1
|
Son JS, Lee S, Hwang S, Jeong J, Jang S, Gong J, Choi JY, Je YH, Ryu CM. Enzymatic oxidation of polyethylene by Galleria mellonella intestinal cytochrome P450s. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136264. [PMID: 39500186 DOI: 10.1016/j.jhazmat.2024.136264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
Polyethylene is widely used but highly resistant to biodegradation, owing to its composition of only a hydrocarbon backbone. For biodegradation to occur, oxidation within the polymer needs to be initiated. Galleria mellonella was the first insect discovered to autonomously oxidize polyethylene without the aid of gut microbes. However, the specific enzyme remains unidentified. Here, we identified for the first time two polyethylene oxidation enzyme candidates of cytochrome P450 (CYP) 6B2-GP04 and CYP6B2-13G08 from the G. mellonella midgut. Both candidate clones oxidized polyethylene efficiently, generating short-chain aliphatic compounds, with CYP6B2-GP04 exhibiting higher activity than CYP6B2-13G08 in yeast and insect cells. In silico structural modeling approaches revealed that the CYP6B2-GP04 Phe118 was essential for interacting with hydrocarbons, which was further validated by mutating phenylalanine to glycine. Furthermore, directed enzyme evolution led to the identification of an enzyme variant with significantly increased oxidation efficiency. Our findings offer promising enzyme-based solutions for polyethylene biodegradation, potentially mitigating polyethylene-driven plastic pollution.
Collapse
Affiliation(s)
- Jin-Soo Son
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Sungbo Hwang
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon 34141 South Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, KRIBB, Daejeon 34141, South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea
| | - Seonghan Jang
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Jiyoung Gong
- Environmental Disease Research Center, KRIBB, Daejeon 34141, South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea
| | - Jae Young Choi
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, South Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, South Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea; Department of Pediatrics, University of California at San Diego, La Jolla, CA, 92093-0380, USA.
| |
Collapse
|
2
|
Vishnu Murthy JS, Keerthana A, Logeswaran K, Das A, Choudhury S, Ramakrishna BG, Chowdhury S, Aggarwal H, Saravanan S, Pal A, Dubey VK, Kumar V. Harnessing insects mediated plastic biodegradation: Current insight and future directions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123038. [PMID: 39566205 DOI: 10.1016/j.jenvman.2024.123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
Plastic polymers pose a significant challenge due to their resistance to degradation, resulting in their persistent accumulation in the environment and exacerbating a critical environmental concern. Urgent innovation and novel management technologies are essential to tackle this issue. Plastic biodegradation, distinguished by its environmentally friendly and safe attributes, has garnered substantial attention as a viable solution. Insects are pivotal in this process, utilizing their gut microbes to facilitate plastic degradation. The enzymatic action within the digestive tracts of diverse insect hosts and their microbial symbionts contributes to the breakdown of these polymers. This comprehensive review delves into the current landscape and strategies aimed at combating plastic pollution, with a specific focus on the involvement of insects such as mealworms (Tenebrio molitor Linnaeus), superworms (Zophobas atratus Blanchard), greater wax moths (Galleria mellonella Linnaeus), and various other insect species in the degradation of plastics. This review explores the different insects involved in plastic degradation, the mechanisms by which insects degrade plastics and delineates the characteristics of resultant degradable products. Furthermore, it investigates the future potential for plastic degradation by insects and examines the prospective developmental pathways for degradable plastics. Ultimately, this review provides an array of solutions by using various insects to pervasive the issue of plastic pollution.
Collapse
Affiliation(s)
- Jasti Sri Vishnu Murthy
- Department of Agricultural Entomology, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, 680656, Kerala, India
| | - Alagesan Keerthana
- Department of Entomology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, 641003, Tamil Nadu, India
| | - K Logeswaran
- Division of Entomology and Nematology, Indian Institute of Horticultural Research, Bengaluru, 560089, Karnataka, India
| | - Abhibandana Das
- Department of Entomology, College of Agriculture, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Srishti Choudhury
- Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Bindu Gudi Ramakrishna
- Department of Agricultural Entomology, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, 680656, Kerala, India
| | - Sanhita Chowdhury
- Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Himani Aggarwal
- Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - S Saravanan
- Department of Entomology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, 641003, Tamil Nadu, India
| | - Arindam Pal
- Department of Entomology, Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, 848125, Bihar, India
| | - Vinod Kumar Dubey
- School of Agriculture and Veterinary Science, Shridhar University, Pilani, 333031, Rajasthan, India.
| | - Vinay Kumar
- Department of Soil Science and Agricultural Chemistry, Jute Research Station Katihar, Bihar Agricultural University, Sabour, Bhagalpur, 854103, Bihar, India
| |
Collapse
|
3
|
Kim HR, Koh HY, Shin H, Suh DE, Lee S, Choi D. Enhancing the oxidation of polystyrene through a homogeneous liquid degradation system for effective microbial degradation. Front Microbiol 2024; 15:1509603. [PMID: 39669785 PMCID: PMC11636969 DOI: 10.3389/fmicb.2024.1509603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Plastics play a crucial role in modern industries; however, their resistance to natural degradation contributes to environmental pollution, and microplastics pose a health threat. The hydrophobic nature of microplastics poses a considerable challenge, rendering them resistant to dissolving in water. In this study, we conducted a comparative analysis of the microbial biodegradation capabilities of polystyrene in solid and liquid states. Polystyrene in its solid foam form, along with polystyrene converted into a liquid state using ethyl-ester oil, was biodegraded by microorganisms. Subsequently, the liquid plastic was re-extracted into its solid form, and the degree of degradation was assessed using weight loss measurement, XPS, FT-IR, GPC, and TGA. Liquid-state polystyrene exhibited a higher degradation rate than that reported previously. Furthermore, liquid polystyrene undergoes more pronounced oxidation than its solid counterpart, leading to an increased oxygen atom ratio. Chemical structure analysis highlighted the distinct formation of -OH and C=O functional groups in the liquid state compared to those in the solid state. Additionally, notable changes in the molecular weight and thermal stability of polystyrene were observed during biodegradation in the liquid state. This study suggests that a heterogeneous reaction (solid plastic-liquid medium) might impede plastic biodegradation, while indicating the potential to enhance the degradation efficiency through a homogeneous reaction (liquid plastic-liquid medium). The follow-up study identifies appropriate solvents and optimizes cultivation conditions, offering potential to enhance the efficiency of biological plastic degradation.
Collapse
Affiliation(s)
- Hong Rae Kim
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Hye Yeon Koh
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Hyeyoung Shin
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Dong-Eun Suh
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Daegu Gyeonbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Donggeon Choi
- Department of Research and Development, Repla Inc., Suwon, Republic of Korea
| |
Collapse
|
4
|
Urbanek AK, Rybak J, Hanus-Lorenz B, Komisarczyk DA, Mirończuk AM. Zophobas morio versus Tenebrio molitor: Diversity in gut microbiota of larvae fed with polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176005. [PMID: 39236822 DOI: 10.1016/j.scitotenv.2024.176005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Plastics are common synthetic materials that have been abundantly present as pollutants in natural ecosystems for the past few decades. Thus scientists have investigated the capability of plastic digestion by insects. Here we compare the effectiveness of biodegradation of the specific polymers: expanded polystyrene (EPS), polyvinyl chloride (PVC), low-density polyethylene (LDPE) and polypropylene (PP) altogether with above variants of plastics with microelements and vitamins by the mealworm - the larval form of the beetle Tenebrio molitor - and larvae of the beetle Zophobas morio, known as superworms. Z. morio beetles on all diets were able to complete their life cycle from larvae through pupae and imago, gaining 19 % and 22 % in mass on LDPE and EPS; 8 % and 7 % on PVC and PP. Mealworms (T. molitor) reared on polymers had minimal weight gain, gaining 2 % on LDPE and EPS, and a slight reduction in mass was observed when reared on PP and PVC. Not all specimens of T. molitor were able to pupate and transform to the adult stage. The results suggest that larvae of Z. morio can eat and degrade some types of plastic compounds more effectively than T. molitor. The changes in microbial gut communities were compared between these two species. The highest mass gain for Z. morio is associated with higher diversity in gut microbia and it was more diverse than that of T. molitor. Citrobacter freundii, a bacterium recognized for its ability to degrade long-chain polymers, linear hydrocarbons and cyclic hydrocarbons, was found in the microflora of Z. morio. The results confirm that superworms can survive on polymer feed. Moreover, this diet supplemented with microelements and vitamins increases the number of bacterial species and the diversity in the microbial gut.
Collapse
Affiliation(s)
- Aneta K Urbanek
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Biology, Laboratory for Biosustainability, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Justyna Rybak
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50370 Wrocław, Poland
| | - Beata Hanus-Lorenz
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50370 Wrocław, Poland
| | - Dominika A Komisarczyk
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Biology, Laboratory for Biosustainability, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Aleksandra M Mirończuk
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Biology, Laboratory for Biosustainability, Kożuchowska 5b, 51-631 Wrocław, Poland.
| |
Collapse
|
5
|
Wang S, Yu H, Li W, Song E, Zhao Z, Xu J, Gao S, Wang D, Xie Z. Biodegradation of four polyolefin plastics in superworms (Larvae of Zophobas atratus) and effects on the gut microbiome. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135381. [PMID: 39088959 DOI: 10.1016/j.jhazmat.2024.135381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Recent studies have demonstrated superworms (larvae of Zophobas atratus) ability to degrade polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polypropylene (PP) within their digestive system. This study aimed to compare the ability of superworms to degrade the above four polyolefin plastics over a duration of 30 days. In this study, the degradation rate of PE was the highest, and the final average weight of superworms, as well as the final plastic mass loss consumed by them, significantly increased (73.38 % and 52.33 %, respectively) when PE was fed with wheat bran (1:1 [w/w]). FTIR and TGA indicated the occurrence of oxidation and biodegradation processes in the four polyolefin plastics when exposed to superworms. In addition, the molecular weights (Mw and Mn) of excreted polymer residues decreased by 3.1 % and 2.87 % in PE-fed superworms, suggesting that the depolymerization of PE was not entirely dependent on the gut microbial community. The analysis of the gut microbial communities revealed that the dominant microbial community were different for each type of plastic. The results indicate that the gut microbiome of superworms exhibited remarkable adaptability in degrading various types of plastics, and the intake preferences and efficiency of different plastics are associated with different dominant microbial community species.
