1
|
Bakare-Abidola T, Russell WJA, Jorgensen K, Pérez RL. Enhanced extraction of methylene blue by dodecyl-methyl imidazolium dodecyl sulfate GUMBOS - magnetic alginate beads. CHEMOSPHERE 2024; 370:143991. [PMID: 39701321 DOI: 10.1016/j.chemosphere.2024.143991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
In this study, dodecyl-methyl imidazolium dodecyl sulfonate ([C12MIm][DS]) GUMBOS were synthesized and incorporated into alginate with γ-Fe2O3 to fabricate magnetic adsorbent beads ([C₁₂MIm][DS]-beads) for methylene blue (MB) removal. Characterization via ESI-MS, FT-IR, SEM, BET, and TGA confirmed their structure and properties. The beads achieved a maximum adsorption capacity of 4.5 mg/g at pH 10 with an initial MB concentration of 500 mg/L, following pseudo-first-order kinetics and the Langmuir isotherm model. Thermodynamic studies confirmed the process was exothermic. Even after six recycling cycles, the beads retained similar morphology and an MB removal percentage of 57.6%. The beads demonstrated high adsorption efficiency (70%) in the presence of Cu2⁺, ibuprofen, and malachite green, comparable to MB removal alone. These results highlight the potential of [C12MIm][DS]-beads as effective adsorbents for water remediation applications.
Collapse
Affiliation(s)
- Taiwo Bakare-Abidola
- Center for Advanced Materials Science (CAMS), Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Statesboro, GA, 30458, United States
| | - William J A Russell
- Center for Advanced Materials Science (CAMS), Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Statesboro, GA, 30458, United States
| | - Kyle Jorgensen
- Center for Advanced Materials Science (CAMS), Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Statesboro, GA, 30458, United States
| | - Rocío L Pérez
- Center for Advanced Materials Science (CAMS), Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Statesboro, GA, 30458, United States.
| |
Collapse
|
2
|
Yang M, Zhang X, Sun Y. Remediation of Cr(VI) Polluted Groundwater Using Zero-Valent Iron Composites: Preparation, Modification, Mechanisms, and Environmental Implications. Molecules 2024; 29:5697. [PMID: 39683856 DOI: 10.3390/molecules29235697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
The extensive application of chromium (Cr) in many industries has inevitably resulted in the release of Cr(VI) into the groundwater environment, thus posing damage to the ecosystem and human health. Nano zero-valent iron (nZVI) has been widely studied and applied in the remediation of Cr(VI)-contaminated water as an ideal material with high reductive capacity, which enables the transformation of teratogenic and carcinogenic Cr(VI) into less toxic Cr(III). This review comprehensively summarizes the preparation and modification methods of nZVI Cr(VI) removal performance and mechanisms by nZVI and modified nZVI materials. The field applications of nZVI-based materials, such as combining the injection well and the permeable reactive barrier (PRB) to remove Cr(VI) in groundwater, have been reported. Subsequently, the potential toxicity of nZVI-based materials to organisms during environmental application has been highlighted in the current study. Finally, the review outlines potential improvements and explores future directions for the use of nZVI-based materials in groundwater contamination remediation.
Collapse
Affiliation(s)
- Manyu Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Xueyan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yongchang Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
- Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| |
Collapse
|
3
|
Song Y, Guo J, Li F, Wang J, Ma F, Wu G, Li G. Investigation into factors controlling groundwater evolution in mining areas with an integrated approach. Heliyon 2024; 10:e38860. [PMID: 39430531 PMCID: PMC11490811 DOI: 10.1016/j.heliyon.2024.e38860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
The study of groundwater evolution is of great significance for water resource protection and management, groundwater pollution control, and ecological environment protection. Experts and scholars have found that the hydrochemical processes and evolutionary patterns of groundwater are determined by both natural processes and human activities. However, there is relatively little research on the evolution of groundwater in mining areas where human activities have a significant impact. Therefore, to study the main controlling factors affecting the hydrogeochemical evolution of groundwater in mining areas, this paper proposes a method combining mixed ratio calculation and multivariate statistical analysis. Firstly, a total of 40 groundwater samples are classified into six clusters via hierarchical cluster analysis. By comprehensively analyzing the spatial location of the samples, it was found that there was no obvious distribution pattern of groundwater in space. Furthermore, the rationality of the cluster analysis is evaluated via principal component analysis. Next, hydrochemical and isotopic analyses were conducted to determine the source of groundwater in the mining area, and a three terminal element mixing model was established to identify the source of pollutants and calculate the terminal element mixing ratio. The research results indicate that groundwater in mining areas is formed by a mixture of shallow bedrock fissure water, deep bedrock fissure water, and rainwater, and the mixing effect is the main factor affecting the evolution of groundwater in mining areas, with a more significant impact than the depth of groundwater circulation. In addition, different types and degrees of water-rock interaction in different regions have altered the hydrochemical characteristics of groundwater in mining areas, such as the dissolution of multiple minerals, cation exchange, and common ion effects. Based on the above analysis results, a water circulation model for the mining area has been established. The findings of this study not only contribute to the protection of shallow fissure groundwater in the study area, but also provide a basis for investigating the groundwater evolution patterns in other metal mines.
Collapse
Affiliation(s)
- Yewei Song
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Guo
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
| | - Fangrui Li
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Fengshan Ma
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
| | - Gaofeng Wu
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Li
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
4
|
Deng J, Yang G, Yan X, Du J, Tang Q, Yu C, Pu S. Quality evaluation and health risk assessment of karst groundwater in Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174371. [PMID: 38945232 DOI: 10.1016/j.scitotenv.2024.174371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Groundwater in karst regions is of immense value due to its vital support for regional ecosystems and residents' livelihoods. However, it is simultaneously threatened by multi-source pollution from agricultural non-point sources, industrial and domestic point sources, and mining activities. This study focuses on the Guangxi of China, which features typical karst topography, aiming to thoroughly assess the groundwater quality and related health risks in Guangxi, especially identifying the impacts of various key pollution sources on the groundwater environment. A total of 1912 groundwater samples were collected, covering an area of approximately 237,600 km2. The spatial distribution of pollutants was analysed using the Nemeroww index method and Kriging interpolation, while multivariate statistical and cluster analysis methods were employed to identify the main types of pollution sources. Furthermore, based on the human health risk assessment model of the U.S. Environmental Protection Agency (US EPA), a risk assessment was conducted for key pollutants. The results revealed widespread heavy metal contamination in Guangxi's groundwater, particularly with concentrations of Mn, As, Al, Pb reaching up to 9.4 mg/L, 2.483 mg/L, 37.95 mg/L, 4.761 mg/L, respectively, significantly exceeding China's national Class III groundwater quality standards. Cluster analysis indicated that mining and industrial activities are the primary sources of pollution. The health risk assessment demonstrated that these activities pose a significant risk to public health. The aim of this study is to provide a scientific basis for the protection of the groundwater environment in Guangxi and other karst areas, the formulation of pollution prevention and control strategies, and the optimization of urban and industrial land use layouts. Future research should focus on advanced isotopic and molecular biological techniques to trace pollution sources more precisely and evaluate the effectiveness of pollution control measures.
Collapse
Affiliation(s)
- Jiayi Deng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China
| | - Geng Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China
| | - Xinyao Yan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China
| | - Junyan Du
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Qiang Tang
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Chenglong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
5
|
Piao M, Du H, Teng H. An overview of the recent advances and future prospects of three-dimensional particle electrode systems for treating wastewater. RSC Adv 2024; 14:27712-27732. [PMID: 39224647 PMCID: PMC11367087 DOI: 10.1039/d4ra04435e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Three-dimensional (3D) electrochemical technology is considered a very effective industrial wastewater treatment method for its high treatment efficiency, high current efficiency, low energy consumption, and, especially, ability to completely mineralize nonbiodegradable organic contaminants. Particle electrodes, which are the fundamental components of 3D electrochemical technology, have multiple functions in the electrochemical reaction process. Various types of particle electrodes have been created and applied for wastewater treatment. Herein, we present a thorough analysis of the research and development of particle electrodes used for electrocatalyzing pollutants. Initially, reactor designs, factors affecting the removal efficiency of pollutants and degradation mechanisms are introduced. In particular, a detailed investigation is conducted into the selection of particle electrode materials and the roles they play in the 3D electrochemical treatment of wastewater. Subsequently, the degradation efficiency and energy consumption associated with 3D electrochemical technology for different pollutants are investigated. Finally, the directions and outlook for further studies on particle electrodes are discussed. We believe that this review will offer a useful perspective on the development and application of particle electrodes for wastewater purification.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
- College of Engineering, Jilin Normal University Siping China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University 1301 Haifeng Road Siping 136000 China
| |
Collapse
|
6
|
Castro K, Abejón R. Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis. MEMBRANES 2024; 14:180. [PMID: 39195432 DOI: 10.3390/membranes14080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.
Collapse
Affiliation(s)
- Katherinne Castro
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| | - Ricardo Abejón
- Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile
| |
Collapse
|
7
|
Wade AJ, Yapiyev V, Shahgedanova M, Saidaliyeva Z, Madibekov A, Kapitsa V, Kasatkin N, Ismukhanova L, Kulbekova R, Sultanbekova B, Severskiy I, Esenaman M, Kalashnikova O, Usubaliev R, Akbarov F, Umirzakov G, Petrov M, Rakhimov I, Kayumova D, Kayumov A. Cryosphere and land cover influence on stream water quality in Central Asia's glacierized catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173525. [PMID: 38810747 DOI: 10.1016/j.scitotenv.2024.173525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
This work helps address recent calls for systematic water quality assessment in Central Asia and considers how nutrient and salinity sources, and transport, affect water quality along the continuum from the cryosphere to the lowland plains. Spatial and, for the first time, temporal variations in stream water pH, temperature, electrical conductivity, and nitrate and phosphate concentrations are presented for four catchments (485-13,500 km2), all with glaciers and major urban areas. The catchments studied were: Kaskelen (Kazakhstan), Ala-Archa (Kyrgyzstan), Chirchik (Uzbekistan) and the Kofarnihon (Tajikistan). Measurements were made in cryosphere, stream water, groundwater, reservoir and lake samples over a 22-month period at fortnightly intervals from 35 sites. The results highlight that glacier, permafrost and rock glacier outflows were primary and secondary nitrate sources (>1 mg N L-1) to the headwaters, and there were major increases in salinity and nitrate concentrations where rivers receive inputs from agriculture and settlements. Overall, the water quality complied with national and World Health Organization standards, however there were pollution hot-spots with shallow urban groundwaters contaminated with nitrate (>11 mg N L-1) and stream electrical conductivity above 800 μS cm-1 in some agricultural areas indicative of high salinity. Phosphate concentrations were generally low (<0.06 mg P L-1) throughout the catchments, though elevated (>0.2 mg P L-1) in urban areas due to effluent contamination. A melt water dilution effect along the main river channels was discernible, in the electrical conductivity and nitrate concentration seasonal dynamics, 100 s of km from the headwaters. Thus, the input of relatively clean water from the cryosphere is an important regulator of main channel water quality in the urban and farmed lowland plains adjacent to the Tien Shan and Pamir. Improved sewage treatment is needed in urban areas.
