1
|
Martínez-Pérez-Cejuela H, Williams ML, McLeod C, Gionfriddo E. Effective preconcentration of volatile per- and polyfluoroalkyl substances from gas and aqueous phase via solid phase microextraction. Anal Chim Acta 2025; 1345:343746. [PMID: 40015785 DOI: 10.1016/j.aca.2025.343746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic fluorinated chemicals of increasing global concern due to their persistence, toxicity, and widespread presence in the environment. Neutral and volatile PFAS, used in firefighting foams and non-stick coatings, are precursors of perfluorinated acids such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) and necessitate effective preconcentration methods for isolation from aqueous and gaseous phases. RESULTS In this work, a robust quantitative method was rigorously optimized and validated to achieve effective preconcentration and quantification of neutral volatile PFAS, including fluorotelomer alcohols (FTOHs), perfluorooctanesulfonamides (FOSAs), and a perfluorooctanesulfonamido-ethanol (FOSE). Leveraging the versatility of solid phase microextraction (SPME) for sampling in different extraction modes, volatile PFAS were pre-concentrated in gaseous (Headspace-SPME) and aqueous (Direct Immersion-SPME) phases. The impact of temperature, time, and aqueous media composition on extraction efficiency was assessed, with analysis performed using gas chromatography-mass spectrometry. LOQs between 0.005 μg L-1 and 5 μg L-1 were achieved for direct immersion-SPME and 0.005 μg L-1 to 0.25 μg L-1 for headspace-SPME, also demonstrating excellent repeatability with relative standard deviations (RSD%) below 11 %. SIGNIFICANCE This work highlights the need for efficient pre-chromatographic separation methods for extraction and preconcentration of volatile PFAS. The developed Headspace and Direct Immersion-SPME methods provide a practical, solvent-free, automated solution for extraction and preconcentration of volatile PFAS from aqueous and gaseous samples. These methods enrich the analytical toolbox for PFAS analysis and can be applied to understanding how PFAS enter the environment and partition in heterogeneous systems.
Collapse
Affiliation(s)
| | - Madison L Williams
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260-3000, USA
| | - Chloe McLeod
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, 43606, USA
| | - Emanuela Gionfriddo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260-3000, USA; Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, 43606, USA.
| |
Collapse
|
2
|
Jones SE, Gutkowski N, Demick S, Curello M, Pavia A, Robuck AR, Li ML. Assessing Bivalves as Biomonitors of Per- and Polyfluoroalkyl Substances in Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40036337 DOI: 10.1021/acs.est.4c11215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals that enter coastal ecosystems through various pathways. Despite the ecological and economic significance of coastal environments, monitoring efforts to identify PFAS in these regions are limited. Bivalves have been used as biomonitors for many pollutants, but their effectiveness in reflecting environmental PFAS contamination and the mechanisms of PFAS bioaccumulation is poorly understood. This study examined the impact of biological, chemical, and ecological variables on PFAS bioaccumulation in two bivalve species (i.e., Eastern oyster and Atlantic ribbed mussel) and developed a statistical model to predict the PFAS content in wild bivalves. Overall, the summed PFAS concentration in the bivalves closely mirrors that in water. We observed higher bioaccumulation factors for some perfluoroalkyl sulfonamides and branched PFAS isomers than for terminal PFAS of equivalent chain length. The isomer distribution and precursor-to-terminal compound ratios provide compelling evidence that the biotransformation of PFAS precursors likely drives these elevated factors. Additionally, the bioaccumulation factors of PFAS decrease with increasing organism size and age, suggesting that smaller and younger bivalves have greater bioaccumulation potential and are more susceptible to PFAS contamination. These findings provide critical information that guides the use of bivalves as biomonitors to evaluate PFAS contamination in aquatic environments.
Collapse
Affiliation(s)
- Shannon E Jones
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Nicole Gutkowski
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Shayna Demick
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Max Curello
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Ashley Pavia
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Anna R Robuck
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Office of Research and Development, Narragansett, Rhode Island 02882-1153, United States
| | - Mi-Ling Li
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
East AG, Anderson RH, Duncan CM, Salice CJ. Surface soil per- and polyfluoroalkyl substance mixtures dominated by perfluorooctane sulfonate: prioritization for ecotoxicity testing and ecological risk assessment at current and former U.S. Air Force bases. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:856-865. [PMID: 39937621 DOI: 10.1093/etojnl/vgaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 02/14/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) detection at military installations where current and historical aqueous film-forming foam (AFFF) use has occurred drive a need for empirical derivation of environmentally relevant PFAS mixtures to facilitate toxicity testing and risk assessment efforts. We applied a formalized prioritization method to a large dataset of PFAS concentrations in surface soil at AFFF-affected sites on active and former U.S. Air Force installations. Our approach revealed several observations about PFAS at these sites. First, perfluorooctane sulfonate (PFOS) occurred most commonly and often at the highest concentration across the PFAS measured. Second, two to three PFAS contributed 86% to 91%, respectively, of the sum PFAS in any given site-specific mixture. Third, after PFOS, the most common and high concentration PFAS among target analytes were perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonamide (PFOSA), and/or perfluorohexanoic acid (PFHxA), in that order. Site-specific PFAS mixtures are approximately 5% to 12% PFHxS, PFOA, PFOSA, and PFHxA behind approximately 82% PFOS. Another observation relevant to future sampling is the high concentration but inconsistent prevalence of the 6:2 and 8:2 fluorotelomer sulfonates (FTSs). An uncertainty that could also be addressed through future sampling is the detection of less abundant or yet unmeasured PFAS that have unknown or poorly characterized toxicological potency. These results support the continued importance of efforts to understand effects and exposure of PFOS but highlight the need to consider other PFAS such as PFHxS and fluorotelomers in exposure and effect estimations to support ecological risk assessments and ecotoxicological testing of PFAS mixtures.
Collapse
Affiliation(s)
- Andrew G East
- Environmental Science and Technology Department, University of Maryland College Park, College Park, MD, United States
- Environmental Science and Studies Program, Towson University, Towson, MD, United States
| | - Richard H Anderson
- Technical Support Branch, US Air Force Civil Engineering Center, Lackland Air Force Base, TX, United States
| | - Candice M Duncan
- Environmental Science and Technology Department, University of Maryland College Park, College Park, MD, United States
| | - Christopher J Salice
- Environmental Science and Studies Program, Towson University, Towson, MD, United States
| |
Collapse
|
4
|
Dai S, Zhang G, Dong C, Yang R, Pei Z, Li Y, Li A, Zhang Q, Jiang G. Occurrence, bioaccumulation and trophodynamics of per- and polyfluoroalkyl substances (PFAS) in terrestrial and marine ecosystems of Svalbard, Arctic. WATER RESEARCH 2025; 271:122979. [PMID: 39708621 DOI: 10.1016/j.watres.2024.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) enter the Arctic through long-range transport and local pollution. To date, little is known about their behavior in plant and benthic marine food webs in remote Arctic. In this study, we analyzed the environmental distribution and nutrient transfer of 20 PFAS in soil, sediment, plant and benthic biota samples collected between 2014 and 2016 in Svalbard, Arctic. Total concentrations of PFAS were in the ranges of 0.12-4.84 ng/g dry weight (dw) in soil, 0.15-0.93 ng/g dw in sediment, 0.11-16.6 ng/g dw in plant, and 0.049-26.2 ng/g dw in marine biota. Perfluorocarboxylic acids (PFCAs) dominated Σ20PFAS in all sample types except amphipods, in which perfluorooctane sulfonate (PFOS) made up 80 % of Σ20PFAS. The profile of PFAS components observed in the terrestrial and marine ecosystems suggests that atmospheric transport and oxidation of volatile precursors are important sources of PFCAs in the Arctic region. However, the impact of long-distance ocean transport and local emissions cannot be ignored. The biota-sediment or biota-soil bioaccumulation factors (BSAF) differed among plants and biota species, with mountain avens (BSAF of Σ20PFAS: 12.1) and amphipods (BSAF of Σ20PFAS: 44.9) having higher accumulation potential. PFOS, perfluorohexane sulfonamide (FHxSA) and Σ20PFAS have biomagnification potential in Arctic benthic biota, but short-chain PFCA exhibits trophic dilution. This is one of few studies to investigate the environmental behavior of PFAS in terrestrial and aquatic ecosystems in the remote Arctic, providing a basis for investigating the ecological risks of PFAS in polar regions.
Collapse
Affiliation(s)
- Shiyu Dai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - An Li
- School of Public Health, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Zhou Y, Wang L, Sui J, Chen F, Wang T, Yang J, Chen SH, Cui X, Yang Y, Zhang W. Pathway Elucidation and Key Enzymatic Processes in the Biodegradation of Difenoconazole by Pseudomonas putida A-3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4770-4786. [PMID: 39844663 DOI: 10.1021/acs.jafc.4c10387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The extensive agricultural use of the fungicide difenoconazole (DIF) and its associated toxicity increasingly damage ecosystems and human health. Thus, an urgent need is to develop environmentally friendly technological approaches capable of effectively removing DIF residues. In this study, strain Pseudomonas putida A-3 was isolated for the first time which can degrade DIF efficiently. After optimization of the degradation conditions, the degradation rate reached 75.98%. Moreover, a new DIF degradation pathway, including hydroxylation, hydrolysis, dechlorination, and ether bond breaking. The acute and chronic toxicity of DIF degradation products assessed using ECOSAR software showed lower toxicity than the parent compound. Furthermore, strain A-3 remarkably accelerated the degradation of DIF in contaminated water-sediment systems. We successfully predicted six potential key enzymes for DIF degradation based on the results of whole genome sequencing, RT-qPCR, and molecular docking. Overall, the results revealed novel pathways for DIF biodegradation and provide a strong candidate for bioremediation of DIF residue-polluted environments.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Liping Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jingyi Sui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Feiyu Chen
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tianyue Wang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jia Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Shao-Hua Chen
- State Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ye Yang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wenping Zhang
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
6
|
Đelmaš AĐ, Šeba T, Gligorijević N, Pavlović M, Gruden M, Nikolić M, Milcic K, Milčić M. Perfluoroalkyl acids interact with major human blood protein fibrinogen: Experimental and computation study. Int J Biol Macromol 2025; 306:141425. [PMID: 40010474 DOI: 10.1016/j.ijbiomac.2025.141425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
PFAS (per- and polyfluorinated alkyl substances) are synthetic compounds prized for their stability across various industries, but they pose an increasing threat to the environment and human health. Following the regulation of long-chain PFAS, short-chain and ultra-short-chain molecules have been introduced as substitutes, yet their bioaccumulation potential remains poorly understood. In this study, we combined experimental (intrinsic fluorescence, microscale thermophoresis, clotting assays) and computational approaches to investigate how trifluoroacetic acid, perfluorobutanoic acid, and perfluorooctanoic acid bind to fibrinogen, a key human blood protein. All tested perfluoroalkyl acids (PFAAs) exhibited moderate binding affinity (Kd in the 10-4-10-5 M range), yet circular dichroism and fibrin clot formation assays revealed no functional impairment of fibrinogen. Molecular docking indicated distinct, chain-length-specific binding sites, suggesting multiple routes for PFAAs to interact with fibrinogen without disrupting its primary biological role. These findings challenge the assumption that short-chain PFAS are less bioaccumulative and underscore the need for further research into their long-term health impacts, particularly given their widespread presence in the environment and potential accumulation in human blood.
