1
|
Zacs D, Perkons I, Sire J, Bartkevics V. Occurrence levels of perfluoroalkyl carboxylic acids (PFCA) and perfluoroalkyl sulfonic acids (PFSA) in European perch (Perca fluviatilis) samples collected from inland waters in Latvia: Component profiles, spatial distribution and dietary exposure to consumers. ENVIRONMENTAL RESEARCH 2025; 269:120882. [PMID: 39828192 DOI: 10.1016/j.envres.2025.120882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/26/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This study was performed to evaluate the occurrence of perfluorinated substances (PFAS) in European perch (Perca fluviatilis) samples from Latvian freshwater bodies. Twenty-nine samples of perch tissue homogenates were analyzed on the content of PFAS representing different sampling sites to cover all territory of Latvia evenly. The total PFAS concentrations (∑PFAS) ranged from 0.27 to 3.50 ng g-1 (mean 1.03 ng g-1 and median 0.78 ng g-1, respectively), while total priority four PFAS (∑4PFAS) concentration was in the range from 0.20 to 3.09 ng g-1 (mean 0.72 ng g-1 and median 0.49 ng g-1, respectively). The most prominent PFAS representative was perfluoroctanesulfonic acid (PFOS), presented in all samples at concentrations from 0.18 to 3.04 ng g-1 and constituting ∼ 60% of the total selected PFAS fraction. Observed concentrations of ∑4PFAS were significantly lower than established maximum levels (MLs), reaching maximum contamination up to 7% of respective ML. Calculated dietary intake figures do not exceed the safety threshold constituting from 5 to 7.5% of EFSA tolerable weekly intake (TWI) of 4.4 ng kg-1 bw. wk-1, however, a significantly higher intake of up to 45% of TWI could be obtained if maximum ∑4PFAS concentrations are used in calculations. Analysis of the spatial distribution of PFAS concentrations across various sampling sites suggests multiple contamination sources impacting Latvian freshwater bodies. While observed concentrations generally appear lower compared to data from heavily industrialized regions, the possibility of localized areas within Latvia exhibiting elevated PFAS levels cannot be excluded.
Collapse
Affiliation(s)
- D Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga, LV-1076, Latvia.
| | - I Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga, LV-1076, Latvia.
| | - J Sire
- Latvian Environment, Geology and Meteorology Centre, Maskavas iela 165, Riga, LV-1019, Latvia
| | - V Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, Riga, LV-1076, Latvia
| |
Collapse
|
2
|
Jones SE, Gutkowski N, Demick S, Curello M, Pavia A, Robuck AR, Li ML. Assessing Bivalves as Biomonitors of Per- and Polyfluoroalkyl Substances in Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40036337 DOI: 10.1021/acs.est.4c11215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals that enter coastal ecosystems through various pathways. Despite the ecological and economic significance of coastal environments, monitoring efforts to identify PFAS in these regions are limited. Bivalves have been used as biomonitors for many pollutants, but their effectiveness in reflecting environmental PFAS contamination and the mechanisms of PFAS bioaccumulation is poorly understood. This study examined the impact of biological, chemical, and ecological variables on PFAS bioaccumulation in two bivalve species (i.e., Eastern oyster and Atlantic ribbed mussel) and developed a statistical model to predict the PFAS content in wild bivalves. Overall, the summed PFAS concentration in the bivalves closely mirrors that in water. We observed higher bioaccumulation factors for some perfluoroalkyl sulfonamides and branched PFAS isomers than for terminal PFAS of equivalent chain length. The isomer distribution and precursor-to-terminal compound ratios provide compelling evidence that the biotransformation of PFAS precursors likely drives these elevated factors. Additionally, the bioaccumulation factors of PFAS decrease with increasing organism size and age, suggesting that smaller and younger bivalves have greater bioaccumulation potential and are more susceptible to PFAS contamination. These findings provide critical information that guides the use of bivalves as biomonitors to evaluate PFAS contamination in aquatic environments.
Collapse
Affiliation(s)
- Shannon E Jones
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Nicole Gutkowski
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Shayna Demick
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Max Curello
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Ashley Pavia
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Anna R Robuck
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Office of Research and Development, Narragansett, Rhode Island 02882-1153, United States
| | - Mi-Ling Li
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Dai S, Zhang G, Dong C, Yang R, Pei Z, Li Y, Li A, Zhang Q, Jiang G. Occurrence, bioaccumulation and trophodynamics of per- and polyfluoroalkyl substances (PFAS) in terrestrial and marine ecosystems of Svalbard, Arctic. WATER RESEARCH 2025; 271:122979. [PMID: 39708621 DOI: 10.1016/j.watres.2024.122979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) enter the Arctic through long-range transport and local pollution. To date, little is known about their behavior in plant and benthic marine food webs in remote Arctic. In this study, we analyzed the environmental distribution and nutrient transfer of 20 PFAS in soil, sediment, plant and benthic biota samples collected between 2014 and 2016 in Svalbard, Arctic. Total concentrations of PFAS were in the ranges of 0.12-4.84 ng/g dry weight (dw) in soil, 0.15-0.93 ng/g dw in sediment, 0.11-16.6 ng/g dw in plant, and 0.049-26.2 ng/g dw in marine biota. Perfluorocarboxylic acids (PFCAs) dominated Σ20PFAS in all sample types except amphipods, in which perfluorooctane sulfonate (PFOS) made up 80 % of Σ20PFAS. The profile of PFAS components observed in the terrestrial and marine ecosystems suggests that atmospheric transport and oxidation of volatile precursors are important sources of PFCAs in the Arctic region. However, the impact of long-distance ocean transport and local emissions cannot be ignored. The biota-sediment or biota-soil bioaccumulation factors (BSAF) differed among plants and biota species, with mountain avens (BSAF of Σ20PFAS: 12.1) and amphipods (BSAF of Σ20PFAS: 44.9) having higher accumulation potential. PFOS, perfluorohexane sulfonamide (FHxSA) and Σ20PFAS have biomagnification potential in Arctic benthic biota, but short-chain PFCA exhibits trophic dilution. This is one of few studies to investigate the environmental behavior of PFAS in terrestrial and aquatic ecosystems in the remote Arctic, providing a basis for investigating the ecological risks of PFAS in polar regions.
Collapse
Affiliation(s)
- Shiyu Dai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - An Li
- School of Public Health, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Fremlin KM, Elliott JE, Gobas FAPC. Guidance for measuring and evaluating biomagnification factors and trophic magnification factors of difficult substances: application to decabromodiphenylethane. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2025; 21:263-278. [PMID: 39886942 PMCID: PMC11844767 DOI: 10.1093/inteam/vjae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 02/01/2025]
Abstract
As field based trophic magnification factors (TMFs) and biomagnification factors (BMFs) become more prominent regulatory metrics used in bioaccumulation assessments of commercial chemicals, there is a need to develop standardized guidelines for conducting field-based bioaccumulation studies and to establish methods using weight of evidence analyses of those studies. Hence, the primary objectives of this study were (1) to compile a set of comprehensive criteria and guidelines for conducting field-based biomagnification studies and (2) to develop a weight of evidence meta-analysis for evaluating field-based biomagnification studies and their reported biomagnification metrics for assessing the biomagnification potential of substances. To test the effectiveness of our proposed guidelines and weight of evidence meta-analysis, we reviewed over 25 field studies investigating the biomagnification of decabromodiphenyl ethane (DBDPE), a substance that is considered super-hydrophobic and difficult to test in bioconcentration tests. Approximately half of the field studies that investigated trophic magnification of DBDPE in food webs or biomagnification of DBDPE in predator-prey interactions were considered of acceptable quality, whereas no studies were of high quality. Quality scores of studies statistically decreased with increasing TMF (r2 = 0.261, p = .035) and/or BMF (r2 = 0.238, p = .0024). The weight of evidence meta-analysis indicated with a high level of confidence that concentrations of DBDPE do not biomagnify in top predators and within food-webs. Given the increasing importance of the TMF and BMF for bioaccumulation assessments and the apparent deficiencies in current biomagnification studies identified in this meta-analysis for DBDPE, there is an urgent need to adopt standardized guidelines and procedures for both conducting and evaluating field-based biomagnification studies.
Collapse
Affiliation(s)
- Kate M Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - John E Elliott
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Delta, BC, Canada
| | - Frank A P C Gobas
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- School of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
5
|
Antell EH, Yi S, Olivares CI, Chaudhuri S, Ruyle BJ, Alvarez-Cohen L, Sedlak DL. Selective Quantification of Charged and Neutral Polyfluoroalkyl Substances Using the Total Oxidizable Precursor (TOP) Assay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3780-3791. [PMID: 39946740 DOI: 10.1021/acs.est.4c13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Perfluoroalkyl acid (PFAA) precursors are a diverse subclass of per- and polyfluoroalkyl substances (PFASs) that can be transformed into PFAAs of public health concern. Unlike strongly acidic PFAAs, precursors can be anionic, cationic, neutral, or zwitterionic. Precursor charge affects the environmental fate, but existing quantification techniques struggle to ascertain the abundance of compounds within each charge group. To fill this gap, we developed and validated a solid-phase extraction procedure that separates precursors by charge and quantifies the sum of the precursors in each fraction with the total oxidizable precursor (TOP) assay. Method performance was demonstrated by spiking known concentrations of ten precursors into aqueous film-forming foam (AFFF)-impacted groundwater, municipal wastewater, and soil samples. Precursor fractionation and recovery were greater in groundwater and soil samples than in wastewater. Use of the method provided results that were consistent with expectations based on precursor transport properties. In surficial soils near an AFFF source zone, anionic precursors with five or fewer perfluorinated carbons accounted for about 95% of PFASs, but less than half of PFASs in the underlying groundwater. In municipal wastewater influent, the sum of precursors exceeded the sum of PFAAs and was approximately equally distributed among all charge fractions.
Collapse
Affiliation(s)
- Edmund H Antell
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Shan Yi
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, 1142, New Zealand
| | - Christopher I Olivares
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Shreya Chaudhuri
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California 94720, United States
| | - Bridger J Ruyle
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California 94305, United States
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - David L Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Balgooyen S, Scott M, Blackwell BR, Pulster EL, Mahon MB, Lepak RF, Backe WJ. A High Efficiency Method for the Extraction and Quantitative Analysis of 45 PFAS in Whole Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3759-3770. [PMID: 39954005 DOI: 10.1021/acs.est.4c10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
This study describes and validates a new method for extracting perfluoroalkyl and polyfluoroalkyl substances (PFAS) from whole-body fish tissue, demonstrates that freeze-dry preservation of tissue conserves bioaccumulative PFAS, and details a method demonstration on Lake Michigan fish. While fish filets are more commonly analyzed for their significance to human health, whole fish are useful to determine ecological impacts, but published methods such as EPA 1633 do not produce reliable results for this more challenging matrix. Here we show that lipid removal technology produces clean extracts without the need for solid-phase extraction or evaporative concentration, which often lead to loss of some PFAS. This method achieves an accuracy of 96 ± 9% for the detection of 45 PFAS while also offering benefits of a simple procedure, reduced processing time, and decreased waste generation compared to multistep cleanup and concentration methods. A test of freeze-drying demonstrated that compounds detected in Great Lakes fish were retained, but volatile compounds including sulfonamide precursors and ethanols were lost. To demonstrate field performance, the entire method was applied to whole-fish composites from Lake Michigan. Results from these samples reveal that the PFAS concentration was driven by collection location, while the distribution of PFAS was dictated by fish species.