Collapse
Affiliation(s)
- Andrew J Wade
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK.
| | - Vadim Yapiyev
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK; School of Mining and Geosciences, Nazarbayev University, Astana, Kazakhstan
| | - Maria Shahgedanova
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | - Zarina Saidaliyeva
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6DW, UK
| | | | - Vassiliy Kapitsa
- Institute of Geography and Water Security, Almaty, Kazakhstan; Central Asia Regional Glaciological Centre under the Auspices of UNESCO, Almaty, Kazakhstan
| | - Nikolay Kasatkin
- Institute of Geography and Water Security, Almaty, Kazakhstan; Central Asia Regional Glaciological Centre under the Auspices of UNESCO, Almaty, Kazakhstan
| | | | - Roza Kulbekova
- Institute of Geography and Water Security, Almaty, Kazakhstan
| | | | - Igor Severskiy
- Institute of Geography and Water Security, Almaty, Kazakhstan; Central Asia Regional Glaciological Centre under the Auspices of UNESCO, Almaty, Kazakhstan
| | | | - Olga Kalashnikova
- Central-Asian Institute for Applied Geosciences, Bishkek, Kyrgyzstan
| | - Ryskul Usubaliev
- Central-Asian Institute for Applied Geosciences, Bishkek, Kyrgyzstan
| | - Fakhriddin Akbarov
- Centre of Glacial Geology, Institute of Geology and Geophysics named after. H.M. Abdullaev at the University of Geological Sciences under the Ministry of Geology and Mining of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Gulomjon Umirzakov
- National University of Uzbekistan, Tashkent, Uzbekistan; Hydrometeorological Research Institute, Tashkent, Uzbekistan
| | - Maksim Petrov
- Centre of Glacial Geology, Institute of Geology and Geophysics named after. H.M. Abdullaev at the University of Geological Sciences under the Ministry of Geology and Mining of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | | | - Dilorom Kayumova
- State Scientific Institution 'Center for Research of Glaciers of the Academy of Sciences of the Republic of Tajikistan', Dushanbe, Tajikistan
| | - Abdulhamid Kayumov
- State Scientific Institution 'Center for Research of Glaciers of the Academy of Sciences of the Republic of Tajikistan', Dushanbe, Tajikistan
| |
Collapse
|
8
|
Awais M, Xiang Y, Yang D, Lai Y, Cai F, Shah N, Khan M, Li H. The Mechanisms of Cadmium Stress Mitigation by Fungal Endophytes from Maize Grains. J Fungi (Basel) 2024; 10:581. [PMID: 39194906 DOI: 10.3390/jof10080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Maize is a crucial staple crop that ensures global food security by supplying essential nutrients. However, heavy metal (HM) contamination inhibits maize growth, reduces output, and affects food security. Some endophytic fungi (EFs) in maize seeds have the potential to enhance growth and increase dry biomass, offering a solution to mitigate the negative effect of HM contamination. Using these functional EFs could help maintain crop production and ensure food safety in HM-contaminated areas. In the present study, the diversity of EFs in corn grains from various HM-contaminated areas in China was studied through culture-dependent and culture-independent methods. We tested the plant growth-promoting (PGP) traits of several dominant culturable isolates and evaluated the growth-promoting effects of these twenty-one isolates through pot experiments. Both studies showed that HM contamination increased the diversity and richness of corn grain EFs and affected the most dominant endophytes. Nigrospora and Fusarium were the most prevalent culturable endophytes in HM-contaminated areas. Conversely, Cladosporium spp. were the most isolated endophytes in non-contaminated areas. Different from this, Saccharomycopsis and Fusarium were the dominant EFs in HM-contaminated sites, while Neofusicoccum and Sarocladium were dominant in non-contaminated sites, according to a culture-independent analysis. PGP trait tests indicated that 70% of the tested isolates (forty-two) exhibited phosphorus solubilization, IAA production, or siderophore production activity. Specifically, 90% of the tested isolates from HM-contaminated sites showed better PGP results than 45% of the isolates from non-contaminated sites. The benefit of the twenty-one isolates on host plant growth was further studied through pot experiments, which showed that all the isolates could improve host plant growth. Among them, strains derived from HM-contaminated sites, including AK18 (Nigrospora), AK32 (Beauveria), SD93 (Gibberellia), and SD64 (Fusarium), had notable effects on enhancing the dry biomass of shoots and roots of maize under Cd stress. We speculate that the higher ratio of PGP EFs in corn grains from HM-contaminated areas may explain their competitiveness in such extreme environments. Fusarium and Cladosporium isolates show high PGP properties, but they can also be phytopathogenic. Therefore, it is essential to evaluate their pathogenic properties and safety for crops before considering their practical use in agriculture.
Collapse
Affiliation(s)
- Muhammad Awais
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingying Xiang
- The Affiliated Yanan Hospital of Kunming Medical University, Kunming 650051, China
| | - Dian Yang
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yibin Lai
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fenglian Cai
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Naila Shah
- Department of Botany, Gardan Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Majid Khan
- Institute of Cotton Research, Chinese Academy of Agriculture Sciences, Anyang 455000, China
| | - Haiyan Li
- Faculty of Environmental Science and Engineering, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
9
|
Wang Y, Xu T, Song E, Jiang Y, Wang F, Gu C, Ju X, Bian Y, Song Y, Kengara FO, Jiang X. Ultrasensitive detection of trace Hg(Ⅱ) in acidic conditions using DMABR loaded on sepiolite: Function, application and mechanism studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134734. [PMID: 38850937 DOI: 10.1016/j.jhazmat.2024.134734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Fast and real-time detection of trace Hg(Ⅱ) by fluorescent probes under acidic conditions is urgently required due to the high toxicity and accessibility to creatures and human being. However, fluorescent probes for Hg(Ⅱ) detection in environmental samples are rarely reported due to the protonation potential of acidic mercury sources. In this study, the SD probe was developed by 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) loaded on sepiolite by hydrothermal treatment, and showed excellent Hg(Ⅱ) detection performances for mercury sources at pH 4-10 due to buffering ability of the hyperconjugated lactam rings. Sepiolite functioned as the support skeleton to decrease intermolecular transition, and thus increased the sensitivity. At pH 4, the SD probe showed high selectivity and sensitivity for Hg(Ⅱ) among various species, with low LOD and binding constant of 4.78 × 10-9 M and 1.34 × 106 M-1, respectively. Through DFT calculations, MAS 1H NMR and 2D-COS analysis, the detection mechanism was demonstrated as SN1 substitution of the spontaneous leaving H on amino groups in the transient state during tautomeric equilibrium, rather than the expected high-affinity sulphydryl. Additionally, the SD probe exhibited promising potential in quantifying water-soluble and bioavailable Hg(Ⅱ) in acidic polluted soil and water samples. Moreover, real-time detection was realized by paper-based strips.
Collapse
Affiliation(s)
- Yuncheng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyuan Xu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - En Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhao Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yongrong Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen T, Cai Y, Ren B, Sánchez BJ, Dong R. Intelligent micro/nanorobots based on biotemplates. MATERIALS HORIZONS 2024; 11:2772-2801. [PMID: 38597188 DOI: 10.1039/d4mh00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Intelligent micro/nanorobots based on natural materials as biotemplates are considered to be some of the most promising robots in the future in the microscopic field. Due to the advantages of biotemplates such as unique structure, abundant resources, environmental friendliness, easy removal, low price, easy access, and renewability, intelligent micro/nanorobots based on biotemplates can be endowed with both excellent biomaterial activity and unique structural morphology through biotemplates themselves and specific functions through artificial micro/nanotechnology. Thus, intelligent micro/nanorobots show excellent application potential in various fields from biomedical applications to environmental remediation. In this review, we introduce the advantages of using natural biological materials as biotemplates to build intelligent micro/nanorobots, and then, classify the micro/nanorobots according to different types of biotemplates, systematically detail their preparation strategies and summarize their application prospects. Finally, in order to further advance the development of intelligent micro/nanorobots, we discuss the current challenges and future prospects of biotemplates. Intelligent micro/nanorobots based on biotemplates are a perfect combination of natural biotemplates and micro/nanotechnology, which is an important trend for the future development of micro/nanorobots. We hope this review can provide useful references for developing more intelligent, efficient and safe micro/nanorobots in the future.
Collapse
Affiliation(s)
- Ting Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yuepeng Cai
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Biye Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Beatriz Jurado Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical Engineering Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain.
| | - Renfeng Dong
- School of Chemistry, South China Normal University, Guangzhou 510006, China.
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials, Chemistry of Guangdong Higher Education Institutes Lingnan Normal University Zhanjiang, Guangdong 524048, P. R. China
| |
Collapse
|
11
|
Qiao S, Yang Y, Xu B, Yang Y, Zhu M, Li F, Yu H. How the Water-Sediment Regulation Scheme in the Yellow River affected the estuary ecosystem in the last 10 years? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172002. [PMID: 38547986 DOI: 10.1016/j.scitotenv.2024.172002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/15/2024]
Abstract
The Yellow River, renowned as the most sediment-laden river globally, grapples with sediment deposition issues compromising reservoir functionality and elevating downstream riverbeds, posing threats to human life and property safety. In response, the Water-Sediment Regulation Scheme (WSRS) has been innovatively implemented to address these challenges. While effectively mitigating sediment deposition, WSRS has concurrently disrupted the equilibrium of the estuarine ecosystem. This paper addresses the understudied but crucial topic of the interannual impact of WSRS on the estuarine ecosystem. Drawing upon physical, chemical, and biological data gathered through field surveys conducted before, during, and after WSRS from 2011 to 2022, the analysis delves into the interannual changes in the estuarine environment, fish eggs and larvae abundance, and species diversity under the influence of WSRS. The findings reveal an interannual decreasing trend in terrestrial material input due to WSRS, juxtaposed with an interannual increasing trend in fish eggs and larvae around the estuary, as well as the species diversity index. Notably, these trends became more pronounced post-2014. Compared to pre-2014, nutrient concentrations experienced a ~20 % decrease, chlorophyll-a concentration increased by 44 %, fish eggs proliferated approximately 1 time, and the species diversity index transitioned from a declining trend to an ascending trajectory. After 12 years of continuous WSRS implementation, the impact on the estuarine ecosystem has demonstrably diminished. This research aims to furnish reference experience and scientific basis for water and sediment regulation in major rivers around the world in terms of estuarine ecology.
