1
|
Grant-Alfieri A, Herman WH, Watkins DJ, Batterman S, Karvonen-Gutierrez C, Park SK. Associations of serum persistent organic pollutant concentrations with incident diabetes in midlife women: The Study of Women's Health Across the Nation Multi-Pollutant Study. ENVIRONMENTAL RESEARCH 2024; 260:119582. [PMID: 38992756 DOI: 10.1016/j.envres.2024.119582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that can negatively impact metabolic health through pathways including endocrine disruption. Few studies have evaluated diabetes risk associated with PBDEs. Little is known about the joint effect of exposure to POP mixtures on diabetes risk. OBJECTIVES We investigated the relationship between POPs, individually and as mixtures, and diabetes development over 18 years (1999-2016) in midlife women. METHODS We measured lipid-standardized serum concentrations of 34 PCBs, 19 OCPs, and 14 PBDEs in 1040 midlife women aged 45-56 years from the Study of Women's Health Across the Nation. We tested the association between POPs measured in 1999/2000 and incident diabetes using Cox proportional hazards models. We evaluated diabetes risk associated with the overall POP mixture using Quantile-Based G-Computation (QBGC). RESULTS For most mixture components, single pollutant and mixtures analyses indicated null associations with diabetes risk, however results were inconsistent. After adjustment, hazard ratios (HRs) of developing diabetes (95% CI) associated with upper exposure tertiles (T2/T3) compared with the first tertile (T1), were 1.7 (1.0, 2.8) at T2 and 1.5 (0.84, 2.7) at T3 for hexachlorobenzene and 1.9 (1.1, 3.3) at T2 and 1.6 (0.88, 2.9) at T3 for PCB 123. A doubling of PBDE 47 was associated with 1.11 (1.00, 1.24) times the risk of T2D. QBGC identified no association for the overall joint effect of the POP mixture on diabetes (HR = 1.04 [0.53, 2.07]). CONCLUSION Exposure to a mixture of PCBs, OCPs, and PBDEs was not associated with incident diabetes in midlife U.S. women, although some individual POPs demonstrated significant yet inconsistent associations with diabetes. Non-linear and non-monotonic dose-response dynamics deserve further exploration. More research is needed on the diabetogenic effects of PBDEs.
Collapse
Affiliation(s)
- Amelia Grant-Alfieri
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - William H Herman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | - Sung Kyun Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Bresson SE, Ruzzin J. Persistent organic pollutants disrupt the oxidant/antioxidant balance of INS-1E pancreatic β-cells causing their physiological dysfunctions. ENVIRONMENT INTERNATIONAL 2024; 190:108821. [PMID: 38885551 DOI: 10.1016/j.envint.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Persistent organic pollutants (POPs) have emerged as potent diabetogenic agents, but their mechanisms of action remain poorly identified. OBJECTIVES In this study, we aim to determine the mechanisms regulating the damaging effects of POPs in pancreatic β-cells, which have a central role in the development of diabetes. METHODS We treated INS-1E pancreatic β-cells with PCB-153, p,p'-DDE, PCB-126, or TCDD at doses ranging from 1 × 10-15to 5 × 10-6M. We measured insulin content and secretion, cell viability and assessed the mRNA expression of the xenobiotic nuclear receptors Nr1i2 and Nr1i3, and the aryl hydrocarbon receptor (Ahr). In addition, we evaluated the antioxidant defense and production of reactive oxygen species (ROS). Finally, we studied the ability of the antioxidant N-acetyl-L-cysteine (NAC) to counteract the effects of POPs in INS-1E cells. RESULTS When exposed to environmental POP levels, INS-1E cells had impaired production and secretion of insulin. These defects were observed for all tested POPs and were paralleled by reduced Ins1 and Ins2 mRNA expression. While POP treatment for 3 days did not affect INS-1E cell viability, longer treatment progressively killed the cells. Furthermore, we found that the xenobiotic detoxification machinery is poorly expressed in the INS-1E cells, as characterized by the absence of Nr1i2 and Nr1i3 and their respective downstream targets Cyp3a1/Cyp3a2 and Cyp2b1/Cyp2b3, and the weak functionality of the Ahr/Cyp1a1 signaling. Interestingly, POPs dysregulated key antioxidant enzymes such as glutathione peroxidases, peroxiredoxins, thioredoxins, and catalases. In parallel, the production of intracellular ROS, including superoxide anion (O2•-) and hydrogen peroxide (H2O2), was increased by POP exposure. Improving the oxidant scavenging capacity of INS-1E cells by NAC treatment restored the production and secretion of insulin. CONCLUSION By promoting oxidative stress and impairing the ability of INS-1E cells to produce and secrete insulin, this study reveals how POPs can mechanistically act as diabetogenic agents, and provides new scientific evidence supporting the concept that POPs are fueling the diabetes epidemics.
Collapse
Affiliation(s)
- Sophie Emilie Bresson
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jérôme Ruzzin
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Pan K, Jia H, Chen R, Su C, Wang H, Zhang T, Wu Z. Sex-specific, non-linear and congener-specific association between mixed exposure to polychlorinated biphenyls (PCBs) and diabetes in U.S. adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116091. [PMID: 38340600 DOI: 10.1016/j.ecoenv.2024.116091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Whether and to what extent the impact of exposure to various polychlorinated biphenyls (PCBs) congeners on diabetes, as well as the important contributors, have remained unclear. OBJECTIVE We aimed to investigate the association patterns between PCBs mixture and diabetes, identify the critical congeners, and explore the potential modifiers. METHODS The present study included 5900 U.S. adults from the National Health and Nutrition Examination Survey (NHANES) conducted between 2007 and 2016. Weighted logistic regression, restricted cubic spline regression, weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were applied to estimate the linear and non-linear associations of single and mixed PCB exposure with diabetes. Subgroup analyses were also conducted to explore potential sex differences. RESULTS In the weighted logistic regression model, total PCBs were positively associated with diabetes (OR = 1.33, P < 0.025), and significant non-linear associations were observed using RCS analyses. The non-linear positive association between PCBs mixed exposure and diabetes was likewise found in the WQS and BKMR results. PCB180, PCB194, PCB196, and PCB167 were with the highest weights in the WQS, and PCB209 and PCB66 were with the highest posterior inclusion probabilities in the BKMR. Additionally, exposure to total PCBs and most of individual PCB congeners were significantly associated with elevated risk of in females (OR = 1.74; P for trend < 0.001), while fewer significant associations were observed in males. CONCLUSION The present study highlighted the importance of the long-term surveillance of PCBs and the need to enhance protective measures against them. Notably, these associations were non-linear, congener-specific, and significantly stronger in females than males, especially at relatively high levels of PCBs exposure. Further prospective and mechanistic studies were warranted to ascertain the causal effects between PCBs mixture and diabetes.
Collapse
Affiliation(s)
- Keyu Pan
- Department of Biostatistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.; Institute for Medical Dataology, Shandong University, Jinan 250012, China
| | - Huixun Jia
- National Clinical Research Center for Ophthalmic Diseases; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, School of Medicine, Shanghai, China; Shanghai Key Laboratory of Fundus Diseases, Shanghai, China; School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Chang Su
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huijun Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.; Institute for Medical Dataology, Shandong University, Jinan 250012, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Zhenyu Wu
- School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
5
|
Li P, Xu Y, Li Z, Cheng X, Jia C, Zhang S, An J, Zhang X, Yan Y, He M. Association between polychlorinated biphenyls exposure and incident type 2 diabetes mellitus: A nested case-control study. ENVIRONMENTAL RESEARCH 2023; 228:115743. [PMID: 37001846 DOI: 10.1016/j.envres.2023.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Previous epidemiological studies indicated that the association between polychlorinated biphenyls (PCB) and type 2 diabetes mellitus (T2DM) was inconclusive. OBJECTIVE We investigated the association between PCBs exposure and incident T2DM in a nested case-control study, and further explored the relationship between PCBs and 5-year fasting blood glucose (FBG) changes. METHODS Baseline concentrations of seven indicator-PCB (PCB-28, 52, 101, 118, 138, 153, 180) were measured in 1006 pairs of incident T2DM cases and matched controls nested within the Dongfeng-Tongji cohort. Conditional logistic regression models and pre-adjusted residuals method were used to assess the associations between PCBs and incident T2DM. We further computed beta coefficients (βs) of 5-year FBG changes using multivariable generalized linear regression. RESULTS Non-dioxin-like PCBs (NDL-PCBs) were significantly associated with higher T2DM incidence after adjustment for all covariates. Significant differences were observed for extreme quartiles comparisons (Q4 vs. Q1) of PCBs except PCB-138, and the incidence of T2DM were 1- to 3-fold higher among those in the highest versus lowest PCBs quartiles. Serum NDL-PCBs were positively associated with changes in FBG (P for overall association ≤0.01). Additionally, triglycerides mediated the associations between PCBs and T2DM incidence. CONCLUSION Our findings showed positive associations of NDL-PCBs with incident T2DM and 5-year FBG changes. PCBs increased incident T2DM via lipid metabolic pathways.
