concentrations, an IC50 value could not be determined for this cell line. Roundup Star at concentrations of 50 and 100 μM significantly increased (39.58% and 52%, respectively) cell proliferation, which 200 μM of glyphosate increased by 35.38%. ROS levels increased by 27.97% and 44.77% for 25 and 100 μM of Roundup Star and 32.74% and 38.63% for 100 and 200 μM of glyphosate exposure. In conclusion, Roundup Star and glyphosate significantly increased expression levels of selected genes related to the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway. This suggests that ROS production and the MAPK/ERK signaling pathway may be key molecular mechanisms in the toxicity of glyphosate in liver cells.
Collapse
Affiliation(s)
- Toghrul Mehtiyev
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37516Istanbul University, Istanbul, Turkey.,Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37516Istanbul University, Istanbul, Turkey.,Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 420479Biruni University, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37516Istanbul University, Istanbul, Turkey
| |
Collapse
|
45
|
Tizhe EV, Igbokwe IO, Njoku CO, Fatihu MY, Tizhe UD, Ibrahim NDG, Unanam ES, Korzerzer RM. Effect of zinc supplementation on immunotoxicity induced by subchronic oral exposure to glyphosate-based herbicide (GOBARA®) in Wistar rats. J Int Med Res 2023; 51:3000605221147188. [PMID: 36636770 PMCID: PMC9841866 DOI: 10.1177/03000605221147188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES To evaluate the effect of zinc supplementation on immunotoxicity induced by subchronic oral exposure to glyphosate-based herbicide (GBH). METHODS Sixty adult male Wistar rats randomly divided equally into six groups were exposed to GBH by gavage daily for 16 weeks with or without zinc pretreatment. Group DW rats received distilled water (2 mL/kg), group Z rats received zinc (50 mg/kg), and group G1 and G2 rats received 187.5 and 375 mg/kg GBH, respectively. Group ZG1 and ZG2 rats were pretreated with 50 mg/kg zinc before exposure to 187.5 and 375 mg/kg GBH, respectively. Tumor necrosis factor alpha (TNF-α) and immunoglobulin (IgG, IgM, IgE) levels were measured by enzyme-linked immunosorbent assay. Spleen, submandibular lymph node, and thymus samples were processed for histopathology. RESULTS Exposure to GBH (G1 and G2) significantly increased serum TNF-α concentrations and significantly decreased serum IgG and IgM concentrations compared with the control levels. Moderate-to-severe lymphocyte depletion occurred in the spleen, lymph nodes, and thymus in the GBH-exposed groups. Zinc supplementation mitigated the immunotoxic effects of GBH exposure. CONCLUSIONS GBH exposure increased pro-inflammatory cytokine responses, decreased immunoglobulin production, and depleted lymphocytes in lymphoid organs in rats, but zinc supplementation mitigated this immunotoxicity.
Collapse
Affiliation(s)
- Emmanuel V Tizhe
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria,Emmanuel Vandi Tizhe, Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, Naraguta Campus, Ground Floor Room 3, University of Jos, P.M.B 2084, Jos, Plateau State 930001, Nigeria.
| | - Ikechukwu O Igbokwe
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | - Celestine O Njoku
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Mohammed Y Fatihu
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Ussa D Tizhe
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Najume DG Ibrahim
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Essienifiok S Unanam
- Department of Veterinary Medicine, Surgery and Radiology, Faculty of Veterinary Medicine, University of Jos, Jos, Plateau State, Nigeria
| | - Rachel M Korzerzer
- Department of Veterinary Anatomy, College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| |
Collapse
|
46
|
de Batista DG, de Batista EG, Miragem AA, Ludwig MS, Heck TG. Disturbance of cellular calcium homeostasis plays a pivotal role in glyphosate-based herbicide-induced oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9082-9102. [PMID: 36441326 DOI: 10.1007/s11356-022-24361-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most worldwide used pesticides. The wide application of GBHs contaminates the soil and, consequently, water and food resources reaching human consumption. GBHs induce oxidative stress in non-target organisms, leading to a pro-inflammatory and pro-apoptotic cellular status, promoting tissue dysfunction and, thus, metabolic and neurobehavioral changes. This review presents evidence of oxidative damage induced by GBHs and the mechanism of cell damage and health consequences. To summarize, exposure to GBHs may induce disorders in calcium homeostasis related to the activation of ion channels. Also, alterations in pathways related to redox state regulation must have a primordial role in oxidative stress caused by GBHs.