Collapse
Affiliation(s)
- Shuaibing Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Hong Yu
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Wei Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Enze Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Zhiguo Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Shangkun Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Dandan Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China.
| | - Zhihong Xie
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China.
| |
Collapse
|
6
|
Qiu Q, Li H, Sun X, Tian K, Gu J, Zhang F, Zhou D, Zhang X, Huo H. Integrating genomics, molecular docking, and protein expression to explore new perspectives on polystyrene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135031. [PMID: 38943889 DOI: 10.1016/j.jhazmat.2024.135031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/01/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Faced with the escalating challenge of global plastic pollution, this study specifically addresses the research gap in the biodegradation of polystyrene (PS). A PS-degrading bacterial strain was isolated from the gut of Tenebrio molitor, and genomics, molecular docking, and proteomics were employed to thoroughly investigate the biodegradation mechanisms of Pseudomonas putida H-01 against PS. Using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (ATR-FTIR), and contact angle analysis, significant morphological and structural changes in the PS films under the influence of the H-01 strain were observed. The study revealed several potential degradation genes and ten enzymes that were specifically upregulated in the PS degradation environment. Additionally, a novel protein with laccase-like activity, LacQ1, was purified from this strain for the first time, and its crucial role in the PS degradation process was confirmed. Through molecular docking and molecular dynamics (MD) simulations, the interactions between the enzymes and PS were detailed, elucidating the binding and catalytic mechanisms of the degradative enzymes with the substrate. These findings have deepened our understanding of PS degradation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
| | - Xinwen Zhang
- College of Pharmacy, Hainan Vocational University of Science and Technology, Haikou 571126, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
7
|
Carpentier J, Abenaim L, Luttenschlager H, Dessauvages K, Liu Y, Samoah P, Francis F, Caparros Megido R. Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges. INSECTS 2024; 15:611. [PMID: 39194816 DOI: 10.3390/insects15080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The interest in edible insects' mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry including particular detoxification processes. The processes depend on the insect's digestive system which is based on two components: an enzymatic intrinsic cargo to the insect species and another extrinsic cargo provided by the microbial community colonizing-associated with the insect host. Advances have been made in the identification of the origin of the digestive functions observed in the midgut. It is now evident that the community of microorganisms can adapt, improve, and extend the insect's ability to digest and detoxify its food. Nevertheless, edible insect species such as Hermetia illucens and Tenebrio molitor are surprisingly autonomous, and no obligatory symbiosis with a microorganism has yet been uncovered for digestion. Conversely, the intestinal microbiota of a given species can take on different forms, which are largely influenced by the host's environment and diet. This flexibility offers the potential for the development of novel associations between insects and microorganisms, which could result in the creation of synergies that would optimize or expand value chains for agro-industrial by-products, as well as for contaminants.
Collapse
Affiliation(s)
- Joachim Carpentier
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Hugo Luttenschlager
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Kenza Dessauvages
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Yangyang Liu
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
- Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Haidian District, Beijing 100193, China
| | - Prince Samoah
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
8
|
Peng BY, Wang WX. Microplastics Biofragmentation and Degradation Kinetics in the Plastivore Insect Tenebrio molitor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39028927 DOI: 10.1021/acs.est.4c05113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The insect Tenebrio molitor possesses an exceptional capacity for ultrafast plastic biodegradation within 1 day of gut retention, but the kinetics remains unknown. Herein, we investigated the biofragmentation and degradation kinetics of different microplastics (MPs), i.e., polyethylene (PE), poly(vinyl chloride) (PVC), and poly(lactic acid) (PLA), in T. molitor larvae. The intestinal reactions contributing to the in vivo MPs biodegradation were concurrently examined by utilizing aggregated-induced emission (AIE) probes. Our findings revealed that the intestinal biofragmentation rates essentially followed the order of PLA > PE > PVC. Notably, all MPs displayed retention effects in the intestine, with PVC requiring the longest duration for complete removal/digestion. The dynamic rate constant of degradable MPs (0.2108 h-1 for PLA) was significantly higher than that of persistent MPs (0.0675 and 0.0501 h-1 for PE and PVC, respectively) during the digestive gut retention. Surprisingly,T. molitor larvae instinctively modulated their internal digestive environment in response to in vivo biodegradation of various MP polymers. Esterase activity and intestinal acidification both significantly increased following MPs ingestion. The highest esterase and acidification levels were observed in the PLA-fed and PVC-fed larvae, respectively. High digestive esterase activity and relatively low acidification levels inT. molitor larvae may, to some extent, contribute to more efficient MPs removal within the plastic-degrading insect. This work provided important understanding of MPs biofragmentation and intestinal responses to in vivo MPs biodegradation in plastic-degrading insects.
Collapse
Affiliation(s)
- Bo-Yu Peng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
9
|
Lv S, Wang Q, Li Y, Gu L, Hu R, Chen Z, Shao Z. Biodegradation of polystyrene (PS) and polypropylene (PP) by deep-sea psychrophilic bacteria of Pseudoalteromonas in accompany with simultaneous release of microplastics and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174857. [PMID: 39029759 DOI: 10.1016/j.scitotenv.2024.174857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Plastics dumped in the environment are fragmented into microplastics by various factors (UV, weathering, mechanical abrasion, animal chewing, etc.). However, little is known about plastic fragmentation and degradation mediated by deep-sea microflora. To obtain deep-sea bacteria that can degrade plastics, we enriched in situ for 1 year in the Western Pacific using PS as a carbon source. Subsequently, two deep-sea prevalent bacteria of the genus Pseudoalteromonas (Pseudoalteromonas lipolytica and Pseudoalteromonas tetraodonis) were isolated after 6 months enrichment in the laboratory under low temperature (15 °C). Both showed the ability to degrade polystyrene (PS) and polypropylene (PP), and biodegradation accelerated the generation of micro- and nanoplastics. Plastic biodegradation was evidenced by the formation of carboxyl and carboxylic acid groups, heat resistance decrease and plastic weight loss. After 80 days incubation at 15 °C, the microplastic concentration of PS and PP could be up to 1.94 × 107/L and 5.83 × 107/L, respectively, and the proportion of nanoplastics (< 1 μm) could be up to 65.8 % and 73.6 %. The film weight loss were 5.4 % and 4.5 % of the PS films, and 2.3 % and 1.8 % of the PP films by P. lipolytica and P. tetraodonis, respectively; thus after discounting the weight loss of microplastics, the only 3.9 % and 2.8 % of the PS films, and 1.3 % and 0.7 % of the PP films, respectively, were truly degraded by the two bacteria respectively after 80 days of incubation. This study highlights the role of Pseudoalteromonas in fragmentation and degradation of plastics in cold dark pelagic deep sea.
Collapse
Affiliation(s)
- Shiwei Lv
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yufei Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Li Gu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Rongxiang Hu
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 15080, China
| | - Zhen Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
10
|
Jiang J, Xu H, Cao X, Liang Y, Mo A, Cao X, Liu Y, Benbow ME, Criddle CS, Wu WM, He D. Soil-dwelling grub larvae of Protaetia brevitarsis biodegrade polystyrene: Responses of gut microbiome and host metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173399. [PMID: 38781836 DOI: 10.1016/j.scitotenv.2024.173399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Plastic pollution poses a significant threat to terrestrial ecosystems, yet the potential for soil fauna to contribute to plastic biodegradation remains largely unexplored. In this study, we reveal that soil-dwelling grubs, Protaetia brevitarsis larvae, can effectively biodegrade polystyrene (PS) plastics. Over a period of 4 weeks, these grubs achieved a remarkable 61.5 % reduction in PS foam mass. This biodegradation was confirmed by the depolymerization of ingested PS, formation of oxidative functional groups, noticeable chemical modifications, and an increase of δ13C of residual PS in frass. Additionally, antibiotic treatment to suppress gut microbes led to variations in the biodegradation process. PS ingestion induced a significant shift in the gut microbiome, promoting the growth of degradation-related bacteria such as Promicromonosporaceae, Bacillaceae, and Paenibacillaceae. Furthermore, the digestion of plastic triggered extensive metabolomic reprogramming of grubs' intestines, enhancing redox capabilities and facilitating PS biodegradation. These results indicate that responsive adaptation of both the gut microbiome and the host's intestinal metabolism contributes to PS degradation. Collectively, these findings demonstrate P. brevitarsis larvae's capability to alleviate soil plastic pollution, and highlight the potential of researching soil fauna further for sustainable plastic waste management solutions.
Collapse
Affiliation(s)
- Jie Jiang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Haowen Xu
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Xiaomu Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Yuqing Liang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Aoyun Mo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Xuelong Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Yan Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Mark Eric Benbow
- Department of Entomology and Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI 48824, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA.
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
11
|
Lu B, Lou Y, Wang J, Liu Q, Yang SS, Ren N, Wu WM, Xing D. Understanding the Ecological Robustness and Adaptability of the Gut Microbiome in Plastic-Degrading Superworms ( Zophobas atratus) in Response to Microplastics and Antibiotics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12028-12041. [PMID: 38838251 DOI: 10.1021/acs.est.4c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Recent discoveries indicate that several insect larvae are capable of ingesting and biodegrading plastics rapidly and symbiotically, but the ecological adaptability of the larval gut microbiome to microplastics (MPs) remains unclear. Here, we described the gut microbiome assemblage and MP biodegradation of superworms (Zophobas atratus larvae) fed MPs of five major petroleum-based polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) and antibiotics. The shift of molecular weight distribution, characteristic peaks of C═O, and metabolic intermediates of residual polymers in egested frass proved depolymerization and biodegradation of all MPs tested in the larval intestines, even under antibiotic suppression. Superworms showed a wide adaptation to the digestion of the five polymer MPs. Antibiotic suppression negatively influenced the survival rate and plastic depolymerization patterns. The larval gut microbiomes differed from those fed MPs and antibiotics, indicating that antibiotic supplementation substantially shaped the gut microbiome composition. The larval gut microbiomes fed MPs had higher network complexity and stability than those fed MPs and antibiotics, suggesting that the ecological robustness of the gut microbiomes ensured the functional adaptability of larvae to different MPs. In addition, Mantel's test indicated that the gut microbiome assemblage was obviously related to the polymer type, the plastic degradability, antibiotic stress, and larval survival rate. This finding provided novel insights into the self-adaptation of the gut microbiome of superworms in response to different MPs.
Collapse
Affiliation(s)
- Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Qiang Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305, United States
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
12
|
Yang XG, Wen PP, Yang YF, Jia PP, Li WG, Pei DS. Corrigendum: Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front Microbiol 2024; 15:1444678. [PMID: 39040902 PMCID: PMC11261735 DOI: 10.3389/fmicb.2024.1444678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2022.1001750.].