Collapse
Affiliation(s)
- Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Pavuk M, Rosenbaum PF, Lewin MD, Serio TC, Rago P, Cave MC, Birnbaum LS. Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, pesticides, and diabetes in the Anniston Community Health Survey follow-up (ACHS II): single exposure and mixture analysis approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162920. [PMID: 36934946 DOI: 10.1016/j.scitotenv.2023.162920] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Dioxins and dioxin-like compounds measurements were added to polychlorinated biphenyls (PCBs) and organochlorine pesticides to expand the exposure profile in a follow-up to the Anniston Community Health Survey (ACHS II, 2014) and to study diabetes associations. Participants of ACHS I (2005-2007) still living within the study area were eligible to participate in ACHS II. Diabetes status (type-2) was determined by a doctor's diagnosis, fasting glucose ≥125 mg/dL, or being on any glycemic control medication. Incident diabetes cases were identified in ACHS II among those who did not have diabetes in ACHS I, using the same criteria. Thirty-five ortho-substituted PCBs, 6 pesticides, 7 polychlorinated dibenzo-p-dioxins (PCDD), 10 furans (PCDF), and 3 non-ortho PCBs were measured in 338 ACHS II participants. Dioxin toxic equivalents (TEQs) were calculated for all dioxin-like compounds. Main analyses used logistic regression models to calculate odds ratios (OR) and 95 % confidence intervals (CI). In models adjusted for age, race, sex, BMI, total lipids, family history of diabetes, and taking lipid lowering medication, the highest ORs for diabetes were observed for PCDD TEQ: 3.61 (95 % CI: 1.04, 12.46), dichloro-diphenyl dichloroethylene (p,p'-DDE): 2.07 (95 % CI 1.08, 3.97), and trans-Nonachlor: 2.55 (95 % CI 0.93, 7.02). The OR for sum 35 PCBs was 1.22 (95 % CI: 0.58-2.57). To complement the main analyses, we used BKMR and g-computation models to evaluate 12 mixture components including 4 TEQs, 2 PCB subsets and 6 pesticides; suggestive positive associations for the joint effect of the mixture analyses resulted in ORs of 1.40 (95% CI: -1.13, 3.93) for BKMR and 1.32 (95% CI: -1.12, 3.76) for g-computation. The mixture analyses provide further support to previously observed associations of trans-Nonachlor, p,p'- DDE, PCDD TEQ and some PCB groups with diabetes.
Collapse
Affiliation(s)
- M Pavuk
- Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - P F Rosenbaum
- SUNY Upstate Medical University, Syracuse, NY, United States of America.
| | - M D Lewin
- Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - T C Serio
- Agency for Toxic Substances and Disease Registry (ATSDR), Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America; ATSDR/CDC, Atlanta, GA, United States of America
| | - P Rago
- ATSDR/CDC, Atlanta, GA, United States of America
| | - M C Cave
- University of Louisville, Louisville, KY, United States of America
| | - L S Birnbaum
- NIEHS, Research Triangle Park, NC, United States of America
| |
Collapse
|
7
|
Tan Q, Yang S, Wang B, Wang M, Yu L, Liang R, Liu W, Song J, Guo Y, Zhou M, Chen W. Gene-environment interaction in long-term effects of polychlorinated biphenyls exposure on glucose homeostasis and type 2 diabetes: The modifying effects of genetic risk and lifestyle. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131757. [PMID: 37276697 DOI: 10.1016/j.jhazmat.2023.131757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
The longitudinal relationships of polychlorinated biphenyls (PCBs) exposure with glucose homeostasis and type 2 diabetes (T2D) risk among Chinese population have not been assessed, and interactions of PCB exposure with genetic susceptibility and lifestyle are unclear. In this prospective cohort study, fasting plasma glucose (FPG) and insulin (FPI) and seven serum indicator-PCBs were measured for each participant. We constructed polygenic risk score (PRS) of T2D and healthy lifestyle score. Each 1-unit increment of ln-transformed PCB-118 was related with a 0.141 mmol/L, 11.410 pmol/L, 0.661, and 74.5% increase in FPG, FPI, homeostasis model assessment of insulin resistance, and incident T2D risk over 6 years, respectively. Each 1-unit increment in T2D-PRS was related with a 0.169 mmol/L elevation of FPG and 65.5% elevation of incident T2D risk during 6 years. Compared with participants who had low T2D-PRS and low PCB-118, participants with high T2D-PRS and high PCB-118 showed a significant increase in FPG (0.162 mmol/L; P for interaction <0.001) and incident T2D risk [hazard ratio (HR)= 2.222]. Participants with low PCB-118, low PRS, and healthy lifestyle had the lowest incident T2D risk (HR=0.232). Our findings highlighted the significance of reducing PCB exposure and improvement in lifestyle for T2D prevention and management, especially for individuals with higher genetic risk of T2D.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, Hubei, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Mengyi Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiahao Song
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yanjun Guo
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
8
|
Tan Q, Wang M, Yu L, Liang R, Liu W, Dong C, Zhang Y, Li M, Ye Z, Wang B, Zhou M, Chen W. Associations of polychlorinated biphenyls exposure with plasma glucose and diabetes in general Chinese population: The mediating effect of lipid peroxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119660. [PMID: 35738522 DOI: 10.1016/j.envpol.2022.119660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/02/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) exposure has been related to the abnormal glucose metabolism and the risk of diabetes. However, the joint effects of various PCBs are uncertain and the potential mechanisms remain unclear. Our objectives were to evaluate the associations of serum PCBs with fasting plasma glucose (FPG) and the risk of diabetes among a general Chinese population, and to estimate the mediating effects of oxidative stress in the above associations. Serum levels of seven indicator-PCBs (PCB-28, 52, 101, 118, 138, 153, and 180) and FPG values were determined among 4498 subjects from the Wuhan-Zhuhai cohort. Oxidative DNA damage biomarker (urinary 8-hydroxy-2'-deoxyguanosine, 8-OHdG) and lipid peroxidation biomarker (urinary 8-isoprostane, 8-iso-PGF2α) were also measured. Positive relationships of serum PCBs with FPG values as well as the risk of diabetes were observed. With each 1% increment in the natural log-transformed values of wet weight serum PCBs, FPG levels increased a 0.125% for PCB-52, 0.168% for PCB-118, 0.221% for PCB-138, 0.273% for PCB-153, and 0.379% for ΣPCB (the sum of seven PCBs). The adjusted odds ratios of diabetes associated with wet weight PCBs were 1.186 for PCB-52, 1.373 for PCB-118, 1.635 for PCB-153, and 1.456 for ΣPCB. The seven serum PCBs showed positive overall effect on the risk of diabetes. Elevated PCB-28, PCB-52, PCB-118, PCB-138, PCB-153, and ΣPCB were associated with the increased urinary 8-iso-PGF2α, which was positively related with FPG values. Furthermore, urinary 8-iso-PGF2α partially mediated the positive associations between PCBs and FPG values, with the mediated proportions ranged from 3.20 to 12.93%. In conclusion, our results suggested that serum PCBs were positively related with increased oxidative stress, FPG values, and the risk of diabetes among a general Chinese population. Serum PCBs mixture had positive overall effect on the risk of diabetes. Lipid peroxidation partly mediated the FPG elevation induced by PCB exposure.