Collapse
Affiliation(s)
| | - Tino Šeba
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikola Gligorijević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marko Pavlović
- School of Engineering and Applied Sciences, Harvard University, 11 Oxford Street, 02138 Cambridge, MA, USA; BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, Novi Sad 21000, Serbia
| | - Maja Gruden
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Nikolić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Karla Milcic
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; School of Engineering and Applied Sciences, Harvard University, 11 Oxford Street, 02138 Cambridge, MA, USA; BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, Novi Sad 21000, Serbia.
| | - Miloš Milčić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
7
|
Tulcan RXS, Yarleque CMH, Lu X, Yeerkenbieke G, Herrera VO, Gunarathne V, Yánez-Jácome GS. Characterization of per- and polyfluoroalkyl substances (PFASs) in Chinese river and lake sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137680. [PMID: 39987737 DOI: 10.1016/j.jhazmat.2025.137680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Sediment pollution by per- and polyfluoroalkyl substances (PFASs) is an emerging environmental concern with far-reaching implications, attracting considerable public, scientific and regulatory attention. This study analyzed 72 articles published since 2010 to assess the accumulation, sources, spatiotemporal trends, and contributing factors of PFAS pollution in surface sediments across China. The total concentrations of PFASs at the reviewed sites ranged from 0.001 to 10700 ng/g, with the maximum concentration detected in the Xiaoqing River, Shandong province. Excluding the Xiaoqing River, the mean total PFAS concentrations at other sites were below 200 ng/g. Although long-chain PFASs have been frequently associated with sediment phases due to their hydrophobicity, short-chain legacy and emerging PFASs also exhibited high concentrations, often being the dominant analytes at several sites because of their significant partition coefficients in sediments of China. Fluorochemical industries were identified as the most significant contributors to sediment PFAS accumulation, with concentrations up to ten times higher than those in areas affected by other sources. Risk assessments revealed differing outcomes based on chronic and acute toxicological data. Acute data indicated high ecological risks to aquatic organisms-including daphnids, green algae, mysids, and fish-from long-chain PFCAs and PFOS exposure at up to 19 sites. In contrast, chronic data derived from SSD for PFOS and PFOA, considering the maximum concentrations found across sites, suggested high chronic risks at only 1 and 4 sites, respectively. These findings, combined with the widespread occurrence of fluorochemical industries and the adsorption and bioaccumulative behavior of legacy and emerging PFASs in sediments, underscore the need for expanded assessments in underrepresented regions of China to comprehensively evaluate ecological and human health risks.
Collapse
Affiliation(s)
- Roberto Xavier Supe Tulcan
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | | | - Xiaoxia Lu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Gulijiazi Yeerkenbieke
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | | | - Viraj Gunarathne
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Wuppertal 42285, Germany
| | | |
Collapse
|
8
|
Folorunsho O, Bogush A, Kourtchev I. Occurrence of emerging and persistent organic pollutants in the rivers Cam, Ouse and Thames, UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178436. [PMID: 39813836 DOI: 10.1016/j.scitotenv.2025.178436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The widespread occurrence of new and emerging and persistent organic pollutants (NEPs and POPs) in surface water poses a risk to drinking water supply and consequently human health. The aim of this work was to investigate the occurrence and potential transport of 42 target NEPs and POPs (including per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides and bisphenols) along the rural and urban environments of three rivers in England. The type and concentrations of pollutants varied between the sampling days and points. Two pharmaceuticals (diclofenac and ibuprofen), two pesticides (diethyl-meta-toluamide (DEET) and prosulfocarb) and a range of PFAS were detected above the method detection limit. The observed PFAS include restricted perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) and a newer generation substitute 6:2 fluorotelomer sulfonate (6:2 FTS). The levels of PFOS and diclofenac observed in all studied rivers exceeded the European environmental quality standard (EQS). PFOS and diclofenac high detection frequency in the river Ouse suggests their persistence and potential to contaminate connecting tributaries. An assessment of the ecological risk of prosulfocarb levels in the samples from river Ouse, using the risk quotient method, showed a potential risk to algae, planktonic crustaceans, and fish. Our results suggest that the presence of 12 NEPs and POPs, could potentially be influenced by anthropogenic activities across urban and rural environments of the studied rivers. The study highlights the need for continuous monitoring of restricted and new-generation chemicals in the surface waters to understand their impact on the ecosystem and public health.
Collapse
Affiliation(s)
- Omotola Folorunsho
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Anna Bogush
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| |
Collapse
|
9
|
Liu S, Dukes DA, Koelmel JP, Stelben P, Finch J, Okeme J, Lowe C, Williams A, Godri D, Rennie EE, Parry E, McDonough CA, Godri Pollitt KJ. Expanding PFAS Identification with Transformation Product Libraries: Nontargeted Analysis Reveals Biotransformation Products in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:119-131. [PMID: 39704186 DOI: 10.1021/acs.est.4c07750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used persistent synthetic chemicals that have been linked to adverse health effects. While the behavior of PFAS has been evaluated in the environment, our understanding of reaction products in mammalian systems is limited. This study identified biological PFAS transformation products and generated mass spectral libraries to facilitate an automated search and identification. The biological transformation products of 27 PFAS, spanning 5 chemical subclasses (alcohols, sulfonamides, carboxylic acids, ethers, and esters), were evaluated following enzymatic reaction with mouse liver S9 fractions. Four major pathways were identified by liquid chromatography-high-resolution mass spectrometry: glucuronidation, sulfation, dealkylation, and oxidation. Class-based fragmentation rules and associated PFAS transformation product libraries were generated and integrated into an automated nontargeted PFAS data analysis software (FluoroMatch). Fragmentation was additionally predicted for the potential transformation products of more than 2,500 PFAS in the EPA CompTox Chemicals Dashboard PFASSTRUCTv4. Generated mass spectral libraries were validated by applying FluoroMatch to a data set of urine from aqueous film-forming foam (AFFF)-dosed mice. Toxicity predictions showed identified PFAS transformation products to be potential developmental and mutagenic toxicants. This research enables more comprehensive PFAS characterization in biological systems, which will improve the assessment of exposures and evaluation of the associated health impacts.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - David A Dukes
- Department of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jeremy P Koelmel
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - Paul Stelben
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - Jasen Finch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3EB, U.K
| | - Joseph Okeme
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| | - Charles Lowe
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Antony Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - David Godri
- Third Floor Solutions, Toronto, ON M5V 3L9, Canada
| | - Emma E Rennie
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Emily Parry
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Carrie A McDonough
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krystal J Godri Pollitt
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut 06511, United States
| |
Collapse
|
10
|
Zhao C, Liu H, Cheng D, Wang Y, Hu Z, Wu H, Xie H, Zhang J. Insights into poly-and perfluoroalkyl substances (PFAS) removal in treatment wetlands: Emphasizing the roles of wetland plants and microorganisms. WATER RESEARCH 2025; 268:122702. [PMID: 39476545 DOI: 10.1016/j.watres.2024.122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are widespread emerging contaminants in aquatic environments, raising serious concerns due to their persistence and potential toxicity to both human health and ecosystems. Treatment wetlands (TWs) provide a sustainable, low-carbon solution for PFAS removal by harnessing the combined actions of substrates, plants, and microorganisms. This review evaluates the effectiveness of TWs in PFAS treatment, emphasizing their role as a post-treatment option for conventional wastewater treatment plants. Mass balance analysis reveals that substrate adsorption was the primary pathway for PFAS removal from TWs, while plant uptake and subsequent harvesting treatments, as well as microbial degradation, contribute substantially to long-term PFAS removal. Comparisons of bioaccumulation factor (BCF) and translocation factors (TF) between wetland and terrestrial plants demonstrate that wetland plants are particularly effective at adsorbing long-chain PFAS and transferring them from roots to aboveground tissues. The diverse environmental conditions within TWs support varied microbial communities, facilitating the evolution of PFAS-degrading microorganisms. Wetland microorganisms demonstrate the capacity to break down PFAS through processes such as head group transformations (e.g., decarboxylation, desulfonation) and defluorination (e.g., elimination, reductive defluorination, hydrolysis, dealkylation). This review emphasizes the crucial role of wetland plants and microorganisms in the sustainable removal of PFAS in TWs, providing insights for the ecological remediation of PFAS-contaminated wastewater.
Collapse
Affiliation(s)
- Changjie Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
11
|
Wołowicz A, Munir HMS. Emerging organic micropollutants as serious environmental problem: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177948. [PMID: 39675281 DOI: 10.1016/j.scitotenv.2024.177948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
The escalating problem of environmental pollution can be attributed to the accelerated pace of global development, which often prioritizes human needs over planetary health. Despite huge global attempts endeavours to mitigate legacy pollutants, the uninterrupted introduction of novel substances such as the emerging organic micropollutants (EOMs) represents a significant menace to the natural environment and all forms of life on the earth. The widespread occurrence of EOMs in water and wastewater is a consequence of both their growing consumption as well as the limitations of the conventional wastewater treatment methods containing such pollutants resulting in deterioration of water quality and its supplies as well as this is a significant challenge for researchers and the scientific community alike. EOMs possibility to bioaccumulate, their toxic properties, resistance to degradation, and the limitations of conventional wastewater treatment methods for quantitative removal of EOMs at low concentrations give a significant environmental risk. These compounds are not commonly monitored, which exacerbates further the problem. Therefore the wide knowledge concerning EOMs properties, their occurrence as well as awareness about their migration in the environment and harmful effects is also extremely important. Therefore the EOMs characterization of various types, their classification and sources, concentrations in the aquatic systems and wastewaters, existing regulatory guidelines and their impacts on the environment and human health are thoroughly vetted in this review. Although the full extent of EOMs' effects on aquatic ecosystems and human health is still in the process of investigations, there are evident indications of their potential acute and chronic impacts, which warrant urgent attention. In practical terms the results of the research presented in this paper will help to fill the knowledge gaps concerning EOMs as a serious problem and to raise public awareness of actions to move to sustainable pollution management practices to protect our planet for future generations are vital.
Collapse
Affiliation(s)
- Anna Wołowicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland.
| | - Hafiz Muhammad Shahzad Munir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan 64200, Pakistan.
| |
Collapse
|
12
|
Peter L, Modiri‐Gharehveran M, Alvarez‐Campos O, Evanylo GK, Lee LS. PFAS fate using lysimeters during degraded soil reclamation using biosolids. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:41-53. [PMID: 38816342 PMCID: PMC11718147 DOI: 10.1002/jeq2.20576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Carbon- and nutrient-rich biosolids are used in agriculture and land reclamation. However, per- and polyfluoroalkyl substances (PFAS) typically present in biosolids raise concerns of PFAS leaching to groundwater and plant uptake. Here, we investigated PFAS persistence and leaching from biosolids applied to a site constructed artificially to mimic degraded soils. Treatments included biosolids and biosolids blended with mulch applied at different rates to attain either one and five times the agronomic N rate for vegetable crops and a control treatment with synthetic urea and triple superphosphate fertilizer. Leachates were collected for a 2-year period from 15-cm depth zero-tension drainage lysimeters. Soils were analyzed post biosolids application. PFAS were quantified using isotope-dilution, solid-phase extraction and liquid chromatography tandem mass spectrometry. Leachate profiles exemplified an initial high total PFAS concentration, followed by a sharp decline and subsequent small fluctuations attributed to pre-existing soil conditions and rainfall patterns. Quantifiable PFAS in leachate were proportional to biosolids application rates. Short-chain perfluoroalkyl acids (CF2 < 6) were dominant in leachate, while the percentage of longer chains homologues was higher in soils. A 43% biosolids blend with mulch resulted in 21% lower PFAS leachate concentrations even with the blend application rate being 1.5 times higher than biosolids due to the blend's lower N-content. The blending effect was more pronounced for long-chain perfluoroalkyl sulfonic acids that have a greater retention by soils and the air-water interface. Biosolids blending as a pragmatic strategy for reducing PFAS leachate concentrations may aid in the sustainable beneficial reuse of biosolids.
Collapse
Affiliation(s)
- Lynda Peter
- Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
| | - Mahsa Modiri‐Gharehveran
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
- EA Engineering, Science, and Technology, Inc., PBCHunt ValleyMarylandUSA
| | - Odiney Alvarez‐Campos
- USAIDWashingtonDistrict of ColumbiaUSA
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | - Gregory K. Evanylo
- School of Plant and Environmental SciencesVirginia TechBlacksburgVirginiaUSA
| | - Linda S. Lee
- Department of Agronomy, Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
13
|
Openiyi EO, Lee LS, Alukkal CR. Evaluating sorbents for reducing per- and polyfluoroalkyl substance mobility in biosolids-amended soil columns. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:118-131. [PMID: 39648643 PMCID: PMC11718134 DOI: 10.1002/jeq2.20658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
Sustainable reuse of biosolids as fertilizers is being threatened by the presence of per- and polyfluoroalkyl substances (PFAS) in our waste stream warranting research on strategies that will minimize PFAS mobility from land-applied biosolids. Here, we evaluated the ability of waste-derived sorbents aluminum chlorohydrate water treatment residuals (ACH-WTRs, 1 wt%) and biosolids-based biochar (1.5 wt%) to reduce mobility of PFAS in columns with 3 wt% biosolids-amended soils with and without sorbent layered on top of soil only and operated under transient unsaturated conditions. Cycles of simulated rain events of approximately three pore volumes distributed over a 4-day period followed by 3 days of drying were imposed for 6 months. Total PFAS concentrations in collected leachates were lower in the sorbent-treated columns compared to the control columns. Biochar outperformed the ACH-WTR with 41% versus 32% lower total PFAS in leachate, respectively, compared to the control. The most significant mitigation effect was observed with PFOS (perfluorooctane sulfonate) with 68% and 62% less PFOS in the leachates from the columns treated with ACH-WTR or biochar compared to the control, respectively. These results provide a first-of-its-kind assessment of the potential benefit of co-applying WTRs or biochar with biosolids to reduce PFAS mobility in biosolids-amended soils.