Collapse
Affiliation(s)
- Xian-Guang Yang
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ping-Ping Wen
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yi-Fan Yang
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Wei-Guo Li
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Guangorena Zarzosa GI, Kobayashi T. Properties of Chitin and Its Regenerated Hydrogels from the Insect Zophobas morio Fed Citrus Biomass or Polystyrene. Gels 2024; 10:433. [PMID: 39057456 PMCID: PMC11275922 DOI: 10.3390/gels10070433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The potential of insects as a recycling tool has recently attracted attention. In this study, chitin was extracted with 1 M HCl for 24 h at 20 °C, followed by 1 M NaOH for 5 h at 90 °C, and bleached with 2.5% v/v NaOCl for 2 h at 20 °C from Zophobas morio (ZM) insects fed citrus waste biomass (OP) or polystyrene foam (PS). The highest survival rate was found in the OP group. The properties of the resulting chitin material are reported, as well as the preparation of hydrogels using a DMAc/LiCl solvent. All chitins obtained were α-chitin. The degrees of deacetylation, crystallinity, molecular weight, and solubility in DMAc/LiCl were similar between the PS and biomass feeds, and they showed similar viscosities in the DMAc/LiCl solution. All hydrogels obtained had similar properties and viscoelastic behavior, indicating that the resultant chitins and their hydrogels from ZM were similar between those fed with citrus biomass and those fed with PS.
Collapse
Affiliation(s)
| | - Takaomi Kobayashi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata, Japan;
| |
Collapse
|
14
|
Weng Y, Han X, Sun H, Wang J, Wang Y, Zhao X. Effects of polymerization types on plastics ingestion and biodegradation by Zophobas atratus larvae, and successions of both gut bacterial and fungal microbiomes. ENVIRONMENTAL RESEARCH 2024; 251:118677. [PMID: 38508358 DOI: 10.1016/j.envres.2024.118677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Recent studies demonstrated that plastic degradation in Zophobas atratus superworms is related to the gut microbiota. To determine whether the biodegradation and gut-microbiota were influenced by ingested plastic polymerization types, foams of polypropylene (PP), polyurethane (PU) and ethylene vinyl acetate (EVA) were selected as representatives of polyolefins, polyester and copolymers, and the sole feedstock for superworms for 45 d. Both growth and survival rates of superworms were influenced by the type of plastic diet. Although the total consumptions of EVA- and PP-fed groups were similar at 29.03 ± 0.93 and 28.89 ± 1.14 mg/g-larva, which were both significantly higher than that of PU-fed groups (21.63 ± 2.18 mg/g-larva), the final survival rates of the EVA-fed group of 36.67 ± 10.41% exhibited significantly lower than that of the PP- and PU-fed groups of 76.67 ± 2.89% and 75.00 ± 7.07%, respectively, and even the starvation group of 51.67 ± 10.93%. The Illumina MiSeq results revealed similarities in the dominant gut bacterial communities between PU- and EVA-fed groups, with an increase in relative abundance of Lactococcus, but significant differences from the PP-fed groups, which had two predominant genera of unclassified Enterobacteriaceae and Enterococcus. Compared to bran-fed groups, changes in gut fungal communities were similar across all plastics-fed groups, with an increase in the dominant abundance of Rhodotorula. The abundance of Rhodotorula increased in the order of polyolefin, polyester, and copolymer. In summary, plastic ingestion, larval growth, and changes in gut bacterial and fungal community of superworms were all influenced by foam diets of different polymerization types, and especially influences on the gut microbiomes were different from each other.
Collapse
Affiliation(s)
- Yue Weng
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Jiaming Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yumeng Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
15
|
Jang Y, Nyamjav I, Kim HR, Suh DE, Park N, Lee YE, Lee S. Identification of plastic-degrading bacteria in the human gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172775. [PMID: 38670383 DOI: 10.1016/j.scitotenv.2024.172775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Environmental pollution caused by the excessive use of plastics has resulted in the inflow of microplastics into the human body. However, the effects of microplastics on the human gut microbiota still need to be better understood. To determine whether plastic-degrading bacteria exist in the human gut, we collected the feces of six human individuals, did enrichment cultures and screened for bacterial species with a low-density polyethylene (LDPE) or polypropylene (PP)-degrading activity using a micro-spray method. We successfully isolated four bacterial species with an LDPE-degrading activity and three with a PP-degrading activity. Notably, all bacterial species identified with an LDPE or PP-degrading activity were opportunistic pathogens. We analyzed the microbial degradation of the LDPE or PP surface using scanning electron microscopy and confirmed that each bacterial species caused the physical changes. Chemical structural changes were further investigated using X-ray photoelectron spectroscopy and Fourier-transform-infrared spectroscopy, confirming the oxidation of the LDPE or PP surface with the formation of carbonyl groups (C=O), ester groups (CO), and hydroxyl groups (-OH) by each bacterial species. Finally, high temperature gel permeation chromatography (HT-GPC) analysis showed that these bacterial species performed to a limited extent depolymerization. These results indicate that, as a single species, these opportunistic pathogens in the human gut have a complete set of enzymes and other components required to initiate the oxidation of the carbon chains of LDPE or PP and to degrade them. Furthermore, these findings suggest that these bacterial species can potentially biodegrade and metabolize microplastics in the human gut.
Collapse
Affiliation(s)
- Yejin Jang
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Indra Nyamjav
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hong Rae Kim
- Department of Research and Development, Repla Inc., Suwon 16679, Republic of Korea
| | - Dong-Eun Suh
- Department of Research and Development, Repla Inc., Suwon 16679, Republic of Korea
| | - Nohyoon Park
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ye Eun Lee
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
16
|
Boctor J, Pandey G, Xu W, Murphy DV, Hoyle FC. Nature's Plastic Predators: A Comprehensive and Bibliometric Review of Plastivore Insects. Polymers (Basel) 2024; 16:1671. [PMID: 38932021 PMCID: PMC11207432 DOI: 10.3390/polym16121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Unprecedented plastic production has resulted in over six billion tons of harmful waste. Certain insect taxa emerge as potential agents of plastic biodegradation. Through a comprehensive manual and bibliometric literature analysis, this review analyses and consolidates the growing literature related to insect-mediated plastic breakdown. Over 23 insect species, representing Coleoptera, Lepidoptera, and 4 other orders, have been identified for their capacity to consume plastic polymers. Natural and synthetic polymers exhibit high-level similarities in molecular structure and properties. Thus, in conjunction with comparative genomics studies, we link plastic-degrading enzymatic capabilities observed in certain insects to the exaptation of endogenous enzymes originally evolved for digesting lignin, cellulose, beeswax, keratin and chitin from their native dietary substrates. Further clarification is necessary to distinguish mineralisation from physicochemical fragmentation and to differentiate microbiome-mediated degradation from direct enzymatic reactions by insects. A bibliometric analysis of the exponentially growing body of literature showed that leading research is emerging from China and the USA. Analogies between natural and synthetic polymer's degradation pathways will inform engineering robust enzymes for practical plastic bioremediation applications. By aggregating, analysing, and interpreting published insights, this review consolidates our mechanistic understanding of insects as a potential natural solution to the escalating plastic waste crisis.
Collapse
Affiliation(s)
- Joseph Boctor
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Gunjan Pandey
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Acton, ACT 2601, Australia;
| | - Wei Xu
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Frances C. Hoyle
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
17
|
Wang Q, Chen H, Gu W, Wang S, Li Y. Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172243. [PMID: 38582118 DOI: 10.1016/j.scitotenv.2024.172243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Wanqing Gu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Shurui Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yinghua Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
18
|
Munhoz DR, Meng K, Wang L, Lwanga EH, Geissen V, Harkes P. Exploring the potential of earthworm gut bacteria for plastic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172175. [PMID: 38575018 DOI: 10.1016/j.scitotenv.2024.172175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The use of plastic mulch films in agriculture leads to the inevitable accumulation of plastic debris in soils. Here, we explored the potential of earthworm gut-inhabiting bacterial strains (Mycobacterium vanbaalenii (MV), Rhodococcus jostii (RJ), Streptomyces fulvissimus (SF), Bacillus simplex (BS), and Sporosarcina globispora (SG) to degrade plastic films (⌀ = 15 mm) made from commonly used polymers: low-density polyethylene film (LDPE-f), polylactic acid (PLA-f), polybutylene adipate terephthalate film (PBAT-f), and a commercial biodegradable mulch film, Bionov-B® (composed of Mater-Bi, a feedstock with PBAT, PLA and other chemical compounds). A 180-day experiment was conducted at room temperature (x̄ =19.4 °C) for different strain-plastic combinations under a low carbon media (0.1× tryptic soy broth). Results showed that the tested strain-plastic combinations did not facilitate the degradation of LDPE-f (treated with RJ and SF), PBAT-f (treated with BS and SG), and Bionov-B (treated with BS, MV, and SG). However, incubating PLA-f with SF triggered a reduction in the molecular weights and an increase in crystallinity. Therefore, we used PLA-f as model plastic to study the influence of temperature ("room temperature" & "30 °C"), carbon source ("carbon-free" & "low carbon supply"), and strain interactions ("single strains" & "strain mixtures") on PLA degradation. SF and SF + RJ treatments significantly fostered PLA degradation under 30 °C in a low-carbon media. PLA-f did not show any degradation in carbon-free media treatments. The competition between different strains in the same system likely hindered the performance of PLA-degrading strains. A positive correlation between the final pH of culture media and PLA-f weight loss was observed, which might reflect the pH-dependent hydrolysis mechanism of PLA. Our results situate SF and its co-culture with RJ strains as possible accelerators of PLA degradation in temperatures below PLA glass transition temperature (Tg). Further studies are needed to test the bioremediation feasibility in soils.