Collapse
Affiliation(s)
- Qiyou Tan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linling Yu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruyi Liang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Liu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chaoqian Dong
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongfang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Minjing Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
9
|
Hoyeck MP, Matteo G, MacFarlane EM, Perera I, Bruin JE. Persistent organic pollutants and β-cell toxicity: a comprehensive review. Am J Physiol Endocrinol Metab 2022; 322:E383-E413. [PMID: 35156417 PMCID: PMC9394781 DOI: 10.1152/ajpendo.00358.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023]
Abstract
Persistent organic pollutants (POPs) are a diverse family of contaminants that show widespread global dispersion and bioaccumulation. Humans are continuously exposed to POPs through diet, air particles, and household and commercial products; POPs are consistently detected in human tissues, including the pancreas. Epidemiological studies show a modest but consistent correlation between exposure to POPs and increased diabetes risk. The goal of this review is to provide an overview of epidemiological evidence and an in-depth evaluation of the in vivo and in vitro evidence that POPs cause β-cell toxicity. We review evidence for six classes of POPs: dioxins, polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), flame retardants, and per- and polyfluoroalkyl substances (PFAS). The available data provide convincing evidence implicating POPs as a contributing factor driving impaired glucose homeostasis, β-cell dysfunction, and altered metabolic and oxidative stress pathways in islets. These findings support epidemiological data showing that POPs increase diabetes risk and emphasize the need to consider the endocrine pancreas in toxicity assessments. Our review also highlights significant gaps in the literature assessing islet-specific endpoints after both in vivo and in vitro POP exposure. In addition, most rodent studies do not consider the impact of biological sex or secondary metabolic stressors in mediating the effects of POPs on glucose homeostasis and β-cell function. We discuss key gaps and limitations that should be assessed in future studies.
Collapse
Affiliation(s)
- Myriam P Hoyeck
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Geronimo Matteo
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Erin M MacFarlane
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer E Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Gang N, Van Allen K, Villeneuve PJ, MacDonald H, Bruin JE. Sex-specific Associations Between Type 2 Diabetes Incidence and Exposure to Dioxin and Dioxin-like Pollutants: A Meta-analysis. FRONTIERS IN TOXICOLOGY 2022; 3:685840. [PMID: 35295132 PMCID: PMC8915902 DOI: 10.3389/ftox.2021.685840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The potential for persistent organic pollutants (POPs), including dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs), to increase the risk of incident diabetes in adults has been extensively studied. However, there is substantial variability in the reported associations both between and within studies. Emerging data from rodent studies suggest that dioxin disrupts glucose homeostasis in a sex-specific manner. Thus, we performed a review and meta-analysis of relevant epidemiological studies to investigate sex differences in associations between dioxin or DL-PCB exposure and type 2 diabetes incidence. Articles that met our selection criteria (n = 81) were organized into the following subcategories: data stratified by sex (n = 13), unstratified data (n = 45), and data from only 1 sex (n = 13 male, n = 10 female). We also considered whether exposure occurred either abruptly at high concentrations through a contamination event (“disaster exposure”) or chronically at low concentrations (“non-disaster exposure”). There were 8 studies that compared associations between dioxin/DL-PCB exposure and diabetes risk in males versus females within the same population. When all sex-stratified or single-sex studies were considered in the meta-analysis (n = 18), the summary relative risk (RR) for incident diabetes among those exposed relative to reference populations was 1.78 (95% CI = 1.37–2.31) and 1.95 (95% CI = 1.56–2.43) for female and males, respectively. However, when we restricted the meta-analysis to disaster-exposed populations, the RR was higher in females than males (2.86 versus 1.59, respectively). In contrast, in non-disaster exposed populations the RR for females was lower than males (1.40 and 2.02, respectively). Our meta-analysis suggests that there are sex differences in the associations between dioxin/DL-PCBs exposure and incident diabetes, and that the mode of exposure modifies these differences.
Collapse
Affiliation(s)
- Noa Gang
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kyle Van Allen
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Paul J. Villeneuve
- School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
- Department of Public Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Heather MacDonald
- Health and Biosciences Librarian, MacOdrum Library, Carleton University, Ottawa, ON, Canada
| | - Jennifer E. Bruin
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
- *Correspondence: Jennifer E. Bruin,
| |
Collapse
|
11
|
Vanni R, Bussuan RM, Rombaldi RL, Arbex AK. Endocrine Disruptors and the Induction of Insulin Resistance. Curr Diabetes Rev 2021; 17:e102220187107. [PMID: 33092513 DOI: 10.2174/1573399816666201022121254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The incidence of insulin resistance syndrome and type 2 diabetes mellitus has increased at an alarming rate worldwide and constitutes a serious challenge to public health care in the 21st century. Endocrine disrupting chemicals are defined as "substances or mixtures of substances that alter the endocrine system functions and, hence, adversely affect organisms, their progeny, or sub populations" and may be associated with this increase in prevalence. OBJECTIVE This study aimed to assess the role of endocrine disrupting chemicals in insulin resistance and the importance of approaching the subject during anamnesis. METHODS A full review of the literature regarding insulin resistance, type-2 diabetes and endocrine disruptors were conducted. CONCLUSION Large-scale production and distribution of endocrine disrupting chemicals coincide with the increase in the prevalence of insulin resistance globally. In recent years, studies have shown that endocrine disrupting chemicals are positively associated with insulin resistance syndrome, evidenced by worse prognoses among individuals with higher levels of exposure. Health professionals should recognize the forms of exposure, most susceptible people, and lifestyle habits that can worsen patients' prognoses.
Collapse
Affiliation(s)
- Rafael Vanni
- IPEMED Medical School/ AFYA Educational, Rio de Janeiro, Brazil
| | | | | | - Alberto K Arbex
- Medical Clinic in Schleswig-Flensburg, State of Schleswig-Holstein, Germany
| |
Collapse
|
12
|
Landrigan PJ, Stegeman JJ, Fleming LE, Allemand D, Anderson DM, Backer LC, Brucker-Davis F, Chevalier N, Corra L, Czerucka D, Bottein MYD, Demeneix B, Depledge M, Deheyn DD, Dorman CJ, Fénichel P, Fisher S, Gaill F, Galgani F, Gaze WH, Giuliano L, Grandjean P, Hahn ME, Hamdoun A, Hess P, Judson B, Laborde A, McGlade J, Mu J, Mustapha A, Neira M, Noble RT, Pedrotti ML, Reddy C, Rocklöv J, Scharler UM, Shanmugam H, Taghian G, van de Water JA, Vezzulli L, Weihe P, Zeka A, Raps H, Rampal P. Human Health and Ocean Pollution. Ann Glob Health 2020; 86:151. [PMID: 33354517 PMCID: PMC7731724 DOI: 10.5334/aogh.2831] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Pollution - unwanted waste released to air, water, and land by human activity - is the largest environmental cause of disease in the world today. It is responsible for an estimated nine million premature deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems. Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of global pollution. It poses serious threats to human health and well-being. The nature and magnitude of these impacts are only beginning to be understood. Goals (1) Broadly examine the known and potential impacts of ocean pollution on human health. (2) Inform policy makers, government leaders, international organizations, civil society, and the global public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the seas and safeguard human health. Methods Topic-focused reviews that examine the effects of ocean pollution on human health, identify gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention. Environmental Findings Pollution of the oceans is widespread, worsening, and in most countries poorly controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage. More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible component of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year. Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources - coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high Arctic to the abyssal depths. Ecosystem Findings Ocean pollution has multiple negative impacts on marine ecosystems, and these impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff, and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance. Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global declines in fish stocks. Human Health Findings Methylmercury and PCBs are the ocean pollutants whose human health effects are best understood. Exposures of infants in utero to these pollutants through maternal consumption of contaminated seafood can damage developing brains, reduce IQ and increase children's risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for cardiovascular disease and dementia. Manufactured chemicals - phthalates, bisphenol A, flame retardants, and perfluorinated chemicals, many of them released into the seas from plastic waste - can disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound infections. With climate change and increasing pollution, risk is high that Vibrio infections, including cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollution fall disproportionately on vulnerable populations in the Global South - environmental injustice on a planetary scale. Conclusions Ocean pollution is a global problem. It arises from multiple sources and crosses national boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth's resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats to human health are great and growing, but still incompletely understood. Its economic costs are only beginning to be counted.Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled by deploying data-driven strategies based on law, policy, technology, and enforcement that target priority pollution sources. Many countries have used these tools to control air and water pollution and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs restored.Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps restore fisheries, and improves human health and well-being. It advances the Sustainable Development Goals (SDG). These benefits will last for centuries. Recommendations World leaders who recognize the gravity of ocean pollution, acknowledge its growing dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution at source will be critical to preventing ocean pollution and safeguarding human health.Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pollution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applications of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National, regional and international marine pollution control programs that are adequately funded and backed by strong enforcement have been shown to be effective. Robust monitoring is essential to track progress.Further interventions that hold great promise include wide-scale transition to renewable fuels; transition to a circular economy that creates little waste and focuses on equity rather than on endless growth; embracing the principles of green chemistry; and building scientific capacity in all countries.Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of national and international commitment to protecting the health of the seas.
