1
|
Vadakkan K, Sathishkumar K, Raphael R, Mapranathukaran VO, Mathew J, Jose B. Review on biochar as a sustainable green resource for the rehabilitation of petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173679. [PMID: 38844221 DOI: 10.1016/j.scitotenv.2024.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Petroleum pollution is one of the primary threats to the environment and public health. Therefore, it is essential to create new strategies and enhance current ones. The process of biological reclamation, which utilizes a biological agent to eliminate harmful substances from polluted soil, has drawn much interest. Biochars are inexpensive, environmentally beneficial carbon compounds extensively employed to remove petroleum hydrocarbons from the environment. Biochar has demonstrated an excellent capability to remediate soil pollutants because of its abundant supply of the required raw materials, sustainability, affordability, high efficacy, substantial specific surface area, and desired physical-chemical surface characteristics. This paper reviews biochar's methods, effectiveness, and possible toxic effects on the natural environment, amended biochar, and their integration with other remediating materials towards sustainable remediation of petroleum-polluted soil environments. Efforts are being undertaken to enhance the effectiveness of biochar in the hydrocarbon-based rehabilitation approach by altering its characteristics. Additionally, the adsorption, biodegradability, chemical breakdown, and regenerative facets of biochar amendment and combined usage culminated in augmenting the remedial effectiveness. Lastly, several shortcomings of the prevailing methods and prospective directions were provided to overcome the constraints in tailored biochar studies for long-term performance stability and ecological sustainability towards restoring petroleum hydrocarbon adultered soil environments.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| | - Rini Raphael
- Department of Zoology, Carmel College (Autonomous), Mala, Kerala 680732, India
| | | | - Jennees Mathew
- Department of Chemistry, Morning Star Home Science College, Angamaly, Kerala 683589, India
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur 680009, Kerala, India
| |
Collapse
|
2
|
Wang W, Wu S, Sui X, Cheng S. Phytoremediation of contaminated sediment combined with biochar: Feasibility, challenges and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133135. [PMID: 38056263 DOI: 10.1016/j.jhazmat.2023.133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The accumulation of contaminants in sediments is accelerated by human activities and poses a major threat to ecosystems and human health. In recent years, various remediation techniques have been developed for contaminated sediments. In this review, a bibliometric analysis of papers on sediment remediation indexed in the WOS database between 2009 and 2023 was conducted using VOSviewer. We describe the development of biochar and plants for sediment contaminant removal. However, the single processes of biochar remediation and phytoremediation can be impeded by (i) low efficiency, (ii) poor tolerance of plants towards pollutants, (iii) difficulty in biochar to degrade pollutants, and (iv) biochar aging causing secondary pollution. Fortunately, combination remediation, realized through the combination of biochar and plants, can overcome the shortcomings of their individual applications. Therefore, we suggest that the remediation of contaminants in sediments can be accomplished by combining biochar with macrophytes and considering multiple limiting factors. Here, we explore the challenges that co-remediation with biochar and macrophytes will face in achieving efficient and sustainable sediment remediation, including complex sediment environments, interaction mechanisms of biochar-macrophyte-microorganisms, emerging pollutants, and integrated life cycle assessments, which can provide references for combined biochar and plant remediation of sediments in the future.
Collapse
Affiliation(s)
- Weicong Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuangqi Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueqing Sui
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Deng S, Ren B, Hou B, Deng X, Deng R, Zhu G, Cheng S. Adsorption of Sb(III) and Pb(II) in wastewater by magnetic γ-Fe 2O 3-loaded sludge biochar: Performance and mechanisms. CHEMOSPHERE 2024; 349:140914. [PMID: 38092173 DOI: 10.1016/j.chemosphere.2023.140914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Magnetically modified carbon-based adsorbent (BC@γ-Fe2O3) was prepared through facile route using activated sludge biomass and evaluated for the simultaneous removal of Sb(III) and Pb(II). BC@γ-Fe2O3 exhibited outstanding Sb(III) and Pb(II) adsorption capacity when 200 mg of adsorbent was employed at pH 5.0 for 240 min, with the removal efficiency higher than 90%. The experiments demonstrated the excellent reusability and the potent anti-interference properties of the prepared absorbent. Freundlich and pseudo-second-order kinetic were prior to describe the adsorption process. The adsorption of Sb(III) and Pb(II) onto BC@γ-Fe2O3 was spontaneous and endothermic. BC@γ-Fe2O3 with high specific surface area revealed the exceptional competence to absorb Sb(III) and Pb(II) through pore filling, electrostatic adsorption and complexation. The adsorption mechanisms of Sb(III) and Pb(II) showed similarities with slight disparities. The removal of Sb(III) involved the Fe-O-Sb bond and π-π bond, while the adsorption of Pb(II) was closely related to ion exchange. Moreover, Sb(III) was oxidized to Sb(V) in a minor part during adsorption. The Fe-O-Cl active sites on BC allowed for the binding of γ-Fe2O3, guaranteeing the abundant adsorption sites and stability. BC@γ-Fe2O3 provides an efficient and green insight into the simultaneous removal of complex heavy metals with promising application in wastewater treatment.
Collapse
Affiliation(s)
- Songyun Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinping Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China; Hunan Geological Disaster Monitoring, Early Warning and Emergency Rescue Engineering Technology Research Center, Changsha, 410004, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guocheng Zhu
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shuangchan Cheng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| |
Collapse
|
4
|
Ali S, Baloch SB, Bernas J, Konvalina P, Onyebuchi EF, Naveed M, Ali H, Jamali ZH, Nezhad MTK, Mustafa A. Phytotoxicity of radionuclides: A review of sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2024; 240:117479. [PMID: 37884073 DOI: 10.1016/j.envres.2023.117479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Various anthropogenic activities and natural sources contribute to the presence of radioactive materials in the environment, posing a serious threat to phytotoxicity. Contamination of soil and water by radioactive isotopes degrades the environmental quality and biodiversity. They persist in soils for a considerable amount of time and disturb the fauna and flora of any affected area. Hence, their removal from the contaminated medium is inevitable to prevent their entry into the food chain and the organisms at higher levels of the food chain. Physicochemical methods for radioactive element remediation are effective; however, they are not eco-friendly, can be expensive and impractical for large-scale remediation. Contrastingly, different bioremediation approaches, such as phytoremediation using appropriate plant species for removing the radionuclides from the polluted sites, and microbe-based remediation, represent promising alternatives for cleanup. In this review, sources of radionuclides in soil as well as their hazardous impacts on plants are discussed. Moreover, various conventional physicochemical approaches used for remediation discussed in detail. Similarly, the effectiveness and superiority of various bioremediation approaches, such as phytoremediation and microbe-based remediation, over traditional approaches have been explained in detail. In the end, future perspectives related to enhancing the efficiency of the phytoremediation process have been elaborated.
Collapse
Affiliation(s)
- Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Sadia Babar Baloch
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jaroslav Bernas
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic.
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Eze Festus Onyebuchi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zameer Hussain Jamali
- College of Environmental Science, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Mohammad Tahsin Karimi Nezhad
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental 13 Gardening, Lidicka, 25/27, Brno, 60200, Czech Republic
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences Guangzhou, 510650, China.
| |
Collapse
|
5
|
Zhao Y, Hou X, Wang L, Wang L, Yao B, Li Y. Fe-loaded biochar thin-layer capping for the remediation of sediment polluted with nitrate and bisphenol A: Insight into interdomain microbial interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122478. [PMID: 37678739 DOI: 10.1016/j.envpol.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
The information on the collaborative removal of nitrate and trace organic contaminants in the thin-layer capping system covered with Fe-loaded biochar (FeBC) is limited. The community changes of bacteria, archaea and fungi, and their co-occurrence patterns during the remediation processes are also unknown. In this study, the optimized biochar (BC) and FeBC were selected as the capping materials in a batch experiment for the remediation of overlying water and sediment polluted with nitrate and bisphenol A (BPA). The community structure and metabolic activities of bacteria, archaea and fungi were investigated. During the incubation (28 d), the nitrate in overlying water decreased from 29.6 to 11.0 mg L-1 in the FeBC group, 2.9 and 1.8 times higher than the removal efficiencies in Control and BC group. The nitrate in the sediment declined from 5.03 to 0.75 mg kg-1 in the FeBC group, 1.3 and 1.1 times higher than those in Control and BC group. The BPA content in the overlying water in BC group and FeBC group maintained below 0.4 mg L-1 during incubation, signally lower than in the Control group. After capping with FeBC, a series of species in bacteria, archaea and fungi could collaboratively contribute to the removal of nitrate and BPA. In the FeBC group, more metabolism pathways related to nitrogen metabolism (KO00910) and Bisphenol degradation (KO00363) were generated. The co-occurrence network analysis manifested a more intense interaction within bacteria communities than archaea and fungi. Proteobacteria, Firmicutes, Actinobacteria in bacteria, and Crenarchaeota in archaea are verified keystone species in co-occurrence network construction. The information demonstrated the improved pollutant attenuation by optimizing biochar properties, improving microbial diversity and upgrading microbial metabolic activities. Our results are of significance in providing theoretical guidance on the remediation of sediments polluted with nitrate and trace organic contaminants.