Collapse
Affiliation(s)
- Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Ke Meng
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Lang Wang
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands; Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av Polígono s/n, Cd. Industrial, Lerma, Campeche, Mexico
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
19
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
20
|
He L, Ding J, Yang SS, Zang YN, Pang JW, Xing D, Zhang LY, Ren N, Wu WM. Molecular-Weight-Dependent Degradation of Plastics: Deciphering Host-Microbiome Synergy Biodegradation of High-Purity Polypropylene Microplastics by Mealworms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6647-6658. [PMID: 38563431 DOI: 10.1021/acs.est.3c06954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ya-Ni Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- CECEP Digital Technology Co., Ltd., China Energy Conservation and Environmental Protection Group, Beijing 100096, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Zaman I, Turjya RR, Shakil MS, Al Shahariar M, Emu MRRH, Ahmed A, Hossain MM. Biodegradation of polyethylene and polystyrene by Zophobas atratus larvae from Bangladeshi source and isolation of two plastic-degrading gut bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123446. [PMID: 38295931 DOI: 10.1016/j.envpol.2024.123446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
Plastic pollution has become a major environmental concern globally, and novel and eco-friendly approaches like bioremediation are essential to mitigate the impact. Low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and expanded polystyrene (EPS) are three of the most frequently used plastic types. This study examined biodegradation of these using Zophobas atratus larvae, followed by isolation and whole genome sequencing of gut bacteria collected from larvae frass. Over 36 days, 24.04 % LDPE, 20.01 % EPS, and 15.12 % LLDPE were consumed on average by the larvae, with survival rates of 85 %, 90 %, and 87 %, respectively. Fourier transform infrared spectroscopy (FTIR) analysis of fresh plastic types, consumed plastics, and larvae frass showed proof of plastic oxidation in the gut. Frass bacteria were isolated and cultured in minimal salt media supplemented with plastics as the sole carbon source. Two isolates of bacteria were sampled from these cultures, designated PDB-1 and PDB-2. PDB-1 could survive on LDPE and LLDPE as carbon sources, whereas PDB-2 could survive on EPS. Scanning Electron Microscopy (SEM) provided proof of degradation in both cases. Both isolates were identified as strains of Pseudomonas aeruginosa, followed by sequencing, assembly, and annotation of their genomes. LDPE- and LLDPE-degrading enzymes e.g., P450 monooxygenase, alkane monooxygenase, alcohol dehydrogenase, etc. were identified in PDB-1. Similarly, phenylacetaldehyde dehydrogenase and other enzymes involved in EPS degradation were identified in PDB-2. Genes of both isolates were compared with genomes of known plastic-degrading P. aeruginosa strains. Virulence factors, antibiotic-resistance genes, and rhamnolipid biosurfactant biosynthesis genes were also identified in both isolates. This study indicated Zophobas atratus larvae as potential LDPE, LLDPE, and EPS biodegradation agent. Additionally, the isolated strains of Pseudomonas aeruginosa provide a more direct and eco-friendly solution for plastic degradation. Confirmation and modification of the plastic-degrading pathways in the bacteria may create scope for metabolic engineering in the future.
Collapse
Affiliation(s)
- Ifthikhar Zaman
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Rafeed Rahman Turjya
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Ramna, Dhaka, 1000, Bangladesh.
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Mahruf Al Shahariar
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | | | - Akash Ahmed
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - M Mahboob Hossain
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
22
|
Queiroz LG, Prado CCA, Melo EC, Moraes BR, de Oliveira PFM, Ando RA, Paiva TCB, Pompêo M, Rani-Borges B. Biofragmentation of Polystyrene Microplastics: A Silent Process Performed by Chironomus sancticaroli Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4510-4521. [PMID: 38426442 DOI: 10.1021/acs.est.3c08193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polystyrene (PS) is one of the main synthetic polymers produced around the world, and it is present in the composition of a wide variety of single-use objects. When released into the environment, these materials are degraded by environmental factors, resulting in microplastics. We investigated the ability of Chironomus sancticaroli (Diptera, Chironomidae) to promote the fragmentation of PS microspheres (24.5 ± 2.9 μm) and the toxic effects associated with exposure to this polymer. C. sancticaroli larvae were exposed to 3 different concentrations of PS (67.5, 135, and 270 particles g-1 of dry sediment) for 144 h. Significant lethality was observed only at the highest concentration. A significant reduction in PS particle size as well as evidence of deterioration on the surface of the spheres, such as grooves and cracks, was observed. In addition, changes in oxidative stress biomarkers (SOD, CAT, MDA, and GST) were also observed. This is the first study to report the ability of Chironomus sp. to promote the biofragmentation of microplastics. The information obtained demonstrates that the macroinvertebrate community can play a key role in the degradation of plastic particles present in the sediment of freshwater environments and can also be threatened by such particle pollution.
Collapse
Affiliation(s)
- Lucas G Queiroz
- Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, 05508-090 São Paulo, Brazil
| | - Caio C A Prado
- School of Engineering of Lorena, Department of Biotechnology, University of São Paulo, Estrada do Campinho s/n, Lorena, 12602-810 São Paulo, Brazil
| | - Eduardo C Melo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Beatriz R Moraes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Paulo F M de Oliveira
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Rômulo A Ando
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Teresa C B Paiva
- School of Engineering of Lorena, Department of Basic and Environmental Sciences, University of São Paulo, Estrada do Campinho s/n, Lorena, 12602-810 São Paulo, Brazil
| | - Marcelo Pompêo
- Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, 05508-090 São Paulo, Brazil
| | - Bárbara Rani-Borges
- Institute of Science and Technology, São Paulo State University, Av Três de Março 511, Sorocaba, 18087-180 São Paulo, Brazil
| |
Collapse
|
23
|
Li X, Wang Y, Sun H, Wang Y, Han X, Yu J, Zhao X, Liu B. Differences in ingestion and biodegradation of the melamine formaldehyde plastic by yellow mealworms Tenebrio molitor and superworms Zophobas atratus, and the prediction of functional gut microbes. CHEMOSPHERE 2024; 352:141499. [PMID: 38373446 DOI: 10.1016/j.chemosphere.2024.141499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/11/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Plastics biodegradation by insect larvae is considered as a new strategy for plastic wastes treatment. To uncover the biodegradation of a more complex chemical polymer of melamine formaldehyde (MF) by insect larvae, two worm species of yellow mealworm Tenebrio molitor and superworm Zophobas atratus were fed on MF foam as sole diet for 45 days with sole bran diet as control. Although the MF foam consumption by yellow mealworms of 0.38 mg/d/g-larvae was almost 40% higher than that by superworms of 0.28 mg/d/g-larvae, a similar decrease of survival rates in both species were obtained at about 58%, indicating the adverse effects on their growth. Depolymerization and biodegradation of MF foam occurred in both larval guts, but was more extensive in yellow mealworms. MF foam sole diet influenced gut bacterial and fungal microbiomes of both larvae species, which were assessed by Illumina MiSeq on day 45. Compared to the bran-fed group, both gut bacterial and fungal communities significantly changed in MF-fed groups, but differed in the two larvae species. The results demonstrated a strong association between the distinctive gut microbiome and MF foam degradation, such as unclassified Enterobacteriaceae, Hyphopichia and Issatchenkia. However, sole MF foam diet negatively influenced worms, like lower survival rates and gut abnormalities. In summary, MF foam could be degraded by both yellow mealworms and superworms, albeit with adverse effects. Gut microbes were strongly associated to MF foam degradation, especially the gut fungi.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Yijing Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Yumeng Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Jingli Yu
- College of Ecology and Environment, Inner Mongolia University, Huhhot, 010021, PR China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China.
| | - Baoqin Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
24
|
Dong D, Guo Z, Yang X, Dai Y. Comprehensive understanding of the aging and biodegradation of polystyrene-based plastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123034. [PMID: 38016589 DOI: 10.1016/j.envpol.2023.123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
The extensive utilization and inadequate handling of plastics have resulted in severe environmental ramifications. In particular, plastics composed solely of a carbon-carbon (C-C) backbone exhibit limited degradation due to the absence of hydrolyzable functional groups. Plastics with enduring longevity in the natural environment are susceptible to environmental factors and their intrinsic properties, subsequently undergoing a series of aging processes that culminate in biodegradation. This article focuses on polystyrene (PS), which constitutes 20% of total plastic waste, as a case study. Initially, the application of PS in life and the impacts it poses are introduced. Following that, the key factors influencing the aging of PS are discussed, primarily encompassing its properties (e.g., surface characteristics, additives) and environmental factors (e.g., water matrices, biofilms). Lastly, an overview of microbial degradation of PS is provided, including potential microorganisms involved in PS degradation (bacteria, fungi, algae, and insects), four processes of microbial degradation (colonization, bio-fragmentation, assimilation, and mineralization), and potential mechanisms of microbial degradation. This study provides a comprehensive understanding of the multifaceted influences affecting the aging and biodegradation mechanisms of PS, thereby contributing valuable insights for the future management of plastic pollution.
Collapse
Affiliation(s)
- Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
25
|
Quan Z, Zhao Z, Liu Z, Wang W, Yao S, Liu H, Lin X, Li QX, Yan H, Liu X. Biodegradation of polystyrene microplastics by superworms (larve of Zophobas atratus): Gut microbiota transition, and putative metabolic ways. CHEMOSPHERE 2023; 343:140246. [PMID: 37741374 DOI: 10.1016/j.chemosphere.2023.140246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Superworm (larve of Zophobas atratus) could consume foams of expanded polystyrene plastics. However, there is no sufficient understanding of the impact of microplastics on superworms and the degradation pathways of polystyrene. Herein, we explored the weight and survival change of superworms while fed with polystyrene microplastics, and found that survival rate and mean weight would reduce. In terms of gut microbial community structure of surperworms, significant shifts were detected with the relative abundance of Hafnia-Obesumbacterium sp. increasing. In addition, we domesticated two microbiota from the gut of superworms, and confirmed their ability to degrade PS in vitro. The last but most important, 1291 metabolites were identified by HPLC-TOF-MS/MS, and six metabolites related to polystyrene degradation were identified through comparative metabolomic analysis. According to the content and pathways of these metabolites, three metabolic pathways of polystyrene were (a) styrene-phenylacetyl-CoA-L-2-aminoadipic acid; (b) styrene-phenylacetyl-CoA-benzaldehyde; (c) styrene-2-hydroxyacetophenone. These results would help to further screen bacteria of PS degradation and investigate PS metabolic pathways in invertebrates.
