1
|
Wang M, Liu X, Zhang M, Han Q, Chen B, Cao S, Liu B, Wang Z. Comparison of microplastics heteroaggregation with MoS 2 and graphene oxide nanosheets: Dependence on the configuration and impacts on aquatic transport. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137063. [PMID: 39754878 DOI: 10.1016/j.jhazmat.2024.137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS2 and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles. More importantly, the deposition and transport of MPs are highly dependent on the configuration of the resulting aggregates. MoS2 nanosheets conformally coat MPs, forming compact and colloidally stable complexes that completely alter the MPs' surface to the negatively charged MoS2. The interaction resulted in high mobility and minimal deposition in environmental matrices. In contrast, GO nanosheets bridge MPs into large clusters, reducing transport and increasing deposition. This difference in aggregate configuration is attributed to the distinct interactions between the nanosheets and MPs: rigid MoS2 nanosheets adhere via strong van der Waals forces, while GO, with oxygen functional groups on its edges and surfaces, folds and crosslinks between particles upon adsorption. These findings underscore the critical role of 2D materials in shaping the environmental fate of MPs, advancing our knowledge on the aggregation process.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Environment, Harbin Institute of Technology, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xun Liu
- School of Environment, Harbin Institute of Technology, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Beizhao Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyu Cao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Uguagliati F, Zattin M, Waldschläger K, Ghinassi M. Optimising microplastic polyethylene terephthalate fibre extraction from sediments: Tailoring a density-separation procedure for enhanced recovery and reliability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177483. [PMID: 39528223 DOI: 10.1016/j.scitotenv.2024.177483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Despite the presence of microplastics in sediments being widely acknowledged, the absence of standardised processing methods in extracting microplastics can compromise reliable and comparable results. Density separation is a predominant method for extracting microplastics from sediments. In this study, Sodium Polytungstate (ρ = 1.6 g cm-3) was selected as the density separation agent for three key factors: i) optimal density for extracting common plastic polymers, ii) low toxicity, and iii) recycling potential of the solution. It is therefore cost-effective, and the risk of solution dispersal is minimal. The solution was tested through four separation procedures, extracting PET fibres from three artificial sediment mixtures (i.e., pure sand, pure mud, and 50 % sand and 50 % mud). The results indicate that the solution employed in this work is highly effective for extracting microplastic fibres from sediments, with recovery rates up to 99 %. However, the results highlight differences in the recovery among the four procedures and in terms of the sediment characteristics. Specifically, extracting microplastics was easier in sandy sediment samples than in mud-rich ones. The complexity of extracting microplastics from mud-rich sediments results from i) the creation of microplastic-sediment aggregates forming denser structures, that settle down trapping microplastics in sediments; ii) the development of a clay sediment cap that hinders the rise of microplastics to the surface. Reducing the risk of underestimation of microplastic content in mud-rich samples can be accomplished by applying a procedure that involves placing the samples with the Sodium Polytungstate solution on a stirring plate while progressively lowering the rotation velocity. Using this method, cohesive sediments lose their ability to trap microplastics while aggregating, consequently reducing their ability to drag microplastics to the bottom. This facilitated microplastics to reach the liquid surface, thereby enabling an efficient retrieval even in mud-rich samples.
Collapse
Affiliation(s)
- Francesca Uguagliati
- University of Padova, Department of Geosciences, Via Gradenigo 6, 35131 Padova, Italy.
| | - Massimiliano Zattin
- University of Padova, Department of Geosciences, Via Gradenigo 6, 35131 Padova, Italy
| | - Kryss Waldschläger
- Wageningen University and Research, Hydrology and Environmental Hydraulics Group, Wageningen, the Netherlands
| | - Massimiliano Ghinassi
- University of Padova, Department of Geosciences, Via Gradenigo 6, 35131 Padova, Italy
| |
Collapse
|
3
|
Dong D, Gao W, Li L, Liu Y, Dai Y. Comprehensive understanding of microplastics in compost: Ecological risks and degradation mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:178104. [PMID: 39693675 DOI: 10.1016/j.scitotenv.2024.178104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
The introduction of microplastics (MPs) into soil ecosystems via compost application has emerged as a critical environmental concern. However, the ecological risks and degradation behavior of MPs in compost remain insufficiently understood. This review addresses these gaps by synthesizing recent findings on MPs in composting systems, focusing on their sources, impacts on compost quality, ecological risks, and degradation mechanisms. MP sources vary significantly across compost matrices-domestic waste, sludge, and agricultural waste‑leading to differences in their types and quantities. MPs adversely impact compost quality by disrupting its physical structure and impairing fertility, aeration, and water retention. Furthermore, their persistence after compost application can result in long-term environmental accumulation, posing risks to soil ecosystems and biological health. This review also explores the aging and degradation of MPs during composting, a complex process influenced by physical, chemical, and biological mechanisms. Finally, we propose future research directions, emphasizing the development of standardized methodologies to assess MP behavior in compost and strategies to mitigate associated risks. These insights contribute to advancing sustainable waste management and environmental protection practices.
Collapse
Affiliation(s)
- Dazhuang Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Wenjing Gao
- Department of Earth and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuxin Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Horta MJ, Seetha N. Experimental and mathematical investigation of cotransport of clay and microplastics in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176739. [PMID: 39378934 DOI: 10.1016/j.scitotenv.2024.176739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Microplastics in the subsurface cause groundwater contamination, thereby posing potential risks to human health and the ecosystem. Clay particles are ubiquitous in the subsurface and can interact and alter the transport behavior of microplastics. Hence, it is essential to understand the effect of clays on the transport behavior of microplastics to estimate the groundwater contamination potential. This study investigated the individual transport and cotransport of clay and microplastics under different pore-water velocities and sand types in saturated porous media through column experiments and mathematical modeling. Copresence of suspended microplastics retarded the transport of clay due to the preferential attachment of clay over microplastics on grain surfaces and the formation of clay-microplastic heteroaggregates which have a greater retention in sand than free clay and free microplastics. However, in contrast, cotransport with clay enhanced the transport of microplastics due to the lower affinity of microplastics than clay for deposition on grain surfaces and the lesser mass fraction of microplastics than clay in the heteroaggregates. The cotransport of clay and microplastics was successfully simulated using a two-way coupled model, which accounted for the retention of free clay and free microplastics in the sand, kinetics of clay-microplastics heteroaggregation, and heteroaggregate retention in the sand. The rates of heteroaggregation and heteroaggregate retention in sand decreased with increasing velocity and grain size, resulting in increased transport of clay and microplastics.
Collapse
Affiliation(s)
- Mahima John Horta
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| | - N Seetha
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India.
| |
Collapse
|
5
|
Yang X, Tang DWS. Modeling microplastic transport through porous media: Challenges arising from dynamic transport behavior. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136728. [PMID: 39637795 DOI: 10.1016/j.jhazmat.2024.136728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Modelling microplastic transport through porous media, such as soils and aquifers, is an emerging research topic, where existing hydrogeological models for (reactive) solute and colloid transport have shown limited effectiveness thus far. This perspective article draws upon recent literature to provide a brief overview of key microplastic transport processes, with emphases on less well-understood processes, to propose potential research directions for efficiently modeling microplastic transport through the porous environment. Microplastics are particulate matter with distinct physicochemical properties. Biogeochemical processes and physical interactions with the surrounding environment cause microplastic properties such as material density, geometry, chemical composition, and DLVO interaction parameters to change dynamically, through complex webs of interactions and feedbacks that dynamically affect transport behavior. Furthermore, microplastic material densities, which cluster around that of water, distinguish microplastics from other colloids, with impactful consequences that are often underappreciated. For example, (near-)neutral material densities cause microplastic transport behavior to be highly sensitive to spatio-temporally varying environmental conditions. The dynamic nature of microplastic properties implies that at environmentally relevant large spatio-temporal scales, the complex transport behavior may be effectively intractable to direct physical modeling. Therefore, efficient modeling may require integrating reduced-complexity physics-constrained models, with stochastic or statistical analyses, supported by extensive environmental data.
Collapse
Affiliation(s)
- Xiaomei Yang
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, China; Soil Physics and Land Management, Wageningen University & Research, 6700AA Wageningen, the Netherlands
| | - Darrell W S Tang
- Water, Energy, and Environmental Engineering, University of Oulu, Finland.
| |
Collapse
|
6
|
Yang Z, Ma Y, Jing Q, Ren Z. Comigration Behavior of Cr(VI) and Microplastics and Remediation of Microplastics-Facilitated Cr(VI) Transportation in Saturated Porous Media. Polymers (Basel) 2024; 16:3271. [PMID: 39684016 DOI: 10.3390/polym16233271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
The study of the co-transport of Cr(VI) and microplastics (MPs) in porous media is important for predicting migration behavior and for achieving pollution removal in natural soils and groundwater. In this work, the effect of MPs on Cr(VI) migration in saturated porous media was investigated at different ionic strengths (ISs) and pHs. The results showed that pH 7 and low IS (5 mM), respectively, promoted the movement of Cr(VI), which was further promoted by the presence of MPs. The Derjaguin-Landau-Verwey-Overbeek (DLVO) results showed that the repulsive energy barrier between MPs and quartz sand decreased with increasing IS and decreasing pH, respectively, which promoted the retention of MPs in quartz sand and constrained the competition of Cr(VI) for adsorption sites on the surface of the quartz sand, thus facilitating the enhanced migration of Cr(VI), while Cr(VI) behaved conversely. Sodium alginate/nano zero-valent iron-reduced graphene oxide (SA/NZVI-rGO) gel beads could achieve the removal of MPs through a π-π interaction, hydrogen bonding, and electrostatic attraction, but the MPs removal would be reduced by 40% due to the competitive adsorption of Cr(VI). Notably, 97% Cr(VI) removal could still be achieved by the gel beads in the presence of MPs. Therefore, the gel beads can be used as a permeation reaction barrier to inhibit the MP-induced high migration of Cr(VI). The Cr(VI) breakthrough curves in reactive migration were well-fitted with the two-site chemical nonequilibrium model. Overall, the findings of this work contribute to the understanding of the migration behavior of Cr(VI) and MPs in saturated porous media and provide a theoretical basis for the remediation of soils and groundwater contaminated with Cr(VI) and MPs.