Collapse
Affiliation(s)
- Elijah O. Openiyi
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
- Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
| | - Linda S. Lee
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
- Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Caroline R. Alukkal
- Ecological Sciences & Engineering Interdisciplinary Graduate ProgramPurdue UniversityWest LafayetteIndianaUSA
- Environmental & Ecological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
14
|
Abdizadeh T, Rezaei S, Emadi Z, Sadeghi R, Saffari-Chaleshtori J, Sadeghi M. Investigation of bioremediation for glyphosate and its metabolite in soil using arbuscular mycorrhizal GmHsp60 protein: a molecular docking and molecular dynamics simulations approach. J Biomol Struct Dyn 2024:1-25. [PMID: 39829398 DOI: 10.1080/07391102.2024.2445767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 01/22/2025]
Abstract
The widespread use of glyphosate and the high dependence of the agricultural industry on this herbicide cause environmental pollution and pose a threat to living organisms. One of the appropriate solutions in sustainable agriculture to deal with pollution caused by glyphosate and its metabolites is creating a symbiotic relationship between plants and mycorrhizal fungi. Glomalin-related soil protein is a key protein for the bioremediation of glyphosate and its metabolite aminomethyl phosphonic acid in soil. This study uses homology modeling, molecular docking, and molecular dynamic simulation approaches to investigate the binding mechanism of glomalin-related soil protein from arbuscular mycorrhiza (GmHsp60) with glyphosate and its metabolite and the role of soil protein in the removal and sequestering of common agricultural soil pollutants. GmHsp60 protein structure was predicted by homology modeling, and the quality of the generated model was assessed. Then, the interaction between glyphosate and aminomethyl phosphonic acid and the modeled GmHsp60 protein was explored by molecular docking. Based on docking results, GmHsp60 has an efficient role in the bioremediation of glyphosate and aminomethyl phosphonic acid (-6.03 and -5.34 kcal/mol). Glyphosate forms three hydrogen bonds with Lys258, Gly262, and Glu58 of GmHsp60, and aminomethyl phosphonic acid forms three hydrogen bonds with Lys258, Gly261, and Gly262 of GmHsp60. In addition, the glyphosate's and its metabolite's stability was confirmed by molecular docking simulations and binding free energy calculations using MM/PBSA analysis. This study provides a molecular-level understanding of GmHsp60 expression and function for glyphosate bioremediation.
Collapse
Affiliation(s)
- Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somayeh Rezaei
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Emadi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ramin Sadeghi
- Chemical Engineering Department, Iran University of Science & Technology, Narmak, Tehran, Iran
| | - Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehraban Sadeghi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
15
|
Liu Y, Wang Y, Ren T, Yu G, Meng X, Feng L, Li F, Zhang J, Wang C. Unraveling the long-term gastrointestinal impact of perinatal perfluorobutane sulfonate exposure on rat offspring: Intestinal barrier dysfunction and Th17/Treg imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176858. [PMID: 39414058 DOI: 10.1016/j.scitotenv.2024.176858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), especially long-chain perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), are increasingly acknowledged as a potential inflammatory bowel diseases (IBD) risk factor. Perfluorobutane sulfonate (PFBS), one kind of shorter chain alternative, has been reported to exhibit similar health hazards to those long-chain PFAS. However, the underlying mechanism underpinning PFBS-induced colonic inflammation has not been sufficiently elucidated. The T-helper-17 (Th17)/regulatory T (Treg) imbalance is a crucial event for the pathogenesis of colonic inflammation. In this study, we aimed to reveal whether and how perinatal PFBS exposure leads to the Th17/Treg imbalance and colonic inflammation in offspring. We firstly demonstrated in vivo that early-life PFBS exposure (0.5 mg/kg, 5 mg/kg) led to increased intestinal permeability and colonic inflammation accompanied by decreased expressions of tight junction protein 1 (Tjp1) and claudin-4 (Cldn4) and increased expressions of interleukin 17A (IL-17A) in colon of rat offspring. Further results indicated that PFBS exposure induces the Th17/Treg imbalance through upregulating the expression of retinoic acid receptor-related orphan receptor gamma t (Ror-γt) and transforming growth factor beta (TGF-β) and downregulating of forkhead box protein 3 (Foxp3) and IL-10 in colon. Moreover, metabolomics analyses indicated that bile secretion metabolism was significantly altered under PFBS exposure. The reduction of lithocholic acid and deoxycholic acid was closely related to the changes of TGF-β and IL-10 in colon, and may contribute to the perturbation of Th17/Treg balance and colonic inflammation. These results provide evidences for the immunotoxicity of PFBS and reveal the potential contribution to colonic inflammation, which raises concern on the health effects and risk assessment of short-chain PFAS.
Collapse
Affiliation(s)
- Yongjie Liu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China; Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yong Wang
- School of Architecture and Engineering, Yan'an University, Yan'an 716000, China
| | - Tai Ren
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guoqi Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xi Meng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Fei Li
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Developmental and Behavioural Paediatric & Child Primary Care, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Cuiping Wang
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
16
|
Zhi Y, Lu X, Munoz G, Yeung LWY, De Silva AO, Hao S, He H, Jia Y, Higgins CP, Zhang C. Environmental Occurrence and Biotic Concentrations of Ultrashort-Chain Perfluoroalkyl Acids: Overlooked Global Organofluorine Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21393-21410. [PMID: 39535433 DOI: 10.1021/acs.est.4c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large group of anthropogenic fluorinated chemicals. Ultrashort-chain perfluoroalkyl acids (PFAAs) have recently gained attention due to their prevalence in the environment and increasing environmental concerns. In this review, we established a literature database from 1990 to 2024, encompassing environmental and biological concentrations (>3,500 concentration records) of five historically overlooked ultrashort-chain PFAAs (perfluoroalkyl carboxylic and sulfonic acids with less than 4 carbons): trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), trifluoromethanesulfonic acid (TFMS), perfluoroethanesulfonate (PFEtS), and perfluoropropanesulfonate (PFPrS). Our data mining and analysis reveal that (1) ultrashort-chain PFAAs are globally distributed in various environments including water bodies, solid matrices, and air, with concentrations usually higher than those of longer-chain compounds; (2) TFA, the most extensively studied ultrashort-chain PFAA, shows a consistent upward trend in concentrations in surface water, rainwater, and air over the past three decades; and (3) ultrashort-chain PFAAs are present in various organisms, including plants, wildlife, and human blood, serum, and urine, with concentrations sometimes similar to those of longer-chain compounds. The current state of knowledge regarding the sources and fate of TFA and other ultrashort-chain PFAAs is also reviewed. Amid the global urgency to regulate PFASs, particularly as countries worldwide have intensified such efforts, this critical review will inform scientific research and regulatory policies.
Collapse
Affiliation(s)
- Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiongwei Lu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gabriel Munoz
- Centre d'expertise en analyse environnementale du Québec (CEAEQ), Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Leo W Y Yeung
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yonghui Jia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100084, China
| |
Collapse
|
17
|
Niu Q, Lin X, Zheng X, Wu Y, Long M, Chen Y. Aerobic or anaerobic? Microbial degradation of per- and polyfluoroalkyl substances: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136173. [PMID: 39467433 DOI: 10.1016/j.jhazmat.2024.136173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
The widespread utilization of per- and polyfluoroalkyl substances (PFASs) as "forever chemicals" is posing significant environmental risks and adverse effects on human health. Microbial degradation (e.g., bacteria and fungi) has been identified as a cost-effective and environmentally friendly method for PFAS degradation. However, its degradation efficiency, biotransformation pathway, and microbial mechanism vary significantly under aerobic and anaerobic conditions. This review provides a comprehensive overview of the similarities and differences in PFAS microbial degradation by bacteria and fungi under different oxygen conditions. Initially, the efficiencies and metabolites of PFAS microbial degradation were compared under aerobic and anaerobic conditions, including perfluorinated and polyfluorinated compounds. Additionally, the microbial mechanisms of PFAS microbial degradation were obtained by summarizing key degrading microbes and enzymes. Finally, the comparisons between aerobic and anaerobic conditions in PFAS microbial degradation were provided, addressing the main challenges and proposing future research directions focused on seeking combined biodegradation techniques, exploring novel microbial species capable of degrading PFAS, and confirming complete biodegradation pathways. The understanding of PFAS microbial degradation in aerobic and anaerobic environments is crucial for providing potential solutions and future research efforts in dealing with these "forever chemicals".
Collapse
Affiliation(s)
- Qiuqi Niu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinrong Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
18
|
Sigler K, Messer TL, Ford W, Sanderson W. Occurrence, transformation, and transport of PFAS entering, leaving, and flowing past wastewater treatment plants with diverse land uses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123129. [PMID: 39504663 DOI: 10.1016/j.jenvman.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been detected ubiquitously throughout the environment. Wastewater treatment plants (WWTPs) have been identified as potential hotspots for the introduction of PFAS into the environment. Therefore, the occurrence, transformation, and transport of 18 PFAS in two WWTPs with varying treatment processes, prevailing land uses, and during two distinct time periods were investigated. Polar Organic Chemical Integrative Samplers (POCIS) were installed at two WWTPs in Central Kentucky during April and July of 2022. PFAS concentrations typically increased from influent to effluent at both WWTPs, regardless of wastewater treatment processes, but changes in surface water concentrations from upstream to downstream of the effluent mixing zones varied. Both WWTPs discharged the 18 PFAS at higher loads than received, indicating prevalent transformation of PFAS precursors and non-measured PFAS analytes into measurable PFAS. Nearly all measured PFAS persisted in aqueous (86-98%) compartments rather than sediment or biosolids (2-14%). All biosolids had low content of PFAS with the dominant compound being PFOS (1.59-2.60 ng/g). Based on recent US EPA proposed maximum contaminant levels, hazard indexes for drinking water were exceeded in effluent and downstream surface waters at both WWTPs. The WWTP located in a heavily developed area and downstream from a firefighting training facility, had significantly higher concentrations of most PFAS species at most monitoring sites and was less impacted by sampling period compared to the WWTP located in a moderately developed, pastured area. Findings support the importance of WWTPs and land use practices as contributing to PFAS impact to downstream ecosystems along with potentially increasing strains on downstream drinking water source waters in regions that are surface water dependent.