Collapse
Affiliation(s)
- Zhaolin Quan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zixi Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhimin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weijun Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shunyu Yao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huiren Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoqiu Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaolu Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
26
|
Peng BY, Sun Y, Li P, Yu S, Xu Y, Chen J, Zhou X, Wu WM, Zhang Y. Biodegradation of polyvinyl chloride, polystyrene, and polylactic acid microplastics in Tenebrio molitor larvae: Physiological responses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118818. [PMID: 37633102 DOI: 10.1016/j.jenvman.2023.118818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/28/2023]
Abstract
It is widely understood that microplastics (MPs) can induce various biological stresses in macroinvertebrates that are incapable of biodegrading plastics. However, the biodegradation and physiological responses of plastic-degrading macroinvertebrates toward MPs of different degradability levels remain unexplored. In this study, Tenebrio molitor larvae (mealworms) were selected as a model of plastics-degrading macroinvertebrate, and were tested against three common plastics of different degradability rankings: polyvinyl chloride (PVC), polystyrene (PS), and polylactic acid (PLA) MPs (size <300 μm). These three MPs were biodegraded with the rate sequence of PLA > PS > PVC, resulting in a reversed order of negative physiological responses (body weight loss, decreased survival, and biomass depletion) of mealworms. Simultaneously, the levels of reactive oxygen species (ROS), antioxidant enzyme activities, and lipid peroxidation were uniformly increased as polymer degradability decreased and intermediate toxicity increased. PVC MPs exhibited higher toxicity than the other two polymers. The oxidative stresses were effectively alleviated by supplementing co-diet bran. The T. molitor larvae fed with PLA plus bran showed sustainable growth without an increase in oxidative stress. The results provide new insights into the biotoxicity of MPs on macroinvertebrates and offer comprehensive information on the physiological stress responses of plastic-degrading macroinvertebrates during the biodegradation of plastics with different degradability levels.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Siran Yu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA, 94305-4020, United States.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
27
|
Peng BY, Xiao S, Sun Y, Liu Y, Chen J, Zhou X, Wu WM, Zhang Y. Unveiling Fragmentation of Plastic Particles during Biodegradation of Polystyrene and Polyethylene Foams in Mealworms: Highly Sensitive Detection and Digestive Modeling Prediction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15099-15111. [PMID: 37751481 DOI: 10.1021/acs.est.3c04406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 μm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yurong Liu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
28
|
Jung H, Shin G, Park SB, Jegal J, Park SA, Park J, Oh DX, Kim HJ. Circular waste management: Superworms as a sustainable solution for biodegradable plastic degradation and resource recovery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:568-579. [PMID: 37812971 DOI: 10.1016/j.wasman.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Bioplastics offer a promising solution to plastic pollution, however, their production frequently relies on edible biomass, and their degradation rates remain inadequate. This study investigates the potential of superworms (Zophobas atratus larvae) for polybutylene succinate (PBS) waste management, aiming to achieve both resource recovery and biodegradation. Superworms exclusively fed on PBS for a month exhibited the same survival rate as those on a standard bran diet. PBS digestion yielded a 5.13% weight gain and a 23.23% increase in protein composition in superworms. Additionally, carbon isotope analyses substantiated the conversion of PBS into superworm components. Gut microbes capable of PBS biodegradation became progressively prominent, further augmenting the degradation rate of PBS under composting conditions (ISO 14855-1). Gut-free superworms fed with PBS exhibited antioxidant activities comparable to those of blueberries, renowned for their high antioxidant activity. Based on these findings, this study introduces a sustainable circular solution encompassing recycling PBS waste to generate insect biomass, employing insect gut and frass for PBS degradation and fertilizer, and harnessing insect residue as a food source. In essence, the significance of this research extends to socio-economic and environmental spheres, impacting waste management, resource efficiency, circular economy promotion, environmental preservation, industrial advancement, and global sustainability objectives. The study's outcomes possess the potential to reshape society's approach to plastic waste, facilitating a shift toward more sustainable paradigms.
Collapse
Affiliation(s)
- Hyuni Jung
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Sung Bae Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
29
|
De Filippis F, Bonelli M, Bruno D, Sequino G, Montali A, Reguzzoni M, Pasolli E, Savy D, Cangemi S, Cozzolino V, Tettamanti G, Ercolini D, Casartelli M, Caccia S. Plastics shape the black soldier fly larvae gut microbiome and select for biodegrading functions. MICROBIOME 2023; 11:205. [PMID: 37705113 PMCID: PMC10500907 DOI: 10.1186/s40168-023-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marcella Reguzzoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Davide Savy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Silvana Cangemi
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Vincenza Cozzolino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy.
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy.
| | - Silvia Caccia
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
30
|
Lin H, Liang X, Han F, Luo X, Li E. Growth, Biochemical Characteristics, Flesh Quality, and Gut Microbiota of the Pacific White Shrimp ( Penaeus vannamei) Fed a Defatted Superworm ( Zophobas atratus) Larvae Meal. AQUACULTURE NUTRITION 2023; 2023:8627246. [PMID: 37457792 PMCID: PMC10349680 DOI: 10.1155/2023/8627246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
This study evaluated the effects of defatted superworm (Zophobas atratus) larvae meal (DBWLM) as an alternative protein ingredient for juvenile Pacific white shrimp (Penaeus vannamei). Six isonitrogenous and isolipidic experimental diets were characterized by replacing 0%, 15%, 30%, 45%, 60%, and 75% fish meal (DBWLM0, DBWLM15, DBWLM30, DBWLM45, DBWLM60, and DBWLM75, respectively) with DBWLM on a w/w basis and feeding them to juvenile shrimp (0.34 ± 0.04 g) for 56 days. The results showed that the replacement of up to 75% fish meal by DBWLM had no negative effect on the growth performance of P. vannamei. The survival of shrimp in the DBWLM30 group was the highest, and the weight gain, specific growth rate, feed conversion ratio, condition factor, and apparent digestibility coefficients of dry matter in the DBWLM15 group were the highest. The substitution of DBWLM for fish meal significantly increased the elasticity of flesh, improved the total content of umami amino acids in flesh (aspartic acid, glutamic acid, glycine, and alanine), promoted lipid metabolism in shrimp, and reduced serum lipid levels. With the increase in DBWLM level, serum acid phosphatase, alkaline phosphatase activity, and intestinal inflammatory gene expression (IGF-1 and IL-6) were inhibited, malondialdehyde content decreased, and total antioxidant capacity level and superoxide dismutase activity increased significantly. Histological sections of the hepatopancreas showed that when 60% or more fish meal was replaced, the hepatopancreas atrophied and had irregular lumen distortion, but the cell membrane was not damaged. Microbiome analysis showed that the abundance of Bacteroidetes and Firmicutes increased and the abundance of Proteobacteria decreased in the DBWLM replacement group, and it was rich in "metabolism"-related functional pathways. It is worth mentioning that the expression of amino-acid-related enzymes was upregulated in the DBWLM15 and DBWLM30 groups, and the DBWLM75 group inhibited the biosynthesis of steroids and hormones. To conclude, the replacement of 15%-45% fish meal with DBWLM can result in better growth and immune status, improved meat elasticity, and reduced inflammation in P. vannamei. However, it is recommended that the replacement level should not exceed 60%, otherwise it will cause atrophy of hepatopancreas cells.
Collapse
Affiliation(s)
- Hongxing Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Xiaolong Liang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Xiaolong Luo
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
31
|
Peng BY, Sun Y, Zhang X, Sun J, Xu Y, Xiao S, Chen J, Zhou X, Zhang Y. Unveiling the residual plastics and produced toxicity during biodegradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics by mealworms (Larvae of Tenebrio molitor). JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131326. [PMID: 37027925 DOI: 10.1016/j.jhazmat.2023.131326] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Evidence for plastic degradation by mealworms has been reported. However, little is known about the residual plastics derived from incomplete digestion during mealworm-mediated plastic biodegradation. We herein reveal the residual plastic particles and toxicity produced during mealworm-mediated biodegradation of the three most common microplastics, i.e., polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC). All three microplastics are effectively depolymerized and biodegraded. We discover that the PVC-fed mealworms exhibit the lowest survival rate (81.3 ± 1.5%) and the highest body weight reduction (15.1 ± 1.1%) among the experimental groups by the end of the 24-day experiment. We also demonstrate that the residual PVC microplastic particles are more difficult to depurate and excrete for the mealworms compared to the residual PE and PS particles by using laser direct infrared spectrometry. The levels of oxidative stress responses, including reactive oxygen species, antioxidant enzyme activities, and lipid peroxidation, are also highest in the PVC-fed mealworms. Sub-micron microplastics and small microplastics are found in the frass of mealworms fed with PE, PS, and PVC, with the smallest particles detected at diameters of 5.0, 4.0, and 5.9 µm, respectively. Our findings provide insights into the residual microplastics and microplastic-induced stress responses in macroinvertebrates under micro(nano)plastics exposure.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Jingjing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
32
|
Goo TW, Hwang D, Lee KS, Lee SH, Yun EY. Development of Optimized Feed for Lipid Gain in Zophobas morio (Coleoptera: Tenebrionidae) Larvae. Animals (Basel) 2023; 13:1958. [PMID: 37370468 DOI: 10.3390/ani13121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Super mealworm Zophobas morio (Coleoptera: Tenbrionidea) larvae (ZML) are being investigated as potential candidates for biodiesel production. Several studies have revealed that the crude fat content of ZML can be enhanced by increasing the feed consumed. We aimed to develop an optimized ZML feed that enhances the lipid gain using 10 different ingredients. The results revealed that the highest lipid content was observed in ZML fed food waste (FW). Furthermore, we found that the weight gain of ZML improved when fed fermented FW using three selected microorganisms (3M), Lactobacillus fermentum, Lactobacillus acidophilus, and Pediococcus acidilactici. We also analyzed the effects of preservatives on the weight gain of ZML, and the results revealed that ZML fed 5-day 3M-fermented FW (FFW) containing 0.05% sorbic acid exhibited the highest weight gain. Based on these findings, we produced solid FFW containing 0.05% sorbic acid using 5% agar and established a manufacturing process. Body composition analysis revealed that the lipid content of the ZML fed manufactured feed was higher than that of the ZML fed wheat bran. Therefore, this study suggests that solid FFW containing 0.05% sorbic acid should be used as a commercial feed for ZML breeding to enhance lipid gain, making it an economical substrate for raw biodiesel production.
Collapse
Affiliation(s)
- Tae-Won Goo
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38766, Republic of Korea
| | - Dooseon Hwang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju 38766, Republic of Korea
| | - Seung Hun Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Young Yun
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
33
|
He L, Yang SS, Ding J, He ZL, Pang JW, Xing DF, Zhao L, Zheng HS, Ren NQ, Wu WM. Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131759. [PMID: 37276692 DOI: 10.1016/j.jhazmat.2023.131759] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Polyethylene terephthalate (PET) is a mass-produced fossil-based plastic polymer that contributes to catastrophic levels of plastic pollution. Here we demonstrated that Tenebrio molitor (mealworms) was capable of rapidly biodegrading two commercial PET resins (microplastics) with respective weight-average molecular weight (Mw) of 39.33 and 29.43 kDa and crystallinity of 22.8 ± 3.06% and 18 ± 2.25%, resulting in an average mass reduction of 71.03% and 73.28% after passage of their digestive tract, and respective decrease by 9.22% and 11.36% in Mw of residual PET polymer in egested frass. Sequencing of 16 S rRNA gene amplicons of gut microbial communities showed that dominant bacterial genera were enriched and associated with PET degradation. Also, PICRUSt prediction exhibited that oxidases (monooxygenases and dioxygenases), hydrolases (cutinase, carboxylesterase and chitinase), and PET metabolic enzymes, and chemotaxis related functions were up-regulated in the PET-fed larvae. Additionally, metabolite analyses revealed that PET uptake caused alterations of stress response and plastic degradation related pathways, and lipid metabolism pathways in the T. molitor larvae could be reprogrammed when the larvae fed on PET. This study provides new insights into gut microbial community adaptation to PET diet under nutritional stress (especially nitrogen deficiency) and its contribution to PET degradation.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Li He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing 100096, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - He-Shan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Kim J, Park S, Bang J, Jin H, Kwak HW. Biodegradation in Composting Conditions of PBEAS Monofilaments for the Sustainable End-Use of Fishing Nets. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300020. [PMID: 37287594 PMCID: PMC10242531 DOI: 10.1002/gch2.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Indexed: 06/09/2023]
Abstract
The development and utilization of biodegradable plastics is an effective way to overcome environmental pollution caused by the disposal of non-degradable plastics. Recently, polybutylene succinate co-butylene adipate co-ethylene succinate co-ethylene adipate, (PBEAS) a biodegradable polymer with excellent strength and elongation, was developed to replace conventional nylon-based non-degradable fishing nets. The biodegradable fishing gear developed in this way can greatly contribute to inhibiting ghost fishing that may occur at the fishing site. In addition, by collecting the products after use and disposing of them in composting conditions, the environmental problem such as the leakage of microplastics strongly can be prevented. In this study, the aerobic biodegradation of PBEAS fishing nets under composting conditions is evaluated and the resulting changes in physicochemical properties are analyzed. The PBEAS fishing gear exhibits a mineralization rate of 82% in a compost environment for 45 days. As a result of physicochemical analysis, PBEAS fibers show a representative decrease in molecular weight and mechanical properties under composting conditions. PBEAS fibers can be used as eco-friendly biodegradable fishing gear that can replace existing non-degradable nylon fibers, and in particular, fishing gear collected after use can be returned to nature through biodegradation under composting conditions.