Collapse
Affiliation(s)
- Zijiang Yang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuheng Ma
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
- Jianghe Water Resources & Hydropower Consulting Center Co., Ltd., Beijing 100120, China
| | - Qi Jing
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhongyu Ren
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Tang S, Gong J, Song B, Li J, Cao W, Zhao J. Remediation of biochar-supported effective microorganisms and microplastics on multiple forms of nitrogenous and phosphorous in eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177142. [PMID: 39486534 DOI: 10.1016/j.scitotenv.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/18/2024] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Lots of studies on eutrophication, but there is a lack of comprehensive research on the repair of multiple forms of nitrogen and phosphorus under combined heavy metals (HMs) pollution. This work investigated the various forms of nitrogen and phosphorus in the water-sediment systems of eutrophic lakes with the application of biochar, Effective Microorganisms (EMs) and microplastics, aiming to deliberate the repair behavior of multiple forms of nitrogen/phosphorus and the integrated repairment of these nutrients and HMs in different remediations. For amended-groups, the application of biochar-supported EMs (BE) achieved the most desirable remediation for removing nitrogen, phosphorus and HMs in water and improved their stability in sediment due to the improved microbial activity and the developed biofilm system created by biochar. The addition of aging microplastics (MP) obviously reduced the systematic levels of nitrogen, phosphorus and HMs due to the stimulation of microbial activity and the adsorption of biofilm/EPS, but its high movability also increased the Fe(II) and S(-II) levels and the pollutants' ecological risks in sediment. The co-application of BE and MP (MBE) destroyed the ecosystem and decreased the removal of nitrogen and phosphorus, while greatly removing HMs by the superfluous biofilms/EPS. The application of biochar (BC) preferentially adsorbed and degraded dissolved nitrogen and phosphorus, releasing HMs into water. From these amended-groups, it's also knew that the removal of nitrogen and phosphorus mainly came from the degradation/assimilation of NH3-N, SRP and dissolved matters, particularly those molecular weight below 3 kDa; the higher removal of phosphorus than nitrogen was attributed to the coprecipitation of Fe-S-P hydroxides and the adsorption of particulates; however, the colloidal (3-100 kDa) nitrogen and phosphorus had low accessibility and bioavailability, and it also showed the competitive adsorption with colloidal HMs, causing their relatively low removal in water. This study provides insight into the comprehensive repair of nitrogen, phosphorus and HMs in various forms by biochar-immobilized microbes and the influence of microplastics on nutrients and HMs in eutrophic lakes.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| | - Jun Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen, 518000, PR China
| |
Collapse
|
8
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
9
|
Li Q, Si H, Chen X, Mao M, Shang J. Influence of natural organic matter on the aggregation dynamics of biochar colloids derived from various feedstocks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174097. [PMID: 38908602 DOI: 10.1016/j.scitotenv.2024.174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Abundant biochar colloids (BCs) produced from a wide range of feedstocks, resulting from forest fires, agricultural production, and environmental restoration, exhibit varying aggregation behaviors influenced by feedstock type and natural organic matter. However, the impact of natural organic matter on the colloidal stability of BCs derived from different feedstocks remains poorly understood. In this study, six selected biochars were derived from various feedstocks as follows: sewage sludge (SS), rice husk (RH), oil seed rape straw pellets (OSR), wheat straw pellets (WS), miscanthus straw pellets (MS) and softwood pellets (SW). The colloidal stability of BCs, with the exogenous addition of organic matter, was further determined. The order of critical coagulation concentrations (CCCs) of BCs with the presence of humic acid (HA) was as follows: RH (989.48 mM) < MS (1084.69 mM) < SS (1149.76 mM) < WS (1338.99 mM) < OSR (2402.98 mM) < SW (3151.32 mM). This order was significantly positively correlated with the specific surface area and negatively correlated with the ash content of the bulk biochar. Compared to HA, bovine serum albumin (BSA) more effectively inhibited the aggregation behavior of BCs due to steric hindrance. The initial aggregation rate constant (k) of BCs at 3000 mM NaCl was as follows: MS (0.238 nm/s) > OSR (0.142 nm/s) > WS (0.128 nm/s) > SS (0.126 nm/s) > RH (0.118 nm/s) > SW (0.112 nm/s). The stabilizing effects of BSA on biochar colloids were independent of the physicochemical properties of bulk biochar. In the presence of BSA, a thin layer of protein corona significantly enhanced the stability of biochar colloids, particularly the BCs derived from MS. Our results underscore the importance of considering feedstock resources and natural organic matter type when assessing the aggregation and potential risks of BCs in aquatic systems.
Collapse
Affiliation(s)
- Qirui Li
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Hongyu Si
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Xiuxiu Chen
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Meng Mao
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
10
|
Liu H, Wen Y. Evaluation of the migration behaviour of microplastics as emerging pollutants in freshwater environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58294-58309. [PMID: 39298032 DOI: 10.1007/s11356-024-34994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed in freshwater environments such as rivers and lakes, posing immeasurable potential risks to aquatic ecosystems and human health. The migration behaviour of microplastics can exacerbate the degree or scope of risk. A complete understanding of the migration behaviour of microplastics in freshwater environments, such as rivers and lakes, can help assess the state of occurrence and environmental risk of microplastics and provide a theoretical basis for microplastic pollution control. Firstly, this review presents the hazards of microplastics in freshwater environments and the current research focus. Then, this review systematically describes the migration behaviours of microplastics, such as aggregation, horizontal transport, sedimentation, infiltration, stranding, resuspension, bed load, and the affecting factors. These migration behaviours are influenced by the nature of the microplastics themselves (shape, size, density, surface modifications, ageing), environmental conditions (ionic strength, cation type, pH, co-existing pollutants, rainfall, flow regime), biology (vegetation, microbes, fish), etc. They can occur cyclically or can end spontaneously. Finally, an outlook for future research is given.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China
| |
Collapse
|
11
|
Yan Y, Xu H, Wang Z, Chen H, Yang L, Sun Y, Zhao C, Wang D. Effect of surface functional groups of polystyrene micro/nano plastics on the release of NOM from flocs during the aging process. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134421. [PMID: 38718517 DOI: 10.1016/j.jhazmat.2024.134421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024]
Abstract
Currently, the hidden risk of microplastics in the coagulation process has attracted much attention. However, previous studies aimed at improving the removal efficiency of microplastics and ignored the importance of interactions between microplastics and natural organic matter (NOM). This study investigated how polystyrene micro/nano particles impact the release of NOM during the aging of flocs formed by aluminum-based coagulants Al13 and AlCl3. The results elucidated that nano-particles with small particle sizes and agglomerative states are more likely to interact with coagulants. After 7 years of floc aging, the DOC content of the nano system decreased by more than 40%, while the micron system did not change significantly. During coagulation, the benzene rings in polystyrene particles form complexes with electrophilic aluminum ions through π-bonding, creating new Al-O bonds. NOM tends to adsorb at micro/nano plastic interfaces due to hydrophobic interactions and conformational entropy. In the aging process, the structure of PS-Al13 or PS-AlCl3 flocs and the functional groups on the surface of micro/nano plastics control the absorption and release of organic matter through hydrophobic, van der Waals forces, hydration, and polymer bridging. In the system with the addition of nano plastics, several DBPs such as TCAA, DCAA, TBM, DBCM and nitrosamines were reduced by more than 50%. The reaction order of different morphological structures and surface functional groups of microplastics to Al13 and AlCl3 systems is aromatic C-H > C-OH > C-O > NH2 > aromatic CC > aliphatic C-H and C-O>H-CO> NH2 >C-OH> aliphatic C-H. The results provided a new sight to explore the effect of micro/nano plastics on the release of NOM during flocs aging.
Collapse
Affiliation(s)
- Yi Yan
- Chang' an University, Xi'an, Shaanxi 710061, China
| | - Hui Xu
- Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| | - Zijie Wang
- China Railway Design Corporation, Tianji 300308, China
| | - Hongni Chen
- Chang' an University, Xi'an, Shaanxi 710061, China
| | - Liwei Yang
- Chang' an University, Xi'an, Shaanxi 710061, China
| | - Yan Sun
- Chang' an University, Xi'an, Shaanxi 710061, China
| | - Chuanliang Zhao
- Chang' an University, Xi'an, Shaanxi 710061, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
12
|
Liu H, Wen Y, Xu J. Comparative study of polystyrene microplastic transport behavior in three different filter media: Quartz sand, zeolite, and anthracite. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104395. [PMID: 39018629 DOI: 10.1016/j.jconhyd.2024.104395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Microplastics (MPs) are emerging contaminants that are attracting increasing interest from researchers, and the safety of drinking water is greatly affected by their transportation during filtration. Polystyrene (PS) was selected as a representative MPs, and three filter media (quartz sand, zeolite, and anthracite) commonly found in water plants were used. The retention patterns of PS-MPs by various filter media under various background water quality conditions were methodically investigated with the aid of DLVO theory and colloidal filtration theory. The results show that the different structures and elemental compositions of the three filter media cause them to exhibit different surface roughnesses and surface potentials. A greater surface roughness of the filter media can provide more deposition sites for PS-MPs, and the greater surface roughness of zeolite and anthracite significantly enhances their ability to inhibit the migration of PS-MPs compared with that of quartz sand. However, surface roughness is not the only factor affecting the migration of MPs. The lower absolute value of the surface potential of anthracite causes the DLVO energy between it and PS-MPs to be significantly lower than that between zeolite and PS-MPs, which results in stronger retention of PS-MPs by anthracite, which has a lower surface roughness, than zeolite, which has a higher surface roughness. The transport of PS-MPs in the medium is affected by the combination of the surface roughness of the filter media and the DLVO energy. Under the same operating conditions, the retention efficiencies of the three filter materials for PS-MPs followed the order of quartz sand < zeolite < anthracite. Additionally, the conditions of the solution markedly influenced the transport ability of PS-MPs within the simulated filter column. The transport PS-MPs in the simulated filter column decreased with increasing solution ionic strength and cation valence. Naturally, dissolved organic matter promoted the transfer of PS-MPs in the filter layer, and humic acid had a much stronger facilitating impact than fulvic acid. The study findings might offer helpful insight for improving the ability of filter units ability to retain MPs.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| | - Jingkun Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215000, China
| |
Collapse
|
13
|
Hwang G, Kim D. Transport and retention of positively charged zinc oxide nanoparticles in saturated porous media: Effects of metal oxides and clays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124007. [PMID: 38677461 DOI: 10.1016/j.envpol.2024.124007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
The effects of metal oxides and clays on the transport of zinc oxide nanoparticles (ZnO-NPs) in saturated porous media were investigated under different ionic strength (IS) conditions. We studied the transport and retention behavior of ZnO-NPs for different types of porous media (untreated, acid treated, and acid-salt treated sand). The selected untreated sand was used as a representative sand, coated with both metal oxide and clay. The acid treated and acid-salt-treated sands were used and compared to investigate the effects of clays on the surface of the sand. In addition, the effects of clay particles in bulk solutions on the mobility and retention of ZnO-NPs were observed using bentonite as a representative clay particle. We found that the increased mobility of positively charged ZnO-NPs can be attributed to increasing charge heterogeneity of silica sand with metal oxides (mainly, iron oxide) and clays in untreated sand. No breakthrough of ZnO-NP was observed for acid-treated (presence of clays and absence of metal oxides) and acid-salt-treated sand (absence of both metal oxide and clays). Most of the injected ZnO-NPs were deposited on the surface of the sand near the column inlet. The transport of bentonite-facilitated ZnO-NPs was improved at the lowest IS (0.1 mM) (∼20%), whereas there was no difference in the mobility of ZnO-NPs at high IS solutions (1 mM and 10 mM). In particular, the breakthrough amount improved with increasing bentonite concentration. Classical Derjaguin-Landau-Verwey-Overbeek interactions help explain observed interactions between ZnO-NPs and sand as well as bentonite and sand.