Collapse
Affiliation(s)
- Diovana Gelati de Batista
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil.
- Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil.
- Research Group in Cell Stress Response, Federal Institute of Education, Science and Technology Farroupilha, Rio Grande Do Sul State, Santa Rosa, Brazil.
- Postgraduate Program in Mathematical and Computational Modeling, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil.
| | - Edivania Gelati de Batista
- Research Group in Cell Stress Response, Federal Institute of Education, Science and Technology Farroupilha, Rio Grande Do Sul State, Santa Rosa, Brazil
| | - Antônio Azambuja Miragem
- Research Group in Cell Stress Response, Federal Institute of Education, Science and Technology Farroupilha, Rio Grande Do Sul State, Santa Rosa, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
- Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
- Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
- Postgraduate Program in Mathematical and Computational Modeling, Regional University of Northwestern Rio Grande Do Sul State, Rio Grande Do Sul State, Ijuí, Brazil
| |
Collapse
|
47
|
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health 2023; 11:1140786. [PMID: 36908414 PMCID: PMC9999012 DOI: 10.3389/fpubh.2023.1140786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming increasingly prevalent with the improvement of people's living standards in recent years, especially in urban areas. The emerging environmental contaminant is a newly-proposed concept in the progress of industrialization and modernization, referring to synthetic chemicals that were not noticed or researched before, which may lead to many chronic diseases, including IBD. The emerging contaminants mainly include microplastics, endocrine-disrupting chemicals, chemical herbicides, heavy metals, and persisting organic pollutants. In this review, we summarize the adverse health effect of these emerging contaminants on humans and their relationships with IBD. Therefore, we can better understand the impact of these new emerging contaminants on IBD, minimize their exposures, and lower the future incidence of IBD.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xueyi Mao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Centre for Global Health, Zhejiang University, Hangzhou, China
| | - Angran Zhu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiya Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Peng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
48
|
Wang C, Li X, Jin D, Gong P, Li Q, Zhang Y, Li X, Deng Y, Cernava T, Zhu X. Implications of environmentally shaped microbial communities for insecticide resistance in Sitobion miscanthi. ENVIRONMENTAL RESEARCH 2022; 215:114409. [PMID: 36152886 DOI: 10.1016/j.envres.2022.114409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Insect-associated bacteria play an important role in the resistance to pesticides, yet bacterial community compositions in wild insect host populations and the environmental factors that shape them are mostly elusive. In this study, Sitobion miscanthi (Takahashi) populations were collected from major wheat growing regions in China. Following high-throughput sequencing of 16S rRNA gene fragments, association analyses were performed within the bacterial community associated with S. miscanthi, as well as with population resistance levels to four commonly used pesticides and different environmental factors. We found that bacterial community structures differed in various regions, and that the abundances of dominant bacteria such as Buchnera, Candidatus Regiella, Candidatus Hamiltonella showed high variations. The resistance of S. miscanthi to avermectin and bifenthrin was shown to decline with increasing bacterial diversity. Meanwhile, with the increase of bacterial network modularity, the resistance of S. miscanthi populations to imidacloprid, avermectin and bifenthrin also increased correspondingly. In addition, correlation analysis indicated that altitude and air pressure had the strongest impact on bacterial community diversity and relative abundance, followed by humidity, rainfall and temperature. Overall, insights into such complex interactions between bacteria and their insect hosts offer new directions for biological pest control.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Decai Jin
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Peipan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiuchi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
49
|
Kang R, Li S, Perveen A, Shen J, Li C. Effects of maternal T-2 toxin exposure on microorganisms and intestinal barrier function in young mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114252. [PMID: 36332402 DOI: 10.1016/j.ecoenv.2022.114252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