Collapse
Affiliation(s)
- Jungkyu Kim
- Department of AgricultureForestry and BioresourcesCollege of Agriculture & Life SciencesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Subong Park
- Fisheries Engineering DivisionNational Institute of Fisheries ScienceBusan46083South Korea
| | - Junsik Bang
- Department of AgricultureForestry and BioresourcesCollege of Agriculture & Life SciencesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Hyoung‐Joon Jin
- Department of Polymer Science and EngineeringInha University100 Inha‐ro, Nam‐guIncheon22212South Korea
| | - Hyo Won Kwak
- Department of AgricultureForestry and BioresourcesCollege of Agriculture & Life SciencesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826South Korea
| |
Collapse
|
35
|
Kaur S, Stinson SA, diCenzo GC. Whole genome assemblies of Zophobas morio and Tenebrio molitor. G3 (BETHESDA, MD.) 2023; 13:jkad079. [PMID: 37002914 PMCID: PMC10234394 DOI: 10.1093/g3journal/jkad079] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/29/2023] [Indexed: 01/12/2024]
Abstract
Zophobas morio (=Zophobas atratus) and Tenebrio molitor are darkling beetles with industrial importance due to their use as feeder insects and their apparent ability to biodegrade plastics. High quality genome assemblies were recently reported for both species. Here, we report additional independent Z. morio and T. molitor genome assemblies generated from Nanopore and Illumina data. Following scaffolding against the published genomes, haploid assemblies of 462 Mb (scaffold N90 of 16.8 Mb) and 258 Mb (scaffold N90 of 5.9 Mb) were produced for Z. morio and T. molitor, respectively. Gene prediction led to the prediction of 28,544 and 19,830 genes for Z. morio and T. molitor, respectively. Benchmarking Universal Single Copy Orthologs (BUSCO) analyses suggested that both assemblies have a high level of completeness; 91.5 and 89.0% of the BUSCO endopterygota marker genes were complete in the Z. morio assembly and proteome, respectively, while 99.1 and 92.8% were complete in the T. molitor assembly and proteome, respectively. Phylogenomic analyses of four genera from the family Tenebrionidae yielded phylogenies consistent with those previously constructed based on mitochondrial genomes. Synteny analyses revealed large stretches of macrosynteny across the family Tenebrionidae, as well as numerous within-chromosome rearrangements. Finally, orthogroup analysis identified ∼28,000 gene families across the family Tenebrionidae, of which 8,185 were identified in all five of the analyzed species, and 10,837 were conserved between Z. morio and T. molitor. We expect that the availability of multiple whole genome sequences for Z. morio and T. molitor will facilitate population genetics studies to identify genetic variation associated with industrially relevant phenotypes.
Collapse
Affiliation(s)
- Sabhjeet Kaur
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario K7L 3N6, Canada
| | - Sydnie A Stinson
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario K7L 3N6, Canada
| | - George C diCenzo
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
36
|
Nyamjav I, Jang Y, Park N, Lee YE, Lee S. Physicochemical and Structural Evidence that Bacillus cereus Isolated from the Gut of Waxworms ( Galleria mellonella Larvae) Biodegrades Polypropylene Efficiently In Vitro. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:1-14. [PMID: 37361349 PMCID: PMC10171730 DOI: 10.1007/s10924-023-02878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/28/2023]
Abstract
Biodegradation of plastic waste using microorganisms has been proposed as one of the solutions to the increasing worldwide plastic waste. Polypropylene (PP) is the second most used plastic used in various industries, and it has been widely used in the production of personal protective equipment such as masks due to the COVID-19 pandemic. Therefore, biodegradation of PP becomes very important. Here, we present results on the physicochemical and structural studies of PP biodegradation by Bacillus cereus isolated from the gut of the waxworms, Galleria mellonella larvae. We also studied the biodegradability of PP by the gut microbiota compared with Bacillus cereus. We analyzed the microbial degradation of the PP surface using scanning electron microscopy and energy - dispersive X-ray spectroscopy and confirmed that the physical and chemical changes were caused by Bacillus cereus and the gut microbiota. The chemical structural changes were further investigated using X-ray photoelectron microscopy and Fourier - transform - infrared spectroscopy, and it was confirmed that the oxidation of the PP surface proceeded with the formation of carbonyl groups (C=O), ester groups (C-O), and hydroxyl groups (-OH) by Bacillus cereus. Additionally, the gut microbiota composed of diverse microbial species showed equal oxidation of PP compared to Bacillus cereus. More importantly, high temperature gel permeation chromatography (HT-GPC) analysis showed that Bacillus cereus exhibited quantitatively a higher biodegradability of PP compared to the gut microbiota. Our results suggest that Bacillus cereus possesses a complete set of enzymes required to initiate the oxidation of the carbon chain of PP and will be used to discover new enzymes and genes that are involved in degrading PP. Supplementary Information The online version contains supplementary material available at 10.1007/s10924-023-02878-y.
Collapse
Affiliation(s)
- Indra Nyamjav
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Yejin Jang
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Nohyoon Park
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Ye Eun Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| | - Sukkyoo Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988 Republic of Korea
| |
Collapse
|
37
|
Mamtimin T, Han H, Khan A, Feng P, Zhang Q, Ma X, Fang Y, Liu P, Kulshrestha S, Shigaki T, Li X. Gut microbiome of mealworms (Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets. MICROBIOME 2023; 11:98. [PMID: 37147715 PMCID: PMC10161430 DOI: 10.1186/s40168-023-01550-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/16/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Some insects can degrade both natural and synthetic plastic polymers, their host and gut microbes play crucial roles in this process. However, there is still a scientific gap in understanding how the insect adapted to the polystyrene (PS) diet from natural feed. In this study, we analyzed diet consumption, gut microbiota responses, and metabolic pathways of Tenebrio molitor larvae exposed to PS and corn straw (CS). RESULTS T. molitor larvae were incubated under controlled conditions (25 ± 1 °C, 75 ± 5% humidity) for 30 days by using PS foam with weight-, number-, and size-average molecular weight (Mw, Mn, and Mz) of 120.0, 73.2, and 150.7 kDa as a diet, respectively. The larvae exhibited lower PS consumption (32.5%) than CS (52.0%), and these diets had no adverse effects on their survival. The gut microbiota structures, metabolic pathways, and enzymatic profiles of PS- and CS-fed larvae showed similar responses. The gut microbiota of larvae analysis indicated Serratia sp., Staphylococcus sp., and Rhodococcus sp. were associated with both PS and CS diets. Metatranscriptomic analysis revealed that xenobiotics, aromatic compounds, and fatty acid degradation pathways were enriched in PS- and CS-fed groups; laccase-like multicopper oxidases, cytochrome P450, monooxygenase, superoxidase, and dehydrogenase were involved in lignin and PS degradation. Furthermore, the upregulated gene lac640 in both PS- and CS-fed groups was overexpressed in E. coli and exhibited PS and lignin degradation ability. CONCLUSIONS The high similarity of gut microbiomes adapted to biodegradation of PS and CS indicated the plastics-degrading ability of the T. molitor larvae originated through an ancient mechanism that degrades the natural lignocellulose. Video Abstract.
Collapse
Affiliation(s)
- Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, China.
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Xiaobiao Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yitian Fang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Toshiro Shigaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, China.
| |
Collapse
|
38
|
Hoe Tay J, Asib N, Abd Aziz NA, Hun Tan G. Biodegradation of Expanded and Extruded Polystyrene with Different Diets by Using Zophobas atratus Larvae (Coleoptera: Tenebrionidae). PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2023; 46:459-483. [DOI: 10.47836/pjtas.46.2.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Polystyrene waste pollutes the environment and poses a significant health risk to humans, animals, and marine ecology. This study aims to evaluate the effectiveness of degradation on expanded (EPS) and extruded (XPS) polystyrene with different diets using superworms (Zophobas atratus larvae) obtained in Malaysia. The growth and development of the larvae after consumption of EPS and XPS and the gut microbial community changes in response to high polystyrene consumption diets were also identified. The oatmeal, wheat bran, and cornmeal were used as supplement diets and showed significantly enhanced EPS and XPS consumption and degradation compared to sole diet treatment. Gel permeation chromatography was carried out using egested frass of Z. atratus larvae to characterize depolymerization of EPS and XPS, indicating a significant reduction in the average molecular weight and average molecular weight. The highest reduction occurred in the presence of oatmeal. Proton nuclear magnetic resonance and Fourier transform infrared spectroscopy analyses indicated functional group changes and chemical modification occurred with depolymerization and partial oxidation of EPS and XPS. The larvae length increased, while the number of instars and duration of larvae became shorter with the addition of supplement diets. Oatmeal is predominantly effective among other supplements in assisting Z. atratus larvae with EPS and XPS degradation. The results of this study support the ubiquity of polystyrene biodegradation in Z. atratus and the next-generation sequencing studies. Kluyvera sp., Klebsiella sp., and Enterobacter sp. were found to be strongly associated with degrading EPS and XPS polystyrene with oatmeal as a supplemental diet.