Collapse
Affiliation(s)
- Kyra Sigler
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| | - Tiffany L Messer
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA.
| | - William Ford
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| | - Wayne Sanderson
- Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
19
|
Lohmann R, Abass K, Bonefeld-Jørgensen EC, Bossi R, Dietz R, Ferguson S, Fernie KJ, Grandjean P, Herzke D, Houde M, Lemire M, Letcher RJ, Muir D, De Silva AO, Ostertag SK, Rand AA, Søndergaard J, Sonne C, Sunderland EM, Vorkamp K, Wilson S, Weihe P. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176274. [PMID: 39304148 PMCID: PMC11567803 DOI: 10.1016/j.scitotenv.2024.176274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014-2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
Collapse
Affiliation(s)
- Rainer Lohmann
- University of Rhode Island, Graduate School of Oceanography, South Ferry Road, Narragansett, RI 02882, USA.
| | - Khaled Abass
- University of Sharjah, College of Health Sciences, Department of Environmental Health Sciences, The United Arab Emirates; University of Oulu, Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, Finland
| | - Eva Cecilie Bonefeld-Jørgensen
- Aarhus University, Center for Arctic Health and Molecular Epidemiology, Department of Public Health, DK-8000 Aarhus C, Denmark; University of Greenland, Greenland Center for Health Research, GL-3905 Nuuk, Greenland
| | - Rossana Bossi
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Steve Ferguson
- Fisheries and Oceans Canada, Arctic Region, Winnipeg, MB R3T 2N6, Canada
| | - Kim J Fernie
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Philippe Grandjean
- University of Rhode Island, College of Pharmacy, Kingston, RI 02881, USA; University of Southern Denmark, Department of Public Health, DK-5230 Odense, Denmark
| | - Dorte Herzke
- The Norwegian Institute of Public Health, Division of Climate and Environmental Health, P.O.Box 222, Skøyen 0213, Oslo, Norway; Norwegian Institute for Air Research, Hjalmar Johansen gt 14 9006 Tromsø, Norway
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Lemire
- Université Laval, Centre de recherche du CHU de Québec, Département de médecine sociale et préventive & Institut de biologie intégrative et des systèmes, 1030 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Carleton University, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada
| | - Derek Muir
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Amila O De Silva
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 897 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - Sonja K Ostertag
- University of Waterloo, School of Public Health, 200 University Ave W, Waterloo, Ontario, Canada
| | - Amy A Rand
- Carleton University, Department of Chemistry, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Jens Søndergaard
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Elsie M Sunderland
- Harvard University, Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United States
| | - Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, The Fram Centre, Box 6606 Stakkevollan, 9296 Tromsø, Norway
| | - Pal Weihe
- The National Hospital of the Faroe Islands, Department of Research, Sigmundargøta 5, FO-100 Torshavn, The Faroe Islands; University of the Faroe Islands, Center of Health Science, Torshavn, The Faroe Islands.
| |
Collapse
|
20
|
Tsai WJ, Hsieh WS, Chen PC, Liu CY. Prenatal Perfluoroalkyl Substance Exposure in Association with Global Histone Post-Translational Methylation in 2-Year-Old Children. TOXICS 2024; 12:876. [PMID: 39771091 PMCID: PMC11679469 DOI: 10.3390/toxics12120876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Perfluoroalkyl substances (PFASs) have elimination half-lives in years in humans and are persistent in the environment. PFASs can cross the placenta and impact fetal development. Exposure to PFASs may lead to adverse effects through epigenetic mechanisms. This study aimed to investigate whether prenatal exposure to perfluorooctyl sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUA) was associated with global histone methylation level changes among the 130 2-year-old children followed-up in a birth cohort study in Taiwan. PFOS, PFOA, PFNA, and PFUA were measured by UHPLC/MS/MS in cord blood. Global histone methylation levels were measured from the blood leukocytes of 2-year-old children by Western blotting. Multivariable regression analyses were applied to adjust for potential confounding effects. Among the 2-year-old children, an IQR increase in the natural log-transformed PFUA exposure was associated with an increased H3K4me3 level by 2.76-fold (95%CI = (0.79, 4.73), p = 0.007). PFOA and PFNA exposures was associated with a decreased H3K27me3 level by 2.35-fold (95%CI = (-4.29, -0.41), p = 0.01) and 2.01-fold (95%CI = (-4.00, -0.03), p = 0.04), respectively. Our findings suggest that prenatal PFAS exposure affected histone post-translational modifications.
Collapse
Affiliation(s)
- Wan-Ju Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan (P.-C.C.)
| | - Wu-Shiun Hsieh
- Department of Pediatrics, Cathay General Hospital, Taipei 106, Taiwan;
- Department of Pediatrics, National Taiwan University College of Medicine, Taipei 100, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan (P.-C.C.)
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan (P.-C.C.)
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100, Taiwan
- Global Health Program, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
21
|
Bayode AA, Emmanuel SS, Akinyemi AO, Ore OT, Akpotu SO, Koko DT, Momodu DE, López-Maldonado EA. Innovative techniques for combating a common enemy forever chemicals: A comprehensive approach to mitigating per- and polyfluoroalkyl substances (PFAS) contamination. ENVIRONMENTAL RESEARCH 2024; 261:119719. [PMID: 39098711 DOI: 10.1016/j.envres.2024.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The pervasive presence of per and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals," in water systems poses a significant threat to both the environment and public health. PFAS are persistent organic pollutants that are incredibly resistant to degradation and have a tendency to accumulate in the environment, resulting in long-term contamination issues. This comprehensive review delves into the primary impacts of PFAS on both the environment and human health while also delving into advanced techniques aimed at addressing these concerns. The focus is on exploring the efficacy, practicality, and sustainability of these methods. The review outlines several key methods, such as advanced oxidation processes, novel materials adsorption, bioremediation, membrane filtration, and in-situ chemical oxidation, and evaluates their effectiveness in addressing PFAS contamination. By conducting a comparative analysis of these techniques, the study aims to provide a thorough understanding of current PFAS remediation technologies, as well as offer insights into integrated approaches for managing these persistent pollutants effectively. While acknowledging the high efficiency of adsorption and membrane filtration in reducing persistent organic pollutants due to their relatively low cost, versatility, and wide applicability, the review suggests that the integration of these methods could result in an overall enhancement of removal performance. Additionally, the study emphasizes the need for researcher attention in key areas and underscores the necessity of collaboration between researchers, industry, and regulatory authorities to address this complex challenge.
Collapse
Affiliation(s)
- Ajibola A Bayode
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria.
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
| | - Amos O Akinyemi
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Odunayo T Ore
- Department of Chemical Sciences, Achievers University, P.M.B. 1030, Owo, Nigeria
| | - Samson O Akpotu
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa
| | - Daniel T Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | - David E Momodu
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | | |
Collapse
|
22
|
Saha B, Ateia M, Tolaymat T, Fernando S, Varghese JR, Golui D, Bezbaruah AN, Xu J, Aich N, Briest J, Iskander SM. The unique distribution pattern of PFAS in landfill organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135678. [PMID: 39217946 PMCID: PMC11483333 DOI: 10.1016/j.jhazmat.2024.135678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg-1, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg-1, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg-1. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Mohamed Ateia
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Thabet Tolaymat
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Juby R Varghese
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Achintya N Bezbaruah
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - John Briest
- Weaver Consultants Group, Centennial, CO 80111, United States
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
23
|
Miiro A, Odume ON, Nyakairu GW, Odongo S, Matovu H, Drago Kato C, Špánik I, Sillanpaä M, Mubiru E, Ssebugere P. Per- and poly-fluoroalkyl substances in aquatic ecosystems and wastewater treatment works in Africa: Occurrence, ecological implications, and future perspectives. CHEMOSPHERE 2024; 367:143590. [PMID: 39433094 DOI: 10.1016/j.chemosphere.2024.143590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The increasing levels of industrialization and urbanization have led to the generation of significant amounts of wastewater and waste products, often containing chemicals like per- and poly-fluoroalkyl substances (PFASs) commonly found in consumer products. PFASs are known for their persistence, ubiquity, and ecotoxicological impacts, raising concerns about potential harm to ecosystems. This paper reports the occurrence and evaluates the ecological risks of PFASs in aquatic ecosystems and wastewater treatment works (WWTWs) across Africa. We reviewed 32 papers published in the period 2009-2024 and identified a total of 35 PFAS compounds in surface waters, wastewater, sediments, fish, crocodiles, and invertebrates. Much of the reported studies came from South Africa, followed by Kenya and Nigeria. PFAS concentrations in Africa were <0.7-390.0 ng L-1 in surface waters, 0.05-772 ng g-1 dw in sediments, and <0.2-832 ng L-1 in wastewater, while the highest levels in fish and invertebrates were 460.7 and 35.5 ng g-1 ww, respectively. The PFAS levels were in the same range of data as those reported globally. However, the high concentrations of PFASs in sediments and wastewater suggest areas of point contamination and a growing risk to aquatic ecosystems from effluent discharges. Calculated risk quotients suggested that, in Africa, organisms in river systems face greater risks due to exposure to PFASs compared to those in lakes, while marine organisms might face higher risks compared to freshwater organisms. Future studies should focus on PFAS contamination sources, especially WWTWs, as emerging sources of PFASs in aquatic systems.
Collapse
Affiliation(s)
- Ashirafu Miiro
- Institute for Water Research, Rhodes University, P.O Box 94, Makhanda, South Africa; Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | | | | | - Silver Odongo
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Henry Matovu
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Charles Drago Kato
- School of Biosecurity, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Ivan Špánik
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37, Bratislava, Slovakia
| | - Mika Sillanpaä
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O Box 17011, Doornfontein, 2028, South Africa; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha Uni-versity, Chennai, Tamil Nadu, 602105, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India; Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, 32093, Kuwait, Kuwait
| | - Edward Mubiru
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda.
| |
Collapse
|
24
|
Alukkal CR, Lee LS, Gonzalez DJ. Understanding the impact of pre-digestion thermal hydrolysis process on PFAS in anaerobically digested biosolids. CHEMOSPHERE 2024; 365:143406. [PMID: 39326709 DOI: 10.1016/j.chemosphere.2024.143406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) present in biosolids are influenced by their source, treatment processes, and the dynamics of water resource recovery facilities (WRRF). Understanding these effects is vital for informed decisions in treatment process selection, however, comprehensive studies are sparse. This study examined the impact of anaerobic digestion (AD) and the addition of a thermal hydrolysis process (THP) before AD on PFAS in the solids stream at a WRRF. Targeted analysis of 58 PFAS (linear and branched) and suspect screening of the solid stream before and after AD as well as THP, with the total PFAS (ΣPFAS) concentrations ranging between 244 and 566 μg/kgdw. Precursor and intermediate PFAS, mainly di-substituted polyfluoroalkyl phosphate esters (diPAPs) followed by fluorotelomer carboxylic acids (FTCAs), were the dominant contributors (62-96 mol % ΣPFAS) in all 5 sample types. AD impacts were observed both before and after deploying THP altering the relative contribution of different PFAS classes through biotransformation, with an increase in PFCAs and a decrease in diPAPs. However, we observed that THP reduced the % of precursor conversion as well as conversion of the FTCA intermediates in the AD process as evidenced by a substantial increase in FTCAs post-THP + AD and lower PFCA generation compared to AD only. Total PFAS organofluorine (∑FPFAS) decreased by 28% pre- and post-AD, which on total fluorine (TF) showed a larger reduction to 43%. Fluoride was <3% of the TF in all cases, thus, the greater reduction in TF vs ∑FPFAS could be volatile losses of PFAS and other non-PFAS F-containing molecules. After THP installation, a 32% decrease in (∑FPFAS) was observed in the combined THP-AD system whereas adjusted total organofluorine increased by ∼43%. Overall, achieving higher solids handling capacity and energy neutrality with the THP addition did not lead to a significant difference in quantifiable PFAS concentrations compared to AD-only.
Collapse
Affiliation(s)
- Caroline Rose Alukkal
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Linda S Lee
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, IN, USA; Department of Environmental & Ecological Engineering, Purdue University, West Lafayette, IN, USA; Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | | |
Collapse
|
25
|
Lu Y, Yan H, Li P, Han Y, Shen S. Molecularly imprinted resin modified with ionic liquid for dispersive filter extraction and determination of perfluoroalkyl acids in eggs. Food Chem 2024; 453:139677. [PMID: 38788647 DOI: 10.1016/j.foodchem.2024.139677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging pollutants that endangers food safety. Developing methods for the selective determination of trace PFAAs in complex samples remains challenging. Herein, an ionic liquid modified porous imprinted phenolic resin-dispersive filter extraction-liquid chromatography-tandem mass spectrometry (IL-PIPR-DFE-LC-MS/MS) method was developed for the determination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in eggs. The new IL-PIPR adsorbent was prepared at room temperature, which avoids the disorder and instability of the template at high temperatures. The imprinting factor of IL-PIPR for PFOA and PFOS exceeded 7.3. DFE, combined with IL-PIPR (15 mg), was used to extract PFOA and PFOS from eggs within 15 min. The established method exhibits low limits of detection (0.01-0.02 ng/g) and high recoveries (84.7%-104.7%), which surpass those of previously reported methods. This work offers a new approach to explore advanced imprinted adsorbents for PFAAs, efficient sample pretreatment technique, and analytical method for pollutants in foods.