Collapse
Affiliation(s)
- Yiheng Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Xing Hou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China; Institute of Water Science and Technology, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing, 210098, PR China
| | - Bian Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu, 210098, PR China
| |
Collapse
|
6
|
Hung CM, Cheng JW, Chen CW, Huang CP, Dong CD. Pyrolysis processes affecting polycyclic aromatic hydrocarbon profile of pineapple leaf biochar exemplified by atmosphere/temperature and heteroatom doping. BIORESOURCE TECHNOLOGY 2023; 379:129047. [PMID: 37059342 DOI: 10.1016/j.biortech.2023.129047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
The content of polycyclic aromatic hydrocarbons in pineapple leaf biochar was examined as a function of pyrolysis atmosphere (CO2 or N2), pyrolysis temperature (300-900 °C), and heteroatom (N, B, O, P, NP, or NS) doping. Without doping, the polycyclic aromatic hydrocarbon production was maximal (1332 ± 27 ng/g) in CO2 at 300 °C and minimal (157 ± 2 ng/g) in N2 at 700 °C. The main components naphthalene and acenaphthylene accounted for about 91% of the total polycyclic aromatic hydrocarbon in the biochar prepared under CO2 at 300 °C. Under the maximal polycyclic aromatic hydrocarbon production conditions (CO2, 300 °C), doping decreased the total hydrocarbon content by 49% (N), 61% (B), 73% (O), 92% (P), 93% (NB), and 96% (NS). The results shed new light on the management of polycyclic aromatic hydrocarbons in BC production by controlling the pyrolysis atmosphere and temperature in addition to heteroatom doping. Results significantly contributed to the development of circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Jia-Wei Cheng
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
7
|
Hung CM, Chen CW, Huang CP, Dong CD. Effects of pyrolysis conditions and heteroatom modification on the polycyclic aromatic hydrocarbons profile of biochar prepared from sorghum distillery residues. BIORESOURCE TECHNOLOGY 2023:129295. [PMID: 37311529 DOI: 10.1016/j.biortech.2023.129295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
The formation of 2- to 6-ring polycyclic aromatic hydrocarbons (PAHs) in sorghum distillery residue-derived biochar (SDRBC) was evaluated under different thermochemical pyrolysis conditions of carbonization atmosphere (N2 or CO2), temperature (300-900 °C) and doping with nonmetallic elements, i.e., N, B, O, P, N + B, and N + S. The results indicated that without surface modification, PAHs formation was 944 ± 74 ng g-1, the highest level, and 181 ± 16 ng g-1, the lowest level, at 300 °C in N2 and CO2 atmosphere, respectively. Boron doping of SDRBC significantly reduced the PAHs content (by 97%) under N2 at 300 °C. Results demonstrated that boron modified SDRBC exhibited the highest degree of PAH reduction. Combined pyrolysis temperature and atmosphere in addition to heteroatom doping is a robust and viable strategy for efficient suppression of PAHs formation and high-value utilization of pyrolysis products of low carbon footprint.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
8
|
Zhong Y, Wan X, Lian X, Cheng W, Ma X, Wang D. Hydroxylamine facilitated catalytic degradation of methylene blue in a Fenton-like system for heat-treatment modified drinking water treatment residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27780-x. [PMID: 37284959 DOI: 10.1007/s11356-023-27780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Rational treatment of drinking water treatment residues (WTR) has become an environmental and social issue due to the risk of secondary contamination. WTR has been commonly used to prepare adsorbents because of its clay-like pore structure, but then requires further treatment. In this study, a Fenton-like system of H-WTR/HA/H2O2 was constructed to degrade organic pollutants in water. Specifically, WTR was modified by heat treatment to increase its adsorption active site, and to accelerate Fe(III)/Fe(II) cycling on the catalyst surface by the addition of hydroxylamine (HA). Moreover, the effects of pH, HA and H2O2 dosage on the degradation were discussed with methylene blue (MB) as the target pollutant. The mechanism of the action of HA was analyzed and the reactive oxygen species in the reaction system were determined. Combined with the reusability and stability experiments, the removal efficiency of MB remained 65.36% after 5 cycles. Consequently, this study may provide new insights into the resource utilization of WTR.
Collapse
Affiliation(s)
- Yu Zhong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiancheng Wan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoyan Lian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenyu Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoying Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dongtian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
9
|
Li J, Lin F, Yu H, Tong X, Cheng Z, Yan B, Song Y, Chen G, Hou L, Crittenden JC. Biochar-Assisted Catalytic Pyrolysis of Oily Sludge to Attain Harmless Disposal and Residue Utilization for Soil Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7063-7073. [PMID: 37018050 DOI: 10.1021/acs.est.2c09099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pyrolysis of oily sludge (OS) is a feasible technology to match the principle of reduction and recycling; however, it is difficult to confirm the feasible environmental destination and meet the corresponding requirements. Therefore, an integrated strategy of biochar-assisted catalytic pyrolysis (BCP) of OS and residue utilization for soil reclamation is investigated in this study. During the catalytic pyrolysis process, biochar as a catalyst intensifies the removal of recalcitrant petroleum hydrocarbons at the expense of liquid product yield. Concurrently, biochar as an adsorbent can inhibit the release of micromolecular gaseous pollutants (e.g. HCN, H2S, and HCl) and stabilize heavy metals. Due to the assistance of biochar, pyrolysis reactions of OS are more likely to occur and require a lower temperature to achieve the same situation. During the soil reclamation process, the obtained residue as a soil amendment can not only provide a carbon source and mineral nutrients but can also improve the abundance and diversity of microbial communities. Thus, it facilitates the plant germination and the secondary removal of petroleum hydrocarbons. The integrated strategy of BCP of OS and residue utilization for soil reclamation is a promising management strategy, which is expected to realize the coordinated and benign disposal of more than one waste.
Collapse
Affiliation(s)
- Jiantao Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Fawei Lin
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Hongdi Yu
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Xin Tong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P. R. China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, P. R. China
| | - Li'an Hou
- Xi'an High-Tech Institute, Xi'an 710025, P. R. China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Xu S, Zhan J, Li L, Zhu Y, Liu J, Guo X. Total petroleum hydrocarbons and influencing factors in co-composting of rural sewage sludge and organic solid wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120911. [PMID: 36549453 DOI: 10.1016/j.envpol.2022.120911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Co-composting is an efficient strategy for collaborative disposal of multiple organic wastes in rural areas. In this study, we explored the co-composting of rural sewage sludge and other organic solid wastes (corn stalks and kitchen waste), with a focus on the variation of total petroleum hydrocarbons (TPH) during this process. 12% corn-derived biochar was applied in the composting (BC), with no additives applied as the control treatment (CK). The TPH contents of piles after composting ranged from 0.70 to 0.74 mg/g, with overall removal efficiencies of 35.6% and 61.1% for CK and BC, respectively. The results indicate that the addition of 12% biochar increased the rate of TPH degradation and accelerated the degradation process. 16s rDNA high-throughput sequencing was applied to investigate the biodiversity and bacterial community succession during the composting process. Diverse bacterial communities with TPH degradation functions were observed in the composting process, including Acinetobacter, Flavobacterium, Paenibacillus, Pseudomonas, and Bacillus spp. These functional bacteria synergistically degraded TPH, with cooperative behavior dominating during composting. Biochar amendment enhanced the microbial activity and effectively promoted the biodegradation of TPH. The physicochemical properties of the compost piles, including environmental factors (pH and temperature), nutrients (nitrogen, phosphorus, potassium), and humic substances produced in composting (humic acids and fulvic acids), directly and indirectly affected the variation in TPH contents. In conclusion, this work illustrates the variation in TPH content and associated influencing factors during co-composting of rural organic solid wastes, providing valuable guidance toward the further optimization of rural organic waste management.