Collapse
Affiliation(s)
- Shouwen Qiao
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, PR China
| | - Yanyan Yang
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Bochao Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Yang Yang
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, PR China
| | - Mingming Zhu
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China
| | - Fan Li
- Shandong Provincial Key Laboratory of Restoration for Marine Ecology, Shandong Marine Resource and Environment Research Institute, Yantai 264006, PR China.
| | - Huaming Yu
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|
12
|
Gnimadi CJI, Gawou K, Aboah M, Owiredu EO, Adusei-Gyamfi J. Assessing the Influence of Hand-Dug Well Features and Management on Water Quality. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241249844. [PMID: 38751904 PMCID: PMC11095203 DOI: 10.1177/11786302241249844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/07/2024] [Indexed: 05/18/2024]
Abstract
Underground water quality can be affected by natural or human-made influences. This study investigates how the management and characteristics of hand-dug wells impact water quality in 3 suburbs of Kumasi, Ghana, using a combination of qualitative and quantitative research methods. Descriptive analysis, including frequency and percentages, depicted the demographic profiles of respondents. Box plot diagrams illustrated the distribution of physicochemical parameters (Total Dissolved Solid [TDS], Electrical Conductivity [EC], Turbidity, Dissolved Oxygen [DO], and Temperature). Factor analysis evaluated dominant factors among these parameters. Cluster analysis (hierarchical clustering) utilized sampling points as variables to establish spatial variations in water physicochemical parameters. Cramer's V correlation test explored relationships between demographic variables and individual perceptions of water management. One-way ANOVA verified significant mean differences among the physicochemical parameters. Logistic regression models assessed the influence of selected well features (e.g., cover and apron) on TDS, pH, Temperature, Turbidity, and DO. The findings revealed that proximity to human settlements affects water quality, and increasing turbidity is associated with unmaintained covers, significantly impacting water quality (P < .05). Over 80% of wells were located within 10 to 30 m of pollution sources, with 65.63% situated in lower ground and 87.5% being unmaintained. Other significant contamination sources included plastic bucket/rope usage (87.50%), defective linings (75%), and apron fissures (59.37%). Presence of E. coli, Total coliform, and Faecal coliform rendered the wells unpotable. Factor analysis attributed 90.85% of time-based and spatial differences to organic particle decomposition factors. However, Cramer's V correlation analysis found establishing association between demographic factor associations with individual perceptions of hand-dug well management difficult. It is encouraged to promote hand-dug well construction and maintenance standards to ensure that wells are properly built and protected from contamination sources.
Collapse
Affiliation(s)
- Christian Julien Isac Gnimadi
- Department of Environmental Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kokoutse Gawou
- Industrial Chemistry Section, Department of Chemistry, College of Agricultural and Natural Science, University of Cape Coast, Cape Coast, Ghana
| | - Michael Aboah
- Department of Environmental Science, School of Biological Science, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Odame Owiredu
- Department of Statistics and Actuarial Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Junias Adusei-Gyamfi
- Department of Environmental Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
13
|
Wang H, Liu H, Sun H, Zhang C. Eco-Friendly Spiking Approach Based on Microfluidics for Preparation of Matrix Reference Materials. ACS OMEGA 2024; 9:21459-21466. [PMID: 38764652 PMCID: PMC11097355 DOI: 10.1021/acsomega.4c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Medicated bath is the most common spiking method used in the development of matrix reference materials for aquatic products; however, the environmental issues caused by the treatment of waste liquid after medicated bath cannot be ignored. We proposed an environmentally friendly spiking method based on microfluidics, which significantly improved the drug utilization rate without the need for subsequent drug residue treatment. Finely processed minced fish samples were fully mixed with quinolone drugs, and minced fish gel microspheres were prepared by microfluidic technology, utilizing the gel's water-locking function to enhance the drug-loading capacity. The results showed that this method can significantly increase the drug-loading capacity of the matrix (2.33-4.03 times) compared with the traditional spiking methods. In addition, the matrix reference material prepared by this method has good stability, and the drug concentration was adjustable and controllable.
Collapse
Affiliation(s)
- Huijiao Wang
- College
of Fisheries and Life Science, Shanghai
Ocean University, Shanghai 201306, P. R. China
- Department
of Quality and Safety, Chinese Academy of
Fishery Sciences, Beijing 100141, P. R. China
- Key
Laboratory of Control of Quality and Safety for Aquatic Products,
Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing 100141, P. R. China
| | - Huan Liu
- Department
of Quality and Safety, Chinese Academy of
Fishery Sciences, Beijing 100141, P. R. China
- Key
Laboratory of Control of Quality and Safety for Aquatic Products,
Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing 100141, P. R. China
| | - Huiwu Sun
- Department
of Quality and Safety, Chinese Academy of
Fishery Sciences, Beijing 100141, P. R. China
- Key
Laboratory of Control of Quality and Safety for Aquatic Products,
Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing 100141, P. R. China
| | - Chaoying Zhang
- Department
of Quality and Safety, Chinese Academy of
Fishery Sciences, Beijing 100141, P. R. China
- Key
Laboratory of Control of Quality and Safety for Aquatic Products,
Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing 100141, P. R. China
| |
Collapse
|
14
|
Kusuma HS, Christa Jaya DE, Illiyanasafa N, Ikawati KL, Kurniasari E, Darmokoesoemo H, Amenaghawon AN. A critical review and bibliometric analysis of methylene blue adsorption using leaves. CHEMOSPHERE 2024; 356:141867. [PMID: 38583535 DOI: 10.1016/j.chemosphere.2024.141867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
The rapid development of the industrial world causes wastewater containing dyes to continue to increase. Even in recent years, the food, textile, cosmetic, plastic, and printing industries have developed the use of dyes. Methylene blue (MB) is one of the cationic dyes widely used in dyeing silk, wood, and cotton because of its absorbency and good fastness to materials. The adsorption process is the best technique and preferred in removing dyes from wastewater due to excellent selectivity, high efficiency from high-quality treated effluent, flexibility in design, and simplicity. Therefore, there is a growing interest to identify low-cost alternative adsorbents that have reasonable adsorption efficiency, especially natural materials such as leaves. In this study, research on MB adsorption using leaves was analyzed using bibliometric analysis. Information of bibliometric is extracted from the Scopus database with the keyword "Methylene Blue", "Adsorption or Desorption", and "Leaves or leaf". The results showed that India, Desalination and Water Treatment, and SASTRA Deemed University were the country, journal, and institution that contributed the most publications on this topic. Therefore, it is expected that with the use of bibliometrics, the use of leaf-based MB adsorption processes in their potential for MB dye removal can be investigated especially for large-scale development.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Debora Engelien Christa Jaya
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Kania Ludia Ikawati
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Endah Kurniasari
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya, 60115, Indonesia.
| | - Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
15
|
Hu S, Liu Y, Wei L, Luo D, Wu Q, Huang X, Xiao T. Recent advances in clay minerals for groundwater pollution control and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24724-24744. [PMID: 38503955 DOI: 10.1007/s11356-024-32911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Clay minerals are abundant on Earth and have been crucial to the advancement of human civilization. The ability of clay minerals to absorb chemicals is frequently utilized to remove hazardous compounds from aquatic environments. Moreover, clay-based adsorbent products are both environmentally acceptable and affordable. This study provides an overview of advances in clay minerals in the field of groundwater remediation and related predictions. The existing literature was examined using data and information aggregation approaches. Keyword clustering analysis of the relevant literature revealed that clay minerals are associated with groundwater utilization and soil pollution remediation. Principal component analysis was used to assess the relationships among clay mineral modification methods, pollutant properties, and the Langmuir adsorption capacity (Qmax). The results demonstrated that pollutant properties affect the Qmax of pollutants adsorbed by clay minerals. Systematic cluster analysis was utilized to classify the collected data and investigate the relationships. The pollution adsorption mechanism of the unique structure of clay minerals was investigated based on the characterization results. Modified clay minerals exhibited changes in surface functional groups, internal structure, and pHpzc. This review provides a summary of recent clay-based materials and their applications in groundwater remediation, as well as discussions of their challenges and future prospects.
Collapse
Affiliation(s)
- Simin Hu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
- Linköping University-Guangzhou University Research Center On Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China.
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linköping University-Guangzhou University Research Center On Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Qihang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| |
Collapse
|
16
|
Zhang H, Wu J, Li Q, Guo R. Responses of sediment n-alkanes to climate factors and anthropogenic disturbances from three lakes with different elevations, arid Central Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170776. [PMID: 38336050 DOI: 10.1016/j.scitotenv.2024.170776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Biomarkers n-alkanes and pertinent indices in lake sediments are frequently used to infer past changes in climate and environmental conditions in and around lakes. Interpretation of n-alkane records can be confounded by a lack of understanding of the multiple factors that control n-alkanes in sediments. Here, we studied n-alkanes in sediment cores from two alpine lakes, Lakes Son-Kul and Issyk-Kul, and from terminal Lake Balkhash, in arid Central Asia to identify natural and human-mediated influences on sediment n-alkane profiles. Altitudinal differences in climate, as well as in lake trophic status, proved to be important drivers of n-alkane compositional differences in the lake sediments. In the alpine lakes, the distribution of n-alkanes was biased toward long-chain components (n-C29, n-C31, and n-C33), and showed higher carbon preference index (CPIH) values, which come from dense terrestrial plant communities, promoted by greater precipitation. In contrast, n-alkanes in the core from the terminal lake displayed higher proportions of short-chain n-alkanes (n-C17, n-C19, and n-C21) because a greater proportion of the organic matter (OM) input to the sediments was derived from algae, a consequence of higher temperatures and trophic status. In recent decades, increasing nutrient inputs from human activities have caused greater accumulation of short-chain n-alkanes in sediments of alpine, oligotrophic Lake Issyk-Kul. In Lake Balkhash, n-C20 and n-C22 alkanes are exceptionally abundant, suggesting large contributions from microbial reworking of terrestrial OM. In all three study lakes, ∑(n-C29-n-C33) was elevated in sediments that correspond to periods of intense agricultural exploitation. Moreover, expansion of agriculture from low to high altitudes resulted in both synchronous and asynchronous peaks in ∑ (n-C29-n-C33) in the studied cores, suggesting the n-alkanes faithfully record the history of agricultural expansion. These findings provide insights into applications of n-alkane proxies and the response of the lake system to climate and anthropogenic impacts.
Collapse
Affiliation(s)
- Hongliang Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglu Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qianyu Li
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Province, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
| | - Ru Guo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Ding R, Wei D, Wu Y, Liao Z, Lu Y, Chen Z, Gao H, Xu H, Hu H. Profound regional disparities shaping the ecological risk in surface waters: A case study on cadmium across China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133450. [PMID: 38198868 DOI: 10.1016/j.jhazmat.2024.133450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The scientific advancement of water quality criteria (WQC) stands as one of the paramount challenges in ensuring the security of aquatic ecosystem. The region-dependent species distribution and water quality characteristics would impact the toxicity of pollutant, which would further affect the derivation of WQC across regions. Presently, however, numerous countries adhere to singular WQC values. The "One-size-fits-all" WQC value for a given pollutant may lead to either "over-protection" or "under-protection" of organisms in specific region. In this study, we used cadmium(Cd) pollution in surface waters of China as a case study to shed light on this issue. This study evaluated critical water quality parameters and species distribution characteristics to modify WQC for Cd across distinct regions, thus unveiling the geographical variations in ecological risk for Cd throughout China. Notably, regional disparities in ecological risk emerged a substantial correlation with water hardness, while species-related distinctions magnified these regional variations. After considering the aforementioned factors, the variation in long-term WQC among different areas reached 84-fold, while the divergence in risk quotient extended to 280-fold. This study delineated zones of both heightened and diminished ecological susceptibility of Cd, thereby establishing a foundation for regionally differentiated management strategies.