Collapse
Affiliation(s)
- Sarah Balgooyen
- SpecPro Professional Services, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Madelynn Scott
- Oak Ridge Associated Universities, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Brett R Blackwell
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Erin L Pulster
- U.S. Geological Survey Columbia Environmental Research Center, 4200 East New Haven Road, Columbia, Missouri 65201, United States
| | - Michael B Mahon
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Ryan F Lepak
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| | - Will J Backe
- United States Environmental Protection Agency Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, Minnesota 55804, United States
| |
Collapse
|
7
|
Chen Y, Gattoni KM, Paul E, Sullivan PJ, Valachovic AC, Vogl L. Contamination of Per- And Polyfluoroalkyl Substances in Freshwater Fish from Areas Adjacent to Three Former and Active Military Facilities in New York. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:135-150. [PMID: 39937246 DOI: 10.1007/s00244-025-01116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
This study investigates the contamination of per- and polyfluoroalkyl substances (PFAS) in freshwater fish from waterbodies near former and currently active military bases in the State of New York, USA. Three facilities with a history of long-term use and discharge of aqueous film-forming foam (AFFF) were studied. Here, we focused on previously uninvestigated areas that are outside of the base properties. Freshwater fish samples were collected from sites at different distances both downstream and upstream of the bases. Overall, 508 fish from 25 species were collected at 22 sites over 3 years, and whole-fish PFAS concentrations were quantified using LC-MS/MS. PFAS levels in fish from downstream sites have significantly higher body burden of PFAS. Perfluorooctane sulfonic acid (PFOS), the foaming agent in legacy AFFF, is the dominant PFAS component in fish from downstream sites in all waterbodies sampled and appeared to be the main driving factor differentiating fish from presumed contaminated sites and reference sites. Distance from the contaminant source, species, and hydrological conditions also significantly influenced the PFAS accumulation in fish. Temporal differences were only significant at sites where accidental discharge of AFFF occurred immediately prior to the 1st year of sampling. The current study demonstrates the extent of PFAS contamination and accumulation in biota at a distance away from the contaminant source. We also highlight the need for evaluation of potential concerns for human and ecological health in these areas as a result of historical AFFF use and release from military facilities in the US.
Collapse
Affiliation(s)
- Yu Chen
- Division of Materials Management, New York State Department of Environmental Conservation, 625 Broadway, 9th Floor, Albany, NY, 12233, USA.
| | - Kaitlin M Gattoni
- Division of Materials Management, New York State Department of Environmental Conservation, 625 Broadway, 9th Floor, Albany, NY, 12233, USA
| | - Eric Paul
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, 625 Broadway, 5th Floor, Albany, NY, 12333, USA
| | - Patrick J Sullivan
- Department of Natural Resources and the Environment, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Abigail C Valachovic
- Division of Fish and Wildlife, New York State Department of Environmental Conservation, 625 Broadway, 5th Floor, Albany, NY, 12333, USA
| | - Leili Vogl
- Division of Materials Management, New York State Department of Environmental Conservation, 625 Broadway, 9th Floor, Albany, NY, 12233, USA
| |
Collapse
|
8
|
Sobolewski TN, Trousdale RC, Gauvin CL, Lawrence CM, Walker RA. Nanomolar PFOA Concentrations Affect Lipid Membrane Structure: Consequences for Bioconcentration Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:709-718. [PMID: 39718541 DOI: 10.1021/acs.est.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Independent methods show that sub-microMolar concentrations of perfluorooctanoic acid (PFOA), a member of the PFAS family of "forever chemicals", change the properties of DPPC vesicle bilayers. Specifically, calorimetry measurements show that PFOA at concentrations as low as 0.1 nM lowers DPPC's gel-liquid crystalline transition enthalpy by several J/g without changing the transition temperature (Tgel-LC), and dynamic light scattering (DLS) data illustrate that PFOA markedly broadens the size distribution of DPPC vesicles. Furthermore, DLS results from PFOA-containing, DPPC vesicle solutions also contain smaller objects having diameters of 30-50 nm. Close inspection of cryo-EM images reveals that DPPC vesicles formed in the presence of PFOA are multilamellar and the smaller objects have a clear bilayer structure similar to niosomes. A consequence of these PFOA-induced changes to DPPC bilayer structure is that the bilayers themselves are more susceptible to secondary solute accumulation. Time resolved emission measurements of Coumarin 152 (C152) report that C152 is 3-fold more likely to partition into the bilayer's acyl chain, hydrophobic interior when PFOA is present, and fluorescence lifetimes from C152 partitioned into the polar region of the lipid bilayer show evidence of PFOA-induced membrane hydration below Tgel-LC.
Collapse
Affiliation(s)
- Tess N Sobolewski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Rhys C Trousdale
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Colin L Gauvin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Robert A Walker
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
- Montana Materials Science Program, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
9
|
Flinders C, Barnhart B, Ragsdale R. Quantifying sources of variability in fish bioaccumulation factor estimates for perfluoro-n-octane sulfonic acid: study design effects and implications for water quality criteria. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:260-269. [PMID: 39887275 PMCID: PMC11790207 DOI: 10.1093/etojnl/vgae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 09/10/2024] [Indexed: 02/01/2025]
Abstract
Numeric water quality criteria development approaches for the protection of aquatic life and human health incorporate bioaccumulation factors (BAFs) as key exposure pathways. These are typically derived from field-collected tissue and ambient water concentration data, and are often highly variable within and across species. Existing guidance for conducting BAF field studies is necessarily general to accommodate research objectives, ecosystem characteristics, and the chemicals and species of interest. However, the direction on evaluating study quality and understanding of the relative influence of study design components on BAFs is limited. We used a large, publicly available dataset of perfluoro-n-octane sulfonic acid (PFOS) concentrations in water and fish tissue to (1) evaluate overall patterns and drivers of water and fish tissue PFOS concentrations and derived BAFs, and (2) quantify how biological, environmental, and study design factors regarding water and tissue samples affect derived BAFs. PFOS tissue concentrations and BAFs differed significantly with species and, although variable, there was a significant positive relationship between PFOS water and fish tissue concentrations. Using biological, environmental, and study design variables, boosted regression tree analyses showed that spatial proximity between water and fish tissue sampling locations was the primary driver of BAF variability owing to large differences in water concentrations across hydraulically connected sites. Other variables, including temporal proximity between samples and biological and environmental factors, were less influential relative to spatial proximity. Our findings demonstrate that BAF study design decisions can have significant implications for key water quality criteria derivation components and highlight the need for sampling regimes that accurately characterize exposure to improve the quality of BAFs used in risk assessment and the development of regulatory standards.
Collapse
|
10
|
Chen J, Liu Y, Chao L, Hou L, Wang Y, Chu J, Sun J. Distribution, trophic magnification and risk of trace metals and perfluoroalkyl acids in marine organisms from Haizhou Bay. ENVIRONMENTAL RESEARCH 2024; 261:119746. [PMID: 39102939 DOI: 10.1016/j.envres.2024.119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Haizhou Bay, a semi-enclosed key aquaculture area in East China, has had relatively limited research focused on trace metals and perfluoroalkyl acids (PFAAs) in its biota. This study characterized the distribution, biomagnification and health risks of selected trace metals and PFAAs in various marine organisms from Haizhou Bay. Among the species examined, zinc (Zn) was the most prevalent metal, followed by copper (Cu) and chromium (Cr), whereas cadmium (Cd), total mercury (THg), and methylmercury (MeHg) contents were relatively low. Perfluorooctane sulfonate (PFOS) was the most abundant PFAA, followed by perfluorooctanoic acid (PFOA). The calculated trophic magnification factors (TMFs) were above one for Cr, THg, MeHg, and all PFAAs except perfluorobutanoic acid (PFBA) and perfluorotetradecanoic acid (PFTeDA). Across animal groups, gastropods exhibited relatively low levels of THg, MeHg, and perfluorosulfonic acids (∑PFSAs). By comparison, fish generally had lower levels of Cd and Cu compared to other animal groups, and demersal fish had significantly higher MeHg compared to gastropods. Certain organisms, such as cephalopods and shrimps, were found to pose potential health risks due to elevated levels of Cd, while levels of other studied metals, PFOS and PFOA generally appeared to be within safe limits for human consumption. Further research is needed to assess the sources and impacts of these and other contaminants.
Collapse
Affiliation(s)
- Jingrui Chen
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China
| | - Yuanyuan Liu
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China
| | - Le Chao
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China
| | - Lulu Hou
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China
| | - Yunfeng Wang
- Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Jiansong Chu
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China.
| | - Jiachen Sun
- College of Marine Life Sciences, Ocean University of China, 266003, Qingdao, China.
| |
Collapse
|
11
|
Arp HPH, Gredelj A, Glüge J, Scheringer M, Cousins IT. The Global Threat from the Irreversible Accumulation of Trifluoroacetic Acid (TFA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19925-19935. [PMID: 39475534 PMCID: PMC11562725 DOI: 10.1021/acs.est.4c06189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
Trifluoroacetic acid (TFA) is a persistent and mobile substance that has been increasing in concentration within diverse environmental media, including rain, soils, human serum, plants, plant-based foods, and drinking water. Currently, TFA concentrations are orders of magnitude higher than those of other per- and polyfluoroalkyl substances (PFAS). This accumulation is due to many PFAS having TFA as a transformation product, including several fluorinated gases (F-gases), pesticides, pharmaceuticals, and industrial chemicals, in addition to direct release of industrially produced TFA. Due to TFA's extreme persistence and ongoing emissions, concentrations are increasing irreversibly. What remains less clear are the thresholds where irreversible effects on local or global scales occur. There are indications from mammalian toxicity studies that TFA is toxic to reproduction and that it exhibits liver toxicity. Ecotoxicity data are scarce, with most data being for aquatic systems; fewer data are available for terrestrial plants, where TFA bioaccumulates most readily. Collectively, these trends imply that TFA meets the criteria of a planetary boundary threat for novel entities because of increasing planetary-scale exposure, where potential irreversible disruptive impacts on vital earth system processes could occur. The rational response to this is to instigate binding actions to reduce the emissions of TFA and its many precursors.
Collapse
Affiliation(s)
- Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), 0484, Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), 7491, Trondheim, Norway
| | - Andrea Gredelj
- Norwegian
Geotechnical Institute (NGI), 0484, Oslo, Norway
| | - Juliane Glüge
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Martin Scheringer
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- RECETOX, Masaryk
University, 625 00 Brno, Czech
Republic
| | - Ian T. Cousins
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
12
|
Petali JM, Pulster EL, McCarthy C, Pickard HM, Sunderland EM, Bangma J, Carignan CC, Robuck A, Crawford KA, Romano ME, Lohmann R, von Stackelburg K. Considerations and challenges in support of science and communication of fish consumption advisories for per- and polyfluoroalkyl substances. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1839-1858. [PMID: 38752651 PMCID: PMC11486601 DOI: 10.1002/ieam.4947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
Federal, state, tribal, or local entities in the United States issue fish consumption advisories (FCAs) as guidance for safer consumption of locally caught fish containing contaminants. Fish consumption advisories have been developed for commonly detected compounds such as mercury and polychlorinated biphenyls. The existing national guidance does not specifically address the unique challenges associated with bioaccumulation and consumption risk related to per- and polyfluoroalkyl substances (PFAS). As a result, several states have derived their own PFAS-related consumption guidelines, many of which focus on one frequently detected PFAS, known as perfluorooctane sulfonic acid (PFOS). However, there can be significant variation between tissue concentrations or trigger concentrations (TCs) of PFOS that support the individual state-issued FCAs. This variation in TCs can create challenges for risk assessors and risk communicators in their efforts to protect public health. The objective of this article is to review existing challenges, knowledge gaps, and needs related to issuing PFAS-related FCAs and to provide key considerations for the development of protective fish consumption guidance. The current state of the science and variability in FCA derivation, considerations for sampling and analytical methodologies, risk management, risk communication, and policy challenges are discussed. How to best address PFAS mixtures in the development of FCAs, in risk assessment, and establishment of effect thresholds remains a major challenge, as well as a source of uncertainty and scrutiny. This includes developments better elucidating toxicity factors, exposures to PFAS mixtures, community fish consumption behaviors, and evolving technology and analytical instrumentation, methods, and the associated detection limits. Given the evolving science and public interests informing PFAS-related FCAs, continued review and revision of FCA approaches and best practices are vital. Nonetheless, consistent, widely applicable, PFAS-specific approaches informing methods, critical concentration thresholds, and priority compounds may assist practitioners in PFAS-related FCA development and possibly reduce variability between states and jurisdictions. Integr Environ Assess Manag 2024;20:1839-1858. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Jonathan Michael Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, New Hampshire, USA
| | - Erin L Pulster
- US Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | | | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jacqueline Bangma
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Courtney C Carignan
- Department Food Science and Human Nutrition, Department of Pharmacology and Toxicology Michigan State University, East Lansing, Michigan, USA
| | - Anna Robuck
- Environmental Effects Research Laboratory, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Kathryn A Crawford
- Environmental Studies Programs, Middlebury College, Middlebury, Vermont, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Katherine von Stackelburg
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Liu Z, Peldszus S, Sauvé S, Barbeau B. Enhanced removal of trace-level per- and polyfluoroalkyl substances (PFAS) from drinking water using granular activated carbon (GAC): The role of ozonation. CHEMOSPHERE 2024; 368:143758. [PMID: 39549965 DOI: 10.1016/j.chemosphere.2024.143758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Granular activated carbon (GAC) is a promising approach for removing per- and polyfluoroalkyl substances (PFAS) from drinking water. However, GAC filters usually suffer early PFAS breakthroughs due to the competition between PFAS and natural organic matter (NOM) during sorption. The present study investigated the possibility of using ozonation to enhance the GAC performance for PFAS removal. Rapid-small-scale-column tests were performed for three GACs using filtered or filtered and ozonated water. NOM was fractionated using liquid chromatography-organic carbon detection (LC-OCD), and 76 ambient PFAS were quantified using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Although ozonation did not remove either NOM or PFAS, it altered their composition in water. Ozonation reduced the hydrophobicity and the molecular size of natural organic matter (NOM). On the other hand, ozonation oxidized some PFAS precursors, leading to a higher total detected PFAS concentration in the filtered and ozonated water than in filtered water (10.2 ± 0.7 ng/L vs. 9.5 ± 0.7 ng/L). The impact of ozonation on GAC performance for NOM and PFAS removal mainly depended on GAC properties. GAC with a lower micropore volume showed an improvement in NOM and PFAS removal when ozonation was applied, approaching the performance of GACs with higher micropore volumes.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, Quebec, Canada.