Collapse
Affiliation(s)
- Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Jun Zhan
- POWERCHINA Group Environmental Engineering Co.,LTD, Hangzhou, Zhejiang, 310005, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yingming Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
11
|
Wang X, Zhao Y, Yao G, Lin Z, Xu L, Jiang Y, Jin Z, Shan S, Ping L. Responses of aquatic vegetables to biochar amended soil and water environments: a critical review. RSC Adv 2023; 13:4407-4421. [PMID: 36760305 PMCID: PMC9891097 DOI: 10.1039/d2ra04847g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution. Therefore, a new cost-effective and eco-friendly solution for addressing the above issues is urgently required. Biochars, one type of pyrolysis product obtained from agricultural and forestry waste, show great potential in reducing fertilizer application, upgrading soil quality and remediating pollution. Application of biochars in aquatic vegetable cultivation would not only improve the yield and quality, but also reduce its edible risk. Biochars can improve the soil micro-environment, soil microorganism and soil enzyme activities. Furthermore, biochars can remediate the heavy metal pollution, organic pollution and nitrogen and phosphorus non-point source pollution in the water and soil environments of aquatic vegetables, which promotes the state of cultivation conditions and thereby improves the yield and quality of aquatic vegetables. However, the harmful substances such as heavy metals, PAHs, etc. derived from biochars can cause environmental risks, which should be seriously considered. In this review, the application of biochars in aquatic vegetable cultivation is briefly summarized. The changes of soil physicochemical and biological properties, the effects of biochars in remediating water and soil environmental pollution and the impacts of biochars on the yield and quality of aquatic vegetables are also discussed. This review will provide a comprehensive overview of the research progress on the effects of biochars on soil and water environments for aquatic vegetable cultivation.
Collapse
Affiliation(s)
- Xiangjun Wang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Yaming Zhao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Guangwei Yao
- Kaihua Agricultural and Rural BureauQuzhouZhejiang Province324399PR China
| | - Zhizhong Lin
- Kaihua Agricultural and Rural BureauQuzhouZhejiang Province324399PR China
| | - Laiyuan Xu
- Kaihua Agricultural and Rural BureauQuzhouZhejiang Province324399PR China
| | - Yunli Jiang
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Zewen Jin
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| | - Lifeng Ping
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology Hangzhou 310023 PR China
| |
Collapse
|
12
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Chen CW, Dong CD. The remediation of di-(2-ethylhexyl) phthalate-contaminated sediments by water hyacinth biochar activation of calcium peroxide and its effect on cytotoxicity. ENVIRONMENTAL RESEARCH 2023; 216:114656. [PMID: 36341791 DOI: 10.1016/j.envres.2022.114656] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity. Under the experimental conditions studied, the carbocatalyst exhibited 94% of DEHP removal. Singlet oxygen (1O2), the major active species in the WHBC/CP system and electron-rich carbonyl functional groups of carbocatalyst, played crucial roles in the non-radical activation of CP. Furthermore, cellular toxicity evaluation indicated lower cytotoxicity in hepatocarcinoma cells (HepG2) after exposure to WHBC (25-1000 μg mL-1) for 24 h and that WHBC induced cell cycle arrest at the G2/M phase. Findings clearly indicated the feasibility of the WHBC/CP process for the restoration of contaminated sediment and contributing to understanding the mechanisms of cytotoxic effects and apoptotic of carbocatalyst on HepG2.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
13
|
Liang C, Sun H, Ling C, Liu X, Li M, Zhang X, Guo F, Zhang X, Shi Y, Cao S, He H, Ai Z, Zhang L. Pyrolysis temperature-switchable Fe-N sites in pharmaceutical sludge biochar toward peroxymonosulfate activation for efficient pollutants degradation. WATER RESEARCH 2023; 228:119328. [PMID: 36413832 DOI: 10.1016/j.watres.2022.119328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Pyrolysis of pharmaceutical sludge (PS) is a promising way of safe disposal and to recover energy and resources from waste. The resulting PS biochar (PSBC) is often used as adsorbent, but has seldom been explored as catalyst. Herein we demonstrate that PSBC (0.4 g/L) could efficiently activate peroxymonosulfate (PMS) to 100% degrade 4-chlorophenol (4-CP) with rate constants of 0.42-1.70 min-1, outperforming other reported catalysts. Interestingly, the PMS activation pathway highly depended on PSBC pyrolysis temperature, which produced dominantly high-valent iron species (e.g., FeIVO2+) at low temperature but more sulfate radical (SO4·-) and hydroxyl radical (·OH) at higher temperature, e.g., 0.17, 0.23, 0.12 mmol/L of FeIVO2+ and 0.009, 0.038, 0.102 mmol/L of SO4·-/·OH were produced within 10 min by PSBC-600/PMS, PSBC-800/PMS, and PSBC-1000/PMS, respectively. Characterization, density functional theory (DFT) simulation and Pearson correlation analysis revealed that along with the increase of pyrolysis temperatures, the active sites of PSBC gradually shifted from atomically dispersed N-coordinated Fe moieties (FeNx) to iron nitrides (FexN), which activated PMS to produce FeIVO2+ and SO4·-/·OH, respectively. This study clarifies the structure-activity relationships of PSBC for PMS activation, and opens a new avenue for the treatment and utilization of PS as high value-added resources.
Collapse
Affiliation(s)
- Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiufan Liu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiang Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyu Cao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hua He
- Hebei North China Pharmaceutical Huaheng Pharmaceutical Co., Ltd., Shijiazhuang 051530, China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Haider FU, Wang X, Zulfiqar U, Farooq M, Hussain S, Mehmood T, Naveed M, Li Y, Liqun C, Saeed Q, Ahmad I, Mustafa A. Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114322. [PMID: 36455351 DOI: 10.1016/j.ecoenv.2022.114322] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation of organic contaminants has become a major environmental concern in the last few years, due to its bio-resistance and potential to accumulate in the environment. The use of diverse technologies, involving chemical and physical principles, and passive uptake utilizing sorption using ecofriendly substrates have drawn a lot of interest. Biochar has got attention mainly due to its simplicity of manufacturing, treatment, and disposal, as it is a less expensive and more efficient material, and has a lot of potential for the remediation of organic contaminants. This review highlighted the adverse impact of persistent organic pollutants on the environment and soil biota. The utilization of biochar to remediate soil and contaminated compounds i.e., pesticides, polycyclic aromatic hydrocarbons, antibiotics, and organic dyes has also been discussed. The soil application of biochar has a significant impact on the biodegradation, leaching, and sorption/desorption of organic contaminants. The sorption/desorption of organic contaminants is influenced by chemical composition and structure, porosity, surface area, pH, and elemental ratios, and surface functional groups of biochar. All the above biochar characteristics depend on the type of feedstock and pyrolysis conditions. However, the concentration and nature of organic pollutants significantly alters the sorption capability of biochar. Therefore, the physicochemical properties of biochar and soils/wastewater, and the nature of organic contaminants, should be evaluated before biochar application to soil and wastewater. Future initiatives, however, are needed to develop biochars with better adsorption capacity, and long-term sustainability for use in the xenobiotic/organic contaminant remediation strategy.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, China.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Saddam Hussain
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Yuelin Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China.
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
15
|
Li S, Huang D, Cheng M, Wei Z, Du L, Wang G, Chen S, Lei L, Chen Y, Li R. Application of sludge biochar nanomaterials in Fenton-like processes: Degradation of organic pollutants, sediment remediation, sludge dewatering. CHEMOSPHERE 2022; 307:135873. [PMID: 35932922 DOI: 10.1016/j.chemosphere.2022.135873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
In today's society, wastewater sludge has become solid waste, and the preparation of wastewater sludge into sludge biochar nanomaterials (SBCs) for resource utilization has become a promising method. SBCs have advantages over other biomasses, including their complex composition, wide range of raw materials, and especially the presence of various transition metals with catalytic properties. Heterogeneous Fenton processes using SBCs as catalyst carriers have shown great potential in the removal of pollutants. In this review, the synthesis methods of SBCs are reviewed and the effects of different synthesis methods on their physicochemical properties are discussed. Furthermore, the successful applications of raw SBCs, metal-modified SBCs, and Fenton sludge-SBCs in organic pollutant degradation, sediment remediation, and sludge dewatering are reviewed. The mechanisms occurring with different metals as active sites are explored, and the review shows that the degradation efficiency and stability of SBCs are very satisfactory. We also provide an outlook on the future development of SBCs. We hope that this review will help readers gain a clearer and deeper understanding of SBCs and promote the development of SBCs.