Collapse
Affiliation(s)
| | - John J. Stegeman
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - Lora E. Fleming
- European Centre for Environment and Human Health, GB
- University of Exeter Medical School, GB
| | | | - Donald M. Anderson
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | | | - Nicolas Chevalier
- Université Côte d’Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | - Lilian Corra
- International Society of Doctors for the Environment (ISDE), CH
- Health and Environment of the Global Alliance on Health and Pollution (GAHP), AR
| | | | - Marie-Yasmine Dechraoui Bottein
- Intergovernmental Oceanographic Commission of UNESCO, FR
- IOC Science and Communication Centre on Harmful Algae, University of Copenhagen, DK
- Ecotoxicologie et développement durable expertise ECODD, Valbonne, FR
| | - Barbara Demeneix
- Centre National de la Recherche Scientifique, FR
- Muséum National d’Histoire Naturelle, Paris, FR
| | | | - Dimitri D. Deheyn
- Scripps Institution of Oceanography, University of California San Diego, US
| | | | - Patrick Fénichel
- Université Côte d’Azur, FR
- Centre Hospitalier Universitaire de Nice, Inserm, C3M, FR
| | | | | | | | | | | | | | - Mark E. Hahn
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | | | - Philipp Hess
- Institut Français de Recherche pour l’Exploitation des Mers, FR
| | | | | | - Jacqueline McGlade
- Institute for Global Prosperity, University College London, GB
- Strathmore University Business School, Nairobi, KE
| | | | - Adetoun Mustapha
- Nigerian Institute for Medical Research, Lagos, NG
- Imperial College London, GB
| | | | | | | | - Christopher Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, US
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, SE
| | | | | | | | | | | | - Pál Weihe
- University of the Faroe Islands and Department of Occupational Medicine and Public Health, FO
| | | | - Hervé Raps
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| | - Patrick Rampal
- Centre Scientifique de Monaco, MC
- WHO Collaborating Centre for Health and Sustainable Development, MC
| |
Collapse
|
13
|
Simhadri JJ, Loffredo CA, Trnovec T, Murinova LP, Nunlee-Bland G, Koppe JG, Schoeters G, Jana SS, Ghosh S. Biomarkers of metabolic disorders and neurobehavioral diseases in a PCB- exposed population: What we learned and the implications for future research. ENVIRONMENTAL RESEARCH 2020; 191:110211. [PMID: 32937175 PMCID: PMC7658018 DOI: 10.1016/j.envres.2020.110211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 05/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are one of the original twelve classes of toxic chemicals covered by the Stockholm Convention on Persistent Organic Pollutants (POP), an international environmental treaty signed in 2001. PCBs are present in the environment as mixtures of multiple isomers at different degree of chlorination. These compounds are manmade and possess useful industrial properties including extreme longevity under harsh conditions, heat absorbance, and the ability to form an oily liquid at room temperature that is useful for electrical utilities and in other industrial applications. They have been widely used for a wide range of industrial purposes over the decades. Despite a ban in production in 1979 in the US and many other countries, they remain persistent and ubiquitous in environment as contaminants due to their improper disposal. Humans, independent of where they live, are therefore exposed to PCBs, which are routinely found in random surveys of human and animal tissues. The prolonged exposures to PCBs have been associated with the development of different diseases and disorders, and they are classified as endocrine disruptors. Due to its ability to interact with thyroid hormone, metabolism and function, they are thought to be implicated in the global rise of obesity diabetes, and their potential toxicity for neurodevelopment and disorders, an example of gene by environmental interaction (GxE). The current review is primarily intended to summarize the evidence for the association of PCB exposures with increased risks for metabolic dysfunctions and neurobehavioral disorders. In particular, we present evidence of gene expression alterations in PCB-exposed populations to construct the underlying pathways that may lead to those diseases and disorders in course of life. We conclude the review with future perspectives on biomarker-based research to identify susceptible individuals and populations.
Collapse
Affiliation(s)
- Jyothirmai J Simhadri
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC, USA
| | - Tomas Trnovec
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | | | - Gail Nunlee-Bland
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Janna G Koppe
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | - Greet Schoeters
- Dept. Biomedical Sciences, University of Antwerp, Antwerp, Belgium & Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Somiranjan Ghosh
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA; Department of Biology, Howard University, Washington, DC, USA.
| |
Collapse
|
14
|
Meltzer GY, Watkins BX, Vieira D, Zelikoff JT, Boden-Albala B. A Systematic Review of Environmental Health Outcomes in Selected American Indian and Alaska Native Populations. J Racial Ethn Health Disparities 2020; 7:698-739. [PMID: 31974734 DOI: 10.1007/s40615-020-00700-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Economic and social marginalization among American Indians and Alaska Natives (AI/ANs) results in higher chronic disease prevalence. Potential causal associations between toxic environmental exposures and adverse health outcomes within AI/AN communities are not well understood. OBJECTIVES This review examines epidemiological literature on exposure to toxicants and associated adverse health outcomes among AI/AN populations. METHODS PubMed, Embase, Cochrane, Environment Complete, Web of Science Plus, DART, and ToxLine were searched for English-language articles. The following data were extracted: lead author's last name, publication year, cohort name, study location, AI/AN tribe, study initiation and conclusion, sample size, primary characteristic, environmental exposure, health outcomes, risk estimates, and covariates. RESULTS About 31 articles on three types of environmental exposures met inclusion criteria: persistent organic pollutants (POPs), heavy metals, and open dumpsites. Of these, 17 addressed exposure to POPs, 10 heavy metal exposure, 2 exposure to both POPs and heavy metals, and 2 exposure to open dumpsites. Studies on the Mohawk Nation at Akwesasne; Yupik on St. Lawrence Island, Alaska; Navajo Nation; Gila River Indian Community; Cheyenne River Sioux; 197 Alaska Native villages; and 13 tribes in Arizona, Oklahoma, North Dakota, and South Dakota that participated in the Strong Heart Study support associations between toxicant exposure and various chronic conditions including cardiovascular conditions, reproductive abnormalities, cancer, autoimmune disorders, neurological deficits, and diabetes. DISCUSSION The complex interplay of environmental and social factors in disease etiology among AI/ANs is a product of externally imposed environmental exposures, systemic discrimination, and modifiable risk behaviors. The connection between environmental health disparities and adverse health outcomes indicates a need for further study.
