1
|
Bui QTN, Kim T, Kim HS, Lee S, Lee S, Ki JS. Sub-lethal effects of metals and pesticides on the freshwater dinoflagellate Palatinus apiculatus and environmental implications. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11128. [PMID: 39267330 DOI: 10.1002/wer.11128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Microalgae are unicellular, photosynthetic organisms in aquatic environments and are sensitive to water quality and contaminants. While green algae and diatoms are widely used for toxicity assessments, there is a relatively limited amount of toxicity data available for freshwater dinoflagellates. Here, we evaluated the sub-lethal effects of the metals Cu, Cr, Ni, and Zn and the herbicides atrazine and S-metolachlor on the freshwater dinoflagellate Palatinus apiculatus. Based on the 72-h median effective concentration (EC50), P. apiculatus showed sensitive responses to metals in the order of Cu (0.052 mg L-1), Cr (0.085 mg L-1), Zn (0.098 mg L-1), and Ni (0.13 mg L-1). Among the tested herbicides, P. apiculatus was more sensitive to atrazine (0.0048 mg L-1) than S-metolachlor (0.062 mg L-1). In addition, we observed morphological alterations and significant increases in reactive oxygen species (ROS) production in cells exposed to 0.05 mg L-1 of Cu and 0.005 mg L-1 of atrazine. These indicated that metals and pesticides induced oxidative stress in cellular metabolic processes and consequently caused severe physiological damage to the cells. Our results provide baseline data on the toxic effects of typical environmental contaminants on freshwater dinoflagellate, suggesting that P. apiculatus could be used as a bioindicator in freshwater toxicity assessments. PRACTITIONER POINTS: The sub-lethal effects of metals and pesticides on the freshwater dinoflagellate Palatinus apiculatus were evaluated. Palatinus sensitively responded to metals and pesticides; of test chemicals, atrazine (0.0048 mg L-1 of EC50) was the most sensitive. Metals and pesticides induced oxidative stress and consequently caused severe physiological damage to the Palatinus cells. The freshwater dinoflagellate Palatinus can be used as a bioindicator in freshwater toxicity assessments.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Taehee Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Seokmin Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, South Korea
| | - Seungjun Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, South Korea
| |
Collapse
|
2
|
Zhang L, Cui Y, Xu J, Qian J, Yang X, Chen X, Zhang C, Gao P. Ecotoxicity and trophic transfer of metallic nanomaterials in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171660. [PMID: 38490428 DOI: 10.1016/j.scitotenv.2024.171660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Metallic nanomaterials (MNMs) possess unique properties that have led to their widespread application in fields such as electronics and medicine. However, concerns about their interactions with environmental factors and potential toxicity to aquatic life have emerged. There is growing evidence suggesting MNMs can have detrimental effects on aquatic ecosystems, and are potential for bioaccumulation and biomagnification in the food chain, posing risks to higher trophic levels and potentially humans. While many studies have focused on the general ecotoxicity of MNMs, fewer have delved into their trophic transfer within aquatic food chains. This review highlights the ecotoxicological effects of MNMs on aquatic systems via waterborne exposure or dietary exposure, emphasizing their accumulation and transformation across the food web. Biomagnification factor (BMF), the ratio of the contaminant concentration in predator to that in prey, was used to evaluate the biomagnification due to the complex nature of aquatic food chains. However, most current studies have BMF values of less than 1 indicating no biomagnification. Factors influencing MNM toxicity in aquatic environments include nanomaterial properties, ion variations, light, dissolved oxygen, and pH. The multifaceted interactions of these variables with MNM toxicity remain to be fully elucidated. We conclude with recommendations for future research directions to mitigate the adverse effects of MNMs in aquatic ecosystems and advocate for a cautious approach to the production and application of MNMs.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Jingran Qian
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
3
|
Brunelli A, Cazzagon V, Faraggiana E, Bettiol C, Picone M, Marcomini A, Badetti E. An overview on dispersion procedures and testing methods for the ecotoxicity testing of nanomaterials in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171132. [PMID: 38395161 DOI: 10.1016/j.scitotenv.2024.171132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Considerable efforts have been devoted to develop or adapt existing guidelines and protocols, to obtain robust and reproducible results from (eco)toxicological assays on engineered nanomaterials (NMs). However, while many studies investigated adverse effects of NMs on freshwater species, less attention was posed to the marine environment, a major sink for these contaminants. This review discusses the procedures used to assess the ecotoxicity of NMs in the marine environment, focusing on the use of protocols and methods for preparing NMs dispersions and on the NMs physicochemical characterization in exposure media. To this purpose, a critical analysis of the literature since 2010 was carried out, based on the publication of the first NMs dispersion protocols. Among the 89 selected studies, only <5 % followed a standardized dispersion protocol combined with NMs characterization in ecotoxicological media, while more than half used a non-standardized dispersion method but performed NMs characterization. In the remaining studies, only partial or no information on dispersion procedures or on physicochemical characterization was provided. This literature review also highlighted that metal oxides NMs were the most studied (42 %), but with an increasing interest in last years towards nanoplastics (14 %) and multicomponent nanomaterials (MCNMs, 7 %), in line with the growing attention on these emerging contaminants. For all these NMs, primary producers as algae and bacteria were the most studied groups of marine species, in addition to mollusca, while organisms at higher trophic levels were less represented, likely due to challenges in evaluating adverse effects on more complex organisms. Thus, despite the wide use of NMs in different applications, standard dispersion protocols are not often used for ecotoxicity testing with marine species. However, the efforts to characterize NMs in ecotoxicological media recognize the importance of following conditions that are as standardized as possible to support the ecological hazard assessment of NMs.