Collapse
Affiliation(s)
- Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Zhen Wei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
16
|
Hung CM, Chen CW, Huang CP, Dong CD. Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar for enhancing the degradation of sulfathiazole antibiotics by peroxymonosulfate and its effects on bacterial community dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119984. [PMID: 35985431 DOI: 10.1016/j.envpol.2022.119984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar (denoted as N-CSBC, O-CSBC, and B-CSBC, respectively) were fabricated in a one-step pyrolysis process to promote peroxymonosulfate (PMS) activation for the elimination of sulfathiazole (STZ) from aquaculture water. B-CSBC exhibited remarkably high catalytic activity with 92% of STZ degradation in 30 min attributed to the presence of meso-/micro-pores and B-containing functional groups (including B-N, B-C, and B2O3 species). Radical quenching tests revealed SO4•-, HO•, and 1O2 being the major electron acceptors contributing to STZ removal by PMS over B-CSBC catalyst. The B-CSBC catalyst has demonstrated high sustainability in multiple consecutive treatment cycles. High salinity and the presence of inorganic ions such as chloride, enhanced the performance of the sulfate radical-carbon-driven advanced oxidation processes (SR-CAOPs) as pretreatment strategy that significantly facilitated the removal of STZ from aquaculture water. Furthermore, a potential sulfonamide-degrading microorganism, Cylindrospermum_stagnale, belonging to the phylum Cyanobacteria, was the dominant functional bacteria according to the results of high-throughput 16S rRNA gene sequencing conducted after the B-CSBC/PMS treatment. This study provides new insights into the SR-CAOP combined with bioprocesses for removing STZ from aqueous environments.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
17
|
Hung CM, Chen CW, Huang CP, Dong CD. Degradation of 4-nonylphenol in marine sediments using calcium peroxide activated by water hyacinth (Eichhornia crassipes)-derived biochar. ENVIRONMENTAL RESEARCH 2022; 211:113076. [PMID: 35271836 DOI: 10.1016/j.envres.2022.113076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The contamination of marine sediments by 4-nonylphenol (4-NP) has become a global environmental problem, therefore there are necessaries searching appropriate and sustainable remediation methods for in-situ applications. Herein, water hyacinth [(WH) (Eichhornia crassipes)]-derived metal-free biochar (WHBC) prepared at 300-900 °C was used to promote the calcium peroxide (CP)-mediated remediation of 4-NP-contaminaed sediments. At [CP] = 4.37 × 10-4 M, [WHBC] = 1.5 g L-1, and pH = 6.0, the degradation of 4-NP was 77% in 12 h following the pseudo-first order rate law with rate constant (kobs) of 4.2 × 10-2 h-1. The efficient 4-NP degradation performance and reaction mechanisms of the WHBC/CP system was ascribed to the synergy between the reactive species (HO• and 1O2) at the WHBC surface on which there were abundant electron-rich carbonyl groups and defects/vacancies in the catalyst structure provides active sites, and the ability of the graphitized carbon framework to act as a medium for electron shuttling. According to microbial community analysis based on amplicon sequence variants, bacteria of the genus Solirubrobacter (Actinobacteria phylum) were dominant in WHBC/CP-treated sediments and were responsible for the biodegradation of 4-NP. The results showed great promise and novelty of the hydroxyl radical-driven carbon advanced oxidation processes (HR-CAOPs) that relies on the value-added utilization of water hyacinth for contaminated sediment remediation in achieving circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
18
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Ding DS, Hsieh S, Chen CW, Dong CD. Exposure of Goniopora columna to polyethylene microplastics (PE-MPs): Effects of PE-MP concentration on extracellular polymeric substances and microbial community. CHEMOSPHERE 2022; 297:134113. [PMID: 35227744 DOI: 10.1016/j.chemosphere.2022.134113] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Although the pollution of coral reefs by microplastics (MPs) is an environmental problem of global significance, the effects of MP concentration on scleractinian corals remain largely underexplored. Herein, we exposed a representative scleractinian coral (Goniopora columna) to different concentrations (5-300 mg L-1) of polyethylene microplastics (PE-MPs; 40-48 μm) over seven days and evaluated the changes in microbial community and extracellular polymeric substances (EPS) using fluorescence excitation-emission matrix spectroscopy and amplicon sequence variants (ASV). At a PE-MP concentration of 300 mg L-1, the relative abundance of Bacillus (Firmicutes phylum) and Ruegeria (Proteobacteria phylum) in PE-MP-associated EPS increased and decreased, respectively, while the effects of exposure depended on the particle size of the extracellular polymeric substance (EPS)-based matrix and the humification index. Humic- and fulvic-like substances were identified as critical EPS components produced by microbial activity. The results have shed new insights into short-term responses of G. columna during exposure to different PE-MP concentrations and reveal important coral-MP-microbiome interactions in coral reef ecosystems. Results demonstrated that the coral-MPs interactions should be further evaluated to gain a deeper understanding of the underlying ecotoxicological risks.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - De-Sing Ding
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
19
|
Hung CM, Chen CW, Huang CP, Tsai ML, Dong CD. Metal-free carbocatalysts derived from macroalga biomass (Ulva lactuca) for the activation of peroxymonosulfate toward the remediation of polycyclic aromatic hydrocarbons laden marine sediments and its impacts on microbial community. ENVIRONMENTAL RESEARCH 2022; 208:112782. [PMID: 35077714 DOI: 10.1016/j.envres.2022.112782] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Potential toxic chemicals, specifically, polycyclic aromatic hydrocarbons (PAHs), are major sediment contaminants. Herein, green seaweed (Ulva lactuca) was used as a feedstock and pyrolyzed at temperature in the range between 300 and 900 °C. The metal-free carbocatalyst (GSBC) for peroxymonosulfate (PMS) activation to degrade PAHs contaminated sediments was studied. The effects of GSBC‒PMS treatment on microbial community abundance was studied as well. The pyrolysis temperature of GSBC preparation affected the PMS activation performance. Results show that GSBC700 exhibited remarkable catalytic characteristics in PAHs degradation by effective activation of PMS. The results also demonstrated that the sulfate radical-carbon-driven advanced oxidation processes (SR-CAOP) reaction achieved 87% and apparent rate constant (kobs) of 6.3 × 10-2 h-1 of total PAHs degradation in 24 h at 3.3 g/L of GSBC, PMS dose of 1 × 10-4 M, and pH 3.0. The degradation of 2-, 3-, 4-, 5-, and 6-ring PAHs was 84, 83, 83, 80, and 89%, respectively. The synergetic effect established between GSBC and PMS enhanced the formation of ROSs, namely, SO4-, HO, and 1O2, which were major species contributing to PAHs degradation. The synergistic effect of π‒π stacking structure and graphitization of GSBC formed electron shuttle, which contributed to PAHs degradation performance. Microbial community structure analyses in the GSBC‒PMS treated sediments showed that the relative abundance of Lactobacillus_rhamnosus species, most of which belonged to the Lactobacillus genus and Firmicutes phylum, which aided in continuing PAHs biodegradation post GSBC‒PMS treatment. Therefore, GSBC can be a promising carbocatalyst produced via biomass-to-biochar conversion as biowaste-to-energy source used in the SR-CAOP-mediated process for sediment remediation.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
20
|
Patel AK, Singhania RR, Pal A, Chen CW, Pandey A, Dong CD. Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153054. [PMID: 35026237 DOI: 10.1016/j.scitotenv.2022.153054] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Biochar is gaining incredible importance for remediation applications due to their attractive removal properties. Moreover, it is becoming ecofriendly, cost-effective and sustainable bioadsorbents towards replacing expensive activated carbons. Studies reveal biochar effectiveness for removal of important and potentially severe organic pollutants such as antibiotics and pesticides. Recent research advancements on biochar modification (physical, chemical and biological) opens greater opportunity to form tailored biochar with improved surface properties than their native forms for offering better removal efficiencies. Further attentions paid towards emergent new modification methods to cover broad-spectrum pollutants using tailored biochar. Current review aims to summarize recent updates upon biochar tailoring, comparative account of tailored biochars removal efficiencies with respect to their native forms and to provide in-depth discussion covering specific interactions of tailored biochars with antibiotics, polycyclic aromatic hydrocarbons (PAHs) and pesticides for their effective removals and degradation from polluted environments. Application of inducer compounds e.g., peroxymonosulfate and sodium percarbonate further improved the biochar role towards degradation of toxic organic pollutants into their less or nontoxic forms. Biochar engineered with specific metals enable them for the same role without inducer compounds. Moreover, microbial interactions with biochar not only improve the bioremediation level further but also degrade the pollutants from the environment and open up better environmental and socio-economic prospects. Application of green, cost-effective and sustainable biochar for remediation of environmentally potential organic pollutants offers economical treatment methods as well as safe environment. These benefits are inline with global trends towards developing a sustainable process for biocircular economy.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anugunj Pal
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
21
|
Efficient removal of tetracycline by H2O2 activated with iron-doped biochar: Performance, mechanism, and degradation pathways. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
De Carvalho Gomes S, Zhou JL, Zeng X, Long G. Water treatment sludge conversion to biochar as cementitious material in cement composite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114463. [PMID: 35007797 DOI: 10.1016/j.jenvman.2022.114463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Water treatment sludge was successfully thermally converted to obtain biochar as a stable material with resource potential. This research explored the application of sludge biochar as a supplementary cementitious material. The cement paste samples incorporating different amounts of sludge biochar were prepared, hardened, and analyzed for performance. The results show an improvement in hydration kinetics and mechanical properties of cement paste incorporating biochar, compared to raw sewage sludge. The mineralogical, thermal and microscopic analyses show evidence of pozzolanic activity of the biochar. The samples with 2% and 5% biochar showed higher heat release than the reference material. Specimens with 1%, 2% and 5% biochar showed a slightly higher compressive strength at 28 days compared to the reference material. Sludge conversion to biochar will incur an estimated cost of US$398.23/ton, which is likely to be offset by the substantial benefits from avoiding landfill and saving valuable cementitious materials. Therefore, this research has demonstrated that through conversion to biochar, water treatment sludge can be promoted as a sustainable and alternative cementitious material for cement with minimum environmental impacts, hence contributing to circular economy.