Collapse
Affiliation(s)
- Gukhwa Hwang
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju, Jeonbuk-do, 54896, Republic of Korea; Research Institute for Energy and Mineral Resources Development, Jeonbuk National University, Jeonju, Jeonbuk-do, 54896, Republic of Korea.
| | - Donghyun Kim
- Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources, Daejeon, 34132, Republic of Korea
| |
Collapse
|
14
|
Wu S, Yang Y, Ma Z, Feng F, Xu X, Deng S, Han X, Xi B, Jiang Y. Co-migration behavior of toluene coupled with trichloroethylene and the response of the pristine groundwater ecosystems - A mesoscale indoor experiment. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134248. [PMID: 38636237 DOI: 10.1016/j.jhazmat.2024.134248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Experimental scale and sampling precision are the main factors limiting the accuracy of migration and transformation assessments of complex petroleum-based contaminants in groundwater. In this study, a mesoscale indoor aquifer device with high environmental fidelity and monitoring accuracy was constructed, in which dissolved toluene and trichloroethylene were used as typical contaminants in a 1.5-year contaminant migration experiment. The process was divided into five stages, namely, pristine, injection, accumulation, decrease, and recovery, and characteristics such as differences in contaminant migration, the responsiveness of environmental factors, and changes in microbial communities were investigated. The results demonstrated that the mutual dissolution properties of the contaminants increased the spread of the plume and confirmed that toluene possessed greater mobility and natural attenuation than trichloroethylene. Attenuation of the contaminant plume proceeded through aerobic degradation, nitrate reduction, and sulfate reduction phases, accompanied by negative feedback from characteristic ion concentrations, dissolved oxygen content, the oxidation-reduction potential and microbial community structure of the groundwater. This research evaluated the migration and transformation characteristics of typical petroleum-based pollutants, revealed the response mechanism of the ecosystem to pollutant, provided a theoretical basis for predicting pollutant migration and formulating control strategies.
Collapse
Affiliation(s)
- Shuxuan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhifei Ma
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Fan Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sheng Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
15
|
Guo J, Rong H, He L, Chen C, Zhang B, Tong M. Effects of arsenic on the transport and attachment of microplastics in porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134285. [PMID: 38640672 DOI: 10.1016/j.jhazmat.2024.134285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Understanding the impact of arsenic (As(III), inorganic pollutant widely present in natural environments) on microplastics (MPs, one type of emerging contaminants) mobility is essential to predict MPs fate and distribution in soil-groundwater systems, yet relevant research is lacking. This study explored the effects of As(III) copresent in suspensions (0.05, 0.5, and 5 mg/L) on MPs transport/attachment behaviors in porous media containing varied water contents (θ = 100 %, 90 %, and 60 %) under different ionic strengths (5, 10, and 50 mM NaCl) and flow rates (2, 4, and 8 m/day). Despite solution ionic strengths, flow rates, porous media water contents, sizes, and surface charges of MPs, with coexisting humic acid, and in actual water samples, As(III) of three concentrations increased MPs transport in quartz sand and natural sandy soil. The increased electrostatic repulsion between MPs and sand caused by the altered MPs surface charge via the adsorption of As(III) together with steric repulsion from As(III) in solution contributed to the promoted MPs mobility in porous media. The occupying attachment sites by As(III) partially contributed to the increased mobility of MPs with negative surface charge in porous media. Clearly, As(III) coexisting in suspensions would enhance MPs transport in porous media, increasing MPs environment risks.
Collapse
Affiliation(s)
- Jia Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Cuibai Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, College of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
16
|
Zhang B, Zhu W, Hou R, Yue Y, Feng J, Ishag A, Wang X, Qin Y, Sun Y. Recent advances of application of bentonite-based composites in the environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121341. [PMID: 38824894 DOI: 10.1016/j.jenvman.2024.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bentonite-based composites have been widely utilized in the removal of various pollutants due to low cost, environmentally friendly, ease-to-operate, whereas the recent advances concerning the application of bentonite-based composites in environmental remediation were not available. Herein, the modification (i.e., acid/alkaline washing, thermal treatment and hybrids) of bentonite was firstly reviewed; Then the recent advances of adsorption of environmental concomitants (e.g., organic (dyes, microplastics, phenolic and other organics) and inorganic pollutants (heavy metals, radionuclides and other inorganic pollutants)) on various bentonite-based composites were summarized in details. Meanwhile, the effect of environmental factors and interaction mechanism between bentonite-based composites and contaminants were also investigated. Finally, the conclusions and prospective of bentonite-based composites in the environmental remediation were proposed. It is demonstrated that various bentonite-based composites exhibited the high adsorption/degradation capacity towards environmental pollutants under the specific conditions. The interaction mechanism involved the mineralization, physical/chemical adsorption, co-precipitation and complexation. This review highlights the effect of different functionalization of bentonite-based composites on their adsorption capacity and interaction mechanism, which is expected to be helpful to environmental scientists for applying bentonite-based composites into practical environmental remediation.
Collapse
Affiliation(s)
- Bo Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Weiyu Zhu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Rongbo Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yanxue Yue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jiashuo Feng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Department of Chemical Engineering, Faculty of Engineering and Technical Studies, University of Kordofan, El Obeid, 51111, Sudan
| | - Xiao Wang
- Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Yan Qin
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, PR China.
| | - Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
17
|
Hou Y, Wang Y, Zhu L, Zhang Z, Dong Z, Qiu Y. Different inhibitory mechanisms of flexible and rigid clay minerals on the transport of microplastics in marine porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124246. [PMID: 38810676 DOI: 10.1016/j.envpol.2024.124246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/26/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Colloidal interactions between clay minerals and microplastics (MPs) in high salinity seawater are crucial for determining MP fate in marine environments. Montmorillonite (MMT) forms thin and pliable films that tightly cover MPs, while the thick and rigid lamellae of kaolinite (KLT) have limited contact with MPs, resulting in unstable bonding. However, a small quantity of small-sized KLT can create relatively stable heteroaggregates by embedding into the interstitial spaces of MPs. Both MMT and KLT colloids can decrease the mobility of MPs in seawater-saturated sea sand, but their breakthrough curves (BTCs) show distinct phenomena of "blocking" and "ripening", respectively. The "blocking" phenomenon occurs when flexible MMT adheres to the sand surface, depleting attachment sites quickly and inhibiting the retention of subsequent heteroaggregates of MMT-wrapped MPs. The transport of single MMT also experiences colloid competition for attachment sites, but pre-equilibration experiments reveal no competition between MMT and bare MPs for attachment sites. Instead, the attached MMT provides additional attachment sites for MPs. These results suggest that the wrapping of MPs by MMT plays a dominant role in the "blocking" of cotransport. In contrast, rigid KLT forms a three-dimensional stack on the sand surface, offering more attachment sites for subsequent MPs and heteroaggregates.
Collapse
Affiliation(s)
- Yuanzhang Hou
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yange Wang
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Ling Zhu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Zhenbo Zhang
- School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhiqiang Dong
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Municipal Environmental Protection Engineering Co., Ltd of CERC Shanghai Group, Shanghai, 201906, China; China Railway Engineering Group Co., Beijing, 100039, China
| | - Yuping Qiu
- Department of Environmental Science, College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
18
|
Li F, Huang D, Wang G, Cheng M, Chen H, Zhou W, Xiao R, Li R, Du L, Xu W. Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171658. [PMID: 38490411 DOI: 10.1016/j.scitotenv.2024.171658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Till now, microplastics/nano-plastics(M/NPs) have received a lot of attention as emerging contaminant. As a typical but complex porous medium, soil is not only a large reservoir of M/NPs but also a gateway for M/NPs to enter groundwater. Therefore, the review of the factors controlling the transport behavior of M/NPs in porous media can provide important guidance for the risk assessment of M/NPs in soil and groundwater. In this study, the key factors controlling the transport behavior of M/NPs in porous media are systematically divided into three groups: (1) nature of M/NPs affecting M/NPs transport in porous media, (2) nature of flow affecting M/NPs transport in porous media, (3) nature of porous media affecting M/NPs transport. In each group, the specific control factors for M/NPs transport in porous media are discussed in detail. In addition to the above factors, some substances (colloids or pollutants) present in natural porous media (such as soil or sediments) will co-transport with M/NPs and affect its mobility. According to the different properties of co-transported substances, the mechanism of promoting or inhibiting the migration behavior of M/NPs in porous media was discussed. Finally, the limitations and future research directions of M/NPs transport in porous media are pointed out. This review can provide a useful reference for predicting the transport of M/NPs in natural porous media.
Collapse
Affiliation(s)
- Fei Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
19
|
Gomez-Flores A, Jin S, Nam H, Cai L, Song S, Kim H. Attachment of various-shaped polystyrene microplastics to silica surfaces: Experimental validation of the equivalent Cassini oval extended DLVO model. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134146. [PMID: 38583206 DOI: 10.1016/j.jhazmat.2024.134146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Microplastics (MPs) vary in shape and surface characteristics in the environment. The attachment of MPs to surfaces can be studied using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. However, this theory does not account for the shape MPs. Therefore, we investigated the attachment of spherical, pear-shaped, and peanut-shaped polystyrene MPs to quartz sand in NaCl and CaCl2 solutions using batch tests. The attachment of MPs to quartz sand was quantified using the attachment efficiency (alpha). Subsequently, alpha behaviors were interpreted using energy barriers (EBs) and interaction minima obtained from extended DLVO calculations, which were performed using an equivalent sphere model (ESM) and a newly developed equivalent Cassini model (ECM) to account for the shape of the MPs. The ESM failed to interpret the alpha behavior of the three MP shapes because it predicted high EBs and shallow minima. The alpha values for spherical MPs (0.62-1.00 in NaCl and 0.48-0.96 in CaCl2) were higher than those for pear- and peanut-shaped MPs (0.01-0.63 in NaCl and 0.02-0.46 in CaCl2, and 0.01-0.59 in NaCl and 0.02-0.40 in CaCl2, respectively). Conversely, the ECM could interpret the alpha behavior of pear- and peanut-shaped MPs either by changes in EBs or interaction minima as a function of orientation angles and electrolyte ionic strength. Therefore, the particle shape must be considered to improve the attachment analyses.
Collapse
Affiliation(s)
- Allan Gomez-Flores
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Suheyon Jin
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyojeong Nam
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
20
|
Gao W, Wang X, Diao Y, Gong Y, Miao J, Sang W, Yuan H, Shen Z, El-Sayed MEA, Abdelhafeez IA. Co-impacts of cation type and humic acid on migration of polystyrene microplastics in saturated porous media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120918. [PMID: 38643625 DOI: 10.1016/j.jenvman.2024.120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
The aging process of microplastics (MPs) could significantly change their physical and chemical characteristics and impact their migration behavior in soil. However, the complex effects of different cations and humic acids (HA) on the migration of aged MPs through saturated media are not clear. In this research, the migration and retention of pristine/aged PSMPs (polystyrene microplastics) under combined effects of cations (Na+, Ca2+) (ionic strength = 10 mM) and HA (0, 5, 15 mg/L) were investigated and analyzed in conjunction with the two-site kinetic retention model and DLVO theory. The findings showed that the aging process accelerated PSMPs migration under all tested conditions. Aged PSMPs were less susceptible to Ca2+ than pristine PSMPs. Under Ca2+ conditions, pristine/aged PSMPs showed higher retention than under Na+ conditions in the absence of HA. Furthermore, under Na+ conditions, the migration of aged PSMPs significantly increased at higher concentrations of HA. However, under Ca2+ conditions, the migration of aged PSMPs decreased significantly at higher concentrations of HA. In higher HA conditions, HA, Ca2+, and PSMPs interact to cause larger aggregations, resulting in the sedimentation of aged PSMPs. The DLVO calculations and two-site kinetic retention models' results showed the detention of PSMPs was irreversible under higher HA conditions (15 mg/L) with Ca2+, and aged PSMPs were more susceptible to clogging. These findings may help to understand the potential risk of migration behavior of PSMPs in the soil-groundwater environment.