Collapse
Affiliation(s)
- Yanke Lu
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002, China
| | - Pengfei Li
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Shigang Shen
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
26
|
Huang H, Lyu X, Xiao F, Fu J, Xu H, Wu J, Sun Y. Three-year field study on the temporal response of soil microbial communities and functions to PFOA exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135008. [PMID: 38943893 DOI: 10.1016/j.jhazmat.2024.135008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Contamination of per- and polyfluoroalkyl substances (PFAS) poses a significant threat to soil ecosystem health, yet there remains a lack of understanding regarding the responses of soil microbial communities to prolonged PFAS exposure in field conditions. This study involved a three-year field investigation to track changes in microbial communities and functions in soil subjected to the contamination of a primary PFAS, perfluorooctanoic acid (PFOA). Results showed that PFOA exposure altered soil bacterial and fungal communities in terms of diversity, composition, and structure. Notably, certain bacterial communities with a delayed reaction to PFOA contamination showed the most significant response after one year of exposure. Fungal communities were sensitive to PFOA in soil, exhibiting significant responses within just four months of exposure. After two years, the impact of PFOA on both bacterial and fungal communities was lessened, likely due to the long-term adaptation of microbial communities to PFOA. Moreover, PFOA exposure notably inhibited alkaline phosphatase activity and reduced certain phosphorus cycling-related functional genes after three years of exposure, suggesting potential disruptions in soil fertility. These new insights advance our understanding of the long-term effects of PFOA on soil microbial communities and functions at a field scale.
Collapse
Affiliation(s)
- Hai Huang
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Jiaju Fu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Hongxia Xu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing 210018, China
| | - Yuanyuan Sun
- School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Nanjing 210018, China.
| |
Collapse
|
27
|
Thompson KA, Ray H, Gerrity D, Quiñones O, Dano E, Prieur J, Vanderford B, Steinle-Darling E, Dickenson ERV. Sources of per- and polyfluoroalkyl substances in an arid, urban, wastewater-dominated watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173361. [PMID: 38777060 DOI: 10.1016/j.scitotenv.2024.173361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) enter surface waters from various sources such as wastewater treatment plants, fire-fighting sites, and PFAS-producing and PFAS-using industries. The Las Vegas Wash in Southern Nevada of the United States (U.S.) conveys wastewater effluent from the Las Vegas metropolitan area to Lake Mead, a drinking water source for millions of people in the U.S. Southwest. PFAS have previously been detected in the Las Vegas Wash, but PFAS sources were not identified. In this study, upstream wash tributaries, wastewater treatment effluents, and shallow groundwater wells were sampled in multiple campaigns during dry-weather conditions to investigate possible PFAS sources. Out of 19 PFAS, two short-chain PFAS-perfluoropentanoic acid (48 % of the total molar concentration) and perfluorohexanoic acid (32 %)-comprised the majority of PFAS loading measured in the Las Vegas Wash, followed by perfluorooctanoic acid (9 %). On a mass loading basis, the majority of total measured PFAS (approximately 90 %) and at least 48 % of each specific PFAS in the Las Vegas Wash likely entered via municipal wastewater effluents, of which the main source was likely residential wastewater. One of the drainage areas with a major civilian airport was identified as a potential source of relatively enriched perfluorosulfonic acids to a small wash tributary and shallow groundwater samples. Nonetheless, that tributary contributed at most 15 % of any specific PFAS to the mainstem of the Las Vegas Wash. Total PFAS concentrations were relatively low for the small tributary associated with an urban smaller airport and the lack of flow in the tributary channel immediately downgradient of an Air Force base indicates the smaller airport and base were unlikely significant PFAS sources to the Las Vegas Wash. Overall, this study demonstrated effective PFAS source investigation methodology and the importance of wastewater effluent as a PFAS environmental pathway.
Collapse
Affiliation(s)
- Kyle A Thompson
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA; Carollo Engineers, Inc., Austin, TX, USA
| | - Hannah Ray
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA
| | - Daniel Gerrity
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA
| | - Oscar Quiñones
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA
| | - Eric Dano
- Water Resources, Southern Nevada Water Authority, Las Vegas, NV, USA
| | - James Prieur
- Water Resources, Southern Nevada Water Authority, Las Vegas, NV, USA
| | - Brett Vanderford
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA
| | | | - Eric R V Dickenson
- Water Quality Research and Development, Southern Nevada Water Authority, Henderson, NV, USA.
| |
Collapse
|
28
|
Chen ZW, Hua ZL, Guo P. The bioaccumulation and ecotoxicity of co-exposure of per(poly)fluoroalkyl substances and polystyrene microplastics to Eichhornia crassipes. WATER RESEARCH 2024; 260:121878. [PMID: 38870860 DOI: 10.1016/j.watres.2024.121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/15/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Gen X and F-53B have been popularized as alternatives to PFOA and PFOS, respectively. These per(poly)fluoroalkyl substances pervasively coexist with microplastics (MPs) in aquatic environments. However, there are knowledge gaps regarding their potential eco-environmental risks. In this study, a typical free-floating macrophyte, Eichhornia crassipes (E. crassipes), was selected for hydroponic simulation of a single exposure to PFOA, PFOS, Gen X, and F-53B, and co-exposure with polystyrene (PS) microspheres. F-53B exhibited the highest bioaccumulation followed by Gen X, PFOA, and PFOS. In the presence of PS MPs, the bioavailabilities of the four PFASs shifted and the whole plant bioconcentration factors improved. All four PFASs induced severe lipid peroxidation, which was exacerbated by PS MPs. The highest integrated biomarker response (IBR) was observed for E. crassipes (IBR of shoot: 30.01, IBR of root: 22.79, and IBR of whole plant: 34.96) co-exposed to PS MPs and F-53B. The effect addition index (EAI) model revealed that PS MPs showed antagonistic toxicity with PFOA and PFOS (EAI < 0) and synergistic toxicity with Gen X and F-53B (EAI > 0). These results are helpful to compare the eco-environmental impacts of legacy and alternative PFASs for renewal process of PFAS consumption and provide toxicological, botanical, and ecoengineering insights under co-contamination with MPs.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Nanjing 210098, China.
| | - Peng Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
29
|
Xing Z, Wang G, Liu S, Chen H, Dong X, Wang H, Liu Y. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in agricultural soils affected by fluorochemical manufacturing facilities, North China: Occurrence, region-specific distribution, substitution trend and source appointment. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134770. [PMID: 38838522 DOI: 10.1016/j.jhazmat.2024.134770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Accompanied with restriction of legacy per- and polyfluoroalkyl substances (PFASs), numbers of emerging PFASs are widely detected in the environment. However, information on environmental occurrences and behaviors of emerging PFASs were scarce in agricultural soils. In this study, the spatial distributions, sources, substitution trends and ecological risk assessment of 31 legacy and emerging PFASs were investigated in 69 agricultural soils from Fuxin, North China. The 26 out of 31 PFASs were detected with concentrations of 57.36 - 1271.06 pg/g dry weight. Perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide dimer acid (HFPO-DA) were predominant in legacy and emerging PFASs, respectively. Based on principal component and dual carbon-nitrogen stable isotope analysis, atmosphere, fluorochemical activities and river irrigation were main sources of PFASs. Substitution trends indicated HFPO-DA and short chain perfluoroalkyl carboxylic acids (C4 - C7) as main alternatives of PFOA, and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and sodium p-perfluorous nonenoxybenzene sulfonate (OBS) as major substitutes to perfluorooctanesulfonic acid (PFOS). The calculated risk quotient values (< 0.006) only indicated potential low ecological risk of 7 target PFASs in agricultural soils. The results of this study broadened out the information of PFAS contamination in agricultural soils, which were significant for PFAS supervision in China.
Collapse
Affiliation(s)
- Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China.
| | - Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Haiyue Chen
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Xu Dong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian 116026, PR China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, PR China
| |
Collapse
|
30
|
Rasmusson K, Fagerlund F. Per- and polyfluoroalkyl substances (PFAS) as contaminants in groundwater resources - A comprehensive review of subsurface transport processes. CHEMOSPHERE 2024; 362:142663. [PMID: 38908440 DOI: 10.1016/j.chemosphere.2024.142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are persistent contaminants in the environment. An increased awareness of adverse health effects related to PFAS has further led to stricter regulations for several of these substances in e.g. drinking water in many countries. Groundwater constitutes an important source of raw water for drinking water production. A thorough understanding of PFAS subsurface fate and transport mechanisms leading to contamination of groundwater resources is therefore essential for management of raw water resources. A review of scientific literature on the subject of processes affecting subsurface PFAS fate and transport was carried out. This article compiles the current knowledge of such processes, mainly focusing on perfluoroalkyl acids (PFAA), in soil- and groundwater systems. Further, a compilation of data on transport parameters such as solubility and distribution coefficients, as well as, insight gained and conclusions drawn from the reviewed material are presented. As the use of certain fire-fighting foams has been identified as the major source of groundwater contamination in many countries, research related to this type of pollution source has been given extra focus. Uptake of PFAS in biota is outside the scope of this review. The review showed a large spread in the magnitude of distribution coefficients and solubility for individual PFAS. Also, it is clear that the influence of multiple factors makes site-specific evaluation of distribution coefficients valuable. This article aims at giving the reader a comprehensive overview of the subject, and providing a base for further work.
Collapse
Affiliation(s)
- Kristina Rasmusson
- Uppsala Water and Waste AB, Virdings allé 32B, SE-75450, Uppsala, Sweden.
| | - Fritjof Fagerlund
- Uppsala University, Department of Earth Sciences, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
31
|
Weng L, Tang Z, Sardar MF, Yu Y, Ai K, Liang S, Alkahtani J, Lyv D. Unveiling the frontiers of potato disease research through bibliometric analysis. Front Microbiol 2024; 15:1430066. [PMID: 39027102 PMCID: PMC11257026 DOI: 10.3389/fmicb.2024.1430066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Research on potato diseases had been widely reported, but a systematic review of potato diseases was lacking. Here, bibliometrics was used to systematically analyze the progress of potato disease. The publications related to "potato" and "disease" were searched in the Web of Science (WOS) from 2014 to 2023. The results showed that a total of 2095 publications on potato diseases were retrieved, with the annual publication output increasing year by year at a growth rate of 8.52%. The main countries where publications were issued were the United States, China, and India. There was relatively close cooperation observed between China, the United States, and the United Kingdom in terms of international collaboration, while international cooperation by India was less extensive. Based on citation analysis and trending topics, potential future research directions include nanoparticles, which provides highly effective carriers for biologically active substances due to their small dimensions, extensive surface area, and numerous binding sites; machine learning, which facilitates rapid identification of relevant targets in extensive datasets, thereby accelerating the process of disease diagnosis and fungicide innovation; and synthetic communities composed of various functional microorganisms, which demonstrate more stable effects in disease prevention and control.
Collapse
Affiliation(s)
- Ling Weng
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zhurui Tang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, China
| | - Ying Yu
- Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences (National Agricultural Experimental Station for Soil Quality, Taihe)/Key Laboratory of Nutrient Cycling and Arable Land Conservation of Anhui Province, Hefei, China
| | - Keyu Ai
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Shurui Liang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dianqiu Lyv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
- Key Laboratory of Germplasm Innovation of Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
32
|
Lorah MM, He K, Blaney L, Akob DM, Harris C, Tokranov A, Hopkins Z, Shedd BP. Anaerobic biodegradation of perfluorooctane sulfonate (PFOS) and microbial community composition in soil amended with a dechlorinating culture and chlorinated solvents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172996. [PMID: 38719042 DOI: 10.1016/j.scitotenv.2024.172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Perfluorooctane sulfonate (PFOS), one of the most frequently detected per- and polyfluoroalkyl substances (PFAS) occurring in soil, surface water, and groundwater near sites contaminated with aqueous film-forming foam (AFFF), has proven to be recalcitrant to many destructive remedies, including chemical oxidation. We investigated the potential to utilize microbially mediated reduction (bioreduction) to degrade PFOS and other PFAS through addition of a known dehalogenating culture, WBC-2, to soil obtained from an AFFF-contaminated site. A substantial decrease in total mass of PFOS (soil and water) was observed in microcosms amended with WBC-2 and chlorinated volatile organic compound (cVOC) co-contaminants - 46.4 ± 11.0 % removal of PFOS over the 45-day experiment. In contrast, perfluorooctanoate (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FTS) concentrations did not decrease in the same microcosms. The low or non-detectable concentrations of potential metabolites in full PFAS analyses, including after application of the total oxidizable precursor assay, indicated that defluorination occurred to non-fluorinated compounds or ultrashort-chain PFAS. Nevertheless, additional research on the metabolites and degradation pathways is needed. Population abundances of known dehalorespirers did not change with PFOS removal during the experiment, making their association with PFOS removal unclear. An increased abundance of sulfate reducers in the genus Desulfosporosinus (Firmicutes) and Sulfurospirillum (Campilobacterota) was observed with PFOS removal, most likely linked to initiation of biodegradation by desulfonation. These results have important implications for development of in situ bioremediation methods for PFAS and advancing knowledge of natural attenuation processes.