Collapse
Affiliation(s)
- Samuel De Carvalho Gomes
- Center for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - John L Zhou
- Center for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; School of Civil Engineering, Central South University, Changsha, Hunan Province, 410075, China.
| | - Xiaohui Zeng
- School of Civil Engineering, Central South University, Changsha, Hunan Province, 410075, China
| | - Guangcheng Long
- School of Civil Engineering, Central South University, Changsha, Hunan Province, 410075, China
| |
Collapse
|
23
|
Eltaweil AS, Abd El-Monaem EM, Elshishini HM, El-Aqapa HG, Hosny M, Abdelfatah AM, Ahmed MS, Hammad EN, El-Subruiti GM, Fawzy M, Omer AM. Recent developments in alginate-based adsorbents for removing phosphate ions from wastewater: a review. RSC Adv 2022; 12:8228-8248. [PMID: 35424751 PMCID: PMC8982349 DOI: 10.1039/d1ra09193j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
The huge development of the industrial sector has resulted in the release of large quantities of phosphate anions which adversely affect the environment, human health, and aquatic ecosystems. Naturally occurring biopolymers have attracted considerable attention as efficient adsorbents for phosphate anions due to their biocompatibility, biodegradability, environmentally-friendly nature, low-cost production, availability in nature, and ease of modification. Amongst them, alginate-based adsorbents are considered one of the most effective adsorbents for removing various types of pollutants from industrial wastewater. The presence of active COOH and OH- groups along the alginate backbone facilitate its physical and chemical modifications and participate in various possible adsorption mechanisms of phosphate anions. Herein, we focus our attention on presenting a comprehensive overview of recent advances in phosphate removal by alginate-based adsorbents. Modification of alginate by various materials, including clays, magnetic materials, layered double hydroxides, carbon materials, and multivalent metals, is addressed. The adsorption potentials of these modified forms for removing phosphate anions, in addition to their adsorption mechanisms are clearly discussed. It is concluded that ion exchange, complexation, precipitation, Lewis acid-base interaction and electrostatic interaction are the most common adsorption mechanisms of phosphate removal by alginate-based adsorbents. Pseudo-2nd order and Freundlich isotherms were figured out to be the major kinetic and isotherm models for the removal process of phosphate. The research findings revealed that some issues, including the high cost of production, leaching, and low efficiency of recyclability of alginate-based adsorbents still need to be resolved. Future trends that could inspire further studies to find the best solutions for removing phosphate anions from aquatic systems are also elaborated, such as the synthesis of magnetic-based alginate and various-shaped alginate nanocomposites that are capable of preventing the leaching of the active materials.
Collapse
Affiliation(s)
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University 163, Horrya Avenue Alexandria Egypt
| | - Hisham G El-Aqapa
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Abdelfatah
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Maha S Ahmed
- Higher Institute of Science and Technology-King Mariout Egypt
| | - Eman Nasr Hammad
- Chemistry Department, Faculty of Science, Menoufia University Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Manal Fawzy
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University 21511 Alexandria Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) P. O. Box: 21934 New Borg El-Arab City Alexandria Egypt
| |
Collapse
|
24
|
Zhou X, Shi L, Moghaddam TB, Chen M, Wu S, Yuan X. Adsorption mechanism of polycyclic aromatic hydrocarbons using wood waste-derived biochar. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128003. [PMID: 34896716 DOI: 10.1016/j.jhazmat.2021.128003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) have been attracted increasing attentions due to their carcinogenicity and teratogenicity. Adsorption is widely considered one of the most potential technologies for PAHs removal. In this study, we prepared two kinds of oxygen-rich biochar derived from waste wood to investigate the PAHs adsorption performance, and the molecular simulation was used to build the 16 priority PAHs, 23 nitrated PAHs, 9 oxygenated PAHs adsorption model. The surface adsorption performance of oxygen-rich biochar significantly depends on the pyrolysis conditions. The main out-comings demonstrated that the adsorption of naphthalene (C10H8) molecules first occurred, and the optimal adsorption positions of oxygen-rich biochar strongly adhered to functional groups of carboxyl and hydroxyl. Moreover, benzene ring, -COOH, and -CH3 of biochar were the main adsorbed functional groups for PAHs adsorption. The oxygen-rich biochar had the targeted-adsorption effect on PAHs removal especially symmetrical PAHs, and the targeted-adsorption mechanism was finally proposed. The research is beneficial to guide the removal of PAHs from polluted water and mitigate the environmental pollution caused by biomass waste mismanagement, simultaneously.
Collapse
Affiliation(s)
- Xinxing Zhou
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China; Key Laboratory of Highway Construction and Maintenance Technology in Loess Region of Ministry of Transport, Shanxi Transportation Technology Research & Development Co., Ltd, Taiyuan 030032, China.
| | - Liang Shi
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Taher Baghaee Moghaddam
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Waterloo, Ontario N2L 3G1, Canada.
| | - Meizhu Chen
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Shaopeng Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiangzhou Yuan
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; R&D Centre, Sun Brand Industrial Inc., Jeollanam-do 57248, Republic of Korea.