Collapse
Affiliation(s)
- Wenxin Gao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yiqun Gong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jing Miao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hui Yuan
- Tianjin Eco-Environmental Monitoring Center, 19 Fukang Road, Nankai District, Tianjin, 300191, China
| | - Zheng Shen
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Mohamed E A El-Sayed
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Islam A Abdelhafeez
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| |
Collapse
|
21
|
Hul G, Okutan H, Le Coustumer P, Ramseier Gentile S, Zimmermann S, Ramaciotti P, Perdaems P, Stoll S. Influence of Concentration, Surface Charge, and Natural Water Components on the Transport and Adsorption of Polystyrene Nanoplastics in Sand Columns. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:529. [PMID: 38535675 PMCID: PMC10974996 DOI: 10.3390/nano14060529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 11/12/2024]
Abstract
Information about the influence of surface charges on nanoplastics (NPLs) transport in porous media, the influence of NPL concentrations on porous media retention capacities, and changes in porous media adsorption capacities in the presence of natural water components are still scarce. In this study, laboratory column experiments are conducted to investigate the transport behavior of positively charged amidine polystyrene (PS) latex NPLs and negatively charged sulfate PS latex NPLs in quartz sand columns saturated with ultrapure water and Geneva Lake water, respectively. Results obtained for ultrapure water show that amidine PS latex NPLs have more affinity for negatively charged sand surfaces than sulfate PS latex NPLs because of the presence of attractive electrical forces. As for the Geneva Lake water, under natural conditions, both NPL types and sand are negatively charged. Therefore, the presence of repulsion forces reduces NPL's affinity for sand surfaces. The calculated adsorption capacities of sand grains for the removal of both types of NPLs from both types of water are oscillating around 0.008 and 0.004 mg g-1 for NPL concentrations of 100 and 500 mg L-1, respectively. SEM micrography shows individual NPLs or aggregates attached to the sand and confirms the limited role of the adsorption process in NPL retention. The important NPL retention, especially in the case of negatively charged NPLs, in Geneva Lake water-saturated columns is related to heteroaggregate formation and their further straining inside narrow pores. The presence of DOM and metal cations is then crucial to trigger the aggregation process and NPL retention.
Collapse
Affiliation(s)
- Gabriela Hul
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Hande Okutan
- Ecole Doctorale, Université de Bordeaux Montaigne, 33607 Pessac, France
- Department of Geological Engineering, University of Mugla Sitki Kocman, Mugla 48260, Türkiye
| | - Philippe Le Coustumer
- Ecole Doctorale, Université de Bordeaux Montaigne, 33607 Pessac, France
- Bordeaux Imaging Center CBRS—INRAE—INSERM, Université de Bordeaux, 33000 Bordeaux, France
| | | | | | | | | | - Serge Stoll
- Department F.-A. Forel for Environmental and Aquatic Sciences, Institute for Environmental Sciences, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
22
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169638. [PMID: 38181944 DOI: 10.1016/j.scitotenv.2023.169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
This review discussed the research statuses, shortcomings, and outlooks for the fate of nanoplastics (NPs) and engineered nanoparticles (ENPs) in porous media and borrowable sections from ENPs for NPs. Firstly, the most important section was that we reviewed the research statuses on the fate of NPs in porous media and the main influencing factors, and explained the influencing mechanisms. Secondly, in order to give NPs a reference of research ideas and influence mechanisms, we also reviewed the research statuses on the fate of ENPs in porous media and the factors and mechanisms influencing the fate. The main mechanisms affecting the transport of ENPs were summarized (Retention or transport modes: advection, diffusion, dispersion, deposition, adsorption, blocking, ripening, and straining; Main forces and actions: Brownian motion, gravity, electrostatic forces, van der Waals forces, hydration, filtration, bridging; Affecting elements of the forces and actions: the ENP and media grain surface functional groups, size, shape, zeta potential, density, hydrophobicity, and roughness). Instead of using the findings of ENPs, thorough study on NPs was required because NPs and ENPs differed greatly. Based on the limited existing studies on the NP transport in porous media, we found that although the conclusions of ENPs could not be applied to NPs, most of the influencing mechanisms summarized from ENPs were applicable to NPs. Combining the research thoughts of ENPs, the research statuses of NPs, and some of our experiences and reflections, we reviewed the shortcomings of the current studies on the NP fate in porous media as well as the outlooks of future research. This review is very meaningful for clarifying the research statuses and influence mechanisms for the NP fate in porous media, as well as providing a great deal of inspiration for future research directions about the NP fate in porous media.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
23
|
Dong S, Suakollie EB, Cao S, Su X, Fan W, Yu Y, Xia J. Effect of NaNO 3, NH 4Cl and urea on the fate and transformation of various typical microplastics in porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123014. [PMID: 38006991 DOI: 10.1016/j.envpol.2023.123014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/30/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Understanding the transport behaviors of microplastics (MPs) in porous media is crucial in controlling MPs pollution. Given nitrogen is one of the most important nutrients in soil and groundwater systems, unclearness of the transport behaviors of microplastics (MPs) under various nitrogen conditions may inhibit the acknowledgment of MPs fate. For this reason, this study innovatively investigates the transport characteristics of four kinds of typical MPs (PVC MPs, PMMA MPs, PET MPs, and PP MPs) under various NaNO3, NH4Cl and urea conditions via column experiments numerical models. The FTIR and XPS analysis were conducted to excavate the transform of MPs. The MPs mobility was generally reduced with the increasing nitrogen concentrations. The polarity and density properties of different MPs played combined roles in transport under similar conditions. Compared to NO3-, NH4+ may neutralize the negative charge of MPs and then restrain their transport in porous media. Urea may coat the surface of MPs and promote the mobility, however, increasing concentrations of urea may result in the interattraction between MPs and porous media via hydrogen-bond and π-π interaction. PET MPs and PP MPs showed barely transform during transport under the tested conditions. Particularly, the chlorines on PVC MPs could react with the amide on urea and produce amidogen, which may improve PVC MPs transport. The N-H and C-N bond also generated on PMMA MPs in presence of urea also may enhance the mobility.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Emmanuel B Suakollie
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Shaohua Cao
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, Jiangsu, China
| | - Xiaoting Su
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Weiya Fan
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yulu Yu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jihong Xia
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
24
|
Xiong X, Wang J, Liu J, Xiao T. Microplastics and potentially toxic elements: A review of interactions, fate and bioavailability in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122754. [PMID: 37844862 DOI: 10.1016/j.envpol.2023.122754] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In recent years, microplastics (MPs) have obtained growing public concern due to widespread distribution and harmful impacts. Their distinctive features including porous structure, small size, as well as large specific surface area render MPs to be carriers for transporting other pollutants in the environment, especially potentially toxic elements (PTEs). Considering the hot topic of MPs, it is of great significance to comb the reported literature on environmental behaviors of co-occurrence of MPs and PTEs, and systematically discuss their co-mobility, transportation and biotoxicity to different living organisms in diverse environmental media. Therefore, the aim of this work is to systematically review and summarize recent advances on interactions and co-toxicity of MPs and PTEs, in order to provide in-depth understanding on the transport behaviors as well as environmental impacts. Electrostatic attraction and surface complexation mainly govern the interactions between MPs and PTEs, which are subordinated by other physical sorption processes. Besides, the adsorption behaviors are mainly determined by physicochemical properties regarding to different MPs types and various condition factors (e.g., ageing and PTEs concentrations, presence of substances). Generally speaking, recently published papers make a great progress in elucidating the mechanisms, impact factors, as well as thermodynamic and kinetic studies. Bioavailability and bioaccumulation by plant, microbes, and other organisms in both aquatic and terrestrial environment have also been under investigation. This review will shed novel perspectives on future research to meet the sustainable development goals, and obtain critical insights on revealing comprehensive mechanisms. It is crucial to promote efficient approaches on environmental quality improvement as well as management strategies towards the challenge of MPs-PTEs.
Collapse
Affiliation(s)
- Xinni Xiong
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
25
|
Okutan H, Hul G, Stoll S, Le Coustumer P. Retention and Transport of Nanoplastics with Different Surface Functionalities in a Sand Filtration System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:32. [PMID: 38202487 PMCID: PMC11326042 DOI: 10.3390/nano14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
The efficiency of sand filtration was investigated in terms of the behavior of the nanoplastics (NPLs) with different surface functionalities. The initial condition concentrations of NPLs were varied, and their effects on retention and transport were investigated under a constant flow rate in saturated porous media. The behavior of NPLs in this porous system was discussed by considering Z- average size and zeta (ζ) potential measurements of each effluent. The retention efficiencies of NPLs were ranked as functionalized with amidine [A-PS]+ > with sulfate [S-PS]- > with surfactant-coated amidine [SDS-A-PS]-. The reversibility of the adsorption process was revealed by introducing surfactant into the sand filter system containing adsorbed [A-PS]+ at three different initial state concentration conditions. The deposition behavior on sand grain showed that positively charged NPLs were attached to the quartz surface, and negatively charged NPLs were attached to the edge of the clay minerals, which can be caused by electrical heterogeneities. The homoaggregates made of positively charged NPLs were more compact than those made of negatively charged NPLs and surfactant-coated NPLs. An anti-correlation was revealed, suggesting a connection between the fractal dimension (Df) of NPL aggregates and retention efficiencies. Increased Df values are associated with decreased retention efficiencies.The findings underscore the crucial influence of NPL surface properties in terms of retention efficiency and reversible adsorption in the presence of surfactants in sand filtration systems.
Collapse
Affiliation(s)
- Hande Okutan
- Ecole Doctorale, Sciences et Technologies, Université de Bordeaux Montaigne, 33607 Pessac, France
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
- Department of Geological Engineering, Mugla Sitki Kocman University, Mugla 48000, Türkiye
| | - Gabriela Hul
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Serge Stoll
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - Philippe Le Coustumer
- Ecole Doctorale, Sciences et Technologies, Université de Bordeaux Montaigne, 33607 Pessac, France
- Earth Sciences Department, Université de Bordeaux, 33615 Pessac, France
- Bordeaux Imaging Center, Université de Bordeaux, CNRS-UAR3420-INSERM US4, 33000 Bordeaux, France
| |
Collapse
|
26
|
Xie R, Xing X, Nie X, Ma X, Wan Q, Chen Q, Li Z, Wang J. Deposition behaviors of carboxyl-modified polystyrene nanoplastics with goethite in aquatic environment: Effects of solution chemistry and organic macromolecules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166783. [PMID: 37666342 DOI: 10.1016/j.scitotenv.2023.166783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The ubiquitous nanoplastics (NPs) in the environment are emerging contaminants due to their risks to human health and ecosystems. The interaction between NPs and minerals determines the environmental and ecological risks of NPs. In this study, the deposition behaviors of carboxyl modified polystyrene nanoplastics (COOH-PSNPs) with goethite (α-FeOOH) were systematically investigated under various solution chemistry and organic macromolecules (OMs) conditions (i.e., pH, ionic type, humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA)). The study found that electrostatic interactions dominated the interaction between COOH-PSNPs and goethite. The deposition rates of COOH-PSNPs decreased with an increase in solution pH, due to the enhanced electrostatic repulsion by higher pH. Introducing cations or anions could compress the electrostatic double layers and compete for interaction sites on COOH-PSNPs and goethite, thereby reducing the deposition rates of COOH-PSNPs. The stabilization effects, which were positive with ions valence, followed the orders of NaCl ≈ KCl < CaCl2, NaNO3 ≈ NaCl < Na2SO4 < Na3PO4. Specific adsorption of SO42- or H2PO4- caused a potential reversal of goethite from positive to negative, leading to the electrostatic forces between COOH-PSNPs and goethite changed from attraction to repulsion, and thus significantly decreasing deposition of COOH-PSNPs. Organic macromolecules could markedly inhibit the deposition of COOH-PSNPs with goethite because of enhanced electrostatic repulsion, steric hindrance, and competition of surface binding sites. The ability for inhibiting the deposition of COOH-PSNPs followed the sequence of SA > HA > BSA, which was related to their structure (SA: linear, semi-flexible, HA: globular, semi-rigid, BSA: globular, with protein tertiary structure) and surface charge density (SA > HA > BSA). The results of this study highlight the complexity of the interactions between NPs and minerals under different environments and provide valuable insights in understanding transport mechanisms and environmental fate of nanoplastics in aquatic environments.