Collapse
Affiliation(s)
- Gabriella Y Meltzer
- Department of Social and Behavioral Sciences, New York University School of Global Public Health, 715/719 Broadway, New York, NY, 10003, USA.
| | - Beverly-Xaviera Watkins
- Department of Epidemiology, New York University School of Global Public Health, 715/719 Broadway, New York, NY, 10003, USA
| | - Dorice Vieira
- Health Sciences Library, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Bernadette Boden-Albala
- Department of Population Health, University of California Irvine, 653 East Peltason Drive, Irvine, CA, 92697, USA
| |
Collapse
|
15
|
Sargis RM, Simmons RA. Environmental neglect: endocrine disruptors as underappreciated but potentially modifiable diabetes risk factors. Diabetologia 2019; 62:1811-1822. [PMID: 31451869 PMCID: PMC7462102 DOI: 10.1007/s00125-019-4940-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes prevalence is increasing dramatically across the globe, imposing a tremendous toll on individuals and healthcare systems. Reversing these trends requires comprehensive approaches to address both classical and emerging diabetes risk factors. Recently, environmental toxicants acting as endocrine-disrupting chemicals (EDCs) have emerged as novel metabolic disease risk factors. EDCs implicated in diabetes pathogenesis include various inorganic and organic molecules of both natural and synthetic origin, including arsenic, bisphenol A, phthalates, polychlorinated biphenyls and organochlorine pesticides. Indeed, evidence implicates EDC exposures across the lifespan in metabolic dysfunction; moreover, specific developmental windows exhibit enhanced sensitivity to EDC-induced metabolic disruption, with potential impacts across generations. Importantly, differential exposures to diabetogenic EDCs likely also contribute to racial/ethnic and economic disparities. Despite these emerging links, clinical practice guidelines fail to address this underappreciated diabetes risk factor. Comprehensive approaches to stem the tide of diabetes must include efforts to address its environmental drivers.
Collapse
Affiliation(s)
- Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism Department of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Suite E625; M/C 640, Chicago, IL, 60612, USA.
- ChicAgo Center for Health and EnvironmenT (CACHET), University of Illinois at Chicago, Chicago, IL, USA.
| | - Rebecca A Simmons
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Shmarakov IO, Lee YJ, Jiang H, Blaner WS. Constitutive androstane receptor mediates PCB-induced disruption of retinoid homeostasis. Toxicol Appl Pharmacol 2019; 381:114731. [PMID: 31449830 DOI: 10.1016/j.taap.2019.114731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022]
Abstract
Environmental exposure to polychlorinated biphenyls (PCBs) is associated with an increased risk of incidence of metabolic disease, however the molecular mechanisms underlying this phenomenon are not fully understood. Our study provides new insights into molecular interactions between PCBs and retinoids (vitamin A and its metabolites) by defining a role for constitutive androstane receptor (CAR) in the disruption of retinoid homeostasis by non-coplanar 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). Administration of four weekly 50 mg/kg doses of PCB153 to C57BL/6 male mice resulted in a significant decline in the tissue concentrations of retinyl esters, retinol and all-trans-retinoic acid (atRA), while no decline in hepatic and adipose tissue retinoid levels were detected in Car-null littermates. Our data imply that disrupted retinoid homeostasis occurs as a consequence of PCB153-induced activation of CAR, and raise the possibility that CAR signaling can affect atRA homeostasis in vivo. A strong correlation between the changes in retinoid metabolism and extensive upregulation of hepatic CAR-driven Cyp2b10 expression implicates this CYP isoform as contributing to retinoid homeostasis disruption via atRA oxidation during PCB153 exposure. In response to PCB153-induced CAR activation and disruption of retinoid homeostasis, expression of hepatic Pepck, Cd36 and adipose tissue Pparγ, Cd36, Adipoq, and Rbp4 were altered; however, this was reversed by administration of exogenous dietary retinoids (300 IU daily for 4 weeks). Our study establishes that PCB153 exposure enables a significant disruption of retinoid homeostasis in a CAR-dependent manner. We propose that this contributes to the obesogenic properties of PCB153 and may contribute to the predisposition to the metabolic disease.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | - Yun Jee Lee
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Hongfeng Jiang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
17
|
Suarez-Lopez JR, Gross MD, Lee DH. Summary data of serum concentrations of 32 persistent organic pollutants in young adults in relation to summary scores of persistent organic pollutants. Data Brief 2019; 23:103720. [PMID: 31193752 PMCID: PMC6541699 DOI: 10.1016/j.dib.2019.103720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/26/2022] Open
Abstract
This data article presents mean serum concentrations (wet weight and lipid standardized) of 32 persistent organic pollutants (POPs) detected in >75% of participants of the Coronary Artery Risk Development in Young Adults (CARDIA) study across levels of POPs scores, and their corresponding coefficients of determination. POPs scores were calculated as: A) the sum of each participant's log-transformed POPs concentrations (∑ of log Pops], or B) as the sum of the participants' log-transformed concentrations of each POP divided by the groups' standard deviation of the corresponding log-transformed POP (POPs summary score. Scores were calculated for both wet weight and lipid standardized concentrations and for all 32 POPs and for PCBs and organochlorine pesticides separately. POPs summary scores analyses were used in the article "Organochlorine pesticides and polychlorinated biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up" [Suarez-Lopez et al., 2018].
Collapse
Affiliation(s)
- Jose R. Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, San Diego. 9500 Gilman Drive #0725, La Jolla, CA 92093 0725, USA
| | - Myron D. Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609 Mayo 8609, 420 Delaware, Minneapolis, MN 55455, USA
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, 101 Dongin-dong, Jung-gu, Daegu, 700 422, South Korea
| |
Collapse
|
18
|
Suarez-Lopez JR, Clemesha CG, Porta M, Gross MD, Lee DH. Organochlorine pesticides and polychlorinated biphenyls (PCBs) in early adulthood and blood lipids over a 23-year follow-up. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:24-35. [PMID: 30594847 DOI: 10.1016/j.etap.2018.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/31/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Some evidence in humans suggests that persistent organic pollutants (POPs), including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), may alter the blood lipid composition. This study analyzed associations between serum POPs concentrations in young adulthood with blood lipid levels up to 23 years later. METHODS Serum POPs were measured in year 2 of follow-up (n = 180 men and women, ages: 20-32y), and plasma lipids in follow-up years 2, 7, 10, 15, 20 and 25. 32 POPs were detectable in ≥75% of participants (23 PCBs, 8 OCPs and PBB-153). We created summary scores for PCBs and OCPs for both wet-weight, and lipid standardized (LP) concentrations. We used repeated measures regression adjusting for demographic factors, BMI, smoking, diabetes status, among others. RESULTS We observed positive associations of the 23 LP-PCB score with total cholesterol (βper SD increase [95%CI]: 5.0 mg/dL [0.7, 9.2]), triglycerides (7.8 mg/dL [-0.9, 16.5]), LDL (4.2 mg/dL [0.2, 8.2]), oxidized LDL 3.4 U/L (-0.05, 6.8), and cholesterol/HDL ratio (0.2 [0.02, 0.3]). The associations for triglycerides (14.7 mg/dL [0.4, 20.1]), cholesterol/HDL (0.33 [0.09, 0.56]) and, to some extent, LDL (4.7 md/dL [-1.6, 10.9]) were only observed among participants in the upper 50th percentile of BMI. Non-dioxin-like PCBs had stronger associations that dioxin-like PCBs. OCPs and PBB-s had positive associations with most outcomes. CONCLUSIONS PCBs and PBB-153 measured in young adulthood were positively associated with prospective alterations in most blood lipid components, with evidence of effect modification by BMI. Further longitudinal studies with multiple measures of POPs overtime are needed.
Collapse
Affiliation(s)
- Jose R Suarez-Lopez
- Department of Family Medicine and Public Health, University of California, 9500 Gilman Drive #0725, La Jolla, San Diego, CA 92093-0725, USA.
| | - Chase G Clemesha
- Department of Family Medicine and Public Health, University of California, 9500 Gilman Drive #0725, La Jolla, San Diego, CA 92093-0725, USA.
| | - Miquel Porta
- Hospital del Mar Institute of Medical Research (IMIM), School of Medicine, Universitat Autonoma de Barcelona, and CIBERESP, Carrer del Dr. Aiguader, 88, E-08003 Barcelona, Catalonia, Spain.
| | - Myron D Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609 Mayo 8609, 420 Delaware, Minneapolis, MN 55455, USA.