| |
Collapse
|
25
|
Hung CM, Chen CW, Huang CP, Tsai ML, Wu CH, Lin YL, Cheng YR, Dong CD. Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126922. [PMID: 34425433 DOI: 10.1016/j.jhazmat.2021.126922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Phthalate esters (PAEs) are a group of ubiquitous organic environmental contaminants. Engineered ferromanganese-bearing sludge-derived biochar (SDB), synthesized using one-step pyrolysis in the temperature range between 300 and 900 °C, was used to enable Fenton-like processes that decontaminated PAE-laden sediments. SDB was thoroughly characterized using scanning electron microscopyenergy-dispersive spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Raman spectroscopy, Fourier-transform infrared spectroscopy, electron paramagnetic resonance, X-ray photoelectron spectroscopy, and fluorescence excitation-emission matrix spectroscopy coupled with parallel factor analysis. The maximum PAE degradation was remarkable at 90% in 12 h at pH 6.0 in the presence of 1.7 g L-1 of SDB 900. The highly-effective PAE degradation was mainly attributed to the synergism between FeOx and MnOx, which strengthened the activation of percarbonate (PC) via electron transfer, hydroxy addition, and hydrogen abstraction through radical (HO•) and nonradical (1O2) oxidation mechanisms, thereby facilitating PAE catalytic degradation over SDB in real sediments, which clearly proved the efficacy of ferromanganese-bearing SDB and PC for the remediation of contaminated sediments. The cytotoxicity exhibited by human skin keratinocyte cells exposure to high SDB concentration (100-400 µg mL-1) for 24-48 h was low indicating insignificant cellular toxicity and oxidative damages. This study provides a new strategy for freshwater sludge treatment and reutilization, which enables a water-cycle-based circular economy and waste-to-resource recycling.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chung-Hsin Wu
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Yu-Rong Cheng
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
26
|
Hung CM, Chen CW, Huang CP, Shiung Lam S, Dong CD. Peroxymonosulfate activation by a metal-free biochar for sulfonamide antibiotic removal in water and associated bacterial community composition. BIORESOURCE TECHNOLOGY 2022; 343:126082. [PMID: 34610427 DOI: 10.1016/j.biortech.2021.126082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic sulfamethoxazole (SMX) has been commonly found in various water matrices, therefore effective decontamination method is urgently needed. Metal-free pristine coconut-shell-derived biochar (CSBC), synthesized by thermochemical conversion at 700 °C, was used for activating peroxymonosulfate (PMS), an oxidant, to degrade SMX, a sulfonamide antibiotic, in water. SMX degradation, maximized at 0.05 mM concentration, was 85% in 30 min at pH 5.0 in the presence of 150 mg L-1 of CSBC. Remarkably, SMX removal reached 99% in a chloride-rich CSBC/PMS system. SMX degradation was mainly attributed to the role of CSBC in enhancing PMS activation to produce combined radical (SO4•-/HO•) and nonradical (1O2) reaction pathways. The most abundant genus in the CSBC/PMS system was Methylotenera, which belonged to the Proteobacteria phylum. Thus, from a perspective of biowaste-to-resource recycling and circular bioeconomy view point, CSBC is a potential catalytic activator of PMS for the removal of sulfonamide antibiotics from aqueous environments.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
27
|
Xiong S, Deng Y, Gong D, Tang R, Zheng J, Li L, Zhou Z, Su L, Liao C, Yang L. Magnetically modified in-situ N-doped Enteromorpha prolifera derived biochar for peroxydisulfate activation: Electron transfer induced singlet oxygen non-radical pathway. CHEMOSPHERE 2021; 284:131404. [PMID: 34323791 DOI: 10.1016/j.chemosphere.2021.131404] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Herein, in-situ N-doped Enteromorpha prolifera derived magnetic biochar (MBC) was prepared by loading Fe3O4. It can effectively activate peroxodisulfate (PDS) to degrade tetracycline (TC) and easy recycling. The removal rate of TC reached 87.2%, and its possible degradation pathway was revealed through a liquid chromatography-mass spectrometer. This work first proposes the mechanism of in-situ N-doping and Fe synergistic effect on PDS activation. Unlike the well-reported role of N doping in activating PDS, except for the edge pyridine N plays a significant role in the activation of PDS. After the load of Fe, the synergistic effect of Fe and graphite N induces a non-radical path dominated by singlet oxygen (1O2) due to the excellent electron transfer function. Through chemical quenching experiment, electron spin detection, and electrochemical analysis, the mechanism of PDS activation by MBC was thoroughly investigate. This research will deepen the understanding of the mechanism of transition metals and carbon materials in synergistically driving PDS activation, and guide biochar-mediated PDS activation in environmental remediation.
Collapse
Affiliation(s)
- Sheng Xiong
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaocheng Deng
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Daoxin Gong
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Rongdi Tang
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Jiangfu Zheng
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Li
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Zhanpeng Zhou
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Long Su
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Chanjuan Liao
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lihua Yang
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
28
|
Sun X, Lyu S. l-cysteine-modified Fe 3 O 4 nanoparticles as a novel heterogeneous catalyst for persulfate activation on BTEX removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:3023-3036. [PMID: 34676621 DOI: 10.1002/wer.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
l-cysteine-modified Fe3 O4 nanoparticles (l-cys@nFe3 O4 ) were synthesized successfully and used as catalyst to activate persulfate (PS) for benzene, toluene, ethylbenzene, and xylenes (BTEX) degradation. The composite was fully characterized, and the l-cys@nFe3 O4 had more protrusions and l-cys was combined on the surface of nFe3 O4 . The removals of BTEX were 78.2%, 85.1%, 85.3%, 81.2%, respectively, in PS/l-cys@nFe3 O4 system, while only 52.7% 57.8%, 60.8%, and 56.3% of BTEX removals reached under the same condition for nFe3 O4 chelated with l-cys in 48 h. Four successive cycles of BTEX degradation were completed in PS/l-cys@nFe3 O4 system. The synergistic mechanisms of BTEX degradation in PS/l-cys@nFe3 O4 system were investigated by electron paramagnetic resonance (EPR), benzoic acid (BA) probe and X-ray photoelectron spectroscopy (XPS) tests. SFe bond in l-cys-Fe complexes promoted the electron transfer between nFe3 O4 core and the solution, iron and iron at the interface, thereby promoting the Fe3+ /Fe2+ cycle and the catalytic capacity of nFe3 O4 . The optimal pH of PS/l-cys@nFe3 O4 system was 3, while HCO3 - and Cl- exhibited negative influences on BTEX degradation. Only 14.2%, 15.5%, 15.9%, and 15.6% BTEX had been removed in the presence of 0.12-M PS and 8.0 g/L l-cys@nFe3 O4 under the actual groundwater condition. However, expanding the dosage of PS and l-cys@nFe3 O4 was an effective strategy to overcome the adverse effect. PRACTITIONER POINTS: L-cys@nFe3 O4 were synthesized successfully and used as catalyst to activate PS for BTEX degradation. Four successive cycles of BTEX degradation were completed in PS/L-cys@nFe3 O4 system. lS-Fe bond in L-cys@nFe3 O4 promoted the electron transfer between PS and nFe3 O4 core.
Collapse
Affiliation(s)
- Xuecheng Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
29
|
Alhothali A, Haneef T, Mustafa MRU, Moria KM, Rashid U, Rasool K, Bamasag OO. Optimization of Micro-Pollutants' Removal from Wastewater Using Agricultural Waste-Derived Sustainable Adsorbent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111506. [PMID: 34770021 PMCID: PMC8583561 DOI: 10.3390/ijerph182111506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Water pollution due to the discharge of untreated industrial effluents is a serious environmental and public health issue. The presence of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) causes worldwide concern because of their mutagenic and carcinogenic effects on aquatic life, human beings, and the environment. PAHs are pervasive atmospheric compounds that cause nervous system damage, mental retardation, cancer, and renal kidney diseases. This research presents the first usage of palm kernel shell biochar (PKSB) (obtained from agricultural waste) for PAH removal from industrial wastewater (oil and gas wastewater/produced water). A batch scale study was conducted for the remediation of PAHs and chemical oxygen demand (COD) from produced water. The influence of operating parameters such as biochar dosage, pH, and contact time was optimized and validated using a response surface methodology (RSM). Under optimized conditions, i.e., biochar dosage 2.99 g L−1, pH 4.0, and contact time 208.89 min, 93.16% of PAHs and 97.84% of COD were predicted. However, under optimized conditions of independent variables, 95.34% of PAH and 98.21% of COD removal was obtained in the laboratory. The experimental data were fitted to the empirical second-order model of a suitable degree for the maximum removal of PAHs and COD by the biochar. ANOVA analysis showed a high coefficient of determination value (R2 = 0.97) and a reasonable second-order regression prediction. Additionally, the study also showed a comparative analysis of PKSB with previously used agricultural waste biochar for PAH and COD removal. The PKSB showed significantly higher removal efficiency than other types of biochar. The study also provides analysis on the reusability of PKSB for up to four cycles using two different methods. The methods reflected a significantly good performance for PAH and COD removal for up to two cycles. Hence, the study demonstrated a successful application of PKSB as a potential sustainable adsorbent for the removal of micro-pollutants from produced water.
Collapse
Affiliation(s)
- Areej Alhothali
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (K.M.M.); (O.O.B.)
| | - Tahir Haneef
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence: (T.H.); (M.R.U.M.)
| | - Muhammad Raza Ul Mustafa
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Correspondence: (T.H.); (M.R.U.M.)
| | - Kawthar Mostafa Moria
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (K.M.M.); (O.O.B.)
| | - Umer Rashid
- Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Doha 5825, Qatar;
| | - Omaimah Omar Bamasag
- Department of Computer Sciences, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.A.); (K.M.M.); (O.O.B.)