Collapse
Affiliation(s)
- Ruiyin Xie
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaohui Xing
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Xin Nie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xunsong Ma
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550001, China
| | - Quan Wan
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
| | - Qingsong Chen
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Zixiong Li
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jingxin Wang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China.
| |
Collapse
|
27
|
Yi S, Zuo W, Xu L, Wang Y, Gu C, Shan Y, Bai Y. Accumulation and migration of microplastics and its influencing factors in coastal saline-alkali soils amended with sewage sludge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115597. [PMID: 37866037 DOI: 10.1016/j.ecoenv.2023.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Coastal saline-alkali soil can be transformed to agricultural soil with sewage sludge amendment. However, sewage sludge contains a large number of microplastics (MPs), and the fate of MPs in sludge-treated saline-alkali soil needs to be studied. Therefore, we investigated the accumulation and migration of MPs, and their influencing factors in saline-alkali soil after one-time sewage sludge application (0, 25, 50, 100 and 200 t ha-1 SSA). The results indicated that sewage sludge input contributed to MP accumulation in soil, and the MP abundance in 20-40 cm soil was significantly lower than that in 0-20 cm soil. Fragments and fibers were the most abundant MPs in soil, and the proportions of fragments and 50-200 µm MPs in 20-40 cm soil were lower than those in 0-20 cm soil, while the < 50 µm MP proportion was higher than that in 0-20 cm soil. Correlation analysis showed that MP accumulation rate (0-40 cm) and migration rate (20-40 cm) were negatively correlated with soil organic matter (SOM) content and SSA, but positively correlated with soil pH. Stepwise regression analysis further showed that SOM and SSA were the main factors affecting MP accumulation rate, which explained 47.7% and 46% of its variation, respectively, while pH was the crucial factor affecting the migration rate of MPs, followed by EC and SSA. In conclusion, SSA caused MP accumulation in saline-alkali soil, and SSA primarily affected the MP abundance, while soil OM, pH and EC directly affected MP migration in soil.
Collapse
Affiliation(s)
- Siqiang Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Wengang Zuo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Lu Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Yimin Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chuanhui Gu
- Environmental Research Center, Duke Kunshan University, Kunshan 215316, PR China
| | - Yuhua Shan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, PR China
| | - Yanchao Bai
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225127, PR China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, PR China.
| |
Collapse
|
28
|
Reichelt S, Gorokhova E. Aggregation in experimental studies with microparticles: Experimental settings change particle size distribution during exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122369. [PMID: 37597735 DOI: 10.1016/j.envpol.2023.122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The ubiquitous occurrence of microplastics is raising broad concerns and motivating effect studies. In these studies, however, particle behaviour in the water and aggregation are rarely considered leading to contradictory results reported by different studies. Using an environmentally relevant experimental setup with Daphnia magna as a test organism, we investigated how experimental conditions affect particle aggregation and the aggregate heterogeneity in terms of the particle size distribution. The experimental factors considered were (1) exposure duration (48 h vs 120 h), (2) the total mass of suspended solids (0-10 mg/l) composed of natural mineral particles (kaolin) and microplastics, (3) the proportion of the microplastics in the particle suspension (0-10% by mass), (4) dissolved organic matter (DOM; 0 vs 20 mg agarose/l), and (5) presence of the test organism (0 and 5 daphnids/vial). We found that particle aggregation occurs within the first 48 h of incubation in all treatments, no substantial change in the aggregate heterogeneity is observed afterwards. The median aggregate size was ∼2-fold higher than the nominal average particle size of clay and microplastics in the stock suspensions used to prepare the experimental mixtures. The strongest positive driver of the aggregate size and heterogeneity was DOM, followed by the presence of daphnids and the concentration of the suspended solids in the system. Also, microplastics were found to facilitate aggregation, albeit they were the weakest contributor. Moreover, besides directly increasing the aggregation, DOM relaxed the effects of the total solids and daphnids on the aggregate size. Thus, the particle size distribution was established early during the exposure and shaped by all experimental factors and their interactions. These findings improve our understanding of the processes occurring in the exposure systems when conducting effect studies with microplastics and other particulates and demonstrate the necessity to access the particle size distribution to characterise the exposure. Aslo, relevant experimental designs with microplastics must include relevant natural particulates and DOM to ensure environmentally realistic particle behaviour and adequate particle-biota interactions.
Collapse
Affiliation(s)
- Sophia Reichelt
- Department of Environmental Science (ACES), Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Elena Gorokhova
- Department of Environmental Science (ACES), Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
29
|
Zhang M, Hou J, Xia J, Wu J, Zeng Y, Miao L, Lv B. Transport of polystyrene nanoplastics in porous media: Combined effects of two co-existing substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165275. [PMID: 37406707 DOI: 10.1016/j.scitotenv.2023.165275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Both surfactants and natural organic matters (NOMs) are substances commonly found in aqueous environments, and their effects on the transport of nanoplastics that is gradually gaining widespread attention in porous media are currently in their infancy, while their combined effects are absent. We investigated innovatively the combined effect of surfactants and NOMs on the transport of polystyrene nanoplastics (PS-NPs) in saturated porous media. Adsorption tests of surfactants and NOMs onto PS-NPs, adsorption tests of PS-NPs onto quartz sand, and transport tests of PS-NPs in saturated quartz sand were conducted. Hydrophobicity and Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy were measured and calculated. A mathematical model was employed to fit the transport of PS-NPs in porous media. It was found that the effects and action mechanisms of cationic cetyl trimethylammonium bromide (CTAB) and anionic sodium dodecylbenzene sulfonate (SDBS) on the transport of PS-NPs in porous media were distinct. In the presence of CTAB, 1 mg/L humic acid (HA) and 10 mg/L sodium alginate (SA) could promote aggregation of PS-NPs by decreasing the absolute zeta potential of PS-NPs, and reducing the energy barrier between PS-NPs and porous media and increasing the blocking and straining, thus inhibiting the transport of PS-NPs. In the presence of SDBS, SA and HA could improve the adsorption of SDBS onto PS-NPs by bridging and increasing adsorption sites, thus increasing the hydrophilicity of PS-NPs and improving the transport of PS-NPs. Whether or not NOMs were present, the transport of PS-NPs in porous media was mainly governed by the DLVO interaction energy in the presence of cationic surfactants and by hydrophobicity in the presence of anionic surfactants. This innovative observation has led to an understanding on the environmental behaviour of nanoplastics in porous media under complex environments.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yuan Zeng
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bowen Lv
- Policy Research Center for Environment and Economy, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100000, China.
| |
Collapse
|
30
|
Wang Z, Sedighi M. Disintegration of biochar adsorbent under the hydraulic conditions of fixed bed water treatment. CHEMOSPHERE 2023:139294. [PMID: 37353173 DOI: 10.1016/j.chemosphere.2023.139294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Recent studies have provided promising evidence for potential applications of biochar in environmental engineering, including its use as an alternative carbonaceous adsorbent for water and wastewater treatment. Carbonaceous adsorbents, such as activated carbon and biochar, are prone to disintegration and erosion due to water flow, potentially leading to the co-transport of hazardous contaminants with eroded fine particles (1 μm or smaller). Despite its significance in overall performance assessment, the stability and erodibility of biochar as an adsorbent in fixed bed water treatment have received limited research attention. This paper presents the results of a series of filtration tests and microscopic examinations to evaluate the disintegration of activated carbon and three types of biochar filters under the hydraulic conditions of fixed bed filtration. A novel testing design was employed to study the effects of fluid velocities and ionic strengths on disintegration, mass loss, and the morphology of granular adsorbents before and after water flushing. The results indicate that disintegration of both activated carbon and biochar is continuous but exhibits different behaviour with pore volume. Although fluid velocity influenced erosion rates, minimal differences were observed in overall mass loss. Ionic strength had a more pronounced impact on the erodibility and stability of particles in suspension by altering electrical conductivity and Zeta potential. Disintegration of hardwood biochar was found to be comparable to that of activated carbon; however, impurities in biochar (elements other than carbon and oxygen) are more likely to be flushed out, creating additional pathways for co-transport of contaminants.
Collapse
Affiliation(s)
- Ziheng Wang
- School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| | - Majid Sedighi
- School of Engineering, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
31
|
Zhou S, Ai J, Qiao J, Sun H, Jiang Y, Yin X. Effects of neonicotinoid insecticides on transport of non-degradable agricultural film microplastics. WATER RESEARCH 2023; 236:119939. [PMID: 37054611 DOI: 10.1016/j.watres.2023.119939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Mulch film microplastics (MPs) could act as a vector for agricultural chemicals due to their long-term presence in farmland environments. As a result, this study focuses on the adsorption mechanism of three neonicotinoids on two typical agricultural film MPs, polyethylene (PE) and polypropylene (PP), as well as the effects of neonicotinoids on the MPs transport in quartz sand saturated porous media. The findings revealed that the adsorption of neonicotinoids on PE and PP was a combination of physical and chemical processes, including hydrophobic, electrostatic and hydrogen bonding. Acidity and appropriate ionic strength (IS) were favorable conditions for neonicotinoid adsorption of on MPs. The results of column experiments showed that the presence of neonicotinoids, particularly at low concentrations (0.5 mmol L-1), could promote the transport of PE and PP in the column by improving the electrostatic interaction and hydrophilic repulsion of particles. The neonicotinoids would be adsorbed on MPs through hydrophobic action preferentially, whereas excessive neonicotinoids could cover the hydrophilic functional groups on the surface of MPs. Neonicotinoids reduced the response of PE and PP transport behavior to pH changes. 0.005 mol L-1 NaCl ameliorated the migration of MPs by increasing their stability. Because of its highest hydration ability and the bridging effect of Mg2+, Na+ had the most prominent transport promoting effect on PE and PP in MPs-neonicotinoid. This study shows that the increased environmental risk caused by the coexistence of microplastic particles and agricultural chemicals is unneglectable.
Collapse
Affiliation(s)
- Shi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Juehao Ai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiachang Qiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China
| | - Yanji Jiang
- School of Environment, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
32
|
Rong H, Qin J, He L, Tong M. Cotransport of different electrically charged microplastics with PFOA in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121862. [PMID: 37220863 DOI: 10.1016/j.envpol.2023.121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
The fate and transport behavior of microplastics (MPs), emerging colloidal contaminant ubiquitous in natural environments, would be greatly affected by other copresent pollutants. PFOA (emerging surfactant pollutant) would interact with MPs after encounter with them in natural environments, which could alter the transport behavior of both pollutants. Relevant knowledge is still lacking, affecting accurate prediction the fate and distribution of these two emerging contaminants in natural porous media. The cotransport behavior of different surface charged MPs (negatively/positively charged, CMPs/AMPs) with PFOA (three concentrations ranged from 0.1 to 10 mg/L) in porous media in both 10 and 50 mM NaCl solutions thus was investigated in the present study. We found PFOA inhibited CMPs transport in porous media, while enhanced AMPs transport. The mechanisms leading to the altered transport of CMPs/AMPs caused by PFOA were found to be different. The decreased electrostatic repulsion between CMPs-sand induced by the decreased CMPs negative zeta potentials via the adsorption of PFOA led to the inhibited transport of CMPs in CMPs-PFOA suspension. The enhanced electrostatic repulsion between AMPs-sand due to the decreased positive charge of AMPs via the adsorption of PFOA together with steric repulsion induced by suspended PFOA resulted in the increased transport of AMPs in AMPs-PFOA suspension. Meanwhile, we found that the adsorption onto MPs surfaces also impacted the transport of PFOA. Due to the lower mobility of MPs than PFOA, the presence of MPs despite their surface charge decreased the transport of PFOA of all examined concentrations in quartz sand columns. This study demonstrates that when MPs and PFOA are co-existing in environments, their interaction with each other will alter the fate and transport behavior of both pollutants in porous media and the alteration is highly correlated with the amount of PFOA adsorbed onto MPs and original surface properties of MPs.