Collapse
Affiliation(s)
- Michelle M Lorah
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, MD 21228, USA.
| | - Ke He
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA
| | - Denise M Akob
- U.S. Geological Survey, Geology, Energy, & Minerals Science Center, Reston, VA 20192, USA
| | - Cassandra Harris
- U.S. Geological Survey, Geology, Energy, & Minerals Science Center, Reston, VA 20192, USA
| | - Andrea Tokranov
- U.S. Geological Survey, New England Water Science Center, Pembroke, NH 03275, USA
| | - Zachary Hopkins
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, WV 25430, USA
| | - Brian P Shedd
- U.S. Army Corps of Engineers, U.S. DOD Environmental Programs Branch, Environmental Division, Headquarters, Washington, D.C. 20314, USA
| |
Collapse
|
33
|
Xiong J, Li Z. Predicting PFAS fate in fish: Assessing the roles of dietary, respiratory, and dermal uptake in bioaccumulation modeling. ENVIRONMENTAL RESEARCH 2024; 252:119036. [PMID: 38701889 DOI: 10.1016/j.envres.2024.119036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
An increasing number of per- and polyfluoroalkyl substances (PFAS) exposed to the environment may pose a threat to organisms and human beings. However, there is a lack of simulations comprehensively addressing and comparing the bioaccumulation of PFAS across all three major exposure routes (oral, inhalation, and dermal), especially for dermal uptake. In this study, we proposed a physiologically based kinetic (PBK) model for PFAS, aiming to predict bioaccumulation factors (BAF) in fish by considering these diverse exposure routes. 15 PFAS were used for model validation, and 11 PFAS from Taihu Lake were used for exposure contribution modeling. Approximately 64% of estimations fell within 10-fold model bias from measurements in Taihu Lake, underscoring the potential efficacy of the developed PBK model in predicting BAFs for fish. The dermal route emerges as a contributor to short-chain PFAS exposure. For example, it ranged widely from 46% to 75% (mean) for all modeling short-chain PFAS (C6-C7) in Taihu Lake. It indicated the criticality of considering dermal exposure for PFAS in fish, highlighting a gap in field studies to unravel cutaneous intake mechanisms and contributions. For longer carbon chains of PFAS (C8-C12), dermal exposure accounted for 2%-27% for all species of aquatic organisms. The fish's lipid fraction and water content played a significant role in the contribution of PFAS intake through cutaneous exposure and inhalation. Kow had a significant positive correlation with skin intake rate (p < 0.05) and gill intake rate (p < 0.001), while having a significant negative correlation with skin intake (p < 0.05) and skin intake contribution (p < 0.001). Based on the proposed modeling approach, we have introduced a simulation spreadsheet for projecting PFAS BAFs in fish tissues, hopefully broadening the predictive operational tool for a variety of chemical species.
Collapse
Affiliation(s)
- Jie Xiong
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
34
|
Leuthner TC, Zhang S, Kohrn BF, Stapleton HM, Baugh LR. Structure-specific variation in per- and polyfluoroalkyl substances toxicity among genetically diverse Caenorhabditis elegans strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596269. [PMID: 38854041 PMCID: PMC11160736 DOI: 10.1101/2024.05.29.596269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background There are >14,500 structurally diverse per- and polyfluoroalkyl substances (PFAS). Despite knowledge that these "forever chemicals" are in 99% of humans, mechanisms of toxicity and adverse health effects are incompletely known. Furthermore, the contribution of genetic variation to PFAS susceptibility and health consequences is unknown. Objectives We determined the toxicity of a structurally distinct set of PFAS in twelve genetically diverse strains of the genetic model system Caenorhabditis elegans. Methods Dose-response curves for four perfluoroalkyl carboxylic acids (PFNA, PFOA, PFPeA, and PFBA), two perfluoroalkyl sulfonic acids (PFOS and PFBS), two perfluoroalkyl sulfonamides (PFOSA and PFBSA), two fluoroether carboxylic acids (GenX and PFMOAA), one fluoroether sulfonic acid (PFEESA), and two fluorotelomers (6:2 FCA and 6:2 FTS) were determined in the C. elegans laboratory reference strain, N2, and eleven genetically diverse wild strains. Body length was quantified by image analysis at each dose after 48 hr of developmental exposure of L1 arrest-synchronized larvae to estimate effective concentration values (EC50). Results There was a significant range in toxicity among PFAS: PFOSA > PFBSA ≈ PFOS ≈ PFNA > PFOA > GenX ≈ PFEESA > PFBS ≈ PFPeA ≈ PFBA. Long-chain PFAS had greater toxicity than short-chain, and fluorosulfonamides were more toxic than carboxylic and sulfonic acids. Genetic variation explained variation in susceptibility to PFBSA, PFOS, PFBA, PFOA, GenX, PFEESA, PFPeA, and PFBA. There was significant variation in toxicity among C. elegans strains due to chain length, functional group, and between legacy and emerging PFAS. Conclusion C. elegans respond to legacy and emerging PFAS of diverse structures, and this depends on specific structures and genetic variation. Harnessing the natural genetic diversity of C. elegans and the structural complexity of PFAS is a powerful New Approach Methodology (NAM) to investigate structure-activity relationships and mechanisms of toxicity which may inform regulation of other PFAS to improve human and environmental health.
Collapse
Affiliation(s)
- Tess C. Leuthner
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, USA
- Center for Genomic and Computational Biology, Duke University, North Carolina, USA
| |
Collapse
|
35
|
Wallace MAG, Smeltz MG, Mattila JM, Liberatore HK, Jackson SR, Shields EP, Xhani X, Li EY, Johansson JH. A review of sample collection and analytical methods for detecting per- and polyfluoroalkyl substances in indoor and outdoor air. CHEMOSPHERE 2024; 358:142129. [PMID: 38679180 PMCID: PMC11513671 DOI: 10.1016/j.chemosphere.2024.142129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a unique class of chemicals synthesized to aid in industrial processes, fire-fighting products, and to benefit consumer products such as clothing, cosmetics, textiles, carpets, and coatings. The widespread use of PFAS and their strong carbon-fluorine bonds has led to their ubiquitous presence throughout the world. Airborne transport of PFAS throughout the atmosphere has also contributed to environmental pollution. Due to the potential environmental and human exposure concerns of some PFAS, research has extensively focused on water, soil, and organismal detection, but the presence of PFAS in the air has become an area of growing concern. Methods to measure polar PFAS in various matrices have been established, while the investigation of polar and nonpolar PFAS in air is still in its early development. This literature review aims to present the last two decades of research characterizing PFAS in outdoor and indoor air, focusing on active and passive air sampling and analytical methods. The PFAS classes targeted and detected in air samples include fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sulfonamido ethanols (FASEs), perfluorinated carboxylic acids (PFCAs), and perfluorinated sulfonic acids (PFSAs). Although the manufacturing of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) has been largely phased out, these two PFAS are still often detected in air samples. Additionally, recent estimates indicate that there are thousands of PFAS that are likely present in the air that are not currently monitored in air methods. Advances in air sampling methods are needed to fully characterize the atmospheric transport of PFAS.
Collapse
Affiliation(s)
- M Ariel Geer Wallace
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Marci G Smeltz
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - James M Mattila
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Hannah K Liberatore
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Stephen R Jackson
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Erin P Shields
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Xhensila Xhani
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA; Johnston Community College, 245 College Road, Smithfield, NC, 27577, USA.
| | - Emily Y Li
- U.S. Environmental Protection Agency, Center for Environmental Measurement and Modeling, Air Methods and Characterization Division, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Jana H Johansson
- Department of Thematic Studies, Environmental Change, Linköping University, Linköping, Sweden.
| |
Collapse
|
36
|
Yan PF, Dong S, Pennell KD, Cápiro NL. A review of the occurrence and microbial transformation of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foam (AFFF)-impacted environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171883. [PMID: 38531439 DOI: 10.1016/j.scitotenv.2024.171883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Aqueous film-forming foams (AFFFs) have been extensively used for extinguishing hydrocarbon-fuel fires at military sites, airports, and fire-training areas. Despite being a significant source of per- and polyfluoroalkyl substances (PFAS), our understanding of PFAS occurrence in AFFF formulations and AFFF-impacted environments is limited, as is the impact of microbial transformation on the environment fate of AFFF-derived PFAS. This literature review compiles PFAS concentrations in electrochemical fluorination (ECF)- and fluorotelomer (FT)-based AFFFs and provides an overview of PFAS occurrence in AFFF-impacted environments. Our analysis reveals that AFFF use is a predominant point source of PFAS contamination, including primary precursors (polyfluoroalkyl substances as AFFF components), secondary precursors (polyfluoroalkyl transformation products of primary precursors), and perfluoroalkyl acids (PFAAs). Moreover, there are discrepancies between PFAS concentration profiles in AFFFs and those measured in AFFF-impacted media. For example, primary precursors constitute 52.6 % and 99.5 % of PFAS mass in ECF- and FT-based AFFFs, respectively, whereas they represent only 0.7 % total mass in AFFF-impacted groundwater. Conversely, secondary precursors, which constitute <1 % of PFAS in AFFFs, represent 4.0-27.8 % of PFAS in AFFF-impacted environments. The observed differences in PFAS levels between AFFFs and environmental samples are likely due to in-situ biotransformation processes. Biotransformation rates and pathways reported for AFFF-derived primary and secondary precursors varied among different classes of precursors, consistent with the PFAS occurrence in AFFF-impacted environments. For example, readily biodegradable primary precursors, N-dimethyl ammonio propyl perfluoroalkane sulfonamide (AmPr-FASA) and n:2 fluorotelomer thioether amido sulfonate (n:2 FtTAoS), were rarely detected in AFFF-impacted environments. In contrast, key secondary precursors, perfluoroalkane sulfonamides (FASAs) and n:2 fluorotelomer sulfonate (n:2 FTS), were widely detected, which was attributed to their resistance to biotransformation. Key knowledge gaps and future research priorities are presented to better understand the occurrence, fate, and transport of AFFF-derived PFAS in the environment and to design more effective remediation strategies.
Collapse
Affiliation(s)
- Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America.
| | - Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, United States of America
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States of America.
| |
Collapse
|
37
|
Sun T, Ji C, Li F, Wu H. Time Is Ripe for Targeting Per- and Polyfluoroalkyl Substances-Induced Hormesis: Global Aquatic Hotspots and Implications for Ecological Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9314-9327. [PMID: 38709515 DOI: 10.1021/acs.est.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Globally implemented ecological risk assessment (ERA) guidelines marginalize hormesis, a biphasic dose-response relationship characterized by low-dose stimulation and high-dose inhibition. The present study illuminated the promise of hormesis as a scientific dose-response model for ERA of per- and polyfluoroalkyl substances (PFAS) represented by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). A total of 266 hormetic dose-response relationships were recompiled from 1237 observations, covering 30 species from nine representative taxonomic groups. The standardized hormetic amplitudes followed the log-normal probability distribution, being subject to the limits of biological plasticity but independent of stress inducers. The SHapley Additive exPlanations algorithm revealed that the target endpoint was the most important variable explaining the hormetic amplitudes. Subsequently, quantitative frameworks were established to incorporate hormesis into the predicted no-effect concentration levels, with a lower induction dose and a zero-equivalent point but a broader hormetic zone for PFOS. Realistically, 10,117 observed concentrations of PFOA and PFOS were gathered worldwide, 4% of which fell within hormetic zones, highlighting the environmental relevance of hormesis. Additionally, the hormesis induction potential was identified in other legacy and emerging PFAS as well as their alternatives and mixtures. Collectively, it is time to incorporate the hormesis concept into PFAS studies to facilitate more realistic risk characterizations.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, P. R. China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, P. R. China
- Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, P. R. China
| |
Collapse
|
38
|
Tanveer S, Ilyas N, Akhtar N, Akhtar N, Bostan N, Hasnain Z, Niaz A, Zengin G, Gafur A, Fitriatin BN. Unlocking the interaction of organophosphorus pesticide residues with ecosystem: Toxicity and bioremediation. ENVIRONMENTAL RESEARCH 2024; 249:118291. [PMID: 38301757 DOI: 10.1016/j.envres.2024.118291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Organophosphorus adulteration in the environment creates terrestrial and aquatic pollution. It causes acute and subacute toxicity in plants, humans, insects, and animals. Due to the excessive use of organophosphorus pesticides, there is a need to develop environmentally friendly, economical, and bio-based strategies. The microbiomes, that exist in the soil, can reduce the devastating effects of organophosphates. The use of cell-free enzymes and yeast is also an advanced method for the degradation of organophosphates. Plant-friendly bacterial strains, that exist in the soil, can help to degrade these contaminants by oxidation-reduction reactions, enzymatic breakdown, and adsorption. The bacterial strains mostly from the genus Bacillus, Pseudomonas, Acinetobacter, Agrobacterium, and Rhizobium have the ability to hydrolyze the bonds of organophosphate compounds like profenofos, quinalphos, malathion, methyl-parathion, and chlorpyrifos. The native bacterial strains also promote the growth abilities of plants and help in detoxification of organophosphate residues. This bioremediation technique is easy to use, relatively cost-effective, very efficient, and ensures the safety of the environment. This review covers the literature gap by describing the major effects of organophosphates on the ecosystem and their bioremediation by using native bacterial strains.