- Center of Excellence in Smart Environment Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
On the Performance of a Sustainable Rice Husk Biochar for the Activation of Persulfate and the Degradation of Antibiotics. Catalysts 2021. [DOI: 10.3390/catal11111303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfate-radical-based advanced oxidation processes are highly effective in the degradation of antibiotics in water and wastewater. The activation of sulfate radicals occurs with the use of biochar, a low-cost carbon material. In this work, the preparation of biochar from rice husk for the degradation of various antibiotics was studied, and the biochar was compared with another biochar prepared at a different pyrolysis temperature. The biochar was prepared at 700 °C under limited O2. It had a high specific surface area of 231 m2 g−1 with micropores, a point of zero charge equal to 7.4 and a high silica content. The effect of different operating conditions on the degradation of organic compounds was studied. Increases in biochar dosage and sodium persulfate concentration were found to be beneficial for the degradation. In contrast, an increase in antibiotic concentration, the complexity of the water matrix and the existence of radical scavengers all had a detrimental effect on the activity. The comparison of the results with those from a biochar prepared at a higher temperature (850 °C) revealed that the preparation conditions affect the performance. The biochar pyrolyzed at 700 °C exhibited different behavior from that prepared at 850 °C, demonstrating the importance of the preparation route. The studied reaction was surface-sensitive and followed radical and non-radical pathways. The adsorption of the organic contaminant also played a significant role. The carbon phase characteristics determined the dominant pathway, which was radical formation, in contrast with the biochar prepared at higher temperature, where the degradation followed mainly non-radical pathways.
Collapse
|
31
|
Hung CM, Huang CP, Chen CW, Dong CD. Degradation of organic contaminants in marine sediments by peroxymonosulfate over LaFeO 3 nanoparticles supported on water caltrop shell-derived biochar and the associated microbial community responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126553. [PMID: 34273879 DOI: 10.1016/j.jhazmat.2021.126553] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Sediment is an important final repository of persistent organic pollutants such as polycyclic aromatic hydrocarbons (PAHs). Herein, a novel catalyst of LaFeO3 nanoparticles supported on biochar was synthesized from water caltrop shell by chemical precipitation. The composite (LFBC) was used as peroxymonosulfate (PMS) activator to oxidize PAHs in real marine sediments. Systematic surface characterization confirmed the immobilization of well crystalline nano LaFeO3 particles onto the biochar surface. Under optimal conditions, i.e., [PMS] = 3 × 10-4 M, [LFBC] = 0.75 g/L, pH 6.0, and seawater, the total PAH degradation efficiency was 90%, while that of 2-, 3-, 4-, 5-, and 6-ring PAHs was 52%, 61%, 66%, 56%, and 29%, respectively, in 24 h. The Langmuir-Hinshelwood equation better predicted the PAHs degradation kinetics over LFBC by PMS. Interactions between surface oxygen species at LaFeO3 defective sites and the graphitized biochar network facilitated the PAHs degradation. Furthermore, changes in the bacterial community during the LFBC/PMS treatment were highlighted to assess the sustainable development of the sediment ecosystem. The LFBC/PMS process enhanced the biological richness and diversity of sediment eco-systems. The major phylum was Proteobacteria initially, while Hyphomonas was the genera after LFBC/PMS treatment of the sediment.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
32
|
Hung CM, Huang CP, Chen CW, Hsieh S, Dong CD. Remediation of contaminated dredged harbor sediments by combining hydrodynamic cavitation, hydrocyclone, and persulfate oxidation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126594. [PMID: 34293689 DOI: 10.1016/j.jhazmat.2021.126594] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/20/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
A pilot-scale hybrid treatment system consisting of hydrodynamic cavitation (HC), hydrocyclone separator (HS), and sodium persulfate (PS), was employed for removing polycyclic aromatic hydrocarbons (PAHs) from dredged harbor sediments. The effectiveness of PAH degradation was studied by varying the inlet pressure (0-2.0 bar), PS dosage (or Σ[PAH] to [PS] mole ratio of 1:1-1:103) at HS inflow velocity of 2.85 m/s, slurry concentration of 10%, and reaction time of 60 min. The degradation rate of PAH in the overflow (OF) sediment was significantly lower than that of the underflow (UF) sediment. After an inlet pressure increase of 0.5 bar and ΣPAH: [PS] molar ratio of 1: 10, the PAH removal was 87% and 55% in the UF and OF, respectively, by the combined HC-PS-HS unit. Without PS, the PAHs removal was 46% and 40% in the UF and OF, respectively. The removal efficiency for 6-, 5-, 4-, 3-, and 2-ring PAHs was 100%, 93%, 93%, 92%, and 82% in the UF and 55%, 61%, 67%, 47%, and 36% in the OF by the combined HC-PS-HS system. FEEM spectroscopy clarified that aromatic protein-based components (tryptophan- and tyrosine-like combined) were gradually degraded and transformed into soluble microbial metabolites when organic matter content declined during the combined HC-PS-HS treatment. This study provides new insights into the combined HC-PS-HS system for PAH degradation in dredged sediments.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
33
|
Hung CM, Huang CP, Chen CW, Dong CD. Hydrodynamic cavitation activation of persulfate for the degradation of polycyclic aromatic hydrocarbons in marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117245. [PMID: 33965800 DOI: 10.1016/j.envpol.2021.117245] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Hydrodynamic cavitation (HC) coupled with persulfate (PS)-based that resulted in the synergistic degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated marine sediments. The effects of HC injection pressure and Σ[PAH]: [PS] on the rate and extent of PAH degradation were studied in the pressure range of 0.5-2.0 bar, PS concentration rage of 2 × 10-4 to 2 × 10-2 M or Σ[PAH]: [PS] of 1:10-1000, and reaction time of 20-60 min. A pseudo-first-order rate law fitted PAHs removal kinetics well. The degradation rate constant increased with injection pressure, reaching the maximum level at 0.5 bar, then decreased at injection pressure became greater than 0.5 bar. The results showed that PAH removal was 84% by the combined HC and PS process, whereas, HC alone only achieved a 43% removal of PAHs in marine sediments under the optimal inlet pressure of 0.5 bar at PS concentration of 2 × 10-2 M in 60 min. The HC‒PS system effectively removed PH, PY, FLU, BaA, and CH at 91, 99, 91, 84, and 90%, respectively. The maximum removal of 6-, 5-, 4-, 3-, and 2-ring PAHs was 89, 87, 84, 76, and 34%, respectively. Major reactive oxygen species (ROSs), namely, SO4-• and HO•, were responsible for PAHs degradation. Results clearly highlighted the feasibility of HC-PS system for the clean-up of PAHs-laden sediments in particular and other recalcitrant organic contaminants in general.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
34
|
Chen L, Ni Q, Wu Y, Fu C, Ping W, Bai H, Li M, Huang H, Liu H. Passivation and remediation of Pb and Cr in contaminated soil by sewage sludge biochar tubule. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49102-49111. [PMID: 33934302 DOI: 10.1007/s11356-021-14111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Currently, numerous studies have carried out to research the effect of biochars remediation soil heavy metals (HMs) contaminated, but there have been fewer explorations of the effect of biochars tubule on soil HMs remediation. This work aimed to study the effect of passivation and remediation of lead (Pb) and chromium (Cr) contaminated soil after insert sewage sludge biochar (SSB) tubule. The results showed that the high risky fractions of Pb and Cr could be transformed into more stable fractions; also, Pb and Cr total contents are significantly decreased by SSB tubule. The mechanisms include adsorption, ion exchange, complexation, and precipitation which are concluded from the characteristic analysis. Detailly, the passivation of Pb and Cr is better when the moisture is 25% and 35%, respectively [Pb: exchangeable (F1), carbonate bound (F2) decreased by 25.1%, 16.8%, Fe-Mn oxides bound (F3) increased by 18.5%; Cr: F1 decreased by 73.0%, F2, F3, organic matter bound (F4) increased by 13.2%, 23.9%, 30.8%), respectively]. The remediation of Pb and Cr is better when the moisture is 25% and 35%, respectively, (Pb: decreased by 23.3%; Cr: decreased by 38.4%, respectively). The findings showed that the SSB tubule is effective when used for soil HMs contaminated.