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, 101 Dongin-dong, Jung-gu, Daegu, 700-422, Republic of Korea.
| |
Collapse
|
19
|
Marroqui L, Tudurí E, Alonso-Magdalena P, Quesada I, Nadal Á, Dos Santos RS. Mitochondria as target of endocrine-disrupting chemicals: implications for type 2 diabetes. J Endocrinol 2018; 239:R27-R45. [PMID: 30072426 DOI: 10.1530/joe-18-0362] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes is a chronic, heterogeneous syndrome characterized by insulin resistance and pancreatic β-cell dysfunction or death. Among several environmental factors contributing to type 2 diabetes development, endocrine-disrupting chemicals (EDCs) have been receiving special attention. These chemicals include a wide variety of pollutants, from components of plastic to pesticides, with the ability to modulate endocrine system function. EDCs can affect multiple cellular processes, including some related to energy production and utilization, leading to alterations in energy homeostasis. Mitochondria are primarily implicated in cellular energy conversion, although they also participate in other processes, such as hormone secretion and apoptosis. In fact, mitochondrial dysfunction due to reduced oxidative capacity, impaired lipid oxidation and increased oxidative stress has been linked to insulin resistance and type 2 diabetes. Herein, we review the main mechanisms whereby metabolism-disrupting chemical (MDC), a subclass of EDCs that disturbs energy homeostasis, cause mitochondrial dysfunction, thus contributing to the establishment of insulin resistance and type 2 diabetes. We conclude that MDC-induced mitochondrial dysfunction, which is mainly characterized by perturbations in mitochondrial bioenergetics, biogenesis and dynamics, excessive reactive oxygen species production and activation of the mitochondrial pathway of apoptosis, seems to be a relevant mechanism linking MDCs to type 2 diabetes development.
Collapse
Affiliation(s)
- Laura Marroqui
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Eva Tudurí
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Paloma Alonso-Magdalena
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Iván Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Ángel Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| | - Reinaldo Sousa Dos Santos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Alicante, Spain
| |
Collapse
|
20
|
Lind PM, Lind L. Endocrine-disrupting chemicals and risk of diabetes: an evidence-based review. Diabetologia 2018; 61:1495-1502. [PMID: 29744538 PMCID: PMC6445457 DOI: 10.1007/s00125-018-4621-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 01/17/2023]
Abstract
The purpose of this study was to review the epidemiological and experimental evidence linking background exposure to a selection of environmental endocrine-disrupting chemicals (EDCs) with diabetes and impaired glucose metabolism. The review summarises the literature on both cross-sectional and prospective studies in humans, as well as experimental in vivo and in vitro studies. The findings were subjected to evidence grading according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) classification. We found >40 cross-sectional and seven prospective studies regarding EDCs and risk of diabetes. Taken together, there is moderate evidence for a relationship between exposure to dichlorodiphenyldichloroethylene (p,p'-DDE), a metabolite of the pesticide dichlorodiphenyltrichloroethane, and diabetes development. Regarding polychlorinated biphenyls (PCBs), it is likely that the rodent models used are not appropriate, and therefore the evidence is poorer than for p,p'-DDE. For other EDCs, such as bisphenol A, phthalates and perfluorinated chemicals, the evidence is scarce, since very few prospective studies exist. Brominated flame retardants do not seem to be associated with a disturbed glucose tolerance. Thus, evidence is accumulating that EDCs might be involved in diabetes development. Best evidence exists for p,p'-DDE. For other chemicals, both prospective studies and supporting animal data are still lacking.
Collapse
Affiliation(s)
- P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Cardiovascular Epidemiology, Department of Medical Sciences, Entrance 40, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
21
|
Dusanov S, Ruzzin J, Kiviranta H, Klemsdal TO, Retterstøl L, Rantakokko P, Airaksinen R, Djurovic S, Tonstad S. Associations between persistent organic pollutants and metabolic syndrome in morbidly obese individuals. Nutr Metab Cardiovasc Dis 2018; 28:735-742. [PMID: 29699815 DOI: 10.1016/j.numecd.2018.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Persons with "metabolically healthy" obesity may develop cardiometabolic complications at a lower rate than equally obese persons with evident metabolic syndrome. Even morbidly obese individuals vary in risk profile. Persistent organic pollutants (POPs) are widespread environmental chemicals that impair metabolic homeostasis. We explored whether prevalence of metabolic syndrome in morbidly obese individuals is associated with serum concentrations of POPs. METHODS AND RESULTS A cross-sectional study among 161 men and 270 women with BMI >35 kg/m2 and comorbidity, or >40 kg/m2. Circulating concentrations of 15 POPs were stratified by number of metabolic syndrome components. In multiple logistic regression analysis odds ratios between top quartile POPs and metabolic risk factors versus POPs below the top quartile were calculated adjusting for age, gender, body mass index, smoking status, alcohol consumption and cholesterol concentrations. Age-adjusted concentrations of trans-nonachlor and dioxin-like and non-dioxin-like polychlorinated biphenyls (PCBs) increased with number of metabolic syndrome components in both genders (p < 0.001), while the organochlorine pesticides HCB, β-HCH and p,p'DDE increased only in women (p < 0.008). Organochlorine pesticides in the top quartile were associated with metabolic syndrome as were dioxin-like and non-dioxin-like PCBs (OR 2.3 [95% CI 1.3-4.0]; OR 2.5 [95% CI 1.3-4.8] and 2.0 [95% CI 1.1-3.8], respectively). Organochlorine pesticides were associated with HDL cholesterol and glucose (OR = 2.0 [95% CI = 1.1-3.4]; 2.4 [95% CI = 1.4-4.0], respectively). Dioxin-like PCBs were associated with diastolic blood pressure, glucose and homeostatic model assessment-insulin resistance index (OR = 2.0 [95% CI = 1.1-3.6], 2.1 [95% CI = 1.2-3.6] and 2.1 [95% CI = 1.0-4.3], respectively). CONCLUSION In subjects with morbid obesity, metabolic syndrome was related to circulating levels of organochlorine pesticides and PCBs suggesting that these compounds aggravate clinically relevant complications of obesity.
Collapse
Affiliation(s)
- S Dusanov
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, P.b. 4956 Nydalen, N-0424, Oslo, Norway.
| | - J Ruzzin
- Department of Biology, University of Bergen, Bergen, Norway
| | - H Kiviranta
- National Institute for Health and Welfare, THL, Department of Health Security, P.O. Box 95, FI-70701, Kuopio, Finland
| | - T O Klemsdal
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, P.b. 4956 Nydalen, N-0424, Oslo, Norway
| | - L Retterstøl
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - P Rantakokko
- National Institute for Health and Welfare, THL, Department of Health Security, P.O. Box 95, FI-70701, Kuopio, Finland
| | - R Airaksinen
- National Institute for Health and Welfare, THL, Department of Health Security, P.O. Box 95, FI-70701, Kuopio, Finland
| | - S Djurovic
- Department of Medical Genetics, Oslo University Hospital, Bergen, Norway; KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - S Tonstad
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, P.b. 4956 Nydalen, N-0424, Oslo, Norway
| |
Collapse
|
22
|
New mechanistic insights on the metabolic-disruptor role of chlorpyrifos in apoE mice: a focus on insulin- and leptin-signalling pathways. Arch Toxicol 2018; 92:1717-1728. [DOI: 10.1007/s00204-018-2174-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
|
23
|
Mutie PM, Giordano GN, Franks PW. Lifestyle precision medicine: the next generation in type 2 diabetes prevention? BMC Med 2017; 15:171. [PMID: 28934987 PMCID: PMC5609030 DOI: 10.1186/s12916-017-0938-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
The driving force behind the current global type 2 diabetes epidemic is insulin resistance in overweight and obese individuals. Dietary factors, physical inactivity, and sedentary behaviors are the major modifiable risk factors for obesity. Nevertheless, many overweight/obese people do not develop diabetes and lifestyle interventions focused on weight loss and diabetes prevention are often ineffective. Traditionally, chronically elevated blood glucose concentrations have been the hallmark of diabetes; however, many individuals will either remain 'prediabetic' or regress to normoglycemia. Thus, there is a growing need for innovative strategies to tackle diabetes at scale. The emergence of biomarker technologies has allowed more targeted therapeutic strategies for diabetes prevention (precision medicine), though largely confined to pharmacotherapy. Unlike most drugs, lifestyle interventions often have systemic health-enhancing effects. Thus, the pursuance of lifestyle precision medicine in diabetes seems rational. Herein, we review the literature on lifestyle interventions and diabetes prevention, describing the biological systems that can be characterized at scale in human populations, linking them to lifestyle in diabetes, and consider some of the challenges impeding the clinical translation of lifestyle precision medicine.