Collapse
Affiliation(s)
- Ren Ding
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yinhu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zitong Liao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huanan Gao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongwei Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China.
| |
Collapse
|
18
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
19
|
Rehan M, Elhaddad E. An efficient multi-functional ternary reusable nanocomposite based on chitosan@TiO 2@Ag NP immobilized on cellulosic fiber as a support substrate for wastewater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122850. [PMID: 37944887 DOI: 10.1016/j.envpol.2023.122850] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
To effectively remove heavy metals, organic contaminants, and pathogenic bacteria from wastewater, an efficient multi-functional ternary nanocomposite based on chitosan (CS), titanium dioxide (TiO2 NP), and silver nanoparticles (Ag NP) was prepared. Different tools were used to confirm the successful synthesis of the CS/TiO2 NP/Ag NP nanocomposite. Then, the CS/TiO2 NP/Ag NPnanocomposite was immobilized on the cellulosic fiber as a support substrate for its easy removal and reuse. On a lab scale, CS/TiO2 NP/Ag NP nanocomposite@cellulosic fiber was used to remove Cu (II) ions, methyl orange (MO), and methylene blue (MB), as well as inhibit microbes. The results demonstrate that the greatest removal of Cu (II) ions was 95 % at a concentration of 50 mg/L, pH 5, a temperature of 25 °C, an agitation speed of 200 rpm with 1 g adsorbent dose, and a contact time of 150 min. The pseudo-second-order model explained the batch adsorption kinetics well, while the Langmuir model explained the adsorption isotherm well with an adsorption capacity of 7.71 mg/g. Adsorption thermodynamic parameters revealed that adsorption is a spontaneous, exothermic, increased randomness, and non-specific chemisorption approach. The photodegradation of MO and MB by CS/TiO2 NP/Ag NP nanocomposite@cellulosic fiber was investigated. The results reveal that at pH 3, the MO dye showed the highest photodegradation percentage (90 %), while the MB dye displayed the highest photodegradation percentage (94 %) at pH 11, after an irradiation time of 120 min under visible light. The rate constants for MO and MB were 0.01218 and 0.01412 min-1, respectively. The results antimicrobial activities showed that the CS/TiO2 NP/Ag NP nanocomposite@cellulosic fiber showed excellent antibacterial activity against S. aureus (95 ± 2 %) and E. coli (93 ± 3 %) as well as good antifungal activity against C. albicans (77 ± 2 %).
Collapse
Affiliation(s)
- Mohamed Rehan
- Department of Pretreatment and Finishing of Cellulosic-based Textiles. Textile Research and Technology Institute, National Research Centre, 33 El-Buhouth Street, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Engy Elhaddad
- National Institute of Oceanography and Fisheries (NIOF), Egypt
| |
Collapse
|
20
|
Dai N, Yang L, Liu X, Gao L, Zheng J, Zhang K, Song D, Sun T, Luo S, Liu X, Tang S, Zhang Y. Enhanced photo-Fenton-like performance of biotemplated manganese-doped cobalt silicate catalysts. J Colloid Interface Sci 2023; 652:1812-1824. [PMID: 37683409 DOI: 10.1016/j.jcis.2023.08.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Cobalt-based catalysts are one of the preferred materials for effective activation of hydrogen peroxide, and metal element doping and active site dispersion are effective methods to enhance their catalytic activity. In this work, manganese-doped cobalt silicate@diatomite composites with enhanced photo-Fenton-like oxidation performance were prepared and used for degradation of methyl orange (MO) dyes. Experiments showed that manganese doping increased the specific surface area of the samples and decreased the band gap energy of the materials. Moreover, the samples doped with manganese elements had better photo-Fenton-like properties. The degradation of methyl orange by Co0.25MnSi@DE/H2O2-UV reached more than 95%. In addition, density-functional theory (DFT) calculations showed that the Mn-doped samples were more prone to activate H2O2 than non-manganese-doped samples, and the synergistic effect from using a bimetallic catalyst increased the photo-Fenton oxidation activity in the system. ESR spectroscopy and bursting tests indicated that the possible degradation mechanism consisted of hydroxyl radicals and superoxide radicals generated by the synergistic effect of cobalt ions and manganese under UV radiation. This study thus presents a feasible idea for the preparation of cobalt-based photo-Fenton catalysts that also provides a basis for understanding the catalytic mechanism analysis of other types of bimetallic catalysts.
Collapse
Affiliation(s)
- Nan Dai
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Lei Yang
- Department of Chemistry, Fudan University, Shanghai 200438, PR China.
| | - Xinyi Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Lihong Gao
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Jishu Zheng
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Kai Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Dan Song
- Chongqing Academy of Eco-Environmental Sciences, Chongqing 401147, PR China
| | - Tao Sun
- Military Installations Department, Army Logistics Academy of PLA, Chongqing 401331, PR China
| | - Shaoyue Luo
- Agricultural Technology Service Center of Liangping District, Chongqing 405200, PR China
| | - Xiaoying Liu
- Military Installations Department, Army Logistics Academy of PLA, Chongqing 401331, PR China.
| | - Song Tang
- Agricultural Products Brand Development Center of Liangping District, Chongqing, PR China
| | - Yuxin Zhang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
21
|
Kanwal S, Naeem HK, Batool F, Mirza A, Abdelrahman EA, Sharif G, Maqsood F, Mustaqeem M, Ditta A. Adsorption potential of orange rind-based nanosorbents for the removal of cadmium(II) and chromium(VI) from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110658-110673. [PMID: 37792184 DOI: 10.1007/s11356-023-30164-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Heavy metals (HMs) in water are highly poisonous and carcinogenic agents for human health. To alleviate the toxic impacts of HMs, green remediation technologies are the need of the hour. In this regard, different nanosorbents (CMCG@ORP, ORAC, NiO/NPs, and NiO@ORAC/NCs) were synthesized in the present study, and the percentage removal of heavy metals [chromium(VI) and cadmium(II) ions] was evaluated. The nanosorbents were characterized by using FTIR, SEM, UV-Vis spectroscopy, and XRD. UV-Vis spectroscopy confirmed the synthesis of nanosorbents such as NiO/NPs and NiO@ORAC/NCs at 330.5 nm and 352.55 nm, respectively. The characterization studies show that the surface of synthesized nano-sorbents was highly coarse, uneven, and abrasive. XRD pattern deduced that the sample was of single phase, and no other impurity was detected except the face-centered cubic-phase peak of NiO. The maximum adsorption of Cd (91%) and Cr (92%) was found at initial concentrations of 100 and 60 ppm respectively at contact time = 180 min, temperature 25 °C, and with an adsorbent dose of 0.5 g. Isothermal, kinetic, and thermodynamic studies were also performed to evaluate the adsorption mechanisms and feasibility of the process. Adsorption mostly followed Freundlich isotherm which indicates the multilayer adsorption phenomenon and the negative value of Gibb's free energy showed the spontaneous nature and feasibility of the adsorption reaction. Surface complexation, ion exchange, surface precipitation, and the phenomenon of physical adsorption occurred on the sorbent surface which led to the attachment of Cd and Cr to the tested nanosorbents. In conclusion, NiO@ORAC/NCs were the most effective in the alleviation of Cd(II) and Cr(VI) ions in contaminated water.
Collapse
Affiliation(s)
- Samia Kanwal
- Institute of Chemistry, Faculty of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Hafiza Komal Naeem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fozia Batool
- Institute of Chemistry, Faculty of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Awais Mirza
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Gulnaz Sharif
- Department of Chemistry, Govt. Graduate College for Women, Mandi Bahauddin, Pakistan
| | - Farah Maqsood
- Department of Botany, University of Punjab, Lahore, Pakistan
| | - Muhammad Mustaqeem
- Institute of Chemistry, Faculty of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir (U), 18000, Khyber Pakhtunkhwa, Pakistan.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| |
Collapse
|
22
|
Liu Y, Xie X, Wang S, Hu S, Wei L, Wu Q, Luo D, Xiao T. Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China). JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104254. [PMID: 37826885 DOI: 10.1016/j.jconhyd.2023.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Mining activities have long-term impacts on the groundwater of surrounding areas and deserve in-depth analysis and study. Herein, the geochemical mechanisms of acid mine drainage (AMD)-affected groundwaters were examined, and groundwater quality was assessed through water quality indices. 15 water samples from 7 domestic and 4 groundwater monitoring wells were tested for physical and chemical parameters in 2022, and multivariate statistical analysis was carried out with monitoring data from 21 domestic wells in 2010. The groundwater chemical composition varied from a predominantly Ca-HCO3 type in 2010 to a Ca-SO4 type in 2022. The isotopic values of δ18O and δD indicate that groundwater has not been significantly affected by evaporation. Changes in groundwater sulfate and total dissolved solids (TDS) levels over the twelve-year period confirmed the AMD infiltration impact on groundwater quality. The groundwater chemical properties changed more slowly than those of surface waters affected by AMD based on a cumulative increase in sulfate concentration of 29.94 mg/L. Changes in groundwater quality were investigated, namely, the spatiotemporal distribution of potentially toxic elements (PTEs), including Fe, Mn, Cd, Pb, and As. Mn concentrations in upstream groundwater areas near the mine decreased by 61.8% between 2010 and 2022. Conversely, groundwater in midstream areas had Mn concentrations of 2.25 mg/L and arsenic concentrations of 11.8 μg/L, both exceeding the WHO, 2022 standard. According to multivariate statistical analysis, Mn, Cd, and Pb originated from polymetallic minerals, whereas As was likely derived from the reduction of Fe/Mn hydroxyl oxides. AMD remediation improved contaminated upstream groundwater quality over 12 years, with a 36.8% improvement in WQI values. PTE distribution determined water quality changes; therefore, PTE contamination should be treated in mid- and downstream regions while contaminated groundwater should be treated upstream.