Collapse
Affiliation(s)
- Sadaf Tanveer
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Nosheen Akhtar
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Nazish Akhtar
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Nageen Bostan
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Zuhair Hasnain
- Department of Agronomy, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Abdullah Niaz
- Pesticide Residue Laboratory, Institute of Soil Chemistry & Environmental Sciences, Kala Shah Kaku, Punjab, Pakistan.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, 28772, Indonesia.
| | - Betty Natalie Fitriatin
- Department of Soil Science and Land Resouces Management, Agriculture Faculty, Universitas Padjadjaran, Indonesia.
| |
Collapse
|
39
|
Heimstad ES, Nygård T, Moe B, Herzke D. New insights from an eight-year study on per- and polyfluoroalkyl substances in an urban terrestrial ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123735. [PMID: 38458514 DOI: 10.1016/j.envpol.2024.123735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) were analysed in a high number of terrestrial samples of soil, earthworm, bird eggs and liver from red fox and brown rat in an urban area in Norway from 2013 to 2020. PFOS and the long chain PFCAs were the most dominating compounds in all samples, proving their ubiquitous distribution. Other less studied compounds such as 6:2 FTS were first and foremost detected in earthworm. 8:2 FTS was found in many samples of fieldfare egg, sparrowhawk egg and earthworm, where the eggs had highest concentrations. Highest concentrations for both 6:2 FTS and 8:2 FTS were detected at present and former industry areas. FOSA was detected in many samples of the species with highest concentrations in red fox liver and brown rat liver of 3.3 and 5.5 ng/g ww. PFAS concentrations from the urban area were significantly higher than from background areas indicating that some of the species can be suitable as markers for PFAS emissions in an urban environment. Fieldfare eggs had surprisingly high concentrations of PFOS and PFCA concentrations from areas known to be or have been influenced by industry. Biota-soil-accumulation factor and magnification calculations indicate accumulation and magnification potential for several PFAS. Earthworm and fieldfare egg had average concentrations above the Canadian and European thresholds in diet for avian wildlife and predators. For earthworms, 18 % of the samples exceeded the European threshold (33 ng/g ww) of PFOS in prey for predators, and for fieldfare eggs, 35 % of the samples were above the same threshold. None of the soil samples exceeded a proposed PNEC of PFOS for soil living organisms of 373 ng/g dw.
Collapse
Affiliation(s)
| | - Torgeir Nygård
- NINA-Norwegian Institute for Nature Research, Trondheim, Norway
| | - Børge Moe
- NINA-Norwegian Institute for Nature Research, Trondheim, Norway
| | - Dorte Herzke
- NILU, The Fram Centre, P. box 6606 Stakkevollan, NO-9296, Tromsø, Norway; NIPH-Norwegian Institute for Public Health, Oslo, Norway
| |
Collapse
|
40
|
Krlovic N, Saracevic E, Derx J, Gundacker C, Krampe J, Zessner M, Zoboli O. A source-based framework to estimate the annual load of PFAS in municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170997. [PMID: 38365022 DOI: 10.1016/j.scitotenv.2024.170997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/16/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are a class of persistent chemicals, whose impact has been observed in various environmental compartments. Wastewater treatment plants (WWTPs) are considered a major emission pathway of PFAS, specifically in the context of the aquatic environment. The goal of this study was to develop a compartmentalized, source-based load estimation model of 7 PFAS within the municipal wastewater influent. Consumer statistics, data from literature on PFAS concentrations and release during use, and specific sampling activities for environmental flows in the related city were used to estimate per capita emission loads. Model results were compared with loads obtained through the monitoring campaign at the municipal WWTP influent. A wide range of discrepancies (≈5 % to ≈90 %) between loads observed in the WWTP influent and source based model estimates was noticed. The loads less accounted by the model were associated with sulfonic acids (PFSAs), whereas for carboxylic acids (PFCAs) most of the observed loads could be reasonably explained by the model, with even an overestimation of nearly 5 % noted for PFNA. Higher heterogeneity in sources was observed in the PFCA group, with a noticeable dominance in the share of consumer products. PFSAs had less of a consumer product input (<20 %), with the rest of the modelled load being attributed to environmental inputs. A large gap of unknown loads of PFSAs indicates a need for examination of other, not yet quantified activities that can potentially explain the remainder of the observed load. Especially commercial activities are considered as potential additional sources for PFSAs. These findings signify the importance of PFAS that originate from both consumer products, as well as environmental inputs in the overall load contribution into the sewage, while identifying the need for further investigation into commercial sources of PFAS emitted into the municipal wastewater.
Collapse
Affiliation(s)
- N Krlovic
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria.
| | - E Saracevic
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - J Derx
- Interuniversity Cooperation Centre for Water and Health (ICC Water & Health), Vienna, Austria; TU Wien, Institute of Hydraulic Engineering and Water Resources Management, Vienna, Austria
| | - C Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - J Krampe
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - M Zessner
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - O Zoboli
- Institute for Water Quality and Resource Management, TU Wien, Vienna, Austria
| |
Collapse
|
41
|
Pickard HM, Haque F, Sunderland EM. Bioaccumulation of Perfluoroalkyl Sulfonamides (FASA). ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:350-356. [PMID: 38645703 PMCID: PMC11027762 DOI: 10.1021/acs.estlett.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Hundreds of sites across the United States have high concentrations of perfluoroalkyl sulfonamides (FASA), but little is known about their propensity to accumulate in fish. FASA are precursors to terminal per- and polyfluoroalkyl substances (PFAS) that are abundant in diverse consumer products and aqueous film-forming foams manufactured using electrochemical fluorination (ECF AFFF). In this study, FASA with C3-C8 carbon chain lengths were detected in all fish samples from surface waters up to 8 km downstream of source zones with ECF AFFF contamination. Short-chain FASA ≤ C6 have rarely been included in routine screening for PFAS, but availability of new standards makes such analyses more feasible. Bioaccumulation factors (BAF) for FASA were between 1 and 3 orders of magnitude greater than their terminal perfluoroalkyl sulfonates. Across fish species, BAF for FASA were greater than for perfluorooctanesulfonate (PFOS), which is presently the focus of national advisory programs. Similar concentrations of the C6 FASA (<0.36-175 ng g-1) and PFOS (0.65-222 ng g-1) were detected in all fish species. No safety thresholds have been established for FASA. However, high concentrations in fish next to contaminated sites and preliminary findings on toxicity suggest an urgent need for consideration by fish advisory programs.
Collapse
Affiliation(s)
- Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Faiz Haque
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
42
|
Ross TA, Zhang J, Chiang CY, Choi CY, Lai YC, Asimakopoulos AG, Lemesle P, Ciesielski TM, Jaspers VLB, Klaassen M. Running the gauntlet; flyway-wide patterns of pollutant exposure in blood of migratory shorebirds. ENVIRONMENTAL RESEARCH 2024; 246:118123. [PMID: 38185220 DOI: 10.1016/j.envres.2024.118123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Shorebirds (order Charadriiformes) are among the world's most threatened avian taxa. Within the East Asian-Australasian Flyway (EAAF), a major threat to shorebirds' survival may be the gauntlet of pollution along the flyway. Metals, persistent organic pollutants (POPs), and per-/polyfluoroalkyl substances (PFASs) persist in the environment to the detriment of wildlife. In this study, we analysed element and PFAS concentrations in blood from 142 individuals across six species of Arctic-breeding migratory shorebirds with contrasting population trends, to discern species- and site-specific pollution differences, and determine how pollution correlated with population trends of EAAF shorebirds. Potential within-year pollution variations were investigated by blood-sampling birds at two sites, representing different points in the birds' annual migrations: staging in Taiwan on southward migrations and at non-breeding grounds in Western Australia (WA). Species' pollutant concentrations were compared to established population trends. Concentrations of potentially toxic elements were low in most individuals regardless of species. PFASs (range: <0.001-141 ng/g), Hg (<0.001-9910 ng/g) and Pb (<0.01-1210 ng/g) were higher in Taiwan than in WA (PFAS Taiwan median: 14.5 ng/g, WA median: 3.45 ng/g; Hg Taiwan: 338 ng/g, WA: 23.4 ng/g; Pb Taiwan: 36.8 ng/g, WA: 2.26 ng/g). Meanwhile As (range <0.001-8840 ng/g) and Se (290-47600 ng/g) were higher in WA than Taiwan (As Taiwan median: 500 ng/g, WA median: 1660 ng/g; Se Taiwan: 5490 ng/g, Se WA: 23700 ng/g). Nevertheless, pollutant concentrations in a subset of individuals may exceed sublethal effect thresholds (As, Se and PFASs). Finally, we found no consistent differences in pollution among species and demonstrated no correlation between pollution and population trends, suggesting pollution is likely not a major driver for population declines of EAAF shorebirds. However, ongoing and locally heavy environmental degradation and exposure to other contaminants not investigated here, such as POPs, warrants continued consideration when managing EAAF shorebird populations.
Collapse
Affiliation(s)
- Tobias A Ross
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Chung-Yu Chiang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Chi-Yeung Choi
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, 215316, Jiangsu, PR China
| | - Yi-Chien Lai
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan
| | | | - Prescillia Lemesle
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway; Department of Arctic Technology, The University Center in Svalbard, 9171, Longyearbyen, Norway
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia; Victorian Wader Study Group, Melbourne, VIC, Australia; Australasian Wader Study Group, Canberra, ACT, Australia.
| |
Collapse
|
43
|
Jonker MTO. Per- and Polyfluoroalkyl Substances in Water (2008-2022) and Fish (2015-2022) in The Netherlands: Spatiotemporal Trends, Fingerprints, Mass Discharges, Sources, and Bioaccumulation Factors. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38501493 DOI: 10.1002/etc.5846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative, and toxic synthetic chemicals of concern, which have been detected in nearly all environmental compartments. The present study provides a data analysis on PFAS concentrations in the Dutch inland and coastal national waters and fish sampled from 2008 to 2022 and 2015 to 2022, respectively. Although the fish database is relatively small, the water database is unique because of its temporal dimension. It appears that PFAS are omnipresent in Dutch water and fish, with relatively small spatial differences in absolute and relative concentrations (fingerprints) and few obvious temporal trends. Only perfluorooctanoic acid and perfluorooctanesulfonic acid (PFOS) aqueous concentrations in the rivers Rhine and Scheldt have substantially decreased since 2012. Still, PFOS concentrations exceed the European water quality standards at all and fish standards at many locations. Masses of PFAS entering the country and the North Sea are roughly 3.5 tonnes/year. Generally, the data suggest that most PFAS enter the Dutch aquatic environment predominantly through diffuse sources, yet several major point sources of specific PFAS were identified using fingerprints and monthly concentration profiles as identification tools. Finally, combining concentrations in fish and water, 265 bioaccumulation factors were derived, showing no statistically significant differences between freshwater and marine fish. Overall, the analysis provides new insights into PFAS bioaccumulation and spatiotemporal trends, mass discharges, and sources in The Netherlands. Environ Toxicol Chem 2024;00:1-11. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
44
|
Tang L, Yu X, Zhao W, Barceló D, Lyu S, Sui Q. Occurrence, behaviors, and fate of per- and polyfluoroalkyl substances (PFASs) in typical municipal solid waste disposal sites. WATER RESEARCH 2024; 252:121215. [PMID: 38309069 DOI: 10.1016/j.watres.2024.121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have become a crucial environmental concern owing to their exceptional persistence, ability to bioaccumulate within ecosystems, and potential to adversely affect biota. Products and materials containing PFASs are usually discarded into municipal solid waste (MSW) at the end of their life cycle, and the fate of PFASs may differ when different disposal methods of MSWs are employed. To date, limited research has focus on the occurrence, behaviors, and fate of PFASs emitted from various MSW disposal sites. This knowledge gap may lead to an underestimation of the contribution of MSW disposal sites as a source of PFASs in the environment. In this review, we collated publications concerning PFASs from typical MSW disposal sites (i.e., landfills, incineration plants, and composting facilities) and explored the occurrence patterns and behaviors of PFASs across various media (e.g., landfill leachate/ambient air, incineration plant leachate/ash, and compost products) in these typical MSW disposal sites. In particular, this review highlighted ultrashort-chain perfluoroalkyl acids and "unknown"/emerging PFASs. Additionally, it meticulously elucidated the use of non-specific techniques and non-target analysis for screening and identifying these overlooked PFASs. Furthermore, the composition profiles, mass loads, and ecological risks of PFASs were compared across the three typical disposal methods. To the best of our knowledge, this is the first review regarding the occurrence, behaviors, and fate of PFASs in typical MSW disposal sites on a global scale, which can help shed light on the potential environmental impacts of PFASs harbored in MSWs and guide future waste management practices.