| | - Sigrid Peldszus
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sébastien Sauvé
- Department of Chemistry, University of Montréal, Montréal, Quebec, Canada
| | - Benoit Barbeau
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| |
Collapse
|
14
|
Pickard HM, Ruyle BJ, Haque F, Logan JM, LeBlanc DR, Vojta S, Sunderland EM. Characterizing the Areal Extent of PFAS Contamination in Fish Species Downgradient of AFFF Source Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19440-19453. [PMID: 39412174 PMCID: PMC11526379 DOI: 10.1021/acs.est.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Most monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination. Clustering analysis indicates that the PFAS composition characteristic of AFFF is detectable in water and fishes >8 km from the source. Concentrations of 38 targeted PFAS and extractable organofluorine (EOF) decreased in fishes downgradient of the AFFF-contaminated source zones. However, PFAS concentrations remained above consumption limits at all locations within the affected watershed. Perfluoroalkyl sulfonamide precursors accounted for approximately half of targeted PFAS in fish tissues, which explain >90% of EOF across all sampling locations. Suspect screening analyses revealed the presence of a polyfluoroketone pharmaceutical in fish species, and a fluorinated agrochemical in water that likely does not accumulate in biological tissues, suggesting the presence of diffuse sources such as septic system and agrochemical inputs throughout the watershed in addition to AFFF contamination. Based on these results, monitoring programs that consider all hydrologically connected regions within watersheds affected by large PFAS sources would help ensure public health protection.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Global Ecology, Carnegie Institution
for Science, Stanford, California 94305, United States
| | - Faiz Haque
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John M. Logan
- Massachusetts
Division of Marine Fisheries, New
Bedford, Massachusetts 02744, United States
| | - Denis R. LeBlanc
- U.S.
Geological Survey, Emeritus Scientist, New
England Water Science Center, Northborough, Massachusetts 01532, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
15
|
Dimitrakopoulou ME, Karvounis M, Marinos G, Theodorakopoulou Z, Aloizou E, Petsangourakis G, Papakonstantinou M, Stoitsis G. Comprehensive analysis of PFAS presence from environment to plate. NPJ Sci Food 2024; 8:80. [PMID: 39369000 PMCID: PMC11455986 DOI: 10.1038/s41538-024-00319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose an emerging environmental risk impacting food products and ecosystems. This study analyzes over 150,000 entries from food safety authorities and scientific publications from 2017 onwards. Our findings show that fish & seafood, and biota have the highest PFAS concentrations due to environmental contamination and bioaccumulation. Surface water samples also frequently contain PFAS, raising concerns about long-term ecological and human health effects. Comprehensive strategies are essential to mitigate these risks.
Collapse
|
16
|
Ford AT, Ginley F. Insights into PFAS contaminants before and after sewage discharges into a marine protected harbour. CHEMOSPHERE 2024; 366:143526. [PMID: 39395480 DOI: 10.1016/j.chemosphere.2024.143526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
Per and polyfluoroalkyl substances (PFAS) and their degradation products are a concern to human and ecosystem health. Wastewater treatment plants are not efficient at removing PFAS compounds and are thought to be a major source of these compounds to marine environments. The sewerage infrastructure in the UK, has over 20,000 combined stormwater overflows (CSOs). These CSOs are relief values whereby untreated wastewater can discharge under permit from the Environment Agency with exceptional rain/snowfall conditions. CSOs discharged 3.6 million monitored hours of untreated wastewater into English rivers and coasts in 2023. Concerns have been raised about the proximity of these CSO discharges to highly protected marine habitats. This study is the first to determine that PFAS concentrations are elevated in a highly protected marine bay (Langstone Harbour, England) following recent sewage releases compared to an extended period without discharge. Analysis was carried out into a suite of 54 PFAS compounds of which only one (PFHpA) was detectable above LOD prior to discharges but 8 afterwards. These included banned PFOS (Linear and Branched 8.6 ng/L ∓ 0.90) and PFOA (2.9 ng/L ∓ 0.29) which were above annual average EQS for inland and 'other' surface waters. Most of the PFAS compounds detected doubled in concentration above LODs. These two-fold increases we discuss are likely conservative estimates based on the use of LODs and tidal conditions. Additional Oysters (Crassostrea gigas) and Seaweed (Fucus vesiculosus) were taken revealing high concentrations of the shorter chain PFBA (6.99μg/kg ∓ 2.42 ww) in seaweed samples. These seaweeds were calculated to have conservative bioaccumulation factors (BAF) > 6000 for PFBA indicating these algae might be an important reservoir of some PFAS contamination. We discuss these results in the context of the largescale discharges of untreated wastewater nationally and globally, and call upon a need for a better understanding of the transfer of PFAS contaminants into marine food chains.
Collapse
Affiliation(s)
- Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, PO4 9LY, UK.
| | | |
Collapse
|
17
|
Blazer VS, Walsh HL, Smith CR, Gordon SE, Keplinger BJ, Wertz TA. Tissue distribution and temporal and spatial assessment of per- and polyfluoroalkyl substances (PFAS) in smallmouth bass (Micropterus dolomieu) in the mid-Atlantic United States. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59302-59319. [PMID: 39348015 PMCID: PMC11513725 DOI: 10.1007/s11356-024-35097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become an environmental issue worldwide. A first step to assessing potential adverse effects on fish populations is to determine if concentrations of concern are present in a region and if so, in which watersheds. Hence, plasma from adult smallmouth bass Micropterus dolomieu collected at 10 sites within 4 river systems in the mid-Atlantic region of the United States, from 2014 to 2019, was analyzed for 13 PFAS. These analyses were directed at better understanding the presence and associations with land use attributes in an important sportfish. Four substances, PFOS, PFDA, PFUnA, and PFDoA, were detected in every plasma sample, with PFOS having the highest concentrations. Sites with mean plasma concentrations of PFOS below 100 ng/ml had the lowest percentage of developed landcover in the upstream catchments. Sites with moderate plasma concentrations (mean PFOS concentrations between 220 and 240 ng/ml) had low (< 7.0) percentages of developed land use but high (> 30) percentages of agricultural land use. Sites with mean plasma concentrations of PFOS > 350 ng/ml had the highest percentage of developed land use and the highest number PFAS facilities that included military installations and airports. Four of the sites were part of a long-term monitoring project, and PFAS concentrations of samples collected in spring 2017, 2018, and 2019 were compared. Significant annual differences in plasma concentrations were noted that may relate to sources and climatic factors. Samples were also collected at two sites for tissue (plasma, whole blood, liver, gonad, muscle) distribution analyses with an expanded analyte list of 28 PFAS. Relative tissue distributions were not consistent even within one species of similar ages. Although the long-chained legacy PFAS were generally detected more frequently and at higher concentrations, emerging compounds such as 6:2 FTS and GEN X were detected in a variety of tissues.
Collapse
Affiliation(s)
- Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA.
| | - Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Cheyenne R Smith
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | - Stephanie E Gordon
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, Kearneysville, WV, 25430, USA
| | | | - Timothy A Wertz
- Pennsylvania Department of Environmental Protection, Harrisburg, PA, 17101, USA
| |
Collapse
|
18
|
Yao D, Shao J, Jia D, Sun W. Immunotoxicity of legacy and alternative per- and polyfluoroalkyl substances on zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124511. [PMID: 38977121 DOI: 10.1016/j.envpol.2024.124511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024]
Abstract
Hexafluoropropylene oxide dimer acid (HFPO-DA) and perfluoroethylcyclohexane sulfonate (PFECHS) are increasingly used as alternatives for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). However, their immunotoxicity and underlying molecular mechanisms remain poorly understood. Here, to assess immunotoxic effects, zebrafish embryos were exposed to environmentally relevant concentrations of PFOA, PFOS, HFPO-DA, and PFECHS for four days. Results revealed that all four per- and polyfluoroalkyl substances (PFAS) resulted in decreased heart rate and spontaneous movement, and induced oxidative stress in zebrafish larvae. Notably, HFPO-DA exhibited more severe oxidative stress than PFOA. Immune dysfunction was observed, characterized by elevated cytokine, complement factor, nitric oxide, and neutrophil content, along with a significant decrease in lysozyme content. Transcriptomic analysis revealed the activation of Toll-like receptor (TLR)/NOD-like receptor (NLR)/RIG-I-like receptor (RLR) and associated downstream genes, indicating their pivotal role in PFAS-induced immunomodulation. Molecular docking simulations demonstrated stable interactions between PFAS and key receptors (TLR2, NOD2 and RIG-I). Overall, HFPO-DA and PFECHS exhibited immunotoxic effects in zebrafish larvae similar to legacy PFAS, providing important information for understanding the toxic mode of action of these emerging alternatives.
Collapse
Affiliation(s)
- Dengdiao Yao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Jian Shao
- College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Dantong Jia
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| |
Collapse
|
19
|
Liu S, Liu Y, Tang B, Wang Q, Zhang M, Qiu W, Luo X, Mai B, Hao Y, Zheng J, Wang K, Wang D. Spatial distribution, trophic magnification, and risk assessment of per- and polyfluoroalkyl substances in Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis): Risks of emerging alternatives. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135246. [PMID: 39032177 DOI: 10.1016/j.jhazmat.2024.135246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
The Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is the only freshwater cetacean found in China. However, per- and polyfluoroalkyl substances (PFASs) risks in YFPs remain unclear. In this study, legacy PFASs, their precursors and alternatives, were determined in YFP muscles (n = 32), liver (n = 29), kidney (n = 24), skin (n = 5), and blubbers (n = 25) collected from Poyang Lake (PL) and Yangtze River (YR) between 2017 and 2023. Perfluorooctane sulfonic acid (PFOS) was the predominant PFAS in all YFP tissues, with a median hepatic concentration of 1700 ng/g wet weight, which is higher than that in other finless porpoises worldwide. PFOS, chlorinated polyfluorinated ether sulfonates (Cl-PFESAs), and perfluoroalkane sulfonamides concentrations in YFP livers from PL were significantly higher than those from YR (p < 0.05); however, the opposite was observed for hexafluoropropylene oxide acids. Biomagnification and trophic magnification factors (BMF and TMF, respectively) of most PFASs in the YFP food web were > 1. Perfluoroheptane sulfonic acid had the highest BMF value (99), followed by 6:2 Cl-PFESA (94) and PFOS (81). The TMFmuscle and TMFliver values of the total PFASs were 3.4 and 6.6, respectively, and were significantly positively correlated with the fluorinated carbon chain length (p < 0.01). In addition, up to 62 % of the hazard quotients for 6:2 Cl-PFESA were > 1, which was higher than that of PFOS (48 %), suggesting a high hepatotoxicity of 6:2 Cl-PFESA to YFPs. Bioaccumulation and biotoxicity of legacy and emerging alternatives in aquatic organisms continue to be a concern, especially for underscoring the vulnerability of the long-lived and endangered species.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| | - Bin Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiyu Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Miao Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Jinsong Zheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kexiong Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ding Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
20
|
Li L, Han T, Li B, Bai P, Tang X, Zhao Y. Distribution Control and Environmental Fate of PFAS in the Offshore Region Adjacent to the Yangtze River Estuary─A Study Combining Multiple Phases Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15779-15789. [PMID: 39168926 DOI: 10.1021/acs.est.4c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The Yangtze River Estuary is the terminal sink of terrestrial per- and polyfluoroalkyl substances (PFAS) from the Yangtze River, while the environmental fate characteristics of legacy and emerging PFAS around this region have rarely been discussed. Here, 24 targeted PFAS in seawater, sediments, suspended particulate matter (SPM), and plankton in the offshore region adjacent to this estuary were investigated. The three dominant PFAS in all phases were perfluorooctanoic acid (PFOA, 23.8-61.9%), perfluorobutanoic acid (PFBA, 23.6-42.8%), and perfluoro(2-methyl-3-oxahexanoic) acid (HFPO-DA, 6.1-12.1%), and perfluoro-1-butane sulfonamide (FBSA, 0.1-7.3%) was first detected. The horizontal distributions of PFAS were dependent on salinity and disturbed by multiple water masses, while the vertical variations could be explained by their different partitioning characteristics in the water-SPM-sediment system (partition coefficients, Log Kd and Log Koc) and plankton (bioaccumulation factors, Log BAF). Although physical mixing was the major driver for PFAS settling (>83.7%), the absolute settling amount caused by the biological pump was still high (150.00-41994.65 ng m-2 day-1). More importantly, we found unexpected high Log Kd values of PFBA (2.24-4.55) and HFPO-DA (2.26-4.67), equal to PFOA (2.28-4.72), which brought concerns about their environmental persistence. Considering the increased detection of short-chain and emerging PFAS, more comprehensive environmental behaviors analysis is required urgently.