Collapse
Affiliation(s)
- Haifeng Rong
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Jianmei Qin
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei He
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
33
|
Chen Z, Shi X, Zhang J, Wu L, Wei W, Ni BJ. Nanoplastics are significantly different from microplastics in urban waters. WATER RESEARCH X 2023; 19:100169. [PMID: 36798904 PMCID: PMC9926019 DOI: 10.1016/j.wroa.2023.100169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous and intractable in urban waters. Compared with MPs, the smaller NPs have shown distinct physicochemical features, such as Brownian motion, higher specific surface area, and stronger interaction with other pollutants. Therefore, the qualitative and quantitative analysis of NPs is more challenging than that of MPs. Moreover, these characteristics endow NPs with significantly different environmental fate, interactions with pollutants, and eco-impacts from those of MPs in urban waters. Herein, we critically analyze the current advances in the difference between MPs and NPs in urban waters. Analytical challenges, fate, interactions with surrounding pollutants, and eco-impacts of MPs and NPs are comparably discussed., The characterizations and fate studies of NPs are more challenging compared to MPs. Furthermore, NPs in most cases exhibit stronger interactions with other pollutants and more adverse eco-impacts on living things than MPs. Subsequently, perspective in this field is proposed to stimulate further size-dependent studies on MPs and NPs. This review would benefit the understanding of the role of NPs in the urban water ecosystem and guide future studies on plastic pollution management.
Collapse
|
34
|
Chang B, He B, Cao G, Zhou Z, Liu X, Yang Y, Xu C, Hu F, Lv J, Du W. Co-transport of polystyrene microplastics and kaolinite colloids in goethite-coated quartz sand: Joint effects of heteropolymerization and surface charge modification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163832. [PMID: 37121313 DOI: 10.1016/j.scitotenv.2023.163832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
This study investigated the transport behavior of polystyrene microplastics (MPs) in saturated quartz sand and goethite-coated sand in the presence of coexisting kaolinite colloids. Column experiments were conducted under a wide range of solution chemistry conditions, including pH levels of 6.0, 7.0, and 9.0, as well as background Na+ concentrations of 5 mM and 25 mM. We found that: (1) The individual transport of MPs in porous media diminished both with increasing background ion strength and decreasing pH, and its transport ability was significantly dominated by the interactions between MPs and porous media rather than the interplay between MPs, which has been further corroborated by the aggregation stability experiments of MPs particles. (2) MPs had a much lower ability to move through goethite-coated sand columns than quartz sand columns. This is because goethite coating reduces the repulsion energy barriers between porous media and MPs. The increased specific surface area and surface complexity of sand columns after goethite coating should also account for this difference. (3) MPs transport would be subjected to the differentiated impact of co-transported kaolinite colloids in the two types of porous media. The promotion effect of kaolinite colloid on MPs' transport capacity is not significantly affected by background ionic strength changes when quartz sand is served as the porous medium; however, the promotion effect is highly correlated with the background ionic strength when goethite-coated sand is served as the porous medium. In comparison with low background ionic strength conditions, kaolinite colloids under high background ionic strength conditions significantly facilitated MPs transport. This is mainly because under high background ionic conditions, kaolinite colloids are more likely to be deposited on the surface of goethite-covered sand, competing with MPs for the limited deposition sites. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory is applicable to describe the transport behavior of MPs.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Bing He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Gang Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Zhiying Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaoqi Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
35
|
Li T, Liu K, Tang R, Liang JR, Mai L, Zeng EY. Environmental fate of microplastics in an urban river: Spatial distribution and seasonal variation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121227. [PMID: 36758926 DOI: 10.1016/j.envpol.2023.121227] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/31/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Rivers are recognized as an important pathway for transport of microplastics (MPs) from land to sea, but limited information is available on the spatial distribution and seasonal variation of riverine MPs from upper reaches to estuaries. Such information is critical for source apportionment and development of effective management measures for riverine MPs. To fill the knowledge gap, we investigated the occurrence of MPs in surface water along an urban river in Guangzhou, southern China in wet and dry seasons. The abundances of MPs from 16 sampling sites in the wet and dry seasons varied from 0.123 to 1.84 particles m-3 and from 0.046 to 4.21 particles m-3, respectively. The spatial distribution of MP abundances showed an increasing trend from upstream to midstream and a decreasing trend from midstream to downstream and estuaries. The abundances of MPs peaked at the midstream, which is surrounded by a highly urbanized region with high population density (∼2530 persons per km2). The large surface water runoff during the wet season elevated the MP abundance in riverine water, except for that flowing through the central urban area where the abundance of MPs collected in the dry season was higher than that in the wet season. This was mainly ascribed to the large input from extensive anthropogenic activities and slow water flow rate in urban areas. The estimated monthly riverine MP fluxes from Humen, Hongqili, and Jiaomen were 7.42, 2.38, and 2.3 billion particles, respectively, in the wet season, and 0.86, 0.71, and 0.19 billion particles, respectively, in the dry season. An increase of riverine MP fluxes from Humen, Hongqili, and Jiaomen in the past three years was evident. The results from the present study provide valuable information for source apportionment of riverine MPs and support the initialization of possible MPs controlling measures.
Collapse
Affiliation(s)
- Ting Li
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Kai Liu
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Rui Tang
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Jun-Rong Liang
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Lei Mai
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Eddy Y Zeng
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Research Center of Low Carbon Economy for Guangzhou Region, Key Laboratory of Philosophy and Social Science in Guangdong Province of Community of Life for Man and Nature, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
36
|
Wang H, Luo Z, Yu R, Yan C, Zhou S, Xing B. Tire wear particles: Trends from bibliometric analysis, environmental distribution with meta-analysis, and implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121150. [PMID: 36720340 DOI: 10.1016/j.envpol.2023.121150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Tire wear particles (TWPs), as one of pristine microplastics and non-exhaust emission pollutants, have received extensive attention from scholars worldwide in recent years. In the context of the increasing number of related research results, this study evaluated the current status of TWPs research based on bibliometric analysis and meta-analysis and then discussed in-depth the environmental implications involving transport, transformation of released additives in potential and combined pollution with other microplastics in TWPs researches. Results showed that the regional layout of TWPs research was mainly concentrated in Europe and North America, but with specific countries of the United States, Germany, China, the United Kingdom, and Sweden. Thus, Asia and Africa should timely carry out related research on TWPs considering their large vehicle ownerships. In addition, keyword co-occurrence analysis based on CiteSpace showed that biotoxicity, environmental distribution and human health risks are the current research hotspots. Furthermore, the content of TWPs varied greatly by country and environmental media according to the meta-analysis. It is warranted to be urgently investigated on the distribution, quantitative analysis, migration, additives transformation with toxic effects and control measures of TWPs under the influence of various complex factors such as energy innovation and smart driving. The obtained findings can help understand the developing status of TWPs and then promoting their related investigations in future.
Collapse
Affiliation(s)
- Haiming Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zhuanxi Luo
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Ruilian Yu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Shufeng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
37
|
Nie X, Xing X, Xie R, Wang J, Yang S, Wan Q, Zeng EY. Impact of iron/aluminum (hydr)oxide and clay minerals on heteroaggregation and transport of nanoplastics in aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130649. [PMID: 36587598 DOI: 10.1016/j.jhazmat.2022.130649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Nanoplastics (NPs) are emerging contaminants in the environment, where the transport and fate of NPs would be greatly affected by interactions between NPs and minerals. In the present study, the interactions of two types of polystyrene nanoplastics (PSNPs), i.e., bare-PSNPs and carboxylated PSNPs-COOH, with iron (hydr)oxides (hematite, goethite, magnetite, and ferrihydrite), aluminum (hydr)oxides (boehmite and gibbsite), and clay minerals (kaolinite, montmorillonite, and illite) were investigated. The positively charged iron/aluminum (hydr)oxide minerals could form heteroaggregates with negatively charged PSNPs. Electrostatic and hydrophobic interaction dominate for the heteroaggregation of bare-PSNPs with iron/aluminum (hydr)oxide minerals, while ligand exchange and electrostatic interaction are involved in the heteroaggregation of PSNPs-COOH with iron/aluminum (hydr)oxides minerals. However, heteroaggregation between PSNPs and negatively charged clay minerals was negligible. Humic acid markedly suppressed such heteroaggregation between PSNPs and minerals due to enhanced electrostatic repulsion, steric hindrance, and competition of surface attachment sites. The heteroaggregation rates of both bare-PSNPs and PSNPs-COOH with hematite decreased with increasing solution pH. Increased ionic strength enhanced the heteroaggregation of PSNPs-COOH but inhibited that of bare-PSNPs. The results of the present study suggested that the heteroaggregation of PSNPs in environments could be strongly affected by minerals, solution pH, humic acid, and ionic strength.
Collapse
Affiliation(s)
- Xin Nie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaohui Xing
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Ruiyin Xie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jingxin Wang
- Guangdong Provincial Engineering Technology Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Shuguang Yang
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Quan Wan
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Comparative Planetology, Hefei 230026, China.
| | - Eddy Y Zeng
- Center for Environmental Microplastics Studies, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
38
|
da Costa ID, Costa LL, da Silva Oliveira A, de Carvalho CEV, Zalmon IR. Microplastics in fishes in amazon riverine beaches: Influence of feeding mode and distance to urban settlements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160934. [PMID: 36539082 DOI: 10.1016/j.scitotenv.2022.160934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) pollution is a global problem and has affected several biological levels even in protected areas. In the present study, MP contamination was investigated in fish associated with sandy beaches in a permanent environmental protection area in the Amazon. In order to achieve this goal, the shape, color, abundance, richness, and chemical composition of MPs in the digestive tract of 29 fish species in 24 beaches of the Machado River, western Brazilian Amazon, were evaluated. Linear mixed models (LMMs) were adjusted to test the effects of local human modification (HMc), distance from urban settlements, distance from the closest affluent, and trophic categories of fish species on microplastic abundance and richness in their digestive tracts. From the 1082 fish analyzed, 332 (30 %) presented MPs in their digestive tracts. A total of 617 MPs was found (1.8 ± 1.6 MPs; 4.5 ± 1.9 MPs/g fish). Omnivorous and insectivorous fish presented more MPs in sandy beaches located closer to urban settlements. However, carnivorous fish presented a higher abundance of MPs in their digestive tracts compared with the other trophic guilds. This is the first study to analyze plastic contamination in fish associated with sandy beaches in the Amazon (Brazil), and it revealed contamination of the ichthyofauna mainly related to the distance from urban settlements. Our results reinforce the need for better management of landscape surrounding protected areas to mitigate MP pollution.