Collapse
Affiliation(s)
- Linfeng Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
45
|
Feng C, Lin Y, Le S, Ji J, Chen Y, Wang G, Xiao P, Zhao Y, Lu D. Suspect, Nontarget Screening, and Toxicity Prediction of Per- and Polyfluoroalkyl Substances in the Landfill Leachate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4737-4750. [PMID: 38408453 DOI: 10.1021/acs.est.3c07533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Landfills are the final stage of urban wastes containing perfluoroalkyl and polyfluoroalkyl substances (PFASs). PFASs in the landfill leachate may contaminate the surrounding groundwater. As major environmental pollutants, emerging PFASs have raised global concern. Besides the widely reported legacy PFASs, the distribution and potential toxic effects of numerous emerging PFASs remain unclear, and unknown PFASs still need discovery and characterization. This study proposed a comprehensive method for PFAS screening in leachate samples using suspect and nontarget analysis. A total of 48 PFASs from 10 classes were identified; nine novel PFASs including eight chloroperfluoropolyether carboxylates (Cl-PFPECAs) and bistriflimide (HNTf2) were reported for the first time in the leachate, where Cl-PFPECA-3,1 and Cl-PFPECA-2,2 were first reported in environmental media. Optimized molecular docking models were established for prioritizing the PFASs with potential activity against peroxisome proliferator-activated receptor α and estrogen receptor α. Our results indicated that several emerging PFASs of N-methyl perfluoroalkyl sulfonamido acetic acids (N-MeFASAAs), n:3 fluorotelomer carboxylic acid (n:3 FTCA), and n:2 fluorotelomer sulfonate (n:2 FTSA) have potential health risks that cannot be ignored.
Collapse
Affiliation(s)
- Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Sunyang Le
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Jieyun Ji
- Shanghai Changning Center for Disease Control and Prevention, Shanghai 200051, China
| | - Yuhang Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yunfeng Zhao
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Beijing 100021, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| |
Collapse
|
46
|
El-Aswad AF, Mohamed AE, Fouad MR. Investigation of dissipation kinetics and half-lives of fipronil and thiamethoxam in soil under various conditions using experimental modeling design by Minitab software. Sci Rep 2024; 14:5717. [PMID: 38459097 PMCID: PMC10923906 DOI: 10.1038/s41598-024-56083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
To determine the extent of pesticide buildup and their environmental contamination, the environmental half-lives of pesticides are examined. The influence of the factors affecting the half-lives of fipronil and thiamethoxam including soil type, sterilization, temperature, and time and their interactions was studied using experimental modeling design by Minitab software. Based on the dissipation kinetics data, fipronil concentrations reduced gradually over 60 days while thiamethoxam concentrations decreased strongly. Also, fipronil and thiamethoxam dissipated more rapidly in calcareous soil than in alluvial soil. Thiamethoxam, however, disappeared more rapidly than fipronil in all treatments. Incubation at 50 °C leads to rapid the pesticide degradation. For prediction of the dissipation rate, model 5 was found to be the best fit, Residue of insecticide (%) = 15.466 - 11.793 Pesticide - 1.579 Soil type + 0.566 Sterilization - 3.120 Temperature, R2 = 0.94 and s = 3.80. Also, the predicted DT50 values were calculated by a model, DT50 (day) = 20.20 - 0.30 Pesticide - 7.97 Soil Type + 0.07 Sterilization - 2.04 Temperature. The shortest experimental and predicted DT50 values were obtained from treatment of thiamethoxam at 50 °C in calcareous soil either sterilized (7.36 and 9.96 days) or non-sterilized (5.92 and 9.82 days), respectively. The experimental DT50 values of fipronil and thiamethoxam ranged from 5.92 to 59.95 days while, the modeled values ranged from 9.82 to 30.58 days. According to the contour plot and response surface plot, temperature and sterilization were the main factors affecting the half-lives of fipronil and thiamethoxam. The DT50 values of fipronil and thiamethoxam increased in alluvial soil and soil with low temperature. In general, there is a high agreement between the experimental results and the modeled results.
Collapse
Affiliation(s)
- Ahmed F El-Aswad
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Aflaton St., El-Shatby, Alexandria, 21545, Egypt.
| | - Abdallah E Mohamed
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt
| | - Mohamed R Fouad
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Aflaton St., El-Shatby, Alexandria, 21545, Egypt
| |
Collapse
|
47
|
Kamalesh R, Karishma S, Saravanan A. Progress in environmental monitoring and mitigation strategies for herbicides and insecticides: A comprehensive review. CHEMOSPHERE 2024; 352:141421. [PMID: 38360415 DOI: 10.1016/j.chemosphere.2024.141421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Herbicides and insecticides are pervasively applied in agricultural sector to increase the yield by controlling or eliminating bug vermin and weeds. Although, resistance development occurs, direct and indirect impact on human health and ecosystem is clearly visible. Normally, herbicides and pesticides are water soluble in nature; accordingly, it is hard to decrease their deadliness and to dis-appear them from the environment. They are profoundly specific, and considered as poisonous to various peoples in agricultural and industrial work places. In order to substantially reduce the harmful impacts, it is crucial to thoroughly examine the detection and mitigation measures for these compounds. The primary objective of this paper is to provide an overview of various herbicide and pesticide detection techniques and associated remedial techniques. A short summary on occurrence and harmful effects of herbicides/insecticides on ecosystem has been included to the study. The conventional and advanced, rapid techniques for the detection of insecticides and herbicides were described in detail. A detailed overview on several mitigation strategies including advanced oxidation, adsorption, electrochemical process, and bioremediation as well as the mechanism behind the strategic approaches to reduce the effects of growing pesticide pollution has been emphasized. Regardless of the detection techniques and mitigation strategies, the recent advances employed, obstacles, and perspectives have been discussed in detail.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
48
|
Ye B, Wang J, Zhou L, Yu X, Sui Q. Perfluoroalkyl acid precursors in agricultural soil-plant systems: Occurrence, uptake, and biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168974. [PMID: 38036134 DOI: 10.1016/j.scitotenv.2023.168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Perfluoroalkyl acid (PFAA) precursors have been used in various consumer and industrial products due to their hydrophobic and oleophobic properties. In recent years, PFAA precursors in agricultural soil-plant systems have received increasing attention as they are susceptible to biotransformation into metabolites with high biotoxicity risks to human health. In this review, we systematically assessed the occurrence of PFAA precursors in agricultural soils, taking into account their sources and biodegradation pathways. In addition, we summarized the findings of the relevant literature on the uptake and biotransformation of PFAA precursors by agricultural plants. The applications of biosolids/composts and pesticides are the main sources of PFAA precursors in agricultural soils. The physicochemical properties of PFAA precursors, soil organic carbon (SOC) contents, and plant species are the key factors influencing plant root uptakes of PFAA precursors from soils. This review revealed, through toxicity assessment, the potential of PFAA precursors to generate metabolites with higher toxicity than the parent precursors. The results of this paper provide a reference for future research on PFAA precursors and their metabolites in soil-plant systems.
Collapse
Affiliation(s)
- Beibei Ye
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
49
|
Gewurtz SB, Auyeung AS, De Silva AO, Teslic S, Smyth SA. Per- and polyfluoroalkyl substances (PFAS) in Canadian municipal wastewater and biosolids: Recent patterns and time trends 2009 to 2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168638. [PMID: 37984658 DOI: 10.1016/j.scitotenv.2023.168638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The concentrations of per- and polyfluoroalkyl substances (PFAS) were determined in raw influent, final effluent, and treated biosolids at Canadian wastewater treatment plants (WWTPs) to evaluate the fate of PFAS through liquid and solids trains of typical treatment process types used in Canada and to assess time trends of PFAS in wastewater between 2009 and 2021. Data for 42 PFAS in samples collected from 27 WWTP across Canada were used to assess current concentrations and 48 WWTPs were included in the time trends analysis. Although regulated and phased-out of production by industry since the early 2000s and late 2000s/early2010s, respectively, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other long-chain PFAS continue to be widely detected in Canadian wastewater and biosolids. Short-chain PFAS that are not currently regulated in Canada were also widely detected. In general, elevated concentrations of several PFAS were observed at WWTPs that receive landfill leachate. Except for PFOS, concentrations of long-chain perfluoroalkyl carboxylates (PFCAs) and perfluoroalkane sulfonates (PFSAs) generally decreased over time in influent, effluent, and biosolids, which is attributable to industrial production phase-outs and regulations. Concentrations of PFOS did not decrease over time in wastewater media. This indicates that regulatory action and industrial phase-outs of PFOS are slow to be reflected in wastewater. Concentrations of short-chain PFCAs in wastewater influent and effluent consistently increased between 2009 and 2021, which reflect the use of short-chain PFAS as replacements for phased-out and regulated longer-chained PFAS. Short-chain PFAS were infrequently detected in biosolids. Continued periodic monitoring of PFAS in wastewater matrices in Canada and throughout the world is recommended to track the effectiveness of regulatory actions, particularly activities to address the broad class of PFAS.
Collapse
Affiliation(s)
- Sarah B Gewurtz
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Alexandra S Auyeung
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Amila O De Silva
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Steven Teslic
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Shirley Anne Smyth
- Science and Technology Branch, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada.
| |
Collapse
|
50
|
Ao J, Tang W, Liu X, Ao Y, Zhang Q, Zhang J. Polyfluoroalkyl phosphate esters (PAPs) as PFAS substitutes and precursors: An overview. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133018. [PMID: 37984148 DOI: 10.1016/j.jhazmat.2023.133018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) are emerging substitutes for legacy per- and polyfluoroalkyl substances (PFAS), which are widely applied in consumer products and closely related to people's daily lives. Increasing concern has been raised about the safety of PAPs due to their metabolism into perfluorooctanoic acid (PFOA) and other perfluorinated carboxylates (PFCAs) in vivo. This review summarizes the current knowledge on PAPs and highlights the knowledge gaps. PAPs dominated the PFAS profiles in wastewater, sludge, household dust, food-contact materials, paper products, paints, and cosmetics. They exhibit biomagnification due to their higher levels in top predators. PAPs have been detected in human blood worldwide, with the highest mean levels being found in the United States (1.9 ng/mL) and China (0.4 ng/mL). 6:2 diPAP is the predominant PAP among all identified matrices, followed by 8:2 diPAP. Toxicokinetic studies suggest that after entering the body, most PAPs undergo biotransformation, generating phase Ⅰ (i.e., PFCAs), phase II, and intermediate products with toxicity to be verified. Several epidemiological and toxicological studies have reported the antiandrogenic effect, estrogenic effect, thyroid disruption, oxidative damage, and reproductive toxicity of PAPs. More research is urgently needed on the source and fate of PAPs, human exposure pathways, toxicity other than reproductive and endocrine systems, toxic effects of metabolites, and mixed exposure effects.
Collapse
Affiliation(s)
- Junjie Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoning Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Ao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|