Collapse
Affiliation(s)
- Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Xianming Xie
- Guangdong Hydrogeology Battalion, Guangzhou 510080, China
| | - Song Wang
- Guangdong Hydrogeology Battalion, Guangzhou 510080, China
| | - Simin Hu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Qihang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
23
|
Tang Y, Wang H, Sun W, Li D, Wu Z, Feng Y, Xu N. Synthesis of calcium carbonate-loaded mesoporous SBA-15 nanocomposites for removal of phosphate from solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82217-82229. [PMID: 37322402 DOI: 10.1007/s11356-023-28226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Removal of phosphate from water is very crucial for protecting the ecological environment since massive phosphorus fertilizers have been widely used and caused serious water deterioration. Thus, we fabricated a series of calcium carbonate-loaded mesoporous SBA-15 nanocomposites with different Ca:Si molar ratio (CaAS-x) as phosphorus adsorbents via a simple wet-impregnation method. The multiply approaches including X-ray diffraction (XRD), N2 physisorption, thermogravimetric mass spectrometry (TG-MS), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FT-IR) were used to characterize the structure, morphology, and composition of mesoporous CaAS-x nanocomposites. The phosphate adsorption efficiency of the CaAS-x nanocomposites was studied through adsorption and desorption batch tests. Results showed that the increases of Ca:Si molar ratio (rCa:Si) improved the phosphate removal capacity of CaAS nanocomposites, especially CaAS with the optimum synthesis molar ratio of Ca:Si as 0.55 showed the high adsorption capacity of 92.0 mg·g-1 to high concentration of phosphate (> 200 mg·L-1). Note that the CaAS-0.55 had a fast exponentially increased adsorption capacity with increasing the phosphate concentration and correspondingly showed a much faster phosphate removal rate than pristine CaCO3. Apparently, mesoporous structure of SBA-15 contributed to high disperse of CaCO3 nanoparticles leading to the monolayer chemical adsorption complexation formation of phosphate calcium (i.e., =SPO4Ca, =CaHPO4-, and =CaPO4Ca0). Therefore, mesoporous CaAS-0.55 nanocomposite is an environmental-friendly adsorbent for effective removal of high concentration of phosphate in neutral contaminated wastewater.
Collapse
Affiliation(s)
- Yaoyu Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yifei Feng
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
24
|
Ramos-Guivar JA, Checca-Huaman NR, Litterst FJ, Passamani EC. Surface Adsorption Mechanism between Lead(II,IV) and Nanomaghemite Studied on Polluted Water Samples Collected from the Peruvian Rivers Mantaro and Cumbaza. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101684. [PMID: 37242100 DOI: 10.3390/nano13101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023]
Abstract
Real water remediation is an important issue that requires the development of novel adsorbents with remarkable adsorption properties, permitting reusability. In this work, the surface and adsorption properties of bare magnetic iron oxide nanoparticles were systematically studied, before and after the application of a maghemite nanoadsorbent in two real Peruvian effluents severely contaminated with Pb(II), Pb(IV), Fe(III), and others. We were able to describe the Fe and Pb adsorption mechanisms that occurred at the particle surface. 57Fe Mössbauer and X-ray photoelectron spectroscopy results together with kinetic adsorption analyses gave evidence for two involved surface mechanisms: (i) surface deprotonation of maghemite nanoparticles (isoelectric point of pH = 2.3), forming Lewis sites bonding Pb complexes; and (ii) the formation of a thin inhomogeneous secondary layer of iron oxyhydroxide and adsorbed Pb compounds, as favored by surface physicochemical conditions. The magnetic nanoadsorbent enhanced the removal efficiency to values of ca. 96% and provided adsorptive properties with reusability due to the conserved morphological, structural, and magnetic properties. This makes it favorable for large-scale industrial applications.
Collapse
Affiliation(s)
- Juan A Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada Para la Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Peru
| | | | - F Jochen Litterst
- Institut fur Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Edson C Passamani
- Departamento de Física, Universidade Federal do Espírito Santo -UFES, Vitória 29075-910, ES, Brazil
| |
Collapse
|
25
|
Babujohn NA, Eluri A. Viologen-functionalized magnetic material for the removal of Iodine and benzanthracene in an aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27096-w. [PMID: 37140861 DOI: 10.1007/s11356-023-27096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/13/2023] [Indexed: 05/05/2023]
Abstract
The development of magnetically active adsorbents for effective iodine removal would be highly desirable to address environmental pollution and remediation. Herein, we demonstrated the synthesis of Vio@SiO2@Fe3O4 as an adsorbent via surface functionalisation of electron-deficient bipyridium (viologen) units on the surface of magnetically active silica-coated magnetite (Fe3O4) core. This adsorbent was characterised thoroughly using various analytical techniques, such as field emission scanning electron microscopy (FESEM), thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR), field emission transmission electron microscopy (FETEM), Brunauer-Emmett-Teller (BET) analysis and X-ray photon analysis (XPS). The removal of triiodide from the aqueous solution was monitored via the batch method. It revealed that the complete removal was achieved upon stirring for 70 min. The thermally stable and crystalline Vio@SiO2@Fe3O4 displayed efficient removal capacity even in the presence of other competing ions and at different pHs. The adsorption kinetics data were analysed following the pseudo-first-order and pseudo-second-order models. Further, the isotherm experiment showed that the maximum uptake capacity of iodine is 1.38 g/g. It can be regenerated and reused over multiple cycles to capture iodine. Further, Vio@SiO2@Fe3O4 displayed a good removal capacity toward toxic polyaromatic, Benzanthracene (BzA) pollutant with an uptake capacity of 2445 μg/g. This effective removal of toxic pollutants iodine/benzanthracene was attributed to the strong non-covalent electrostatic and π-π interaction with electron-deficient bipyridium units.
Collapse
Affiliation(s)
- Nisar Ahamed Babujohn
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India.
| | - Amoluck Eluri
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364 002, India
| |
Collapse
|
26
|
Zeng F, Jiang Z. Spatial and temporal evolution of mine dust research: visual knowledge mapping analysis in Web of Science from 2001 to 2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62170-62200. [PMID: 36940022 PMCID: PMC10025797 DOI: 10.1007/s11356-023-26332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/03/2023] [Indexed: 05/10/2023]
Abstract
Dust pollution control is the basic guarantee of mine safety production, which has been widely concerned by scholars. Based on a total of 1786 publications collected by the Web of Science Core Collection (WOSCC) from 2001 to 2021, this paper analyzes the spatial-temporal distribution characteristics, hot topics, and frontier trends of the international mine dust field during the past 20 years by using Citespace and VOSviewer knowledge graph technology. The research shows that the study of mine dust can be divided into three stages: initial period (2001 ~ 2008), stable transition period (2009 ~ 2016), and boom period (2017 ~ 2021). The journals and disciplines which belong to mine dust research mainly focus on environmental science and engineering technology. A stable core group of authors and institutions have been preliminarily formed in the dust research field. The main themes of the study contained the whole process of mine dust generation, transport, prevention, and control, as well as the consequences of disaster. At present, the hot research fields mainly focus on mine dust particle pollution, multi-stage dust prevention, and emission reduction technologies, and mine occupational protection, monitoring, and early warning. In the future, the research should focus on the mechanism of dust production and transportation, the theory of efficient prevention and control, the technology and equipment of precise prevention and control of dust, and the high-precision monitoring and early warning of dust concentration. Future research should be concerned with dust control in underground mines and deep concave open-pit mines with complicated and treacherous environments, and strengthen research institutions, interdisciplinary cooperation, and interaction so as to promote the integration and application of mine dust and automation, information, and intelligent technology.
Collapse
Affiliation(s)
- Fabin Zeng
- School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhongan Jiang
- School of Civil & Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
27
|
Wang Y, Yuan S, Shi J, Ma T, Xie X, Deng Y, Du Y, Gan Y, Guo Z, Dong Y, Zheng C, Jiang G. Groundwater Quality and Health: Making the Invisible Visible. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5125-5136. [PMID: 36877892 DOI: 10.1021/acs.est.2c08061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Linking groundwater quality to health will make the invisible groundwater visible, but there are knowledge gaps to understand the linkage which requires cross-disciplinary convergent research. The substances in groundwater that are critical to health can be classified into five types according to the sources and characteristics: geogenic substances, biogenic elements, anthropogenic contaminants, emerging contaminants, and pathogens. The most intriguing questions are related to quantitative assessment of human health and ecological risks of exposure to the critical substances via natural or induced artificial groundwater discharge: What is the list of critical substances released from discharging groundwater, and what are the pathways of the receptors' exposure to the critical substances? How to quantify the flux of critical substances during groundwater discharge? What procedures can we follow to assess human health and ecological risks of groundwater discharge? Answering these questions is fundamental for humans to deal with the challenges of water security and health risks related to groundwater quality. This perspective provides recent progresses, knowledge gaps, and future trends in understanding the linkage between groundwater quality and health.
Collapse
Affiliation(s)
- Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Teng Ma
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Yamin Deng
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Yao Du
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Yiqun Gan
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Zhilin Guo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiran Dong
- State Key Laboratory of Biogeology and Environmental Geology, State Environmental Protection Key Laboratory of Water Pollution Source Apportionment and Control, School of Environmental Studies, China University of Geosciences, 430078 Wuhan, P. R. China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
28
|
Areguamen OI, Calvin NN, Gimba CE, Okunola OJ, Elebo A. Seasonal assessment of the distribution, source apportionment, and risk of water-contaminated polycyclic aromatic hydrocarbons (PAHs). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01542-7. [PMID: 36976374 DOI: 10.1007/s10653-023-01542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The research aims to evaluate the seasonal differences in the distribution, source, and risks of water-contaminated PAHs. The PAHs were extracted by the liquid-liquid method and analyzed with GC-MS, and a total of eight PAHs were detected. There was a percentage increase in the average concentration of the PAHs from the wet to the dry season in the range of 20 (Anthracene)-350 (Pyrene)%. Total PAHs (∑PAHs) range from 0.31 to 1.23 mg/l in the wet period and from 0.42 to 1.96 mg/l in the dry period. The distribution of the average PAHs in mg/l showed that Fluoranthene ≤ Pyrene < Acenaphthene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in wet period and while Fluoranthene < Acenaphthene < Pyrene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in the dry period. The children were exposed to non-carcinogenic risk through non-dietary ingestion due to the accumulative effect (HI) of the PAHs in the dry period. Furthermore, the naphthalene was responsible for ecological and carcinogenic risk in the wet period, while the fluorene, phenanthrene, and anthracene were responsible for ecological and carcinogenic risk in the dry period. However, while adults and children are both susceptible to carcinogenic risk through the oral channel during the dry period, only children are susceptible to non-carcinogenic risk through this pathway. The multivariate statistical analysis revealed the influence of physicochemical parameters on the detected PAHs and also showed the PAHs' sources to be mainly combustion, pyrolysis, and vehicular emission.