Collapse
|
39
|
Sun Y, Peng BY, Wang X, Li Y, Wang Y, Zhang Y, Xia S, Zhao J. Adsorption and desorption mechanisms of oxytetracycline on poly(butylene adipate-co-terephthalate) microplastics after degradation: The effects of biofilms, Cu(II), water pH, and dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160866. [PMID: 36526173 DOI: 10.1016/j.scitotenv.2022.160866] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As the application of biodegradable polymers has grown, so has the interest in exploring the environmental behaviors of biodegradable microplastics (MPs). In this study, we investigated the interaction of oxytetracycline (OTC) with poly(butylene adipate-co-terephthalate) (PBAT) MPs after biodegradation, and explored the effect of the coexisting Cu(II) on OTC adsorption and desorption processes. The maximum adsorption amounts of virgin PBAT, biofilm PBAT, and degraded PBAT reached 692.05 μg·g-1, 1396.21 μg·g-1, and 1869.93 μg·g-1, respectively, and the presence of Cu(II) increased the OTC adsorption capacities by 431.16 %, 165.99 %, and 132.94 %, respectively. The enhanced adsorption capacities were attributed to the formation of PBAT-Cu-OTC complexes. The remarkable desorption hysteresis of OTC was observed on the degraded PBAT but not on the biofilm PBAT when Cu(II) was present, due to the complexation between Cu(II) and biofilms. The effect of Cu(II) varied depending on the MP physiochemical properties (e.g., surface areas, zeta potentials, and functional groups) and the environmental factors (e.g., the solution pH and coexisting dissolved organic matter). Fourier transform infrared spectroscopy (FTIR) coupled with X-ray photoelectron spectroscopy (XPS) identified the Cu(II) bridging effect, and various interaction forces between PBAT and OTC, including hydrogen-bonding, π-π, cation-π, and electrostatic interactions.
Collapse
Affiliation(s)
- Ying Sun
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo-Yu Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xuejiang Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yuan Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuan Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Yanan Zhang
- College of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianfu Zhao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
40
|
Ding MQ, Yang SS, Ding J, Zhang ZR, Zhao YL, Dai W, Sun HJ, Zhao L, Xing D, Ren N, Wu WM. Gut Microbiome Associating with Carbon and Nitrogen Metabolism during Biodegradation of Polyethene in Tenebrio larvae with Crop Residues as Co-Diets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3031-3041. [PMID: 36790312 DOI: 10.1021/acs.est.2c05009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tenebrio molitor and Tenebrio obscurus (Coleoptera: Tenebrionidae) larvae are two commercial insects that eat plant and crop residues as diets and also biodegrade synthetic plastics polyethylene (PE). We examined biodegradation of low-density PE (LDPE) foam (Mn = 28.9 kDa and Mw = 342.0 kDa) with and without respective co-diets, i.e., wheat brain (WB) or corn flour (CF), corn straw (CS), and rice straw (RS) at 4:1 (w/w), and their gut microbiome and genetic metabolic functional groups at 27.0 ± 0.5 °C after 28 days of incubation. The presence of co-diets enhanced LDPE consumption in both larvae and broad-depolymerized the ingested LDPE. The diet type shaped gut microbial diversity, potential pathways, and metabolic functions. The sequence of effectiveness of co-diets was WB or CF > CS > RS for larval development and LDPE degradation. Co-occurrence networks indicated that the larvae co-fed with LDPE displayed more complex correlations of gut microbiome than the larvae fed with single diets. The primary diet of WB or CF and crop residues CS and RS provided energy and nitrogen source to significantly enhance LDPE biodegradation with synergistic activities of the gut microbiota. For the larvae fed LDPE and LDPE plus co-diets, nitrogen fixation function was stimulated compared to normal diets and associated with LDPE biodegradation.
Collapse
Affiliation(s)
- Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Rong Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yi-Lin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
41
|
Zhong Z, Zhou X, Xie Y, Chu LM. The interplay of larval age and particle size regulates micro-polystyrene biodegradation and development of Tenebrio molitor L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159335. [PMID: 36228792 DOI: 10.1016/j.scitotenv.2022.159335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Microplastics, tiny plastic fragments from 1 μm to 5 mm, are widespread globally, even in remote environments. Due to their small sizes, they are easily ingested by organisms and contaminate the food chain. Recently, the biodegradation of some recalcitrant plastics by larva of Tenebrio molitor L. (mealworm) has been reported. However, the effects of microplastic feeding on them are limited. In our study, we selected rigid micro-polystyrene (MPS) as the model plastic to investigate the influences of particle size and larval age on plastic consumption and degradation, and the effects of microplastic feeding on the survival and development of mealworms at different larval ages. The smaller the microplastic fragment was, the more plastics the mealworms consumed, though there was a limit on particle size. Mealworms of three-month-old had the highest consumption rate. Both depolymerization and modification on the functional groups were only observed in frass excreted by three-month old mealworms. Additionally, mealworms cofed with wheat bran and MPS of this age had comparable mortality, larval growing curve and pupation distribution as the control group with wheat bran. Our results demonstrated that mealworms in this larval stage had the greatest resistance to high doses of microplastic feeding. We suggested that microplastic waste could be provided to three-month old mealworms as half replacement of bran diet to result in the greatest plastic consumption and degradation.
Collapse
Affiliation(s)
- Zheng Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Xi Zhou
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Public Laboratory of Analysis and Testing Technology, Guangdong Institute of Analysis, Guangzhou 510070, Guangdong, China
| | - Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - L M Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
42
|
Yang XG, Wen PP, Yang YF, Jia PP, Li WG, Pei DS. Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front Microbiol 2023; 13:1001750. [PMID: 36687617 PMCID: PMC9852869 DOI: 10.3389/fmicb.2022.1001750] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/22/2022] [Indexed: 01/09/2023] Open
Abstract
Traditional plastics, such as polyethylene (PE), polystyrene (PS), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyurethane (PUR), and other plastic polymers, are difficult to degrade and are gradually accumulated in the environment to cause a serious environmental problem, which is urgently needed to develop novel treatments or control technology. The biodegradation of plastics has gained great attention due to the advantages of green and safe characteristics. Microorganisms play a vital role in the biodegradation of plastics, including environmental microbes (in vitro) and gut microbes of insects (in vivo). Microbial degradation in environmental conditions in vitro is extremely slow for major plastics at degradation rates on the basis of a month or even a year time, but recent discoveries show that the fast biodegradation of specific plastics, such as PS, PE, and PUR, in some invertebrates, especially insects, could be enhanced at rates on basis of hours; the biodegradation in insects is likely to be gut microbial-dependent or synergetic bioreactions in animal digestive systems. This review comprehensively summarizes the latest 7-year (2016-2022) publications on plastic biodegradation by insects and microorganisms, elucidates the mechanism of plastic degradation in insects and environmental microbes, and highlights the cutting-edge perspectives for the potential applications of plastic biodegradation.
Collapse
Affiliation(s)
- Xian-Guang Yang
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ping-Ping Wen
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yi-Fan Yang
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Wei-Guo Li
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Bhanot V, Panwar J. Unveiling the potential of Lichtheimia ramosa AJP11 for myco-transformation of polystyrene sulfonate and its driving molecular mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116579. [PMID: 36302301 DOI: 10.1016/j.jenvman.2022.116579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is a major environmental concern due to its deleterious effects on various ecosystems. The limitations and shortcomings of waste management strategies has led to the over-accumulation of plastic waste, mainly comprised of single-use plastics, such as polystyrene (PS). Considering the advantages of biotransformation over the other plastic disposal methods, it has become a major focus of the modern research. Biotransformation of plastics involves its microbial hydrolysis into short chain oligomers and monomers that are eventually assimilated as carbon source by the microbes leading to the release of CO2. As fungi are known to possess multifarious and highly regulated enzyme system capable of utilizing diverse nutrient sources, the present study explored the potential of Lichtheimia ramosa AJP11 towards myco-transformation of polystyrene sulfonate (PSS), a structural analogue of polystyrene (PS). During the 30-day incubation period of L. ramosa AJP11 in minimal salt medium (MSM)+1% PSS, the fungus showed 41.6% increment in its fresh weight biomass, indicating the utilization of PSS as sole carbon source. Further analysis revealed the generation of various reaction intermediates such as alkanes and fatty acids, crucial for the continuum of fungal metabolic pathways. Moreover, detection of PS oligomers such as cyclohexane and 2,4-DTBP confirmed the myco-transformation of PSS. The extracellular fungal protein profile showed considerable overexpression of a 14.4 kDa protein, characterized to be a hydrophobic surface binding (Hsb) protein, which is hypothesized to adsorb onto the PSS to facilitate its transformation. Further, in silico analysis of Hsb protein indicated it to be an amphiphilic α-helical protein with ability to bind styrene sulfonate unit via both hydrogen and hydrophobic interactions, with a binding energy of -5.02 kcal mol-1. These findings open new avenues for over expression of Hsb under controlled reactor conditions to accelerate the PS waste disposal.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
44
|
Leicht A, Gatz-Schrupp J, Masuda H. Discovery of Nylon 11 ingestion by mealworm ( Tenebrio molitor) larvae and detection of monomer-degrading bacteria in gut microbiota. AIMS Microbiol 2022; 8:612-623. [PMID: 36694582 PMCID: PMC9834084 DOI: 10.3934/microbiol.2022039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Nylon 11, which can be found in many commercial products, is a synthetic plastic that has previously been considered non-biodegradable. Increasing nylon 11 and other plastics in landfills and in the environment pose an environmental concern. Recent studies on plastic biodegradation revealed that initial mechanical fragmentations increase the rate of degradation. In this study, we discovered that the larvae of mealworm (Tenebrio molitor) can masticate nylon 11 film at the rate of 0.25 ± 0.07 mg per fifty larvae per day. The body mass of larvae did not differ from that of starvation control while feeding on nylon 11. Comparison of gut microbiota in nylon-fed and starving larvae showed a shift in composition. There was a significant variation in community composition among the nylon 11-fed experimental groups, suggesting that many organisms are capable of metabolizing nylon 11 fragments and/or possess a growth advantage in a nylon-fed gut environment. We also discovered that a significant fraction of gut microbiome of control larvae is capable of metabolizing nylon 11 monomer (11-aminoundecanoic acid) even in the absence of prior exposure to nylon 11. This is the first study demonstrating ingestion of nylon polymers by invertebrates, and our results suggest the potential of mealworm larvae for nylon 11 biodegradation applications.