Collapse
Affiliation(s)
- Pascal M Mutie
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Giuseppe N Giordano
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, SE-205 02, Malmö, Sweden
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital, SE-205 02, Malmö, Sweden.
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden.
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA.
- Oxford Center for Diabetes, Endocrinology & Metabolism, Radcliff Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, Nadal A, Palanza P, Panzica G, Sargis R, Vandenberg LN, Vom Saal F. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68:3-33. [PMID: 27760374 PMCID: PMC5365353 DOI: 10.1016/j.reprotox.2016.10.001] [Citation(s) in RCA: 646] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations.
Collapse
Affiliation(s)
- Jerrold J Heindel
- National Institute of Environmental Health Sciences, Division of Extramural Research and Training Research Triangle Park, NC, USA.
| | - Bruce Blumberg
- University of California, Department of Developmental and Cell Biology, Irvine CA, USA
| | - Mathew Cave
- University of Louisville, Division of Gastroenterology, Hepatology and Nutrition, Louisville KY, USA
| | | | | | - Michelle A Mendez
- University of North Carolina at Chapel Hill, School of Public Health, Chapel Hill NC, USA
| | - Angel Nadal
- Institute of Bioengineering and CIBERDEM, Miguel Hernandez University of Elche, Elche, Alicante, Spain
| | - Paola Palanza
- University of Parma, Department of Neurosciences, Parma, Italy
| | - Giancarlo Panzica
- University of Turin, Department of Neuroscience and Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Robert Sargis
- University of Chicago, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine Chicago, IL, USA
| | - Laura N Vandenberg
- University of Massachusetts, Department of Environmental Health Sciences, School of Public Health & Health Sciences, Amherst, MA, USA
| | - Frederick Vom Saal
- University of Missouri, Department of Biological Sciences, Columbia, MO, USA
| |
Collapse
|
25
|
Zong G, Grandjean P, Wang X, Sun Q. Lactation history, serum concentrations of persistent organic pollutants, and maternal risk of diabetes. ENVIRONMENTAL RESEARCH 2016; 150:282-288. [PMID: 27336232 PMCID: PMC5003647 DOI: 10.1016/j.envres.2016.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 05/21/2023]
Abstract
OBJECTIVE Lactation may help curb diabetes risk and is also known as an excretion route for some environmental pollutants. We evaluated associations of lifetime lactation history with serum concentrations of persistent organic pollutants (POPs) in the National Health and Nutrition Examination Survey 1999-2006, and examined whether potentially diabetogenic POPs account for associations between lactation and diabetes. RESEARCH DESIGN AND METHODS Among 4479 parous women, breastfeeding history was defined as the number of children breastfed ≥1 month. Diabetes was identified by self-report or hemoglobin A1c >6.5%. Twenty-four POPs were measured in serum among subsamples of 668 to 1073 participants. RESULTS Compared with women without lactation history, odds ratios (95% confidence intervals) of having diabetes among those with 1-2 and ≥3 lactation periods were 0.83(0.61, 1.13) and 0.63(0.44, 0.91; P trend=0.03). Lifetime lactation history was inversely associated with serum concentrations of 17 out of the 24 organochlorine pesticides, polychlorinated biphenyl congeners (PCBs), and perfluoroalkyl substances (Ptrend<0.05). Comparing the ≥3 lactations group with women without a lactation history, the relative reduction of POPs ranged from 12% (PCB-196) to 30% (oxychlordane). The inverse association between lactation and diabetes was slightly attenuated after adjustment for POPs. Age-stratified analyses showed that the inverse association between lactation periods and serum POP concentrations was observed primarily among participants <60 years, whereas age did not significantly modify the association between lactation history and diabetes prevalence. CONCLUSION Crudely-classified lifetime lactation history was inversely associated with concurrent serum POP concentrations and diabetes prevalence. Prospective studies are needed to clarify how lactation could complement diabetes prevention through decreasing the POP body burdens.
Collapse
Affiliation(s)
- Geng Zong
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Xiaobin Wang
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA; Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Tuomisto J, Airaksinen R, Kiviranta H, Tukiainen E, Pekkanen J, Tuomisto JT. A pharmacokinetic analysis and dietary information are necessary to confirm or reject the hypothesis on persistent organic pollutants causing type 2 diabetes. Toxicol Lett 2016; 261:41-48. [PMID: 27575567 DOI: 10.1016/j.toxlet.2016.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022]
Abstract
A number of studies have found an association between the concentrations of persistent organic pollutants (POP) and type 2 diabetes. Causality has remained uncertain. This study describes the pharmacokinetic behavior of PCDD/Fs (polychlorinated dibenzo-p-dioxins and dibenzofurans) both in a theoretical model based on elimination rate constants, and in a group of 409 adult surgical patients with known PCDD/F concentrations and dietary information. A model assuming 10% annual decrease in past PCDD/F intake, predicted the measured profile of TEQ (toxic equivalents) in the patient population fairly well. The dominant determinant of PCDD/F level was age, and the level in patients was also associated with consumption of animal source products. Predicted daily intakes correlated with diet, but also with body mass index (BMI), indicating that high BMI was preceded by high consumption of foods containing PCDD/Fs. The results suggest that a third factor, e.g. high intake of animal source foods, could explain both higher levels of POPs in the body and higher incidence of type 2 diabetes, and BMI is not sufficient in describing the confounding caused by diet. Thus, to fully address the causality between POPs and type 2 diabetes, careful studies considering the pharmacokinetics of the studied compounds, and including the analysis of food consumption, are needed.
Collapse
Affiliation(s)
- Jouko Tuomisto
- Department of Health Protection, National Institute for Health and Welfare, Kuopio, FI-70200, Finland.
| | - Riikka Airaksinen
- Department of Health Protection, National Institute for Health and Welfare, Kuopio, FI-70200, Finland
| | - Hannu Kiviranta
- Department of Health Protection, National Institute for Health and Welfare, Kuopio, FI-70200, Finland
| | - Erkki Tukiainen
- Department of Plastic Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Juha Pekkanen
- Department of Health Protection, National Institute for Health and Welfare, Kuopio, FI-70200, Finland; Department of Public Health, University of Helsinki, Finland
| | - Jouni T Tuomisto
- Department of Health Protection, National Institute for Health and Welfare, Kuopio, FI-70200, Finland
| |
Collapse
|
27
|
Esser A, Schettgen T, Gube M, Koch A, Kraus T. Association between polychlorinated biphenyls and diabetes mellitus in the German HELPcB cohort. Int J Hyg Environ Health 2016; 219:557-65. [DOI: 10.1016/j.ijheh.2016.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
28
|
Xie HQ, Xu T, Chen Y, Li Y, Xia Y, Xu SL, Wang L, Tsim KWK, Zhao B. New perspectives for multi-level regulations of neuronal acetylcholinesterase by dioxins. Chem Biol Interact 2016; 259:286-290. [PMID: 27374124 DOI: 10.1016/j.cbi.2016.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/22/2016] [Accepted: 06/29/2016] [Indexed: 02/04/2023]
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) is a vital functional enzyme in cholinergic neurotransmission which can rapidly hydrolyze neurotransmitter, acetylcholine, in the central and peripheral nervous systems. Emerging evidence showed that in addition to classical environmental AChE inhibitors, e.g. organophosphate and carbamate pesticides, dioxins are a new type of xenobiotic causing impairment of AChE. Dioxin can transcriptionally or post-transcriptionally suppress AChE expression in human neuroblastoma cells or mouse immune cells via the aryl hydrocarbon receptor (AhR) pathway, respectively. Dioxins can affect gene expression through other mechanisms, such as cross-talk with other signaling cascades and epigenetic modulations. Therefore, in this review, by summarizing the known mechanisms of AChE regulation and dioxin-induced gene alteration, potential signaling cascades and epigenetic mechanisms are proposed for dioxin-mediated AChE regulation. Mitogen activated protein (MAP) kinase, 3', 5'-cyclic adenosine monophosphate (cAMP) and calcium-related singaling pathways, as well as potential epigenetic mechanisms, such as DNA methylation, and post-transcriptional regulation via microRNAs, including hsa-miR-132, hsa-miR-212 and hsa-miR-25-3p are discussed here. These proposed mechanisms may be invaluable not only to promote comprehensive understanding of the action mechanisms for dioxin, but to illustrate the molecular basis of dioxin-induced health impacts.