Collapse
Affiliation(s)
- Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Tongzhu Han
- Marine Bioresource and Environment Research Center, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bo Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Peng Bai
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| |
Collapse
|
21
|
Wang Q, Ruan Y, Shao Y, Jin L, Xie N, Yan M, Chen L, Schlenk D, Leung KMY, Lam PKS. Stereoselective Bioconcentration and Neurotoxicity of Perfluoroethylcyclohexane Sulfonate in Marine Medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12933-12942. [PMID: 39003765 DOI: 10.1021/acs.est.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Perfluoroethylcyclohexane sulfonate (PFECHS) is an emerging per- and polyfluoroalkyl substance used to replace perfluorooctane sulfonate (PFOS), mainly in aircraft hydraulic fluids. However, previous research indicates the potential neurotoxicity of this replacement chemical. In this study, marine medaka (Oryzias melastigma) was exposed to environmentally relevant concentrations of PFECHS (concentrations: 0, 0.08, 0.26, and 0.91 μg/L) from the embryonic stage for 90 days. After exposure, the brain and eyes of the medaka were collected to investigate the bioconcentration potential of PFECHS stereoisomers and their effects on the nervous systems. The determined bioconcentration factors (BCFs) of PFECHS ranged from 324 ± 97 to 435 ± 89 L/kg and from 454 ± 60 to 576 ± 86 L/kg in the brain and eyes of medaka, respectively. The BCFs of trans-PFECHS were higher than those of cis-PFECHS. PFECHS exposure significantly altered γ-aminobutyric acid (GABA) levels in the medaka brain and disrupted the GABAergic system, as revealed by proteomics, implying that PFECHS can disturb neural signal transduction like PFOS. PFECHS exposure resulted in significant alterations in multiple proteins associated with eye function in medaka. Abnormal locomotion was observed in PFECHS-exposed medaka larvae, which was rescued by adding exogenous GABA, suggesting the involvement of disrupted GABA signaling pathways in PFECHS neurotoxicity.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Naiyu Xie
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR 999077, China
| |
Collapse
|
22
|
Ma X, Cai D, Chen Q, Zhu Z, Zhang S, Wang Z, Hu Z, Shen H, Meng Z. Hunting Metabolic Biomarkers for Exposure to Per- and Polyfluoroalkyl Substances: A Review. Metabolites 2024; 14:392. [PMID: 39057715 PMCID: PMC11278593 DOI: 10.3390/metabo14070392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a class of persistent synthetic chemicals extensively utilized across industrial and consumer sectors, raising substantial environmental and human health concerns. Epidemiological investigations have robustly linked PFAS exposure to a spectrum of adverse health outcomes. Altered metabolites stand as promising biomarkers, offering insights into the identification of specific environmental pollutants and their deleterious impacts on human health. However, elucidating metabolic alterations attributable to PFAS exposure and their ensuing health effects has remained challenging. In light of this, this review aims to elucidate potential biomarkers of PFAS exposure by presenting a comprehensive overview of recent metabolomics-based studies exploring PFAS toxicity. Details of PFAS types, sources, and human exposure patterns are provided. Furthermore, insights into PFAS-induced liver toxicity, reproductive and developmental toxicity, cardiovascular toxicity, glucose homeostasis disruption, kidney toxicity, and carcinogenesis are synthesized. Additionally, a thorough examination of studies utilizing metabolomics to delineate PFAS exposure and toxicity biomarkers across blood, liver, and urine specimens is presented. This review endeavors to advance our understanding of PFAS biomarkers regarding exposure and associated toxicological effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhen Meng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| |
Collapse
|
23
|
Koban LA, King T, Huff TB, Furst KE, Nelson TR, Pfluger AR, Kuppa MM, Fowler AE. Passive biomonitoring for per- and polyfluoroalkyl substances using invasive clams, C. fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134463. [PMID: 38723486 DOI: 10.1016/j.jhazmat.2024.134463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/10/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of toxic manufactured chemicals in commercial and consumer products. They are resistant to environmental degradation and mobile in soil, air, and water. This study used the introduced bivalve Corbicula fluminea as a passive biomonitor at sampling locations in a primary drinking water source in Virginia, USA. Many potential PFAS sources were identified in the region. Perfluorohexane sulfonate (PFHxS) and 6:2 fluorotelomer sulfonic acid (6:2 FTS) levels were highest downstream of an airport. The highest levels of short-chain carboxylic acids were in locations downstream of a wastewater treatment plant. Measured PFAS concentrations varied by location in C. fluminea, sediment, and surface water samples. Two compounds were detected across all three mediums. Calculated partitioning coefficients confirm bioaccumulation of PFAS in C. fluminea and sorption to sediment. C. fluminea bioaccumulated two PFAS not found in the other mediums. Perfluoroalkyl carboxylic acids and short-chain compounds dominated in clam tissue, which contrasts with findings of accumulation of longer-chain and perfluorosulfonic acids in fish. These findings suggest the potential for using bivalves to complement other organisms to better understand the bioaccumulation of PFAS and their fate and transport in a freshwater ecosystem.
Collapse
Affiliation(s)
- Lauren A Koban
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Tabitha King
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Thomas B Huff
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Kirin E Furst
- Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - T Reid Nelson
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Andrew R Pfluger
- Department of Geography & Environmental Engineering, United States Military Academy, 745 Brewerton Road, West Point, NY 10996, USA.
| | - Mrudula Meghana Kuppa
- Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| | - Amy E Fowler
- Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| |
Collapse
|
24
|
Sonter CA, Tighe M, Rader R, Wilson SC. Can Bees Detect Perfluorooctane Sulfonate (PFOS)? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1638-1647. [PMID: 38721889 DOI: 10.1002/etc.5881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 04/01/2024] [Indexed: 06/27/2024]
Abstract
The European honey bee (Apis mellifera) is an important crop pollinator threatened by multiple stressors, including exposure to contaminants. Perfluorooctane sulfonate (PFOS) is a persistent global contaminant that accumulates and biomagnifies in food chains and is detected in honey. Even sublethal exposure to PFOS is detrimental to bee health, but exposure routes are unclear and nothing is known about bee response (detection, avoidance, or attraction) to PFOS. Using Y-mazes, we studied the response of individual bees to PFOS-spiked sugar syrup at four concentrations, 0.02, 30, 61 and 103 µg L-1. Bee activity, choice behavior, and drink duration for unspiked and spiked sugar syrup was recorded for 10 min in the Y-maze system. Most bees (≥80%) tasted and then drank the sugar syrup solutions, including the PFOS-contaminated syrup. Only at 61 and 103 µg L-1 did bees significantly avoid drinking PFOS-spiked syrup, and only when given a choice with unspiked syrup. When the choice of consuming unspiked syrup was removed, the bees drank PFOS-spiked syrup at all the PFOS concentrations tested, and avoidance was not evident. Avoidance was not observed in any treatment at 0.02 or 30 µg L-1 PFOS, concentrations that are frequently reported in environmental waters in contaminated areas. These findings confirm that bees will access PFOS-contaminated resources at concentrations detrimental to the colony health, and provide evidence of potential exposure pathways that may threaten crop pollination services and also human health via food chain transfer in PFOS-contaminated areas. Environ Toxicol Chem 2024;43:1638-1647. © 2024 SETAC.
Collapse
Affiliation(s)
- Carolyn A Sonter
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Matthew Tighe
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Romina Rader
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Susan C Wilson
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
25
|
Xiong J, Li Z. Predicting PFAS fate in fish: Assessing the roles of dietary, respiratory, and dermal uptake in bioaccumulation modeling. ENVIRONMENTAL RESEARCH 2024; 252:119036. [PMID: 38701889 DOI: 10.1016/j.envres.2024.119036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
An increasing number of per- and polyfluoroalkyl substances (PFAS) exposed to the environment may pose a threat to organisms and human beings. However, there is a lack of simulations comprehensively addressing and comparing the bioaccumulation of PFAS across all three major exposure routes (oral, inhalation, and dermal), especially for dermal uptake. In this study, we proposed a physiologically based kinetic (PBK) model for PFAS, aiming to predict bioaccumulation factors (BAF) in fish by considering these diverse exposure routes. 15 PFAS were used for model validation, and 11 PFAS from Taihu Lake were used for exposure contribution modeling. Approximately 64% of estimations fell within 10-fold model bias from measurements in Taihu Lake, underscoring the potential efficacy of the developed PBK model in predicting BAFs for fish. The dermal route emerges as a contributor to short-chain PFAS exposure. For example, it ranged widely from 46% to 75% (mean) for all modeling short-chain PFAS (C6-C7) in Taihu Lake. It indicated the criticality of considering dermal exposure for PFAS in fish, highlighting a gap in field studies to unravel cutaneous intake mechanisms and contributions. For longer carbon chains of PFAS (C8-C12), dermal exposure accounted for 2%-27% for all species of aquatic organisms. The fish's lipid fraction and water content played a significant role in the contribution of PFAS intake through cutaneous exposure and inhalation. Kow had a significant positive correlation with skin intake rate (p < 0.05) and gill intake rate (p < 0.001), while having a significant negative correlation with skin intake (p < 0.05) and skin intake contribution (p < 0.001). Based on the proposed modeling approach, we have introduced a simulation spreadsheet for projecting PFAS BAFs in fish tissues, hopefully broadening the predictive operational tool for a variety of chemical species.
Collapse
Affiliation(s)
- Jie Xiong
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
26
|
Zhu W, Liu W, Jin H. Sediment-seawater partitioning, bioaccumulation, and biomagnification of perfluorobutane sulfonamide in marine environment. WATER RESEARCH 2024; 255:121466. [PMID: 38493741 DOI: 10.1016/j.watres.2024.121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Environmental occurrence of perfluorobutane sulfonamide (PFBSA) has only been recently discovered. The current knowledge regarding the occurrence and environmental behaviors of PFBSA in the marine environment is still relatively limited. In this study, PFBSA and other 37 poly- and perfluoroalkyl substances were analyzed in seawater (n = 43), sediment (n = 43), and marine fish (n = 176) samples collected from East China Sea and Antarctic Ocean. PFBSA was detected in > 90% of seawater from East China Sea and Antarctic Ocean, with the concentrations of 1.0 - 19 ng/L and < LOD-228 pg/L, respectively. The field-based mean log-transformed sediment-seawater partitioning coefficients of PFBSA were 1.6 ± 0.19 L/kg dw and 1.1 ± 0.19 L/kg dw in East China Sea and Antarctic Ocean, respectively, which are lower than that of perfluorooctanoate and perfluorooctane sulfonate. This indicates its long-range transport potential in global oceans with ocean currents. The mean log-transformed bioaccumulation factor values of PFBSA determined in the multiple species of whole-body marine fishes from East China Sea and Antarctic Ocean were 2.3 L/kg ww and 2.4 L/kg ww, respectively, which are comparable to that of perfluoroheptanoate (2.3 L/kg ww) in marine fishes from East China Sea. We did not observe an obvious biomagnification or biodilution of PFBSA along the marine food chain in East China Sea or Antarctic Ocean. This study provides the first data on the environmental behaviors of PFBSA in the marine environment.