Collapse
Affiliation(s)
| | | | | | | | - Abuchi Elebo
- Chemistry Department, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| |
Collapse
|
29
|
Xia C, Jin X, Parandoust A, Sheibani R, Khorsandi Z, Montazeri N, Wu Y, Van Le Q. Chitosan-supported metal nanocatalysts for the reduction of nitroaromatics. Int J Biol Macromol 2023; 239:124135. [PMID: 36965557 DOI: 10.1016/j.ijbiomac.2023.124135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The second most abundant natural polymer in the earth's crust is chitosan (CS). The unique physical, chemical, structural, and mechanical features of this natural polymer have led to its increased application in a variety of fields such as medicine, catalysis, removal of pollutants, etc. To eliminate various pollutants, it is preferable to employ natural compounds as their use aids the removal of contaminants from the environment. Consequently, employing CS to eliminate contaminants is a viable choice. For this aim, CS can be applied as a template and support for metal nanoparticles (MNPs) and prevent the accumulation of MNPs as well as a reducing and stabilizing agent for the fabrication of MNPs. Among the pollutants present in nature, nitro compounds are an important and wide category of biological pollutants. 4-Nitrophenol (4-NP) is one of the nitro pollutants. There are different ways for the removal of 4-NP, but the best and most effective method for this purpose is the application of a metallic catalyst and a reducing agent. In this review, we report the recent developments regarding CS-supported metallic (nano)catalysts for the reduction of nitroaromatics such as nitrophenols, nitroaniline compounds, nitrobenzene, etc. in the presence of reducing agents. The metals investigated in this study include Ag, Au, Ni, Cu, Ru, Pt, Pd, etc.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Zahra Khorsandi
- Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran
| | - Narjes Montazeri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
30
|
Godínez-García FJ, Guerrero-Rivera R, Martínez-Rivera JA, Gamero-Inda E, Ortiz-Medina J. Advances in two-dimensional engineered nanomaterials applications for the agro- and food-industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36922737 DOI: 10.1002/jsfa.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional nanomaterials, such as graphene, transition metal dichalcogenides, MXenes, and other layered compounds, are the subject of intense theoretical and experimental research for applications in a wide range of advanced technological solutions, given their outstanding physical, chemical, and mechanical properties. In the context of food science and technology, their contributions are starting to appear, based on the advantages that two-dimensional nanostructures offer to agricultural- and food-related key topics, such as sustainable water use, nano-agrochemicals, novel nanosensing devices, and smart packaging technologies. These application categories facilitate the grasping of the current and potential uses of such advanced nanomaterials in the field, backed by their advantageous physical, chemical, and structural properties. Developments for water cleaning and reuse, efficient nanofertilizers and pesticides, ultrasensitive sensors for food contamination, and intelligent nanoelectronic disposable food packages are among the most promising application examples reviewed here and demonstrate the tremendous impact that further developments would have in the area as the fundamental and applied research of two-dimensional nanostructures continues. We expect this work will contribute to a better understanding of the promising characteristics of two-dimensional nanomaterials that could be used for the design of novel and feasible solutions in the agriculture and food areas. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco Javier Godínez-García
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Rubén Guerrero-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - José Antonio Martínez-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Eduardo Gamero-Inda
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Josué Ortiz-Medina
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| |
Collapse
|
31
|
Yu H, Zahidi I. Environmental hazards posed by mine dust, and monitoring method of mine dust pollution using remote sensing technologies: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161135. [PMID: 36566867 DOI: 10.1016/j.scitotenv.2022.161135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The over-exploitation of mineral resources has led to increasingly serious dust pollution in mines, resulting in a series of negative impacts on the environment, mine workers (occupational health) and nearby residents (public health). For the environment, mine dust pollution is considered a major threat on surface vegetation, landscapes, weather conditions and air quality, leading to serious environmental damage such as vegetation reduction and air pollution; for occupational health, mine dust from the mining process is also regarded as a major threat to mine workers' health, leading to occupational diseases such as pneumoconiosis and silicosis; for public health, the pollutants contained in mine dust may pollute surrounding rivers, farmlands and crops, which poses a serious risk to the domestic water and food security of nearby residents who are also susceptible to respiratory diseases from exposure to mine dust. Therefore, the second section of this paper combines literature research, statistical studies, and meta analysis to introduce the public mainly to the severity of mine dust pollution and its hazards to the environment, mine workers (occupational health), and residents (public health), as well as to present an outlook on the management of mine dust pollution. At the same time, in order to propose a method for monitoring mine dust pollution on a regional scale, based on the Dense Dark Vegetation (DDV) algorithm, the third section of this paper analysed the aerosol optical depth (AOD) change in Dexing City of China using the data of 2010, 2014, 2018 and 2021 from the NASA MCD19A2 Dataset to explore the mine dust pollution situation and the progress of pollution treatment in Dexing City from 2010 to 2021. As a discussion article, this paper aims to review the environmental and health risks caused by mine dust pollution, to remind the public to take mine dust pollution seriously, and to propose the use of remote sensing technologies to monitor mine dust pollution, providing suggestions for local governments as well as mines on mine dust monitoring measures.
Collapse
Affiliation(s)
- Haoxuan Yu
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| | - Izni Zahidi
- Civil Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
32
|
Hu K, Luo H, Han Y, Zuo M, Li J. Hierarchically Porous and Magnetic MgFe
2
O
4
@MgAl‐LDHs Microspheres Synthesized by a Bio‐Templating Strategy for Efficient Removal of Congo Red from Water**. ChemistrySelect 2023. [DOI: 10.1002/slct.202204352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Kaiyuan Hu
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| | - Hui Luo
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| | - Yang Han
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| | - Min Zuo
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| | - Jia Li
- School of Material Science and Engineering University of Jinan Jinan 250022 China
| |
Collapse
|
33
|
Bate B, Cao J, Yang Y, Cao J, Zhang C, Zhang S. Investigation of Cu Adsorption and Migration with Spectral Induced Polarization in Activated Carbon. TOXICS 2023; 11:221. [PMID: 36976986 PMCID: PMC10057908 DOI: 10.3390/toxics11030221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
In this paper, the adsorption process of copper ions on activated carbon (AC) was simulated in a column test. It was deduced that it is consistent with the pseudo-second-order model. Cation exchange was observed to be the major mechanism of Cu-AC interactions through scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) measurements. Adsorption isotherms were fitted well using the Freundlich model. Adsorption thermodynamics at 298, 308, 318 K demonstrated that the adsorption process is spontaneous and endothermic. Spectral induced polarization (SIP) technique was used to monitor the adsorption process, and the double Cole-Cole model was used to analyze the SIP results. The normalized chargeability was proportional to the adsorbed copper content. Two measured relaxation times from the SIP testing were converted into the average pore sizes of 2, 0.8, 0.6, 100-110, 80-90, and 53-60 µm by the Schwartz equation, which are consistent with the measured pore sizes from both mercury intrusion porosimetry and scanning electron microscopy (SEM). The reduction in the pore sizes by SIP during the flow-through tests suggested that the adsorbed Cu2+ gradually migrated into small pores as with continued permeation of the influent. These results showcased the feasibility of using SIP technique in engineering practice involving the monitoring of copper contamination in land near a mine waste dump or in adjacent permeable reactive barriers.
Collapse
Affiliation(s)
- Bate Bate
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Cao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
| | - Yixin Yang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
| | - Junnan Cao
- Department of Civil Engineering and Construction, Georgia Southern University, Statesboro, GA 30458, USA
| | - Chi Zhang
- Department of Meteorology and Geophysics, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1010 Vienna, Austria
| | - Shuai Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Satybaldiyev B, Ismailov B, Nurpeisov N, Kenges K, Snow DD, Malakar A, Uralbekov B. Evaluation of dissolved and acid-leachable trace element concentrations in relation to practical water quality standards in the Syr Darya, Aral Sea Basin, South Kazakhstan. CHEMOSPHERE 2023; 313:137465. [PMID: 36481171 DOI: 10.1016/j.chemosphere.2022.137465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The Syr Darya is one of the major rivers supplying the Aral Sea with freshwater. Soviet programs aimed at maximizing agricultural productivity in the Syr Darya basin increased diversion of water drastically affecting its water quality with significant consequences to its suitability for irrigation, fisheries and other uses. While water quality standards for trace elements are typically measured in the dissolved phase, there is evidence that adsorbed phases may also be relevant. Here we report potentially available heavy metals and metalloid concentrations in the Syr Darya water through the treatment of unfiltered waters samples with dilute nitric acid. Significant differences were found for most studied elements (Mann-Whitney U Test, p < 0.05) between their dissolved and acid-leachable concentrations. For Sr and Se in both sampling campaigns, no significant differences were found between their dissolved and acid-leachable concentrations, indicating their low geochemical reactivity. Dissolved V concentrations and acid-leachable Ni and Zn were found to exceed Kazakhstan Maximum Permissible Concentrations (MPC) values for the protection of fishery water quality. Our study evaluates the importance of considering regulatory issues of measuring trace metal concentrations to assess the water suitability for fisheries and irrigation.
Collapse
Affiliation(s)
- Bagdat Satybaldiyev
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan; LLP «EcoRadSM», Almaty, Kazakhstan
| | - Baimurat Ismailov
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan; LLP «EcoRadSM», Almaty, Kazakhstan
| | - Nurbek Nurpeisov
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Kairat Kenges
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan; LLP «EcoRadSM», Almaty, Kazakhstan
| | - Daniel D Snow
- School of Natural Resources and Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 135 Keim Hall, University of Nebraska, Lincoln, NE, 68583-0844, USA
| | - Arindam Malakar
- School of Natural Resources and Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, 135 Keim Hall, University of Nebraska, Lincoln, NE, 68583-0844, USA
| | - Bolat Uralbekov
- Center of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty, Kazakhstan; LLP «EcoRadSM», Almaty, Kazakhstan.
| |
Collapse
|
35
|
Huang L, Huang X, Yan J, Liu Y, Jiang H, Zhang H, Tang J, Liu Q. Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130024. [PMID: 36155298 DOI: 10.1016/j.jhazmat.2022.130024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The problem of global water pollution and scarcity of water resources is becoming increasingly serious. Multifunctional perovskites can well drive adsorption and photocatalytic reactions to remove water pollutants. There are many advantages of perovskites, such as abundant oxygen vacancies, easily tunable structural morphology, stable crystal state, highly active metal sites, and a wide photo response range. However, there are few reviews on the simultaneous application of perovskite to adsorption and photocatalytic removal of water pollutants. Thus, this paper discusses the preparation methods of perovskite, the factors affecting the adsorption of water environmental pollutants by perovskite, and the factors affecting perovskite photocatalytic water pollutants. The particle size, specific surface area, oxygen vacancies, electron-hole trapping agents, potentials of the valence band, and conduction band in perovskites are significant influencing factors for adsorption and photocatalysis. Strategies for improving the performance of perovskites in the fields of adsorption and photocatalysis are discussed. The adsorption behaviors and catalytic mechanisms are also investigated, including adsorption kinetics and thermodynamics, electrostatic interaction, ion exchange, chemical bonding, and photocatalytic mechanism. It summarizes the removal of water pollutants by using perovskites. It provides the design of perovskites as high-efficiency adsorbents and catalysts for developing new technologies.