Collapse
Affiliation(s)
- Igor David da Costa
- Departamento de Ciências Exatas, Biológicas e da Terra, Universidade Federal Fluminense, Santo Antônio de Pádua, 28470-000 Rio de Janeiro, Brazil; Mestrado Profissional em Gestão e Regulação de Recursos Hídricos, Universidade Federal de Rondônia, 76900-726 Rondônia, Brazil.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
| | - Ariane da Silva Oliveira
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
| | - Carlos Eduardo Veiga de Carvalho
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil
| | - Ilana Rosental Zalmon
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil.
| |
Collapse
|
39
|
Ji H, Liu Z, Jiang W. Transport behavior of nanoplastics in activated carbon column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26256-26269. [PMID: 36355238 DOI: 10.1007/s11356-022-24056-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Nanoplastics can be produced directly from some artificial products, such as cosmetics, or indirectly from the breakup of large pieces of plastic waste. They have a small particle size, large specific surface area, and stable structure and can concentrate toxic compounds in water. The discharge of nanoplastics into the water environment through urban piping systems or surface runoff may lead to the contamination of surface water resources, which poses a great threat to the safety of drinking water. As a common adsorbent, granular activated carbon (GAC) is widely used in the advanced treatment of drinking water. However, most of the studies focused on the transport ability of nanoplastics in quartz sand, and there is a lack of research on the migration behavior of nanoplastics in activated carbon media. In this study, the stability and pore characteristics of GAC were studied, and its regeneration efficiency was investigated. The transport curves of PSNPs, which have a particle size of 98 ± 9 nm and specific surface area of about 67 m2/g, were compared under different ionic strengths, ionic species, flow rates, pH, and humic acid (HA) concentrations. And DLVO theory was used to analyze the transport behavior of nanoplastics in activated carbon column. All experiments were performed at room temperature to make the results generalizable. The results showed that GAC had stable pore structure and excellent adsorption capacity. The surface area and pore volume of GAC are 759 m2/g and 0.357 cm3/g, respectively. And the regeneration rate of GAC can reach 90% and 83.3% after the first two regeneration cycles. On the other hand, at high ionic strength and low pH, the repulsive barrier between PSNPs and activated carbon gradually disappeared; then, more PSNPs were deposited in the activated carbon media, and the concentration of PSNPs in the effluent water was lower. Both the flow rate and HA promoted the transport of PSNPs, but the breakthrough curves of PSNPs did not change significantly when the HA concentration was further increased. At the same ion concentration, PSNPs tend to deposit on the surface of activated carbon in the background solution of Ca2+ compared with Na+. This study reveals the migration mechanism of PSNPs in the activated carbon filter column, which is of great importance to ensure the safety of drinking water and human health.
Collapse
Affiliation(s)
- Hongliang Ji
- School of Resources and Environment, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Zhenzhong Liu
- School of Resources and Environment, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, China.
| | - Wen Jiang
- School of Resources and Environment, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, China
| |
Collapse
|
40
|
Langknecht T, Lao W, Wong CS, Kotar S, El Khatib D, Robinson S, Burgess RM, Ho KT. Comparison of two procedures for microplastics analysis in sediments based on an interlaboratory exercise. CHEMOSPHERE 2023; 313:137479. [PMID: 36513195 PMCID: PMC9839611 DOI: 10.1016/j.chemosphere.2022.137479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MP) are distributed throughout ecosystems and settle into sediments where they may threaten benthic communities; however, methods for quantifying MP in sediments have not been standardized. This study compares two methods for analyzing MP in sediments, including extraction and identification, and provides recommendations for improvement. Two laboratories processed sediment samples using two methods, referred to as "core" and "augmentation", and identified particles with visual microscopy and spectroscopy. Using visual microscopy, the augmentation method yielded mean recoveries (78%) significantly greater than the core (47%) (p = 0.03), likely due to the use of separatory funnels in the former. Spectroscopic recovery of particles was lower at 42 and 54% for the core and augmentation methods, respectively. We suspect the visual identification recoveries are overestimations from erroneous identification of non-plastic materials persisting post-extraction, indicating visual identification alone is not an accurate method to identify MP, particularly in complex matrices like sediment. However, both Raman and FTIR proved highly accurate at identifying recovered MP, with 96.7% and 99.8% accuracy, respectively. Low spectroscopic recovery of spiked particles indicates that MP recovery from sediments is lower than previously assumed, and MP may be more abundant in sediments than current analyses suggest. To our knowledge, likely due to the excessive time/labor-intensity associated with MP analyses, this is the first interlaboratory study to quantify complete method performance (extraction, identification) for sediments, with regards to capabilities and limitations. This is essential as regulatory bodies move toward long-term environmental MP monitoring.
Collapse
Affiliation(s)
- Troy Langknecht
- Oak Ridge Institute of Science Education, C/o U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA.
| | - Wenjian Lao
- Southern California Coastal Water Research Project Authority, 3535 Harbor Blvd., Suite 110, Costa Mesa, CA, 92626, USA
| | - Charles S Wong
- Southern California Coastal Water Research Project Authority, 3535 Harbor Blvd., Suite 110, Costa Mesa, CA, 92626, USA
| | - Syd Kotar
- Southern California Coastal Water Research Project Authority, 3535 Harbor Blvd., Suite 110, Costa Mesa, CA, 92626, USA
| | - Dounia El Khatib
- Oak Ridge Institute of Science Education, C/o U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| | - Sandra Robinson
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI, 02882, USA
| |
Collapse
|
41
|
Li M, He L, Hsieh L, Rong H, Tong M. Transport of plastic particles in natural porous media under freeze-thaw treatment: Effects of porous media property. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130084. [PMID: 36206711 DOI: 10.1016/j.jhazmat.2022.130084] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Freeze-thaw (FT) cycles would alter physical and chemical properties of soil and thus influence the transport of plastic particles (one type of emerging contaminant with great concerns). This study was designed to investigate the effects of FT treatment on the mobility of plastic particles (nanoplastics as representative) in columns packed with natural soils (i.e. loamy sand and sandy soil, quartz sand employed as comparison). We found that FT treatment of different types of porous media would induce different transport behaviors of plastic particles. Specifically, FT treatment of quartz sand did not affect plastic particles mobility. While FT treatment of loamy sand and sandy soil increased plastic particles transport. The increased pore sizes and disintegration of small soil particles from soils (the detached soil would serve as mobile vehicle for the transport of plastic particle) led to the facilitated mobility of plastic particles in two types of soils after FT treatment. The presence of preferential flow paths induced by FT treatment also drove to the enhanced mobility of plastic particles in sandy soil with FT treatment. This study clearly showed that the mobility of model plastic particles in two types of natural soils was greatly enhanced by FT treatment.
Collapse
Affiliation(s)
- Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; Currently at Department of Forensic Science, Fujian Police College, Fuzhou 350007, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Lichun Hsieh
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
42
|
Vu TTT, Nguyen DT, Nguyen NTM, Nguyen MN. Coaggregation of micro polystyrene particles and suspended minerals under concentrated salt solution: A perspective of terrestrial-to-ocean transfer of microplastics. MARINE POLLUTION BULLETIN 2022; 185:114317. [PMID: 36410199 DOI: 10.1016/j.marpolbul.2022.114317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This study evaluates the colloidal stability of polystyrene microplastics (PSMPs) in the presence of various mineral colloids. Although PSMPs were highly dispersive, they were found to be involved in the aggregation of each mineral colloid. The efficiency of mineral colloids to stimulate the coaggregation of PSMPs follows the order bentonite > kaolinitic soil clay > illitic soil clay > kaolinite > goethite > haematite. Surface charge density is likely a crucial factor that determines the efficiency of mineral colloids. In concentrated salt solution, PSMPs together with mineral colloids can be involved in various continuous and simultaneous electrochemical processes such as charge neutralization, double electric layer compression, van der Waals attraction stimulation and heteroaggregation. These processes may also occur in the estuary environments, where suspended mineral colloids may play an ultimate role in reducing the transport of microplastics into oceans while also intensifying microplastic enrichment in coastal sediments.
Collapse
Affiliation(s)
- Trang T T Vu
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
| | - Duc T Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam
| | - Ngoc T M Nguyen
- Department of Environmental Health, Faculty of Public Health, Haiphong University of Medicine & Pharmacy, 72A Nguyen Binh Khiem Road, Ngo Quyen district, Hai Phong, Viet Nam
| | - Minh N Nguyen
- Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Thanh Xuan, Ha Noi, Viet Nam.
| |
Collapse
|
43
|
Wang X, Diao Y, Dan Y, Liu F, Wang H, Sang W, Zhang Y. Effects of solution chemistry and humic acid on transport and deposition of aged microplastics in unsaturated porous media. CHEMOSPHERE 2022; 309:136658. [PMID: 36183879 DOI: 10.1016/j.chemosphere.2022.136658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) are susceptible to aging in the environment, and aged MPs are highly migratory in soil due to their smaller particle size and more negative surface charge, but the effects of soil environmental factors on the fate and transport of aged MPs are still unclear. In this study, the transport behavior of pristine/aged MPs in unsaturated sandy porous media was examined under different ionic strength (IS), cationic type (Na+, Ca2+) and humic acid (HA) conditions. The results indicated that the surface charge, surface oxygen-containing functional groups and surface morphology of MPs changed significantly after aging, and that the mobility of aged MPs was significantly enhanced than the pristine MPs under all test conditions. The retention amounts of pristine/aged MPs in unsaturated porous media increased with IS, and IS had a less inhibitory effect on the transport of aged MPs than pristine MPs. The mobility of pristine/aged MPs in Ca2+ solutions was significantly weaker than that in Na+ solutions due to enhanced straining and electrostatic adsorption. HA promoted the mobility of pristine/aged MPs in unsaturated porous media under all IS Na+ (1, 10, and 25 mM) solutions and lower IS (1 mM) Ca2+ solutions, and the ability of HA to promote the transport of aged MPs was significantly stronger than that of pristine MPs due to the higher adsorption of HA on the surface of aged MPs. However, at higher IS (10 mM) Ca2+ solution conditions, the bridging effect of Ca2+ led to the formation of HA-MPs complexes, which altered the hydrophobicity of the pristine/aged MPs surface and the pristine/aged MPs were mainly retained on the air-water interface (AWI). CFT theory and two-site kinetic retention models indicated that the retention of pristine/aged MPs in unsaturated media was dominated by monolayer adsorption, straining and clogging effects. The current research findings may provide insights into the fate and transport of aged MPs in soil and their potential risk of groundwater contamination.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
44
|
Kedzierski M, Palazot M, Soccalingame L, Pedrotti ML, Bruzaud S. Microplastic fouling: A gap in knowledge and a research imperative to improve their study by infrared characterization spectroscopy. MARINE POLLUTION BULLETIN 2022; 185:114306. [PMID: 36356342 DOI: 10.1016/j.marpolbul.2022.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The marine weathering of microplastics is spectrally characterized by the appearance of new bands that disturb our understanding of the information carried by the spectra. Yet, no explanation has been provided on the chemical origin of these new bands. Thus, the main objective of this work was to identify the origins of these additional bands. To this end, 4042 spectra of poly (styrene), poly(ethylene) and poly(propylene) microplastics collected in the Mediterranean Sea, were analysed using principal component analysis. The results showed that the spectral variability was mainly related to only three processes: chemical ageing, organic and inorganic fouling. These processes probably differ from one polymer family to another due to surface affinities. This work has also led to the proposal of two new polymer indices that could be used to monitor the intensity of (bio)fouling. Finally, the development of advanced analyses could also provide information on the nature of the plastisphere.