T-2 toxin belongs to the trichothecenes group A compound, mainly produced by Fusarium fungi. It has been shown that T-2 toxin could cross the placental barrier and breast milk, thus endangering the health of offspring. The present study aimed to explore the effects of maternal T-2 toxin exposure on the integrity of the intestinal barrier and the intestinal microflora of young mice. From late pregnancy (GD 14) to lactation (LD 21), pregnant mice were given T-2 toxin daily at 0, 0.005, or 0.05 mg T-2 toxin/kg BW. Postnatal day 21 (PND21), PND28, and PND56 young mice were chosen as objects to detect the influences of maternal T-2 toxin exposure to mice on the offspring. The results showed that maternal exposure to T-2 toxin disturbed the balance of the intestinal microbial flora of the young mice. Villous adhesions and fusion of ileum were observed in T-2-treated groups. In addition, supplementation of T-2 toxin significantly decreased the gene expressions of Claudin 1, Occludin, Tjp1, Il10, Il6, and Tnf in PND 21. However, in PND 28, the expressions of Tnf were significantly increased. The expressions of Claudin 1, Occludin, Tjp1, Il10, Il6 and Tnf were significantly increased after T-2 toxin treatment in PND 56. These results suggested that maternal exposure to T-2 toxin has negative influences on the intestine of young mice, which may be due to the alterations of microbial composition.
Collapse
Affiliation(s)
- Ruifen Kang
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sheng Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Aneela Perveen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiakun Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
50
|
Ospina M, Schütze A, Morales-Agudelo P, Vidal M, Wong LY, Calafat AM. Exposure to glyphosate in the United States: Data from the 2013-2014 National Health and Nutrition Examination Survey. ENVIRONMENT INTERNATIONAL 2022; 170:107620. [PMID: 36368224 DOI: 10.1016/j.envint.2022.107620] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to glyphosate, the most used herbicide in the United States, is not well characterized. We assessed glyphosate exposure in a representative sample of the U.S. population ≥ 6 years from the 2013-2014 National Health and Nutrition Examination Survey. METHODS We quantified glyphosate in urine (N = 2,310) by ion chromatography isotope-dilution tandem mass spectrometry. We conducted univariate analysis using log-transformed creatinine-corrected glyphosate concentrations with demographic and lifestyle covariates we hypothesized could affect glyphosate exposure based on published data including race/ethnicity, sex, age group, family income to poverty ratio, fasting time, sample collection season, consumption of food categories (including cereal consumption) and having used weed killer products. We used multiple logistic regression to examine the likelihood of glyphosate concentrations being above the 95th percentile and age-stratified multiple linear regression to evaluate associations between glyphosate concentrations and statistically significant covariates from the univariate analysis: race/ethnicity, sex, age group, fasting time, cereal consumption, soft drink consumption, sample collection season, and urinary creatinine. RESULTS Glyphosate weighted detection frequency was 81.2 % (median (interquartile range): 0.392 (0.263-0.656) μg/L; 0.450 (0.266-0.753) μg/g creatinine). Glyphosate concentration decreased from age 6-11 until age 20-59 and increased at 60+ years in univariate analyses. Children/adolescents and adults who fasted > 8 h had significantly lower model-adjusted geometric means (0.43 (0.37-0.51) μg/L and 0.37 (0.33-0.39) μg/L) than those fasting ≤ 8 h (0.51 (0.46-0.56) μg/L and 0.44 (0.41-0.48) μg/L), respectively. The likelihood (odds ratio (95 % CI)) of glyphosate concentrations being > 95th percentile was 1.94 (1.06-3.54) times higher in people who fasted ≤ 8 h than people fasting > 8 h (P = 0.0318). CONCLUSIONS These first nationally representative data suggest that over four-fifths of the U.S. general population ≥ 6 years experienced recent exposure to glyphosate. Variation in glyphosate concentration by food consumption habits may reflect diet or lifestyle differences.
Collapse
Affiliation(s)
- Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA.
| | - Andre Schütze
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| | - Pilar Morales-Agudelo
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| | - Meghan Vidal
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| | - Lee-Yang Wong
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| |
Collapse
|