Collapse
|
45
|
Agustin-Salazar S, Ricciulli M, Ambrogi V, Cerruti P, Scarinzi G. Thermomechanical Properties and Biodegradation Behavior of Itaconic Anhydride-Grafted PLA/Pecan Nutshell Biocomposites. Polymers (Basel) 2022; 14:polym14245532. [PMID: 36559900 PMCID: PMC9785769 DOI: 10.3390/polym14245532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The use of lignocellulose-rich biowaste as reinforcing filler in biodegradable polymers represents a sustainable option to obtain cost-effective bio-based materials to be used for several applications. In addition, the scarce polymer-biofiller interaction can be improved by reactive functionalization of the matrix. However, the obtained biocomposites might show high thermal deformability and possibly a slow biodegradation rate. In this work, polylactic acid (PLA) was first chemically modified with itaconic anhydride, and then biocomposites containing 50 wt.% of pecan (Carya illinoinensis) nutshell (PNS) biowaste were prepared and characterized. Their physical and morphological properties were determined, along with their biodegradation behavior in soil. Moreover, the effects of two environmentally friendly physical treatments, namely ball-milling of the filler and thermal annealing on biocomposites, were assessed. Grafting increased PLA thermal-oxidative stability and crystallinity. The latter was further enhanced by the presence of PNS, achieving a 30% overall increase compared to the plain matrix. Accordingly, the biocomposites displayed mechanical properties comparable to those of the plain matrix. Thermal annealing dramatically increased the mechanical and thermomechanical properties of all materials, and the heat deflection temperature of the biocomposites dramatically increased up to 60 °C with respect to the non-annealed samples. Finally, PNS promoted PLA biodegradation, triggering the swelling of the composites under soil burial, and accelerating the removal of the polymer amorphous phase. These results highlight the potential of combining natural fillers and environmentally benign physicochemical treatments to tailor the properties of PLA biocomposites. The high biofiller content used in this work, in conjunction with the chemical and physico-mechanical treatments applied, increased the thermal, mechanical, and thermomechanical performance of PLA biocomposites while improving their biodegradation behavior. These outcomes allow for widening the application field of PLA biocomposites in those areas requiring a stiff and lightweight material with low deformability and faster biodegradability.
Collapse
Affiliation(s)
- Sarai Agustin-Salazar
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Chemical and Metallurgical Engineering (DIQyM), University of Sonora, Building 5B, Del Conocimiento, Centro, Hermosillo C.P. 83000, Sonora, Mexico
- Correspondence: (S.A.-S.); (P.C.)
| | - Marco Ricciulli
- Department of Chemical, Materials and Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Veronica Ambrogi
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Chemical, Materials and Production Engineering (DICMAPI), University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Gaetano Previati, 1/E, 23900 Lecco, Italy
- Correspondence: (S.A.-S.); (P.C.)
| | - Gennaro Scarinzi
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
46
|
Peng BY, Sun Y, Xiao S, Chen J, Zhou X, Wu WM, Zhang Y. Influence of Polymer Size on Polystyrene Biodegradation in Mealworms ( Tenebrio molitor): Responses of Depolymerization Pattern, Gut Microbiome, and Metabolome to Polymers with Low to Ultrahigh Molecular Weight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17310-17320. [PMID: 36350780 DOI: 10.1021/acs.est.2c06260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biodegradation of polystyrene (PS) in mealworms (Tenebrio molitor lavae) has been identified with commercial PS foams. However, there is currently limited understanding of the influence of molecular weight (MW) on insect-mediated plastic biodegradation and the corresponding responses of mealworms. In this study, we provided the results of PS biodegradation, gut microbiome, and metabolome by feeding mealworms with high-purity PS microplastics with a wide variety of MW. Over 24 days, mealworms (50 individuals) fed with 0.20 g of PS showed decreasing removal of 74.1 ± 1.7, 64.1 ± 1.6, 64.4 ± 4.0, 73.5 ± 0.9, 60.6 ± 2.6, and 39.7 ± 4.3% for PS polymers with respective weight-average molecular weights (Mw) of 6.70, 29.17, 88.63, 192.9, 612.2, and 1346 kDa. The mealworms degraded most PS polymers via broad depolymerization but ultrahigh-MW PS via limited-extent depolymerization. The gut microbiome was strongly associated with biodegradation, but that with low- and medium-MW PS was significantly distinct from that with ultrahigh-MW PS. Metabolomic analysis indicated that PS biodegradation reprogrammed the metabolome and caused intestinal dysbiosis depending on MW. Our findings demonstrate that mealworms alter their gut microbiome and intestinal metabolic pathways in response to in vivo biodegradation of PS polymers of various MWs.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
47
|
Lee S, M Silva S, Caballero Aguilar LM, Eom T, Moulton SE, Shim BS. Biodegradable bioelectronics for biomedical applications. J Mater Chem B 2022; 10:8575-8595. [PMID: 36214325 DOI: 10.1039/d2tb01475k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have been widely used in tissue engineering with the potential to be replaced by regenerative tissue. While conventional bionic interfaces are designed to be implanted in living tissue and organs permanently, biocompatible and biodegradable electronic materials are now progressing a paradigm shift towards transient and regenerative bionic engineering. For example, biodegradable bioelectronics can monitor physiologies in a body, transiently rehabilitate disease symptoms, and seamlessly form regenerative interfaces from synthetic electronic devices to tissues by reducing inflammatory foreign-body responses. Conventional electronic materials have not readily been considered biodegradable. However, several strategies have been adopted for designing electroactive and biodegradable materials systems: (1) conductive materials blended with biodegradable components, (2) molecularly engineered conjugated polymers with biodegradable moieties, (3) naturally derived conjugated biopolymers, and (4) aqueously dissolvable metals with encapsulating layers. In this review, we endeavor to present the technical bridges from electrically active and biodegradable material systems to edible and biodegradable electronics as well as transient bioelectronics with pre-clinical bio-instrumental applications, including biodegradable sensors, neural and tissue engineering, and intelligent drug delivery systems.
Collapse
Affiliation(s)
- Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Lilith M Caballero Aguilar
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| |
Collapse
|
48
|
Improving the low-rank coal flotation performance using a novel collector prepared by hot melting of plastic waste into diesel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Wang J, Wang Y, Li X, Weng Y, Dong X, Zhao X. Comparison on the effectiveness of Fourier transform infrared (FT-IR) and attenuated total reflection Fourier transform infrared (ATR-FT-IR) in characterizing plastics biodegradation by insect larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156289. [PMID: 35644389 DOI: 10.1016/j.scitotenv.2022.156289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The discovery that insect larvae can feed on foam plastics provided new exploration ideas and potential for plastic wastes biodegradation. In previous studies, both attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR) and conventional FT-IR have been used but no comparison has been done to evaluate the difference of effectiveness for the characterization of oxidization and biodegradation of plastics by insect larvae. To address this, foam plastics of polystyrene, polyurethane and polyethylene, as well as the frass of plastics-fed superworms Zophobas atratus were characterized using both FT-IR and ATR-FT-IR, and the differences were compared. For FT-IR, spectra were found to vary due to the difference in shape and thickness of the samples, as well as the moisture absorption of KBr. For ATR-FT-IR, although tests could be performed directly without pretreatment, the reflection with short wavelength could not deeply penetrate into the frass samples. Since the composition of plastics-fed larval frass is more complex than the original plastics, the spectra of FT-IR and ATR-FT-IR were observed significantly different. Therefore, the ATR-FT-IR was more effective in monitoring functional groups of original plastics, and be recommended to employ in combination with FT-IR for a more comprehensive characterization of plastics-fed larval frass in future studies.
Collapse
Affiliation(s)
- Jiaming Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yumeng Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xin Li
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yue Weng
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaoying Dong
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
50
|
Ruiz Barrionuevo JM, Martín E, Galindo Cardona A, Malizia A, Chalup A, de Cristóbal RE, Monmany Garzia AC. Consumption of low-density polyethylene, polypropylene, and polystyrene materials by larvae of the greater wax moth, Galleria mellonella L. (Lepidoptera, Pyralidae), impacts on their ontogeny. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68132-68142. [PMID: 35532825 DOI: 10.1007/s11356-022-20534-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Low-density polyethylene (LDPE), biaxially oriented polypropylene (BOPP), and expanded polystyrene (EXPS) are the most common plastics found in every home of the world, but only ~ 10% enter the recycling chains. Consequently, the study of plastic biodegradation by microorganisms and insects, such as the wax moths, has gained special interest. Galleria mellonella (L.) has been shown to consume single-layered polyethylene and polystyrene, though biological impacts of this consumption have been rarely reported. We evaluated the consumption of different plastics by G. mellonella larvae (L7, mean size: 25-30 mm) and its effect on larval duration, survival, and development. For this, we offered the larvae five diets: single-layered LDPE, EXPS, BOPP, triple-layered polyethylene (SB, for silo-bags), and a control with beeswax. We recorded the state and weight of the materials and the state of larvae until they reached the adult stage. Larvae consumed more PE (both LDPE and SB) and EXPS than BOPP; still, they were able to emerge as adults in all treatments. Larvae that consumed plastics turned into pupal stage faster than those that consumed beeswax, regardless of the type and amount of plastic consumed. This is the first report of wild G. mellonella larvae in Argentina consuming biaxially polypropylene and silo-bags.
Collapse
Affiliation(s)
- Juliana María Ruiz Barrionuevo
- Instituto de Ecología Regional (Universidad Nacional de Tucumán - Consejo Nacional de Investigaciones Científicas y Técnicas), CC34, Ciudad Universitaria Horco Molle, Yerba Buena, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo (Universidad Nacional de Tucumán), Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
| | - Eduardo Martín
- Facultad de Ciencias Naturales e Instituto Miguel Lillo (Universidad Nacional de Tucumán), Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
- Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - Alberto Galindo Cardona
- Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
- CCT Noa Sur, Consejo Nacional de Investigaciones Científicas y Técnicas, Crisóstomo Alvarez 722, San Miguel de Tucumán, Tucumán, Argentina
| | - Agustina Malizia
- Instituto de Ecología Regional (Universidad Nacional de Tucumán - Consejo Nacional de Investigaciones Científicas y Técnicas), CC34, Ciudad Universitaria Horco Molle, Yerba Buena, Tucumán, Argentina
| | - Adriana Chalup
- Facultad de Ciencias Naturales e Instituto Miguel Lillo (Universidad Nacional de Tucumán), Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
- Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - Ricardo E de Cristóbal
- Instituto Superior de Investigaciones Biológicas (Universidad Nacional de Tucumán - Consejo Nacional de Investigaciones Científicas y Técnicas), Chacabuco 461, San Miguel de Tucumán, Tucumán, Argentina
| | - A Carolina Monmany Garzia
- Instituto de Ecología Regional (Universidad Nacional de Tucumán - Consejo Nacional de Investigaciones Científicas y Técnicas), CC34, Ciudad Universitaria Horco Molle, Yerba Buena, Tucumán, Argentina.
| |
Collapse
|