Collapse
Affiliation(s)
- Heidi Q Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Sherry L Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lingyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Karl W K Tsim
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans. Sci Rep 2016; 6:27882. [PMID: 27292372 PMCID: PMC4904407 DOI: 10.1038/srep27882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022] Open
Abstract
It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.
Collapse
|
30
|
Masci M, Nevigato T. Non-dioxin-like PCBs: a survey on fishery and aquaculture from the Mediterranean area. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2016; 9:159-69. [PMID: 26885891 DOI: 10.1080/19393210.2016.1151465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A sampling campaign from 21 sites in Italy was conducted: 15 species from fishery and three species from aquaculture, for a total of 40 determinations, were considered. A careful sample preparation preceded the instrumental analysis that was carried out by means of GC-ECD and GC-MS. Good laboratory practice was achieved by the participation in proficiency tests, by the use of certified reference materials and by applying other directives recommended by international organisations. Concentrations measured in this work were compared with a TDI proposed by some international bodies: for a person weighing 70 kg one-third of the samples from fishery, when consumed, lead to exceed this TDI if the average fish daily consumption per capita is considered. Based on the data obtained here some hypotheses on environmental spreading and influence of PCBs on human health are made. Some suggestions about the preparation of fish for consumption are also given.
Collapse
Affiliation(s)
- Maurizio Masci
- a Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) , Research Centre for Food and Nutrition , Rome , Italy
| | - Teresina Nevigato
- a Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) , Research Centre for Food and Nutrition , Rome , Italy
| |
Collapse
|
31
|
Pizzorno J. Conventional Laboratory Tests to Assess Toxin Burden. Integr Med (Encinitas) 2015; 14:8-16. [PMID: 26770160 PMCID: PMC4712864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
32
|
Peris-Sampedro F, Cabré M, Basaure P, Reverte I, Domingo JL, Teresa Colomina M. Adulthood dietary exposure to a common pesticide leads to an obese-like phenotype and a diabetic profile in apoE3 mice. ENVIRONMENTAL RESEARCH 2015; 142:169-76. [PMID: 26162960 DOI: 10.1016/j.envres.2015.06.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 05/19/2023]
Abstract
Increasing evidence links the widespread exposure to organophosphate (OP) pesticides to the global epidemics of type 2 diabetes and obesity. Our recent data highlighted gene×environment interactions: mice expressing the human apolipoprotein E3 (apoE3) isoform were more prone to develop obesity than those expressing apoE2 or apoE4 upon dietary challenge with chlorpyrifos (CPF), the most used OP worldwide. Thus, we aimed to further explore the contribution of the APOE3 genotype on the emergence of obesity and related metabolic dysfunctions upon subchronic exposure to CPF. Seven-month-old targeted replacement apoE3 and C57BL/6N male mice were orally exposed to CPF at 0 or 2mg/kg body weight/day for 8 consecutive weeks. We examined body weight status, food and water intake, lipid and glucose homeostasis, metabolic biomarkers concentrations, insulin levels and insulin resistance, and leptin and ghrelin profiles. CPF exposure generally increased food ingestion, glucose and total cholesterol concentrations, and tended to elevate acyl ghrelin levels. Nonetheless, excess weight gain and increased leptin levels were inherent to apoE3 mice. Moreover, the propensity towards a diabetic profile was markedly higher in these animals than in C57BL/6N, as they showed a higher homeostatic model assessment for insulin resistance index and higher insulin levels. Although both genotypes were metabolically affected by CPF, the results of the present investigation revealed that apoE3 mice were the most vulnerable to developing obesity and related disturbances following CPF administration through the diet. Since the APOE3 genotype is the most prevalent worldwide, current findings have particular implications for human health.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Cabré
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pia Basaure
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Ingrid Reverte
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Maria Teresa Colomina
- Research in Neurobehaviour and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
| |
Collapse
|
33
|
Turyk M, Fantuzzi G, Persky V, Freels S, Lambertino A, Pini M, Rhodes DH, Anderson HA. Persistent organic pollutants and biomarkers of diabetes risk in a cohort of Great Lakes sport caught fish consumers. ENVIRONMENTAL RESEARCH 2015; 140:335-44. [PMID: 25913152 PMCID: PMC4492847 DOI: 10.1016/j.envres.2015.03.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Exposure to persistent organic pollutants (POPs) is associated with increased diabetes risk, although the mechanism of action is not well delineated. METHODS We investigated established diabetes biomarkers that could implicate potential mechanistic pathways, including C-reactive protein (CRP), a marker of systemic inflammation; gamma glutamyl transferase (GGT), a liver enzyme associated with oxidative stress; and adiponectin, an adipokine modulating glucose regulation and fatty acid oxidation. These biomarkers as well as hemoglobin A1c (HA1c), and POPs [polychlorinated biphenyls (PCBs), p,p-dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)] were measured in a cohort of Great Lakes sport caught fish (GLSCF) consumers. We examined associations of POPs and fish consumption with HA1c and incident diabetes, and evaluated mediation and moderation by the diabetes biomarkers. RESULTS Odds of incident diabetes were elevated with exposure to DDE and PCBs. DDE and PCB 118 were positively, and fish meals were inversely, associated with HA1c. CRP was inversely associated with saltwater and total fish meals, particularly in persons with higher adiposity, but did not mediate the associations of fish meals with HA1c. There were few associations of POPs with adiponectin, CRP and GGT, with the exception of positive associations of PCB 118 with GGT, PBDEs with GGT in older persons, and PBDEs with adiponectin. Adiponectin, CRP and GGT did not mediate associations of DDE and PCBs with HA1c or incident diabetes. However, the association of DDE with HA1c was stronger in persons with higher CRP, GGT and BMI, and lower adiponectin, while the association of PCB 118 with HA1c was stronger in persons with higher GGT. CONCLUSIONS These findings suggest that adiponectin, CRP and GGT did not mediate effects of POPs on diabetes or HA1c. However, POPs may have stronger effects on blood glucose in persons at higher risk for diabetes.
Collapse
Affiliation(s)
- Mary Turyk
- University of Illinois at Chicago, Division of Epidemiology and Biostatistics, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60612, United States.
| | - Giamila Fantuzzi
- University of Illinois at Chicago, Department of Kinesiology and Nutrition, College of Applied Health Sciences, 1919 W. Taylor Street, Chicago, IL 60612, United States
| | - Victoria Persky
- University of Illinois at Chicago, Division of Epidemiology and Biostatistics, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60612, United States
| | - Sally Freels
- University of Illinois at Chicago, Division of Epidemiology and Biostatistics, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60612, United States
| | - Anissa Lambertino
- University of Illinois at Chicago, Division of Epidemiology and Biostatistics, School of Public Health, 1603 W. Taylor Street, Chicago, IL 60612, United States
| | - Maria Pini
- University of Illinois at Chicago, Department of Kinesiology and Nutrition, College of Applied Health Sciences, 1919 W. Taylor Street, Chicago, IL 60612, United States; Université Pierre et Marie Curie-Paris6, Centre de Recherche des Cordeliers, UMRS 872, Paris F-75006, France; Institute of Cardiometabolism and Nutrition (ICAN), Pitié-Salpêtrière Hospital, Paris F-75013, France
| | - Davina H Rhodes
- University of Illinois at Chicago, Department of Kinesiology and Nutrition, College of Applied Health Sciences, 1919 W. Taylor Street, Chicago, IL 60612, United States; Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, United States
| | - Henry A Anderson
- Wisconsin Division of Public Health, 1 W. Wilson St., Room 150, Madison, WI 53702, United States
| |
Collapse
|