Collapse
Affiliation(s)
- Wenbin Zhu
- Zhejiang Marine Fisheries Research Institute, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, Zhejiang, 316021, China
| | - Wenbo Liu
- Zhejiang Marine Fisheries Research Institute, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, Zhejiang, 316021, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| |
Collapse
|
27
|
Marciano J, Crawford L, Mukhopadhyay L, Scott W, McElroy A, McDonough C. Per/Polyfluoroalkyl Substances (PFASs) in a Marine Apex Predator (White Shark, Carcharodon carcharias) in the Northwest Atlantic Ocean. ACS ENVIRONMENTAL AU 2024; 4:152-161. [PMID: 38765060 PMCID: PMC11100321 DOI: 10.1021/acsenvironau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 05/21/2024]
Abstract
Per/polyfluoroalkyl substances (PFASs) are ubiquitous, highly persistent anthropogenic chemicals that bioaccumulate and biomagnify in aquatic food webs and are associated with adverse health effects, including liver and kidney diseases, cancers, and immunosuppression. We investigated the accumulation of PFASs in a marine apex predator, the white shark (Carcharodon carcharias). Muscle (N = 12) and blood plasma (N = 27) samples were collected from 27 sharks during 2018-2021 OCEARCH expeditions along the eastern coast of North America from Nova Scotia to Florida. Samples were analyzed for 47 (plasma) and 43 (muscle) targeted PFASs and screened for >2600 known and novel PFASs using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Perfluoroalkyl carboxylates with carbon chain-length C11 to C14 were frequently detected above the method reporting limits in plasma samples, along with perfluorooctanesulfonate and perfluorodecanesulfonate. Perfluoropentadecanoate was also detected in 100% of plasma samples and concentrations were estimated semiquantitatively as no analytical standard was available. Total concentrations of frequently detected PFASs in plasma ranged from 0.56 to 2.9 ng mL-1 (median of 1.4 ng mL-1). In muscle tissue, nine targeted PFASs were frequently detected, with total concentration ranging from 0.20 to 0.84 ng g-1 ww. For all frequently detected PFASs, concentrations were greater in plasma than in muscle collected from the same organism. In both matrices, perfluorotridecanoic acid was the most abundant PFAS, consistent with several other studies. PFASs with similar chain-lengths correlated significantly among the plasma samples, suggesting similar sources. Total concentrations of PFASs in plasma were significantly greater in sharks sampled off of Nova Scotia than all sharks from other locations, potentially due to differences in diet. HRMS suspect screening tentatively identified 13 additional PFASs in plasma, though identification confidence was low, as no MS/MS fragmentation was collected due to low intensities. The widespread detection of long-chain PFASs in plasma and muscle of white sharks highlights the prevalence and potential biomagnification of these compounds in marine apex predators.
Collapse
Affiliation(s)
- Jennifer Marciano
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lisa Crawford
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794, United States
| | - Leenia Mukhopadhyay
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Wesley Scott
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Anne McElroy
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794, United States
| | - Carrie McDonough
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
28
|
Wang L, Chen L, Wang J, Hou J, Han B, Liu W. Spatial distribution, compositional characteristics, and source apportionment of legacy and novel per- and polyfluoroalkyl substances in farmland soil: A nationwide study in mainland China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134238. [PMID: 38608586 DOI: 10.1016/j.jhazmat.2024.134238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
China, as one of the largest global producers and consumers of per- and poly-fluoroalkyl substances (PFASs), faces concerning levels of PFAS pollution in soil. However, knowledge of their occurrence in agricultural soils of China on the national scale remains unknown. Herein, the first nationwide survey was done by collecting 352 soil samples from 31 provinces in mainland China. The results indicated that the Σ24PFASs concentrations were 74.3 - 24880.0 pg/g, with mean concentrations of PFASs in decreasing order of legacy PFASs > emerging PFASs > PFAS precursors (640.2 pg/g, 340.7 pg/g, and 154.9 pg/g, respectively). The concentrations in coastal eastern China were distinctly higher than those in inland regions. Tianjin was the most severely PFASs-contaminated province because of rapid urban industrialization. This study further compared the PFAS content in monoculture and multiple cropping farmland soils, finding the concentrations of PFASs were high in soils planted with vegetable and fruit monocultures. Moreover, a positive matrix factorization (PMF) model was employed to identify different sources of PFASs. Fluoropolymer industries and aqueous film-forming foams were the primary contributors. The contributions from different emission sources varied across the seven geographical regions. This study provides new baseline data for prevention and control policies for reducing pollution.
Collapse
Affiliation(s)
- Lixi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liyuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bingjun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
29
|
Witt CC, Gadek CR, Cartron JLE, Andersen MJ, Campbell ML, Castro-Farías M, Gyllenhaal EF, Johnson AB, Malaney JL, Montoya KN, Patterson A, Vinciguerra NT, Williamson JL, Cook JA, Dunnum JL. Extraordinary levels of per- and polyfluoroalkyl substances (PFAS) in vertebrate animals at a New Mexico desert oasis: Multiple pathways for wildlife and human exposure. ENVIRONMENTAL RESEARCH 2024; 249:118229. [PMID: 38325785 DOI: 10.1016/j.envres.2024.118229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.
Collapse
Affiliation(s)
- Christopher C Witt
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Chauncey R Gadek
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Environmental Stewardship, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jean-Luc E Cartron
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Daniel B. Stephens & Associates, Inc., 6020 Academy Road NE, Suite 100, Albuquerque, NM, 87109, USA
| | - Michael J Andersen
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mariel L Campbell
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Marialejandra Castro-Farías
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ethan F Gyllenhaal
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew B Johnson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jason L Malaney
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; New Mexico Museum of Natural History and Science, Albuquerque, NM, 87104, USA
| | - Kyana N Montoya
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, CA, 95605, USA
| | - Nicholas T Vinciguerra
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jessie L Williamson
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| | - Joseph A Cook
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jonathan L Dunnum
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
30
|
Hamid H, Nicomel NR, Mohamed BA, Abida O, Li LY. Adsorption and leaching of fluorotelomer compounds and perfluoroalkyl acids in aqueous media by activated carbon prepared from municipal biosolids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120839. [PMID: 38599091 DOI: 10.1016/j.jenvman.2024.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in nature and pose serious health risks to humans and animals. Limiting PFAA exposure requires novel technology for their effective removal from water. We investigated the efficacy of biosolid-based activated carbon (Bio-SBAC) in removing frequently detected PFAAs and their precursor fluorotelomer compounds at environmentally relevant concentrations (∼50 μg/L). Batch experiments were performed to investigate adsorption kinetics, isotherms, and leachability. Bio-SBAC achieved >95% removal of fluorotelomeric compounds, indicating that the need for PFAA removal from the environment could be minimised if the precursors were targeted. Kinetic data modelling suggested that chemisorption is the dominant PFAA adsorption mechanism. As evidenced by the isotherm modelling results, Freundlich adsorption intensity, n-1, values of <1 (0.707-0.938) indicate chemisorption. Bio-SBAC showed maximum capacities for the adsorption of perfluorooctanoic acid (1429 μg/g) and perfluorononanoic acid (1111 μg/g). Batch desorption tests with 100 mg/L humic acid and 10 g/L NaCl showed that Bio-SBAC effectively retained the adsorbed PFAA with little or no leaching, except perfluorobutanoic acid. Overall, this study revealed that Bio-SBAC is a value-added material with promising characteristics for PFAA adsorption and no leachability. Additionally, it can be incorporated into biofilters to remove PFAAs from stormwater, presenting a sustainable approach to minimise biosolid disposal and improve the quality of wastewater before discharge into receiving waters.
Collapse
Affiliation(s)
- Hanna Hamid
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Nina Ricci Nicomel
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, 12613, Egypt
| | - Otman Abida
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
31
|
Wang Q, Gu X, Mo L, Wan N, Wu L, Liu S, Zhang M, Li M, Liu X, Liu Y. Per- and polyfluoroalkyl substances induce lipid metabolic impairment in fish: Integration on field investigation and laboratory study. ENVIRONMENT INTERNATIONAL 2024; 187:108687. [PMID: 38677088 DOI: 10.1016/j.envint.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
The biotoxicity of perfluoroalkyl and polyfluoroalkyl substances (PFASs) to aquatic organisms has been widely concerned. However, studies on toxic effects of PFASs are usually evaluated directly by using laboratory exposure rather than laboratory validation based on data obtained in the field. In this study, wild catfish (Silurus meridinalis) was explored on the relationship between PFASs bioaccumulation and lipid disorders. Nine and thirteen lipid metabolites were significantly associated with perfluorooctane sulfonate (PFOS) and 6:2/8:2Cl-PFESA (trade name F-53B) exposures, respectively; and the correlated lipid metabolites were the fatty acid (FA) and conjugates, FA esters, steroids, and glycerophosphate subclasses. The effects of PFASs on lipid metabolism of fish and its mechanism were further analyzed through exposure experiments. Zebrafish (Danio rerio) of different sexes underwent PFOS and F-53B exposures for 21 days at 100 ng/L and 100 μg/L. By determining gene expression levels, hepatic lipid contents, and histopathological change, the adverse effects order on lipid metabolism in male or female was 100 μg/L F-53B > 100 μg/L PFOS > 100 ng/L F-53B > 100 ng/L PFOS; the stress response in male was more intensive than that in female. PFOS and F-53B activated the peroxisome proliferator-activated receptor pathway, promoting the processes of FA and total cholesterol (T-CHO) transport, FA β-oxidation, FA synthesis, and finally induced FA and T-CHO transportation from blood into liver, then accelerated FA to FA ester transformation, and CHO into steroids. Laboratory experiments confirmed the field analysis. This study innovatively explored the adverse effects of PFOS and F-53B on lipid metabolism and their mechanisms at field and laboratory levels, highlighting concerns regarding PFASs health risks.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xueyan Gu
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China
| | - Limin Mo
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Nannan Wan
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liu Wu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shuai Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Mingqi Li
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xi Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Yu Liu
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
32
|
Heimstad ES, Nygård T, Moe B, Herzke D. New insights from an eight-year study on per- and polyfluoroalkyl substances in an urban terrestrial ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123735. [PMID: 38458514 DOI: 10.1016/j.envpol.2024.123735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) were analysed in a high number of terrestrial samples of soil, earthworm, bird eggs and liver from red fox and brown rat in an urban area in Norway from 2013 to 2020. PFOS and the long chain PFCAs were the most dominating compounds in all samples, proving their ubiquitous distribution. Other less studied compounds such as 6:2 FTS were first and foremost detected in earthworm. 8:2 FTS was found in many samples of fieldfare egg, sparrowhawk egg and earthworm, where the eggs had highest concentrations. Highest concentrations for both 6:2 FTS and 8:2 FTS were detected at present and former industry areas. FOSA was detected in many samples of the species with highest concentrations in red fox liver and brown rat liver of 3.3 and 5.5 ng/g ww. PFAS concentrations from the urban area were significantly higher than from background areas indicating that some of the species can be suitable as markers for PFAS emissions in an urban environment. Fieldfare eggs had surprisingly high concentrations of PFOS and PFCA concentrations from areas known to be or have been influenced by industry. Biota-soil-accumulation factor and magnification calculations indicate accumulation and magnification potential for several PFAS. Earthworm and fieldfare egg had average concentrations above the Canadian and European thresholds in diet for avian wildlife and predators. For earthworms, 18 % of the samples exceeded the European threshold (33 ng/g ww) of PFOS in prey for predators, and for fieldfare eggs, 35 % of the samples were above the same threshold. None of the soil samples exceeded a proposed PNEC of PFOS for soil living organisms of 373 ng/g dw.