Collapse
Affiliation(s)
- Lin Chen
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wenzhou, 404100, People's Republic of China
| | - Qi Ni
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wenzhou, 404100, People's Republic of China
| | - Yan Wu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wenzhou, 404100, People's Republic of China.
| | - Chuan Fu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wenzhou, 404100, People's Republic of China.
| | - Wei Ping
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wenzhou, 404100, People's Republic of China
| | - Hongyu Bai
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wenzhou, 404100, People's Republic of China
| | - Mengnan Li
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wenzhou, 404100, People's Republic of China
| | - Hongcheng Huang
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wenzhou, 404100, People's Republic of China
| | - Hanshuang Liu
- Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wenzhou, 404100, People's Republic of China
| |
Collapse
|
35
|
Wang H, Sun J, Xu J, Sheng L. Study on clogging mechanisms of constructed wetlands from the perspective of wastewater electrical conductivity change under different substrate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112813. [PMID: 34030018 DOI: 10.1016/j.jenvman.2021.112813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland (CW) has obvious advantages in wastewater treatment of medium and small towns. However, there is a lack of health monitoring research on CW system clogging. The electrical conductivity (EC) of wastewater purified by CW is related to the concentration of pollutants, which can reflect the CW clogging. The objectives of this study are to reveal the mechanisms of CWs substrate clogging from the perspective of wastewater EC changes, and provide an important reference for the health evaluation of CWs. The EC changes of nine CWs substrates (quartz sand, zeolite, gravel, coarse sand, straw biochar, sludge biochar, clay ceramsite, fly ash ceramsite and shale ceramsite) under different conditions (purified water, wastewater and wastewater + NaCl) were tested, and comparative analysis was used to reveal the influence of different substrate materials on the change of wastewater EC. The results show that the adsorption ability of substrate material isn't the main factor affecting the EC of wastewater, and the soluble component in the material is the important factor to cause the difference of EC increment. Under the condition of 0.4-1.0 g L-1 NaCl concentration, the adsorption of substrate materials had little effect on the EC of wastewater, and the effect of NaCl used in CW tracer experiment was good. Quartz sand, coarse sand, gravel and sludge biochar have little influence on the change of wastewater EC. Other materials that have great influence on the change of wastewater EC can be treated by modifying or controlling the mixing ratio. The results are of great significance to reveal the clogging state of CW system and to carry out health assessment research.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jitian Sun
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China; Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Northeast Normal University, Renmin Street 5268, Changchun, 130024, Jilin, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China; Key Laboratory of Vegetation Ecology of Ministry of Education, Institute of Grassland Science, Northeast Normal University, Renmin Street 5268, Changchun, 130024, Jilin, China.
| |
Collapse
|
36
|
Xiang J, Mi Y, Luo B, Gong S, Zhou Y, Ma T. Evaluating the potential of KOH-modified composite biochar amendment to alleviate the ecotoxicity of perfluorooctanoic acid-contaminated sediment on Bellamya aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112346. [PMID: 34022627 DOI: 10.1016/j.ecoenv.2021.112346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Modified composite biochar offers a cost-effective solution for the remediation of contaminated sediments; however, few studies have evaluated the effects of modified composite biochar amendment on the ecotoxicity of contaminated sediment based on benthic macroinvertebrates. A 21-day sediment toxicity test was conducted using the freshwater snail Bellamya aeruginosa to examine the intrinsic ecotoxicity of a novel KOH-modified composite biochar (KOH-CBC) and its efficacy for reducing the bioavailability, uptake, and ecotoxicity of perfluorooctanoic acid (PFOA). It was found that KOH-CBC is toxic to B. aeruginosa, which may be attributed to its high polycyclic aromatic hydrocarbons (PAHs) content and alkalinity. The addition of KOH-CBC to PFOA-contaminated sediments can markedly reduce the bioavailability and uptake of PFOA by more than 90% and 50%, respectively, and subsequently alleviate the toxicity of PFOA to B. aeruginosa by at least 30%. Increasing the KOH-CBC dosage is not beneficial for further mitigating the toxicity of PFOA-contaminated sediments. Our findings imply that KOH-CBC is a promising sorbent for the in-situ remediation of PFOA-contaminated sediments. Application of acidified KOH-CBC at a dosage of approximately 1-3% will be sufficient to control the ecotoxicity of PFOA; however, its long-term environmental effects should be further validated.
Collapse
Affiliation(s)
- Jing Xiang
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Ying Mi
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Benxiang Luo
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Shuangjiao Gong
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Yingru Zhou
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China
| | - Taowu Ma
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, People's Republic of China.
| |
Collapse
|
37
|
Haider FU, Ejaz M, Cheema SA, Khan MI, Zhao B, Liqun C, Salim MA, Naveed M, Khan N, Núñez-Delgado A, Mustafa A. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2021; 197:111031. [PMID: 33744268 DOI: 10.1016/j.envres.2021.111031] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Extraction and exploration of petroleum hydrocarbons (PHs) to satisfy the rising world population's fossil fuel demand is playing havoc with human beings and other life forms by contaminating the ecosystem, particularly the soil. In the current review, we highlighted the sources of PHs contamination, factors affecting the PHs accumulation in soil, mechanisms of uptake, translocation and potential toxic effects of PHs on plants. In plants, PHs reduce the seed germination andnutrients translocation, and induce oxidative stress, disturb the plant metabolic activity and inhibit the plant physiology and morphology that ultimately reduce plant yield. Moreover, the defense strategy in plants to mitigate the PHs toxicity and other potential remediation techniques, including the use of organic manure, compost, plant hormones, and biochar, and application of microbe-assisted remediation, and phytoremediation are also discussed in the current review. These remediation strategies not only help to remediate PHs pollutionin the soil rhizosphere but also enhance the morphological and physiological attributes of plant and results to improve crop yield under PHs contaminated soils. This review aims to provide significant information on ecological importance of PHs stress in various interdisciplinary investigations and critical remediation techniques to mitigate the contamination of PHs in agricultural soils.
Collapse
Affiliation(s)
- Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China
| | - Cai Liqun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Lab of Arid-land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | | | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 12 FL 32611, USA
| | - Avelino Núñez-Delgado
- Depart. Soil Sci. and Agric. Chem., Engineering Polytech. School, Lugo, Univ. Santiago de Compostela, Spain
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
38
|
The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems. SUSTAINABILITY 2021. [DOI: 10.3390/su13105612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biochar is a carbon-rich material prepared from the pyrolysis of biomass under various conditions. Recently, biochar drew great attention due to its promising potential in climate change mitigation, soil amendment, and environmental control. Obviously, biochar can be a beneficial soil amendment in several ways including preventing nutrients loss due to leaching, increasing N and P mineralization, and enabling the microbial mediation of N2O and CO2 emissions. However, there are also conflicting reports on biochar effects, such as water logging and weathering induced change of surface properties that ultimately affects microbial growth and soil fertility. Despite the voluminous reports on soil and biochar properties, few studies have systematically addressed the effects of biochar on the sequestration of carbon, nitrogen, and phosphorus in soils. Information on microbially-mediated transformation of carbon (C), nitrogen (N), and phosphorus (P) species in the soil environment remains relatively uncertain. A systematic documentation of how biochar influences the fate and transport of carbon, phosphorus, and nitrogen in soil is crucial to promoting biochar applications toward environmental sustainability. This report first provides an overview on the adsorption of carbon, phosphorus, and nitrogen species on biochar, particularly in soil systems. Then, the biochar-mediated transformation of organic species, and the transport of carbon, nitrogen, and phosphorus in soil systems are discussed. This review also reports on the weathering process of biochar and implications in the soil environment. Lastly, the current knowledge gaps and priority research directions for the biochar-amended systems in the future are assessed. This review focuses on literatures published in the past decade (2009–2021) on the adsorption, degradation, transport, weathering, and transformation of C, N, and P species in soil systems with respect to biochar applications.
Collapse
|
39
|
Hung CM, Huang CP, Chen CW, Hsieh SL, Dong CD. Effects of biochar on catalysis treatment of 4-nonylphenol in estuarine sediment and associated microbial community structure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115673. [PMID: 33007651 DOI: 10.1016/j.envpol.2020.115673] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The effect of pyrolysis temperature on the generation of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge biochar (SSB) and the removal of hazardous chemicals from esturine sediments by SSB and sodium percarbonate (SPC), exemplified by 4-nonylphenol (4-NP) were studied. SSB synthesized at 500 °C (SSB500) achieved the highest 4-NP degradation efficiency of 73%, at pH0 9.0 in 12 h of reaction time. The enhanced 4-NP degradation was attributed to the SSB500 activation activation of SPC that produced sufficient •OH and CO3-• due to electron-transfer interaction on the Fe-Mn redox pairs. The microbial community diversity and composition of the treated sediment were compared using high-throughput sequencing. Results showed SSB/SPC treatment increased the microbial diversity and richness in the sediments. Proteobacteria were the keystone phylum, while Thioalkalispira genera were responsible for 4-NP degradation in the SSB/SPC treatment. Over all, results revealed the change in the bacterial community during the environmental applications of SSB, which provided essential information for better understanding of the monitoring and improvement of sustainable sediment ecosystems.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|