Collapse
Affiliation(s)
- Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xuanjie Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yonghui Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hao Jiang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China.
| | - Jinfeng Tang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiang Liu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
Chen L, Xu B, Jin M, Chen L, Yi G, Xing B, Zhang Y, Wu Y, Li Z. Excellent photocatalysis of Bi2WO6 structured with oxygen vacancies in degradation of tetracycline. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Ai L, Ma B, Shao S, Zhang L, Zhang L. Heavy metals in Chinese freshwater fish: Levels, regional distribution, sources and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158455. [PMID: 36063941 DOI: 10.1016/j.scitotenv.2022.158455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
China is a major producer and consumer of freshwater fish, which can provide nutrients to the human body but is also of great concern because of the bioaccumulation and amplification of heavy metals that are directly related to human health. In this paper, we reviewed the accumulation and distribution patterns of lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), and chromium (Cr) in freshwater fish from 2010 to 2020 in nine basins of China (Yangtze River, Pearl River, Yellow River, Haihe River, Huaihe River, Songhua and Liaohe River, Continental, Southeast, and Southwest basins), assessed the health risks, and compared them with those in Chinese marine fish, international freshwater fish, Chinese wild freshwater fish, and artificially cultured freshwater fish. The results showed that 1) the pollution status of the five heavy metals in freshwater fish from nine basins in China is at an intermediate level internationally; 2) the magnitude of heavy metal concentration in four types of artificially farmed freshwater fish and wild freshwater fish is ranked as follows: rice-farmed fish < cage-farmed fish < pond-farmed fish < lake-farmed fish < wild fish; 3) the noncarcinogenic risk factors for heavy metals in freshwater fish in the nine major basins in China were <1 for adults, but the noncarcinogenic risk factors for heavy metals in freshwater fish in the Yellow River, Yangtze River, Pearl River, Songhua and Liaohe River, and Huaihe River basins were all >1 for children.
Collapse
Affiliation(s)
- Liuhuan Ai
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Bing Ma
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Shiwei Shao
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China.
| |
Collapse
|
38
|
Tedrow OR, Lee PF. Use of Wild Rice ( Zizania palustris L.) in Paddy-Scale Bioassays for Assessing Potential Use of Mining-Influenced Water for Irrigation. MINE WATER AND THE ENVIRONMENT 2022; 41:938-953. [PMID: 36518101 PMCID: PMC9741574 DOI: 10.1007/s10230-022-00908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED As surface water resources become more intensely used, and occasionally non-useable, consideration of non-conventional water resources for anthropogenic use has become more prevalent. Potentially critical non-conventional water sources include flooded mine-pit lakes. However, water in these lakes can contain potentially problematic concentrations of contaminants of concern. We evaluated the potential use of elevated sulphate (SO4) mining-influenced waters with low to non-detect metals concentrations for irrigation of wild rice (Zizania palustris L.; WR), a culturally and economically important species. Two flow-through in-situ paddies were developed adjacent to two mine-pit lakes with differing chemical water characteristics; specifically, Pit A contained ≈350 mg SO4 L-1 and Pit C contained ≈1350 mg SO4 L-1. Throughout the course of multiple consecutive growing seasons, no adverse WR responses to these mining-influenced water exposures were observed. Based on data and observations from this study, potential use of mining-influenced waters containing elevated SO4 as the primary contaminant for appropriate irrigation purposes is supported. However, site-specific conditions and potential environmental risks must be considered prior to use of mining-influenced waters for anthropogenic applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10230-022-00908-0.
Collapse
Affiliation(s)
- O’Niell R. Tedrow
- Northeast Technical Services, Inc., 526 Chestnut Str, Virginia, MN 55792 USA
- Vermilion College, 1900 East Camp Str, Ely, MN 55731 USA
| | - Peter F. Lee
- Centennial Building, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1 Canada
| |
Collapse
|
39
|
Zhan S, Wu J, Zhang H, Jin M. Occurrence, sources and spatial distribution of n-alkanes in surface soils from the Amu Darya Delta, Uzbekistan, arid Central Asia. ENVIRONMENTAL RESEARCH 2022; 214:114063. [PMID: 35973462 DOI: 10.1016/j.envres.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Central Asia (CA) has attracted global attention because of either water scarcity or ecosystem degradation. The Amu Darya Delta (ADD), one of the most important oases in CA, is endowed with valuable wetlands and biological resources that provide good ecosystem services to inhabitants. However, the region has experienced climate warming and large-scale anthropogenic changes since the last century. To assess the influences of anthropogenic interventions on the soil environment in this area, surface soil samples collected from the ADD were analysed for aliphatic hydrocarbon fractions and five heavy metals (HMs; including Cd, Zn, Cu, Ni and V). The results indicated that the n-alkanes extracted from surface soils were composed of homologous series from C14 to C35. Relatively high abundances of short-chain n-alkanes (<n-C21) were observed in cluster 1 samples (mainly from the lakeshore of the Aral Sea), while significantly high abundances of mid-chain (n-C21 to n-C25) and long-chain (n-C26 to n-C32) n-alkanes were found in cluster 3 samples, which were distributed in urban and agricultural drainage areas. In addition, very-long-chain n-alkanes (>n-C33) occurred in most surface soils, which might be a sign of a hot and arid climatic environment. Notably, almost all samples presented a clear even carbon dominance of short-chain n-alkanes, especially for cluster 1, which possibly represented the influence of hydrocarbon contamination and highly saline carbonate environments in addition to bacterial degradation. The biomarker indices and HM enrichment index indicated greater effects of crude oil pollution on cluster 1 (specifically samples 2, 4, 5, 6, 13, 16 and 34) and anthropogenic activities such as traffic emissions and agricultural drainage on cluster 3 samples. The results of this study provide evidence that the n-alkane composition and abundance in surface soils respond sensitively to anthropogenic interventions, arid climate and petroleum hydrocarbon pollution.
Collapse
Affiliation(s)
- Shuie Zhan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinglu Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Hongliang Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miao Jin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Chauhan S, Dahiya D, Sharma V, Khan N, Chaurasia D, Nadda AK, Varjani S, Pandey A, Bhargava PC. Advances from conventional to real time detection of heavy metal(loid)s for water monitoring: An overview of biosensing applications. CHEMOSPHERE 2022; 307:136124. [PMID: 35995194 DOI: 10.1016/j.chemosphere.2022.136124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The rapid growth of the industrial sector has expedited the accumulation of heavy metal(loid)s in the environment at hazardous levels. The elements such as arsenic, lead, mercury, cadmium and chromium are lethal in terms of toxicity with severe health impacts. With issues like water scarcity, limitations in wastewater treatment, and costs pertaining to detection in environmental matrices; their rapid and selective detection for reuse of effluents is of the utmost priority. Biosensors are the futuristic tool for the accurate qualitative and quantitative analysis of a specific analyte and integrate biotechnology, microelectronics and nanotechnology to fabricate a miniaturized device without compromising the sensitivity, specificity and accuracy. The characteristic features of supporting matrix largely affect the biosensing ability of the device and incorporation of highly sensitive and durable metal organic frameworks (MOFs) are reported to enhance the efficiency of advanced biosensors. Electrochemical biosensors are among the most widely developed biosensors for the detection of heavy metal(loids), while direct electron transfer approach from the recognition element to the electrode has been found to decrease the chances of interference. This review provides an insight into the recent progress in biosensor technologies for the detection of prevalent heavy metal(loid)s; using advanced support systems such as functional metal-based nanomaterials, carbon nanotubes, quantum dots, screen printed electrodes, glass beads etc. The review also delves critically in comparison of various techno-economic studies and the latest advances in biosensor technology.
Collapse
Affiliation(s)
- Shraddha Chauhan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology, Andhra Pradesh Tadepalligudem, 534101, India
| | - Vikas Sharma
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, 226029, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| |
Collapse
|
41
|
You Y, Ju C, Wang L, Wang X, Ma F, Wang G, Wang Y. The mechanism of arbuscular mycorrhizal enhancing cadmium uptake in Phragmites australis depends on the phosphorus concentration. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129800. [PMID: 36027745 DOI: 10.1016/j.jhazmat.2022.129800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) is a vital strategy to enhance the phytoremediation of cadmium (Cd) pollution. However, the function of AMF was influenced by phosphorus (P) concentration. To reveal the effect of AMF on the Cd accumulation of host plants under different P concentrations and how the AMF and P interact, this study comparatively analyzed the regulatory effects of AMF on the Cd response, extraction, and transportation processes of Phragmites australis (P. australis) under different P levels, and explored its physiological, biochemical and molecular biological mechanisms. The study showed that AMF could induce different growth allocation strategies in response to Cd stress. Moreover, AMF promoted plant Cd tolerance and detoxification by enhancing P uptake, Cd passivation, Cd retention in the cell wall, and functional group modulation. Under P starvation treatments, AMF promoted Cd uptake by inducing Cd to enter the iron pathway, increased the transport coefficient by 493.39%, and retained Cd in stems. However, these effects disappeared following the addition of P. Additionally, AMF up-regulated the expression of ZIP, ZIP, and NRAMP genes to promote cadmium uptake at low, medium, and high phosphorus levels, respectively. Thus, the Cd response mechanism of the AMF-P. australis symbiotic system was P dose-dependent.