Collapse
Affiliation(s)
| | - Torgeir Nygård
- NINA-Norwegian Institute for Nature Research, Trondheim, Norway
| | - Børge Moe
- NINA-Norwegian Institute for Nature Research, Trondheim, Norway
| | - Dorte Herzke
- NILU, The Fram Centre, P. box 6606 Stakkevollan, NO-9296, Tromsø, Norway; NIPH-Norwegian Institute for Public Health, Oslo, Norway
| |
Collapse
|
33
|
Li X, Wang Q, Li Q, Wang Y, Tian Y, He A, Chen Y, Si S. Biological effects of perfluoroalkyl substances on running water ecosystems: A case study in Beiluo River, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133808. [PMID: 38387177 DOI: 10.1016/j.jhazmat.2024.133808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that pose a threat to the biodiversity of the Beiluo River, a polluted watercourse on the Loess Plateau impacted by diverse human activities. However, the occurrence, spatial distribution, and substitution characteristics of PFASs in this region remain unclear. This study aimed to unravel PFAS distribution patterns and their impact on the aquatic ecosystems of the Beiluo River Basin. The total PFAS concentration in the area ranged from 16.64-35.70 ng/L, with predominantly perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), collectively contributing 94%. The Mantel test revealed threats to aquatic communities from both legacy long-chain (perfluorooctanoic acid and sodium perfluorooctane sulfonic acid) and emerging (6:2 fluorotelomer sulfonic acid, 2-Perfluorohexyl ethanoic acid, and hexafluoropropylene oxide dimer acid (Gen-X)) PFSAs. The canonical correspondence analysis ordination indicated that trace quantities of emerging PFASs, specifically 2-Perfluorohexyl ethanoic acid and hexafluoropropylene oxide dimer acid (Gen-X), significantly influenced geographical variations in aquatic communities. In conclusion, this study underscores the importance of comprehensively exploring the ecological implications and potential risks associated with PFASs in the Beiluo River Basin.
Collapse
Affiliation(s)
- Xi Li
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an 710127, China
| | - Qiang Wang
- Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Qi Li
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an 710127, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yulu Tian
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an 710127, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Chen
- Chinese Academy of Environmental Planning, Beijing 100012, China.
| | - Shaocheng Si
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an 710127, China.
| |
Collapse
|
34
|
Pickard HM, Haque F, Sunderland EM. Bioaccumulation of Perfluoroalkyl Sulfonamides (FASA). ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:350-356. [PMID: 38645703 PMCID: PMC11027762 DOI: 10.1021/acs.estlett.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Hundreds of sites across the United States have high concentrations of perfluoroalkyl sulfonamides (FASA), but little is known about their propensity to accumulate in fish. FASA are precursors to terminal per- and polyfluoroalkyl substances (PFAS) that are abundant in diverse consumer products and aqueous film-forming foams manufactured using electrochemical fluorination (ECF AFFF). In this study, FASA with C3-C8 carbon chain lengths were detected in all fish samples from surface waters up to 8 km downstream of source zones with ECF AFFF contamination. Short-chain FASA ≤ C6 have rarely been included in routine screening for PFAS, but availability of new standards makes such analyses more feasible. Bioaccumulation factors (BAF) for FASA were between 1 and 3 orders of magnitude greater than their terminal perfluoroalkyl sulfonates. Across fish species, BAF for FASA were greater than for perfluorooctanesulfonate (PFOS), which is presently the focus of national advisory programs. Similar concentrations of the C6 FASA (<0.36-175 ng g-1) and PFOS (0.65-222 ng g-1) were detected in all fish species. No safety thresholds have been established for FASA. However, high concentrations in fish next to contaminated sites and preliminary findings on toxicity suggest an urgent need for consideration by fish advisory programs.
Collapse
Affiliation(s)
- Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Faiz Haque
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
35
|
Ren W, Wang Z, Guo H, Gou Y, Dai J, Zhou X, Sheng N. GenX analogs exposure induced greater hepatotoxicity than GenX mainly via activation of PPARα pathway while caused hepatomegaly in the absence of PPARα in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123314. [PMID: 38218542 DOI: 10.1016/j.envpol.2024.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Despite their use as substitutes for perfluorooctanoic acid, the potential toxicities of hexafluoropropylene oxide dimer acid (HFPO-DA, commercial name: GenX) and its analogs (PFDMOHxA, PFDMO2HpA, and PFDMO2OA) remain poorly understood. To assess the hepatotoxicity of these chemicals on females, each chemical was orally administered to female C57BL/6 mice at the dosage of 0.5 mg/kg/d for 28 d. The contribution of peroxisome proliferator-activated receptors (PPARα and γ) and other nuclear receptors involving in these toxic effects of GenX and its analogs were identified by employing two PPAR knockout mice (PPARα-/- and PPARγΔHep) in this study. Results showed that the hepatotoxicity of these chemicals increased in the order of GenX < PFDMOHxA < PFDMO2HpA < PFDMO2OA. The increases of relative liver weight and liver injury markers were significantly much lower in PPARα-/- mice than in PPARα+/+ mice after GenX analog exposure, while no significant differences were observed between PPARγΔHep and its corresponding wildtype groups (PPARγF/F mice), indicating that GenX analog induce hepatotoxicity mainly via PPARα instead of PPARγ. The PPARα-dependent complement pathways were inhibited in PFDMO2HpA and PFDMO2OA exposed PPARα+/+ mice, which might be responsible for the observed liver inflammation. In PPARα-/- mice, hepatomegaly and increased liver lipid content were observed in PFDMO2HpA and PFDMO2OA treated groups. The activated pregnane X receptor (PXR) and constitutive activated receptor (CAR) pathways in the liver of PPARα-/- mice, which were highlighted by bioinformatics analysis, provided a reasonable explanation for hepatomegaly in the absence of PPARα. Our results indicate that GenX analogs could induce more serious hepatotoxicity than GenX whether there is a PPARα receptor or not. These chemicals, especially PFDMO2HpA and PFDMO2OA, may not be appropriate PFOA alternatives.
Collapse
Affiliation(s)
- Wanlan Ren
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiru Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yong Gou
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
36
|
Hamid N, Junaid M, Sultan M, Yoganandham ST, Chuan OM. The untold story of PFAS alternatives: Insights into the occurrence, ecotoxicological impacts, and removal strategies in the aquatic environment. WATER RESEARCH 2024; 250:121044. [PMID: 38154338 DOI: 10.1016/j.watres.2023.121044] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Due to increasing regulations on the production and consumption of legacy per- and polyfluoroalkyl substances (PFAS), the global use of PFAS substitutes increased tremendously, posing serious environmental risks owing to their bioaccumulation, toxicity, and lack of removal strategies. This review summarized the spatial distribution of alternative PFAS and their ecological risks in global freshwater and marine ecosystems. Further, toxicological effects of novel PFAS in various freshwater and marine species were highlighted. Moreover, degradation mechanisms for alternative PFAS removal from aquatic environments were compared and discussed. The spatial distribution showed that 6:2 chlorinated polyfluorinated ether sulfonate (6:2 CI-PFAES, also known as F-53B) was the most dominant emerging PFAS found in freshwater. Additionally, the highest levels of PFBS and PFBA were observed in marine waters (West Pacific Ocean). Moreover, short-chain PFAS exhibited higher concentrations than long-chain congeners. The ecological risk quotients (RQs) for phytoplankton were relatively higher >1 than invertebrates, indicating a higher risk for freshwater phytoplankton species. Similarly, in marine water, the majority of PFAS substitutes exhibited negligible risk for invertebrates and fish, and posed elevated risks for phytoplanktons. Reviewed studies showed that alternative PFAS undergo bioaccumulation and cause deleterious effects such as oxidative stress, hepatoxicity, neurotoxicity, histopathological alterations, behavioral and growth abnormalities, reproductive toxicity and metabolism defects in freshwater and marine species. Regarding PFAS treatment methods, photodegradation, photocatalysis, and adsorption showed promising degradation approaches with efficiencies as high as 90%. Finally, research gaps and future perspectives for alternative PFAS toxicological implications and their removal were offered.
Collapse
Affiliation(s)
- Naima Hamid
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Malaysia.
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Suman Thodhal Yoganandham
- Department of Environmental Engineering, Changwon National University, Changwon, 51140, Republic of Korea
| | - Ong Meng Chuan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Malaysia
| |
Collapse
|
37
|
Riaz R, Abdur Rehman MY, Junaid M, Iqbal T, Khan JA, Dong Y, Yue L, Chen Y, Xu N, Malik RN. First insights into per-and polyfluoroalkyl substance contamination in edible fish species of the Indus water system of Pakistan. CHEMOSPHERE 2024; 349:140970. [PMID: 38114020 DOI: 10.1016/j.chemosphere.2023.140970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of emerging contaminants, that have a wide range of applications in industrial and commercial products. The direct discharge of untreated industrial and domestic wastewater into freshwater bodies is a common practice in developing countries, which are the main contributors to PFASs in the aquatic environment. The situation is further worsened due to poor wastewater treatment facilities and weak enforcement of environmental regulations in countries like Pakistan. The current study was designed to assess PFASs contamination in muscle tissues of edible fish species from major tributaries of the Indus System, including Head Panjnad (HP), Head Trimmu (HT), Chashma Barrage (CB), Head Blloki (HB) and Head Qadirabad (HQ). The analysis of target PFAS was performed using ultrahigh-performance liquid chromatography coupled with a quadrupole Orbitrap high-resolution mass spectrometry. The highest levels of ∑17PFASs were observed in S. seenghala, C. mirigala from HB, and C. mirigala from HQ with a mean value of 45.4 ng g-1, 43.7 ng g-1, and 40.8 ng g-1, respectively. Overall, the compositional profile of fish samples was predominated by long-chain PFASs such as PFOA, PFOS, PFHpS, and PFDS. The accumulation of PFASs in fish species is dependent on the physiochemical properties of PFASs, characteristics of the aquatic environment, and fish species. Significant associations of PFASs with isotopic composition (p < 0.05), feeding habits (p < 0.05), and zones (p < 0.05) indicate that dietary proxies could be an important predictor of PFASs distribution among species. The C7-C10 PFASs exhibited bio-accumulative tendency with an accumulation factor ranging from 0.5 to 3.4. However, none of the fish samples had sufficiently high levels of PFOS to cause human health risk (HR < 1). For future studies, it is s recommended to conduct seasonal monitoring and the bioaccumulation pattern along trophic levels of both legacy and emerging PFASs.
Collapse
Affiliation(s)
- Rahat Riaz
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Taimoor Iqbal
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jawad Aslam Khan
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yanran Dong
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Linxia Yue
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yupeng Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
38
|
Foord CS, Szabo D, Robb K, Clarke BO, Nugegoda D. Hepatic concentrations of per- and polyfluoroalkyl substances (PFAS) in dolphins from south-east Australia: Highest reported globally. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168438. [PMID: 37963535 DOI: 10.1016/j.scitotenv.2023.168438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) concentrations were investigated in hepatic tissue of four dolphin species stranded along the south-east coast of Australia between 2006 and 2021; Burrunan dolphin (Tursiops australis), common bottlenose dolphin (Tursiops truncatus), Indo-Pacific bottlenose dolphin (Tursiops aduncus), and short-beaked common dolphin (Delphinus delphis). Two Burrunan dolphin populations represented in the dataset have the highest reported global population concentrations of ∑25PFAS (Port Phillip Bay median 9750 ng/g ww, n = 3, and Gippsland Lakes median 3560 ng/g ww, n = 8), which were 50-100 times higher than the other species reported here; common bottlenose dolphin (50 ng/g ww, n = 9), Indo-Pacific bottlenose dolphin (80 ng/g ww, n = 1), and short-beaked common dolphin (61 ng/g ww, n = 12). Also included in the results is the highest reported individual ∑25PFAS (19,500 ng/g ww) and PFOS (18,700 ng/g ww) concentrations, at almost 30 % higher than any other Cetacea reported globally. Perfluorooctane sulfonate (PFOS) was above method reporting limits for all samples (range; 5.3-18,700 ng/g ww), and constituted the highest contribution to overall ∑PFAS burdens with between 47 % and 99 % of the profile across the dataset. The concentrations of PFOS exceed published tentative critical concentrations (677-775 ng/g) in 42 % of all dolphins and 90 % of the critically endangered Burrunan dolphin. This research reports for the first time novel and emerging PFASs such as 6:2 Cl-PFESA, PFMPA, PFEECH and FBSA in marine mammals of the southern hemisphere, with high detection rates across the dataset. It is the first study to show the occurrence of PFAS in the tissues of multiple species of Cetacea from the Australasian region, demonstrating high global concentrations for inshore dolphins. Finally, it provides key baseline knowledge to the potential exposure and bioaccumulation of PFAS compounds within the coastal environment of south-east Australia.