Collapse
Affiliation(s)
- Mikaël Kedzierski
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France.
| | - Maialen Palazot
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Lata Soccalingame
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | | | - Stéphane Bruzaud
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| |
Collapse
|
45
|
Zhao W, Su Z, Geng T, Zhao Y, Tian Y, Zhao P. Effects of ionic strength and particle size on transport of microplastic and humic acid in porous media. CHEMOSPHERE 2022; 309:136593. [PMID: 36167207 DOI: 10.1016/j.chemosphere.2022.136593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
As an emerging pollutant, the transport behavior of colloidal microplastic particles (CMPs) in saturated porous media may be affected by the simultaneous presence of other substances in the natural environment. In this study, colloidal polystyrene microplastic particles (PSMPs) were selected as the representative of CMPs to investigate the cotransport behaviors of CMPs in the presence of humic acid (HA) under varied environmental conditions (ionic strength: 1, 100 mM KCl; HA concentration: 0, 5, 10, 20 mg⋅L-1) in porous media. The presence of HA with different concentrations was found to increase the mobility of 1.0-μm and 0.2-μm CMPs in porous media in a non-linear and non-monotonic manner. Furthermore, the HA-facilitated transport of CMPs occurred under both electrostatically unfavorable and favorable attachment conditions (limited to the conditions examined in this study, corresponding to 1 and 100 mM KCl, respectively). The transport behavior of the smaller-sized CMPs (0.2-μm CMPs) was more sensitive to the change of ionic strength and the presence of HA than that of the larger-sized CMPs (1.0-μm CMPs). The cotransport process of CMPs and HA was affected by many factors. Modeling results showed that a small amount of competitive blocking occurred during the cotransport process. Moreover, both the presence of HA and change in ionic strength could affect the surface properties of CMPs. Thus, the cotransport behavior of CMPs with HA was different from the transport of individual CMPs in porous media. Experimental results revealed that HA induced complexity in the transport behavior of CMPs in the aqueous environment. Therefore, undeniably, a lot more systematic explorations are further demanded to better comprehend the CMPs cotransport mechanism in the presence of other substances.
Collapse
Affiliation(s)
- Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhan Su
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tong Geng
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuwei Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
46
|
Wang X, Dan Y, Diao Y, Liu F, Wang H, Sang W, Zhang Y. Transport characteristics of polystyrene microplastics in saturated porous media with biochar/Fe 3O 4-biochar under various chemical conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157576. [PMID: 35882331 DOI: 10.1016/j.scitotenv.2022.157576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Magnetically modified biochar, with a rougher surface and more positive surface charge, may interact with microplastics (MPs) after being applied to soil, potentially altering the fate and transport of MPs in porous media. In this study, the transport and retention behavior of polystyrene microplastics (PSMPs) in a sandy porous media mixed with biochar/Fe3O4 modified biochar (Fe3O4-biochar) was investigated under various chemical conditions (humic acid (HA), ionic strength (IS) and cationic types (Na+/Ca2+)). The results showed that the addition of biochar and Fe3O4-biochar can hinder the transport of PSMPs in porous media without HA, and that Fe3O4-biochar was more effective in inhibiting the transport of PSMPs through electrostatic adsorption and complexation, with an optimum retention efficiency of 92.36 %. HA significantly attenuated the retention of PSMPs in both porous media through electrostatic repulsion, steric resistance and competitive adsorption under 1 mM Na+ solutions, and the mobility of PSMPs in Fe3O4-biochar/sand was enhanced more significantly than in biochar/sand with the increase of HA concentration. IS significantly inhibited the transport of PSMPs in both porous media in the absence of HA, but there was an antagonistic effect of HA and IS on the transport of PSMPs in the presence of HA, with the facilitative effect of HA being stronger than the inhibitory effect of IS. Ca2+ was consistently more effective in inhibiting the transport of PSMPs than Na+ under all test conditions, and HA promoted the transport of PSMPs in all Na+ solutions, while it inhibited the transport of PSMPs in high IS (10 mM) with Ca2+ solutions. In addition, HA, Fe3O4-biochar and PSMPs tend to form larger aggregates under the complex interactions of Ca2+, leading to increased retention of PSMPs in porous media. The two-site kinetic retention models suggested that the retention of PSMPs in porous media with biochar was predominantly reversible attachment effect, while retention in porous media with Fe3O4-biochar was predominantly an irreversible straining effect.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yitong Dan
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yinzhu Diao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Feihong Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huan Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
47
|
Yang X, An C, Feng Q, Boufadel M, Ji W. Aggregation of microplastics and clay particles in the nearshore environment: Characteristics, influencing factors, and implications. WATER RESEARCH 2022; 224:119077. [PMID: 36113238 DOI: 10.1016/j.watres.2022.119077] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/07/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Since nearly half of the world's population lives near the coast, coastal areas have become hotspots for microplastic (MP) pollution due to human activity. The ubiquity of natural colloids in coastal waters plays a critical role in the potential fate of, and risks posed by, MPs. Nevertheless, far less has been known regarding the aggregation of MPs with inorganic natural clay colloids, especially in the complicated nearshore environment. In this study, the aggregation behavior of MPs as well as the interaction between MPs and clay particles were investigated under different nearshore environmental conditions (MP-to-clay ratio, salinity gradient, humic acid concentration, and wave energy). The aggregation behavior was subjected by the repulsive energy barrier between particles and external energy transferred to the system. The low energy associated with mild wave conditions was favorable for the occurrence of aggregation, whereas sustained high energy under intense wave conditions was found to be detrimental to the aggregation behavior, and the aggregates were prone to fragmentation even if particles coalesced into large clusters. The analysis for the environmental fate of MPs demonstrated that the shoreline was likely to be the sink for most MPs ultimately.
Collapse
Affiliation(s)
- Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Michel Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| | - Wen Ji
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 MLK Blvd., Newark, NJ 07102, USA
| |
Collapse
|
48
|
Qi S, Song J, Shentu J, Chen Q, Lin K. Attachment and detachment of large microplastics in saturated porous media and its influencing factors. CHEMOSPHERE 2022; 305:135322. [PMID: 35709840 DOI: 10.1016/j.chemosphere.2022.135322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Groundwater contamination by microplastics (MPs) has been gradually regarded as a potential human health risk, which calls for detailed investigation of MPs transport behavior in saturated zone. In this study, a series of sand column experiments were carried out to investigate the transport characteristics of large MPs with its diameter of 10-20 μm in porous media, in which the effects of different hydrological conditions and MPs characteristics were examined. Experimental results showed that the increase of water flow rate from 2.2 to 7.5 mL/min significantly increased the maximal outlet MPs concentration by two orders of magnitude, while a larger ratio of MPs diameter to soil particle diameter decreased its mobility. The increase of water salinity from 0 to 25 mmol/L (NaCl) decreased the maximal outlet MPs concentration by 50.5-68.4% for different sized MPs. Since chemical aging would lead to the formation of oxygen-containing functional groups and make MPs more negatively charged, it greatly increased the maximal outlet MPs concentration by 0.53-5.67 times. Compared with the traditional attachment model (AM), the attachment-detachment model (ADM) could better simulate the gradual desorption of large MPs from soil in the process of clean water flushing, indicating the nonnegligible detachment of large MPs from soil. In ADM, the desorption coefficient gradually decreased in the process of clean water flushing, which was only 31.6% of the initial value after flushing kept for 10 PV. Moreover, the equations to calculate the adsorption and desorption coefficients of MPs in the saturated zone were developed, which considered both MPs and aquifer characteristics. Results from this study described the desorption of large MPs in porous media under various conditions, which expands our knowledge about the fate and risk of MPs in underground environment.
Collapse
Affiliation(s)
- Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| | - Jianhao Song
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Qian Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Kexin Lin
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Provincial Engineering Research Center of Nonferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
49
|
Xiang X, Zhou J, Lin S, Zhang N, Abulipizi G, Chen G, Li Z. Dual drive acute lethal toxicity of methylene blue to Daphnia magna by polystyrene microplastics and light. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156681. [PMID: 35709993 DOI: 10.1016/j.scitotenv.2022.156681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) can adsorb and influence the toxicity of traditional pollutants significantly. Although the complex toxicity of MPs and molecular pollutants were frequently reported, rare work has been done on the influence of MPs on the phototoxicity of photosensitive pollutants under light illumination condition. Herein, polystyrene microplastics (PS) (~1 μm in diameter, 5.0 mg/L) was used as a model MP to investigate its influence on the phototoxicity of a soluble blue dye, methylene blue (MB) using Daphnia magna as a model organism. The results indicate that PS could adsorb MB effectively and quickly, thus led to concentrated MB on PS/water interface. D. magna ingested MB-adsorbed PS very quickly within tens of minutes. Although MB or PS alone led to negligible lethal phototoxicity to D. magna, PS significantly enhanced the lethal phototoxicity of MB (0.25 mg/L) to D. magna after light illumination (10 h) with the survival rate decreased by 63.3 % compared with the control in the dark. Further, the phototoxicity of MB was found positively consistent with PS concentration from 0.50 mg/L to 7.50 mg/L. The singlet oxygen fluorescence assay indicates that the presence of PS did not increase the total amount of singlet oxygen in the aquatic environment but increased the local concentration in the gut area via non-selective ingestion of D. magna. High level singlet oxygen generated in the gut might possibly be the main reason that led to the massive death of D. magna. Surface adsorption of photosensitive pollutants may transform inert MPs into persistent solid sources of singlet oxygen production and become a new potential lethal threat to aquatic small organisms and ecological equilibrium. This kind of MPs and light dual drive phototoxicity of photosensitive pollutants needs to paid more attention in understanding the uncertain ecological risk of MPs.
Collapse
Affiliation(s)
- Xiangmei Xiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Juanjuan Zhou
- Guangdong Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shaochen Lin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Nan Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | | | - Guikui Chen
- Guangdong Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Zhanjun Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
50
|
He W, Zheng S, Chen X, Lu D, Zeng Z. Alkaline aging significantly affects Mn(II) adsorption capacity of polypropylene microplastics in water environments: Critical roles of natural organic matter and colloidal particles. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129568. [PMID: 35999752 DOI: 10.1016/j.jhazmat.2022.129568] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Most microplastic particles may undergo various aging in water environments. In this work, surface physicochemical properties were firstly compared among pristine polypropylene (PP-pris) microplastics, and two aged ones obtained after pretreated with HCl (PP-acid) and NaOH (PP-alka). When compared with PP-pris and PP-acid, PP-alka had a much stronger Mn(II) adsorption capacity. The results regarding the role of natural organic matter and colloidal particle concentrations on adsorption demonstrated that for water solutions either containing kaolin or not, humic acid (HA) had significantly negative influence on Mn(II) adsorption capacity of PP-alka due to their complexation and competition effects, and its negative influence became enhanced with increasing kaolin concentrations. Besides, established conceptual models of adsorption were applied to comprehensively explore adsorption mechanisms of PP-alka for Mn(II) in the coexistence of HA and kaolin. An important suggestion was that in complicated adsorption-reactor system, great numbers of microplastics-kaolin heteroaggregates might be formed via ion bridging of Mn(II) and/or polymer bridging of HA. So these formed aggregates were possible to re-organize themselves, under pre-set vibration-speed conditions, for achieving a more stable structure. As a consequence, Mn(II) adsorption behaviors would be affected by changes in steric-hindrance effects of HA molecules and surface charge distribution of resultant heteroaggregates.
Collapse
Affiliation(s)
- Weipeng He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Sa Zheng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Xingqi Chen
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Danjing Lu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Zihe Zeng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency (Ministry of Education), College of Civil Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|