Collapse
Affiliation(s)
- Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Chang Ju
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Xin Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Gen Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yujiao Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
42
|
Huang Q, Zhao L, Zhu G, Chen D, Ma X, Yang X, Wang S. Outstanding performance of thiophene-based metal-organic frameworks for fluoride capture from wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Zhu Y, Elcin E, Jiang M, Li B, Wang H, Zhang X, Wang Z. Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Front Chem 2022; 10:1018124. [PMID: 36247665 PMCID: PMC9561917 DOI: 10.3389/fchem.2022.1018124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Water contamination has become increasingly a critical global environmental issue that threatens human and ecosystems’ health. Monitoring and risk assessment of toxic pollutants in water bodies is essential to identifying water pollution treatment needs. Compared with the traditional monitoring approaches, environmental biosensing via whole-cell bioreporters (WCBs) has exhibited excellent capabilities for detecting bioavailability of multiple pollutants by providing a fast, simple, versatile and economical way for environmental risk assessment. The performance of WCBs is determined by its elements of construction, such as host strain, regulatory and reporter genes, as well as experimental conditions. Previously, numerous studies have focused on the design and construction of WCB rather than improving the detection process and commercialization of this technology. For investigators working in the environmental field, WCB can be used to detect pollutants is more important than how they are constructed. This work provides a review of the development of WCBs and a brief introduction to genetic construction strategies and aims to summarize key studies on the application of WCB technology in detection of water contaminants, including organic pollutants and heavy metals. In addition, the current status of commercialization of WCBs is highlighted.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Evrim Elcin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mengyuan Jiang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
- *Correspondence: Xiaokai Zhang,
| | - Zhenyu Wang
- School of Environmental and Civil Engineering, Institute of Environmental Processes and Pollution Control, Jiangnan University, Wuxi, China
| |
Collapse
|
44
|
Osman AI, Elgarahy AM, Mehta N, Al-Muhtaseb AH, Al-Fatesh AS, Rooney DW. Facile Synthesis and Life Cycle Assessment of Highly Active Magnetic Sorbent Composite Derived from Mixed Plastic and Biomass Waste for Water Remediation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:12433-12447. [PMID: 36161095 PMCID: PMC9490754 DOI: 10.1021/acssuschemeng.2c04095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Indexed: 05/09/2023]
Abstract
Plastic and biomass waste pose a serious environmental risk; thus, herein, we mixed biomass waste with plastic bottle waste (PET) to produce char composite materials for producing a magnetic char composite for better separation when used in water treatment applications. This study also calculated the life cycle environmental impacts of the preparation of adsorbent material for 11 different indicator categories. For 1 functional unit (1 kg of pomace leaves as feedstock), abiotic depletion of fossil fuels and global warming potential were quantified as 7.17 MJ and 0.63 kg CO2 equiv for production of magnetic char composite materials. The magnetic char composite material (MPBC) was then used to remove crystal violet dye from its aqueous solution under various operational parameters. The kinetics and isotherm statistical theories showed that the sorption of CV dye onto MPBC was governed by pseudo-second-order, and Langmuir models, respectively. The quantitative assessment of sorption capacity clarifies that the produced MPBC exhibited an admirable ability of 256.41 mg g-1. Meanwhile, the recyclability of 92.4% of MPBC was demonstrated after 5 adsorption/desorption cycles. Findings from this study will inspire more sustainable and cost-effective production of magnetic sorbents, including those derived from combined plastic and biomass waste streams.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
- Ahmed
I. Osman. . Fax: +44 2890 97 4687. Tel.: +44 2890 97 4412
| | - Ahmed M. Elgarahy
- Environmental
Science Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
- Egyptian
Propylene and Polypropylene Company (EPPC), Port-Said 42526, Egypt
| | - Neha Mehta
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Ala’a H. Al-Muhtaseb
- Department
of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat 123, Oman
| | - Ahmed S. Al-Fatesh
- Chemical
Engineering Department, College of Engineering,
King Saud University, Riyadh 11421, Saudi Arabia
| | - David W. Rooney
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom
| |
Collapse
|
45
|
The Role of Conventional Methods and Artificial Intelligence in the Wastewater Treatment: A Comprehensive Review. Processes (Basel) 2022. [DOI: 10.3390/pr10091832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Water pollution is a severe health concern. Several studies have recently demonstrated the efficacy of various approaches for treating wastewater from anthropogenic activities. Wastewater treatment is an artificial procedure that removes contaminants and impurities from wastewater or sewage before discharging the effluent back into the environment. It can also be recycled by being further treated or polished to provide safe quality water for use, such as potable water. Municipal and industrial wastewater treatment systems are designed to create effluent discharged to the surrounding environments and must comply with various authorities’ environmental discharge quality rules. An effective, low-cost, environmentally friendly, and long-term wastewater treatment system is critical to protecting our unique and finite water supplies. Moreover, this paper discusses water pollution classification and the three traditional treatment methods of precipitation/encapsulation, adsorption, and membrane technologies, such as electrodialysis, nanofiltration, reverse osmosis, and other artificial intelligence technology. The treatment performances in terms of application and variables have been fully addressed. The ultimate purpose of wastewater treatment is to protect the environment that is compatible with public health and socioeconomic considerations. Realization of the nature of wastewater is the guiding concept for designing a practical and advanced treatment technology to assure the treated wastewater’s productivity, safety, and quality.
Collapse
|
46
|
Dayana Priyadharshini S, Manikandan S, Kiruthiga R, Rednam U, Babu PS, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Graphene oxide-based nanomaterials for the treatment of pollutants in the aquatic environment: Recent trends and perspectives - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119377. [PMID: 35490997 DOI: 10.1016/j.envpol.2022.119377] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide can be used to store energy, as electrodes and purify industrial and domestic wastewater as photocatalysts and adsorbents because of its remarkable thermal, electrical, and chemical capabilities. Toward understanding graphene oxide (GO) based nanomaterials considering the background factors, the present review study investigated their characteristics, preparation methods, and characterization processes. The removal of contaminants from wastewater has recently been a focus of attention for materials based on GO. Progress in GO synthesis and surface modification has shown that they can be used to immobilize enzymes. It is possible to immobilize enzymes with varying characteristics on graphene-oxide-based substrates without sacrificing their functioning, thus developing a new environmental remediation platform utilizing nano biocatalysts. GO doping and co-doping with a variety of heterogeneous semiconductor-based metal oxides were included in a brief strategy for boosting GO efficiency. A high band-gap material was also explored as a possibility for immobilization, which shifts the absorption threshold to the visible range and increases photoactivity. For water treatment applications, graphene-based nanomaterials were used in Fenton reactions, photocatalysis, ozonation, photo electrocatalysis, photo-Fenton, and a combination of photon-Fenton and photocatalysis. Nanoparticles made from GO improved the efficiency of composite materials when used for their intended applications. As a result of the analysis, prospects and improvements are clear, especially when it comes to scaling up GO-based wastewater treatment technologies.
Collapse
Affiliation(s)
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India
| | - R Kiruthiga
- Instituto de Investigaciónes Científicas y Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo, Chile
| | - Udayabhaskar Rednam
- Instituto de Investigaciónes Científicas y Tecnológicas (IDICTEC), Universidad de Atacama, Copayapu 485, Copiapo, Chile
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai - 602 105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
47
|
Yuan J, Li Q, Zhao Y. The research trend on arsenic pollution in freshwater: a bibliometric review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:602. [PMID: 35864315 DOI: 10.1007/s10661-022-10188-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
We conducted a quantitative and qualitative bibliometric analysis based on 8740 research articles from the Web of Science Core Collection published in the last 20 years (2000-2020) for a better understanding of the research progress and development trend of arsenic pollution in freshwater (FAP). The results showed a significant increase in the number of publications from 2007 to 2020, especially after 2015. Four of the top 10 productive authors are from China. Two of the top three research institutions are from China, and the publications of Chinese Academy of Sciences accounted for 5.40% of the total. China is also the center of the national cooperation network, indicating a greater influence of China in this scientific research field. The top three journals included Science of the Total Environmental, Environmental Science Technology, and Journal of Hazardous Materials. Besides arsenic, the high-frequency keywords in this field included adsorption, contamination, groundwater, removal, detection, and geochemistry. The researchers mainly focused on the groundwater environment, as well as the pollution hazards of arsenic in water bodies, remediation techniques, detection, migration, and transformation. Studies should pay more attention to the application and development of phytoremediation technology in the field of FAP in the future.
Collapse
Affiliation(s)
- Jie Yuan
- Wuhan Library, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Big Data in Science and Technology, Wuhan, 430074, People's Republic of China
| | - Qianxi Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, 430074, People's Republic of China
| | - Yanqiang Zhao
- Wuhan Library, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Big Data in Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
48
|
Application of Cement Paste in Mining Works, Environmental Protection, and the Sustainable Development Goals in the Mining Industry. SUSTAINABILITY 2022. [DOI: 10.3390/su14137902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cement paste is an already well-known material used in ore mining. It is mainly used to fill excavation areas and the tailings from the surface return to underground mines. In this way, the amount of deposited material and degradation of the surface of the terrain are reduced. The paste itself can be used as an artificial barrier between mining works and underground watercourses. Significant economic and environmental benefits can be expected from using cement paste, which would contribute to sustainable development. The basic materials that make up cemented paste backfill (CPB) are flotation tailings, cement, and water. For CPB to be adequately and safely applied to the filling of excavation spaces and indirectly to the protection of the groundwater, environment, and sustainable development of the mining industry, it must meet certain physical–mechanical, physicochemical, and deformation properties. This paper presents the results of synthesized and analyzed samples of different compositions based on flotation tailings (from the production of ZiJin Copper in Bor, Serbia), cement, and water. The methods used for chemical and mineralogical tests include inductively coupled plasma atomic emission spectroscopy (ICP-AES), atomic absorption spectroscopy (AAS), X-ray diffraction analysis (XRD), and nephelometric turbidity units (NTUs; turbidimetry). The results prepared with CPB consisting of 5% cement, 24% water, and 71% flotation tailings were the most acceptable.
Collapse
|
49
|
Fan A, Xu T, Teng G, Li J, Zhang Y, Wang X, Xu C, Yan P, Xu X. Polarimetry-inspired feature fusion spectroscopy (PIFFS) for ammonia sensing in water. OPTICS EXPRESS 2022; 30:18415-18433. [PMID: 36221643 DOI: 10.1364/oe.460777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 06/16/2023]
Abstract
The sustainable use of water resources is inseparable from water pollution detection. The sensing of toxic ammonia nitrogen in water currently requires auxiliary reagents, which may cause secondary pollution. Benefiting from the ability of substances to change light characteristics, this work proposes polarimetry-inspired feature fusion spectroscopy (PIFFS) to detect ammonia. The PIFFS system mainly includes a light source, a quarter-wave plate (QWP), a linear polarizer (LP) and a fiber spectrometer. The target light containing substance information is polarization modulated by adjusting the QWP and LP angles. Then, the Stokes parameters of target light can be calculated by appropriate modulations. The feasibility of PIFFS method to detect ammonia nitrogen is verified by experiments on both standard water samples and environmental water samples. Experimental results show that inspired by the first Stokes parameter, the fused features provide superiority in classifying ammonia concentration. The results also demonstrate the effectiveness of support vector machine-based concentration classification and random forests-based spectral selection. The interaction between light and substances ensures that the proposed PIFFS method has the potential to detect other pollutants.
Collapse
|
50
|
Li Q, Xiang P, Zhang T, Wu Q, Bao Z, Tu W, Li L, Zhao C. The effect of phosphate mining activities on rhizosphere bacterial communities of surrounding vegetables and crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153479. [PMID: 35092784 DOI: 10.1016/j.scitotenv.2022.153479] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The effects of phosphate mining on rhizosphere bacteria in surrounding vegetables and crops, including Lactuca sativa, Glycine max, and Triticum aestivum, are assessed in this study. As results, phosphate mining significantly increased the contents of some large elements, trace elements, and heavy metals in the surrounding agricultural soil, including phosphorus, magnesium, boron, cadmium, lead, arsenic, zinc, and chromium (P < 0.05). The community richness and diversity of bacteria in rhizosphere of the three crops were significantly reduced by phosphate mining (P < 0.05). Abundances of Sphingomonas and RB41 in the rhizosphere soil of phosphate mining area improved compared with the baseline in the non-phosphate mining area. Beta diversity analysis indicated that phosphate mining led to the differentiation of bacterial community structure in plant rhizospheres. Bacterial metabolic analysis indicated that different plant rhizosphere microbial flora developed various metabolic strategies in response to phosphate mining stress, including enriching unsaturated fatty acids, antibiological transport systems, cold shock proteins, etc. This study reveals the interaction between crops, rhizosphere bacteria, and soil pollutants. Select differentiated microbial strains suitable for specific plant rhizosphere environments are necessary for agricultural soil remediation. Additionally, the problem of destruction of agricultural soil and microecology caused by phosphate mining must be solved.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Zhijie Bao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenying Tu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|