Collapse
Affiliation(s)
- Chantel S Foord
- Royal Melbourne Institute of Technology, Bundoora, Australia; Marine Mammal Foundation, Mentone, VIC.
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia; Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16C, SE-106 91 Stockholm, Sweden
| | - Kate Robb
- Marine Mammal Foundation, Mentone, VIC
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
39
|
Dunn M, Noons N, Vojta S, Becanova J, Pickard H, Sunderland EM, Lohmann R. Unregulated Active and Closed Textile Mills Represent a Significant Vector of PFAS Contamination into Coastal Rivers. ACS ES&T WATER 2024; 4:114-124. [PMID: 38222965 PMCID: PMC10785679 DOI: 10.1021/acsestwater.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Despite concerns over the ubiquity of per- and polyfluoroalkyl substances (PFAS), little is known about the diversity of input sources to surface waters and their seasonal dynamics. Frequent use of PFAS in textiles means both active and closed textile mills require evaluation as PFAS sources. We deployed passive samplers at seven sites in an urban river and estuary adjacent to textile mills in Southern Rhode Island (USA) over 12 months. We estimated monthly mass flows (g month-1) of perfluorohexanoic acid (PFHxA: 45±56), and perfluorooctanoic acid (PFOA: 30±45) from the upstream river influenced by an active mill. Average mass flows were 73-155% higher downstream, where historical textile waste lagoons contributed long chain perfluoroalkyl acids (PFAA). Mass flows of PFNA increased from 7.5 to 21 g month-1 between the upstream and downstream portions of the rivers. Distinct grouping of the two main PFAS sources, active textile mills and historical waste lagoons, were identified using principal components analysis. Neither suspect screening nor extractable organofluorine analysis revealed measurable PFAS were missing beyond the targeted compounds. This research demonstrates that both closed and active textile mills are important ongoing PFAS sources to freshwater and marine regions and should be further evaluated as a source category.
Collapse
Affiliation(s)
- Matthew Dunn
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| | - Nicholas Noons
- Rhode Island Department of Environmental Management, Providence, RI, 02980 USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| | - Heidi Pickard
- Harvard University John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138 USA
| | - Elsie M. Sunderland
- Harvard University John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138 USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| |
Collapse
|
40
|
Zhang J, Hu L, Xu H. Dietary exposure to per- and polyfluoroalkyl substances: Potential health impacts on human liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167945. [PMID: 37871818 DOI: 10.1016/j.scitotenv.2023.167945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), dubbed "forever chemicals", are widely present in the environment. Environmental contamination and food contact substances are the main sources of PFAS in food, increasing the risk of human dietary exposure. Numerous epidemiological studies have established the link between dietary exposure to PFAS and liver disease. Correspondingly, PFAS induced-hepatotoxicity (e.g., hepatomegaly, cell viability, inflammation, oxidative stress, bile acid metabolism dysregulation and glycolipid metabolism disorder) observed from in vitro models and in vivo rodent studies have been extensively reported. In this review, the pertinent literature of the last 5 years from the Web of Science database was researched. This study summarized the source and fate of PFAS, and reviewed the occurrence of PFAS in food system (natural and processed food). Subsequently, the characteristics of human dietary exposure PFAS (population characteristics, distribution trend, absorption and distribution) were mentioned. Additionally, epidemiologic evidence linking PFAS exposure and liver disease was alluded, and the PFAS-induced hepatotoxicity observed from in vitro models and in vivo rodent studies was comprehensively reviewed. Lastly, we highlighted several critical knowledge gaps and proposed future research directions. This review aims to raise public awareness about food PFAS contamination and its potential risks to human liver health.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation, Nanchang University, Nanchang 330299, China.
| |
Collapse
|
41
|
Ji B, Zhao Y. Interactions between biofilms and PFASs in aquatic ecosystems: Literature exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167469. [PMID: 37778566 DOI: 10.1016/j.scitotenv.2023.167469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been detected in most aquatic environments worldwide and are referred to as "forever chemicals" because of their extreme chemical and thermal stability. Biofilms, as basic aquatic bioresources, can colonize various substratum surfaces. Biofilms in the aquatic environment have to interact with the ubiquitous PFASs and have significant implications for both their behavior and destiny, which are still poorly understood. Here, we have a preliminary literature exploration of the interaction between PFASs and biofilms in the various aquatic environments and expect to provide some thoughts on further study. In this review, the biosorption properties of biofilms on PFASs and possible mechanisms are presented. The complex impact of PFASs on biofilm systems was further discussed in terms of the composition and electrical charges of extracellular polymeric substances, intracellular microbial communities, and overall contaminant purification functions. Correspondingly, the effects of biofilms on the redistribution of PFASs in the aqueous environment were analyzed. Finally, we propose that biofilm after adsorption of PFASs is a unique ecological niche that not only reflects the contamination level of PFASs in the aquatic environment but also offers a possible "microbial pool" for PFASs biodegradation. We outline existing knowledge gaps and potential future efforts for investigating how PFASs interact with biofilms in aquatic ecosystems.
Collapse
Affiliation(s)
- Bin Ji
- School of Civil Engineering, Yantai University, Yantai 264005, PR China.
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| |
Collapse
|
42
|
Xing Y, Zhou Y, Zhang X, Lin X, Li J, Liu P, Lee HK, Huang Z. The sources and bioaccumulation of per- and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167313. [PMID: 37742961 DOI: 10.1016/j.scitotenv.2023.167313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have attracted increasing attention due to their environmental persistence and potential toxicity. Diet is one of the main routes of human exposure to PFAS, particularly through the consumption of animal-derived foods (e.g., aquatic products, livestock and poultry, and products derived from them). This review summarizes the source, bioaccumulation, and distribution of PFAS in animal-derived foods and key influential factors. In most environmental media, perfluorooctanoic acid and perfluorooctane sulfonate are the dominant PFAS, with the levels of short-chain PFAS such as perfluorobutyric acid and perfluorohexane sulfonate surpassing them in some watersheds and coastal areas. The presence of PFAS in environmental media is mainly influenced by suspended particulate matter, microbial communities as well as temporal and spatial factors, such as season and location. Linear PFAS with long carbon chains (C ≥ 7) and sulfonic groups tend to accumulate in organisms and contribute significantly to the contamination of animal-derived foods. Furthermore, PFAS, due to their protein affinity, are prone to accumulate in the blood and protein-rich tissues such as the liver and kidney. Species differences in PFAS bioaccumulation are determined by diet, variances in protein content in the blood and tissues and species-specific activity of transport proteins. Carnivorous fish usually show higher PFAS accumulation than omnivorous fish. Poultry typically metabolize PFAS more rapidly than mammals. PFAS exposures in the processing of animal-derived foods are also attributable to the migration of PFAS from food contact materials, especially those in higher-fat content foods. The human health risk assessment of PFAS exposure from animal-derived foods suggests that frequent consumption of aquatic products potentially engender greater risks to women and minors than to adult males. The information and perspectives from this review would help to further identify the toxicity and migration mechanism of PFAS in animal-derived foods and provide information for food safety management.
Collapse
Affiliation(s)
- Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Xia Lin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
43
|
Akhbarizadeh R, Dobaradaran S, Mazzoni M, Pascariello S, Nabipour I, Valsecchi S. Occurrence and risk characterization of per- and polyfluoroalkyl substances in seafood from the Persian Gulf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124182-124194. [PMID: 37996593 DOI: 10.1007/s11356-023-31129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Potential exposure to 14 per- and polyfluoroalkyl substances (PFAS) through seafood consumption was investigated in widely consumed seafood (Platycephalus indicus, Lethrinus nebulosus, and Penaeus semisulcatus) from the Persian Gulf. A total of 61 samples of fish and prawns were purchased from local fishers at Bushehr port (Persian Gulf, South-West of Iran) and were analyzed for PFAS compounds. In addition, potential factors influencing factor of PFAS bioaccumulation in fish and invertebrates such as age, sex, and habitat, were investigated. ƩPFAS concentrations were in the range of 2.3- 6.1 ng/g-d.w (mean = 3.9 ± 1.9) in studied species which are equal to 0.46-1.2 ng/g-w.w according to their conversion factor. Perfluorooctane sulfonic acid (PFOS) was the most abundant perfluorinated compound in studied organisms and tissues. The results of correlation analysis showed that the bioaccumulation of PFAS in aquatic organisms is significantly correlated to the length of the compound's carbon chain, the identity of anionic group, and organism's age, sex, and habitant. The risk assessment using hazard index calculation and Monte-Carlo simulation indicated that weekly consumption of prawn and fish fillets does not pose a health risk to adults but might threaten children's health. However, the risk posed by PFAS exposure via entire fish or fish liver intake is an important issue for wild marine mammals (i.e., dolphins). So, accurate and routine monitoring of PFAS in aquatic environments seems mandatory to preserve wildlife and human health in the Persian Gulf.
Collapse
Affiliation(s)
- Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Michela Mazzoni
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| | - Simona Pascariello
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sara Valsecchi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| |
Collapse
|
44
|
Röhler K, Susset B, Grathwohl P. Production of perfluoroalkyl acids (PFAAs) from precursors in contaminated agricultural soils: Batch and leaching experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166555. [PMID: 37633401 DOI: 10.1016/j.scitotenv.2023.166555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Contamination of soils with per- and polyfluoroalkyl substances (PFAS) (e.g., aqueous film forming foams (AFFFs) or PFAS containing biosolids applied to agricultural soils) can lead to large scale groundwater pollution. For site management, knowledge about the extent and time scales of PFAS contamination is crucial. At such sites, often persistent perfluoroalkyl acids (PFAAs) and so-called precursors, which can be transformed into PFAAs, co-occur. In this study, the release of PFAAs from 14 soil samples from an agricultural site in southwest Germany contaminated via compost/paper sludge was investigated. Rapid leaching of C4-C8 perfluoroalkyl carboxylic acids (PFCA) was observed in saturated column tests, while slowing down with increasing chain-length (≥ C9 PFCAs). Two selected samples were further incubated in batch-tests after removal of existing C4-C8 PFCAs in extensive column leaching tests until a liquid-solid ratio of 10 l/kg. During 60 days of incubation, aqueous concentrations of C4-C8 PFCAs increased linearly by a factor of 29-222, indicating continuous production by transformation of precursors. The potential PFAA-precursor reservoir was estimated by the direct total oxidizable precursor (dTOP) assay. PFCA concentrations after the dTOP increased up to two orders of magnitude. Production rates determined in batch-tests combined with the results of dTOP assay were used to estimate time scales for the duration of C4-C8 PFCAs emission from the contaminated agricultural soils which likely will last for several decades.
Collapse
Affiliation(s)
- Klaus Röhler
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Bernd Susset
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Peter Grathwohl
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| |
Collapse
|
45
|
Currie SD, Doherty JP, Xue KS, Wang JS, Tang L. The stage-specific toxicity of per- and polyfluoroalkyl substances (PFAS) in nematode Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122429. [PMID: 37619695 DOI: 10.1016/j.envpol.2023.122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) are a diverse class of industrial chemicals that have been used for decades in industrial and commercial applications. Due to their widespread usages, persistence in the environment, and bioaccumulation in animals and humans, great public health concerns have been raised on adverse health risks of PFAS. In this study, ten PFAS were selected according to their occurrence in different water bodies. The wild-type worms were exposed to individual PFAS at 0, 0.1, 1,10, 100, and 200 μM, and the toxic effects of PFAS on growth, development, fecundity, and behavior at different life stages were investigated using a high-throughput screening (HTS) platform. Our results showed that perfluorooctanesulfonic acid (PFOS), 1H,1H, 2H, 2H-perfluorooctanesulfonamidoacetic acid (NEtFOSAA), perfluorobutanesulfonic (PFBS), and perfluorohexanesulfonic acid (PFHxS) exhibited significant inhibitive effects on the growth in the L4 larva and later stages of worms with concentrations ranging from 0.1 to 200 μmol/L. PFOS and PFBS significantly decreased the brood size of worms across all tested concentrations (p < 0.05), and the most potent PFAS is PFOS with BMC of 0.02013 μM (BMCL, 1.6e-06 μM). During adulthood, all PFAS induced a significant reduction in motility (p < 0.01), while only PFOS can significantly induce behavior alteration at the early larvae stage. Furthermore, the adverse effects occurred in larval stages were found to be the most susceptible to the PFAS exposure. These findings provide valuable insights into the potential adverse effects associated with PFAS exposure and show the importance of considering developmental stages in toxicity assessments.
Collapse
Affiliation(s)
- Seth D Currie
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Joseph Patrick Doherty
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
46
|
Griffin EK, Hall LM, Brown MA, Taylor-Manges A, Green T, Suchanec K, Furman BT, Congdon VM, Wilson SS, Osborne TZ, Martin S, Schultz EA, Holden MM, Lukacsa DT, Greenberg JA, Deliz Quiñones KY, Lin EZ, Camacho C, Bowden JA. Aquatic Vegetation, an Understudied Depot for PFAS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1826-1836. [PMID: 37163353 DOI: 10.1021/jasms.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of manufactured chemicals that have been extensively utilized worldwide. We hypothesize that the presence, uptake, and accumulation of PFAS in aquatic vegetation (AV) is dependent upon several factors, such as the physiochemical properties of PFAS and proximity to potential sources. In this study, AV was collected from eight locations in Florida to investigate the PFAS presence, accumulation, and spatiotemporal distribution. PFAS were detected in AV at all sampling locations, with a range from 0.18 to 55 ng/g sum (∑)PFAS. Individual PFAS and their concentrations varied by sampling location, time, and AV species. A total of 12 PFAS were identified, with the greatest concentrations measured in macroalgae. The average bioconcentration factor (BCF) among all samples was 1225, indicating high PFAS accumulation in AV from surface water. The highest concentrations, across all AV types, were recorded in the Indian River Lagoon (IRL), a location with a history of elevated PFAS burdens. The present study represents the first investigation of PFAS in naturally existing estuarine AV, filling an important gap on PFAS partitioning within the environment, as well as providing insights into exposure pathways for aquatic herbivores. Examining the presence, fate, and transport of these persistent chemicals in Florida's waterways is critical for understanding their effect on environmental, wildlife, and human health.
Collapse
Affiliation(s)
- Emily K Griffin
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren M Hall
- St. Johns River Water Management District, Palm Bay, Florida 32909, United States
| | - Melynda A Brown
- Florida Department of Environmental Protection, Punta Gorda, Florida 33955, United States
| | - Arielle Taylor-Manges
- Florida Department of Environmental Protection, Punta Gorda, Florida 33955, United States
| | - Trisha Green
- Florida Department of Environmental Protection, Charlotte Harbor Seagrasses Aquatic Preserves, Punta Gorda, Florida 33955, United States
| | - Katherine Suchanec
- Florida Department of Environmental Protection, Charlotte Harbor Seagrasses Aquatic Preserves, Punta Gorda, Florida 33955, United States
| | - Bradley T Furman
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, Florida 33701, United States
| | - Victoria M Congdon
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, Florida 33701, United States
| | - Sara S Wilson
- Division of Coastlines and Oceans, Institute of Environment, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Todd Z Osborne
- Department of Soil, Water, and Ecosystems, Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| | - Shawn Martin
- Department of Marine and Environmental Technology, College of the Florida Keys, Key West, Florida 33040, United States
| | - Emma A Schultz
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Mackenzie M Holden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Dylan T Lukacsa
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Justin A Greenberg
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Katherine Y Deliz Quiñones
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Elizabeth Z Lin
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Camden Camacho
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida 32610, United States
| | - John A Bowden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
47
|
Kraus JM, Skrabis K, Ciparis S, Isanhart J, Kenney A, Hinck JE. Ecological Harm and Economic Damages of Chemical Contamination to Linked Aquatic-Terrestrial Food Webs: A Study-Design Tool for Practitioners. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2029-2039. [PMID: 36920000 DOI: 10.1002/etc.5609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Contamination of aquatic ecosystems can have cascading effects on terrestrial consumers by altering the availability and quality of aquatic insect prey. Comprehensive assessment of these indirect food-web effects of contaminants on natural resources and their associated services necessitates using both ecological and economic tools. In the present study we present an aquatic-terrestrial assessment tool (AT2), including ecological and economic decision trees, to aid practitioners and researchers in designing contaminant effect studies for linked aquatic-terrestrial insect-based food webs. The tool is tailored to address the development of legal claims by the US Department of the Interior's Natural Resource Damage Assessment and Restoration Program, which aims to restore natural resources injured by oil spills and hazardous substance releases into the environment. Such cases require establishing, through scientific inquiry, the existence of natural resource injury as well as the determination of the monetary or in-kind project-based damages required to restore this injury. However, this tool is also useful to researchers interested in questions involving the effects of contaminants on linked aquatic-terrestrial food webs. Stylized cases exemplify how application of AT2 can help practitioners and researchers design studies when the contaminants present at a site are likely to lead to injury of terrestrial aerial insectivores through loss of aquatic insect prey and/or dietary contaminant exposure. Designing such studies with ecological endpoints and economic modeling inputs in mind will increase the relevance and cost-effectiveness of studies, which can in turn improve the outcomes of cases and studies involving the ecological effects of contaminants on food webs. Environ Toxicol Chem 2023;42:2029-2039. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Johanna M Kraus
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| | - Kristin Skrabis
- Office of Policy Analysis, US Department of the Interior, Washington, District of Columbia, USA
| | - Serena Ciparis
- Virginia Field Office, US Fish and Wildlife Service, Gloucester, Virginia, USA
| | - John Isanhart
- Office of Restoration and Damage Assessment, US Department of the Interior, Denver, Colorado, USA
| | - Aleshia Kenney
- Illinois-Iowa Field Office, US Fish and Wildlife Service, Moline, Illinois, USA
| | - Jo Ellen Hinck
- Columbia Environmental Research Center, US Geological Survey, Columbia, Missouri, USA
| |
Collapse
|
48
|
Lukić Bilela L, Matijošytė I, Krutkevičius J, Alexandrino DAM, Safarik I, Burlakovs J, Gaudêncio SP, Carvalho MF. Impact of per- and polyfluorinated alkyl substances (PFAS) on the marine environment: Raising awareness, challenges, legislation, and mitigation approaches under the One Health concept. MARINE POLLUTION BULLETIN 2023; 194:115309. [PMID: 37591052 DOI: 10.1016/j.marpolbul.2023.115309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/19/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) have long been known for their detrimental effects on the ecosystems and living organisms; however the long-term impact on the marine environment is still insufficiently recognized. Based on PFAS persistence and bioaccumulation in the complex marine food network, adverse effects will be exacerbated by global processes such as climate change and synergies with other pollutants, like microplastics. The range of fluorochemicals currently included in the PFAS umbrella has significantly expanded due to the updated OECD definition, raising new concerns about their poorly understood dynamics and negative effects on the ocean wildlife and human health. Mitigation challenges and approaches, including biodegradation and currently studied materials for PFAS environmental removal are proposed here, highlighting the importance of ongoing monitoring and bridging research gaps. The PFAS EU regulations, good practices and legal frameworks are discussed, with emphasis on recommendations for improving marine ecosystem management.
Collapse
Affiliation(s)
- Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Inga Matijošytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Jokūbas Krutkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania.
| | - Diogo A M Alexandrino
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; Department of Environmental Health, School of Health, P. Porto, Porto, Portugal.
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Juris Burlakovs
- Mineral and Energy Economy Research Institute of Polish Academy of Sciences, Józefa Wybickiego 7 A, 31-261 Kraków, Poland.
| | - Susana P Gaudêncio
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA Faculty for Sciences and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal.
| | - Maria F Carvalho
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
49
|
Fremlin KM, Elliott JE, Letcher RJ, Harner T, Gobas FA. Developing Methods for Assessing Trophic Magnification of Perfluoroalkyl Substances within an Urban Terrestrial Avian Food Web. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12806-12818. [PMID: 37590934 PMCID: PMC10469464 DOI: 10.1021/acs.est.3c02361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
We investigated the trophic magnification potential of perfluoroalkyl substances (PFAS) in a terrestrial food web by using a chemical activity-based approach, which involved normalizing concentrations of PFAS in biota to their relative biochemical composition in order to provide a thermodynamically accurate basis for comparing concentrations of PFAS in biota. Samples of hawk eggs, songbird tissues, and invertebrates were collected and analyzed for concentrations of 18 perfluoroalkyl acids (PFAAs) and for polar lipid, neutral lipid, total protein, albumin, and water content. Estimated mass fractions of PFCA C8-C11 and PFSA C4-C8 predominantly occurred in albumin within biota samples from the food web with smaller estimated fractions in polar lipids > structural proteins > neutral lipids and insignificant amounts in water. Estimated mass fractions of longer-chained PFAS (i.e., C12-C16) mainly occurred in polar lipids with smaller estimated fractions in albumin > structural proteins > neutral lipids > and water. Chemical activity-based TMFs indicated that PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFOS, and PFDS biomagnified in the food web; PFOA, PFHxDA, and PFHxS did not appear to biomagnify; and PFBS biodiluted. Chemical activity-based TMFs for PFCA C8-C11 and PFSA C4-C8 were in good agreement with corresponding TMFs derived with concentrations normalized to only total protein in biota, suggesting that concentrations normalized to total protein may be appropriate proxies of chemical activity-based TMFs for PFAS, which predominantly partition to albumin. Similarly, TMFs derived with concentrations normalized to albumin may be suitable proxies of chemical activity-based TMFs for longer-chained PFAS, which predominantly partition to polar lipids.
Collapse
Affiliation(s)
- Katharine M. Fremlin
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - John E. Elliott
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - Robert J. Letcher
- Ecotoxicology
and Wildlife Health Division, National Wildlife Research Centre, Environment and Climate Change Canada, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1A
0H3, Canada
| | - Tom Harner
- Air
Quality Research Division, Environment and
Climate Change Canada, 4905 Dufferin Street, Toronto, ON M3H 5T4, Canada
| | - Frank A.P.C. Gobas
- Department
of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A
1S6, Canada
- School
of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, BC V5A
1S6, Canada
| |
Collapse
|
50
|
Carrizo JC, Munoz G, Vo Duy S, Liu M, Houde M, Amé MV, Liu J, Sauvé S. PFAS in fish from AFFF-impacted environments: Analytical method development and field application at a Canadian international civilian airport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163103. [PMID: 36972881 DOI: 10.1016/j.scitotenv.2023.163103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Methods targeting anionic per- and polyfluoroalkyl substances (PFAS) in aquatic biota are well established, but commonly overlook many PFAS classes present in aqueous film-forming foams (AFFFs). Here, we developed an analytical method for the expanded analysis of negative and positive ion mode PFAS in fish tissues. Eight variations of extraction solvents and clean-up protocols were first tested to recover 70 AFFF-derived PFAS from the fish matrix. Anionic, zwitterionic, and cationic PFAS displayed the best responses with methanol-based ultrasonication methods. The response of long-chain PFAS was improved for extracts submitted to graphite filtration alone compared with those involving solid-phase extraction. The validation included an assessment of linearity, absolute recovery, matrix effects, accuracy, intraday/interday precision, and trueness. The method was applied to a set of freshwater fish samples collected in 2020 in the immediate vicinity (creek, n = 15) and downstream (river, n = 15) of an active fire-training area at an international civilian airport in Ontario, Canada. While zwitterionic fluorotelomer betaines were major components of the subsurface AFFF source zone, they were rarely detected in fish, suggesting limited bioaccumulation potential. PFOS largely dominated the PFAS profile, with record-high concentrations in brook sticklebacks (Culaea inconstans) from the creek (16000-110,000 ng/g wet weight whole-body). These levels exceeded the Canadian Federal Environmental Quality Guidelines (FEQG) for PFOS pertaining to the Federal Fish Tissue Guideline (FFTG) for fish protection and Federal Wildlife Diet Guidelines (FWiDG) for the protection of mammalian and avian consumers of aquatic biota. Perfluorohexane sulfonamide and 6:2 fluorotelomer sulfonate were among the precursors detected at the highest levels (maximum of ∼340 ng/g and ∼1100 ng/g, respectively), likely reflecting extensive degradation and/or biotransformation of C6 precursors originally present in AFFF formulations.
Collapse
Affiliation(s)
- Juan Cruz Carrizo
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada; CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Min Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| | - María Valeria Amé
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|