Collapse
Affiliation(s)
- Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Eleonora Faraggiana
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Marco Picone
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| |
Collapse
|
4
|
Deng B, Maaloul R, Nowak S, Sivry Y, Yéprémian C, Ammar S, Mammeri F, Brayner R. Aquatic Fate and Ecotoxicology Effect of ZnS:Mn Quantum Dots on Chlorella vulgaris in Fresh Water. J Xenobiot 2024; 14:467-483. [PMID: 38651378 PMCID: PMC11036285 DOI: 10.3390/jox14020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
With the increasing integration of nanomaterials into daily life, the potential ecotoxicological impacts of nanoparticles (NPs) have attracted increased attention from the scientific community. This study assessed the ecotoxicity of ZnS quantum dots (QDs) doped with varying molar concentrations of Mn2+ on Chlorella vulgaris. The ZnS:Mn QDs were synthesized using the polyol method. The size of the ZnS:Mn QDs ranged from approximately 1.1 nm to 2 nm, while the aggregation size in Seine River water was 341 nm at pH 6 and 8. The presence of ZnS:Mn (10%) NPs exhibited profound toxicity to Chlorella vulgaris, with immediate reductions in viability (survival cells) from 71%, 60% to 51%, 52% in BG11 and Seine River water, respectively, at a concentration of 100 mg L-1 of ZnS:Mn (10%) NPs. Additionally, the ATP content in Chlorella vulgaris significantly decreased in Seine River water (by 20%) after 3 h of exposure to ZnS:Mn (10%) NPs. Concurrently, SOD activity significantly increased in Seine River water, indicating that the ZnS:Mn (10%) NPs induced ROS production and triggered an oxidative stress response in microalgae cells.
Collapse
Affiliation(s)
- Bingbing Deng
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Rania Maaloul
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Sophie Nowak
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Yann Sivry
- IPGP, Université Paris Cité, CNRS, F-75005 Paris, France
| | - Claude Yéprémian
- CNRS, Molécules de Communication & Adaptation des Microorganismes MCAM, Museum National d’Histoire Naturelle, F-75005 Paris, France;
| | - Souad Ammar
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Fayna Mammeri
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| | - Roberta Brayner
- ITODYS, Université Paris Cité, CNRS, F-75013 Paris, France (S.A.)
| |
Collapse
|
5
|
Pan L, Wu J, Chen B, Zhu X. Encapsulation on rhodochrosite stabilizes toxic CdS nanoparticles in aqueous oxidation systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133641. [PMID: 38309157 DOI: 10.1016/j.jhazmat.2024.133641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Manganese (Mn) redox cycling and phase variation reactions play a crucial role in natural water settings. Rhodochrosite (MnCO3), a mineral commonly found in oxygen-deprived environments, develops a surface oxide film upon exposure to oxygen. This Mn oxide film significantly influences the fate of nanoparticles within its proximity. Employing atomic force microscopy (AFM), this study examined the growth of the Mn oxide film on MnCO3 and the encapsulation of cadmium sulfide nanoparticles (CdS-NPs). Results revealed the gradual development of a nanometer-thick oxide film on MnCO3 over time in aerobic conditions, with the rate of film formation correlated to the solution's ionic strength. The oxide film on MnCO3 encapsulated pre-adsorbed CdS-NPs, either through embedding or covering. Intriguingly, CdS-NPs were found to enhance the growth of the Mn oxide film, contributing to the fixation of CdS-NPs. Furthermore, an ultrasonic desorption protocol verified the stability of CdS-NPs encapsulated by the Mn oxide film on MnCO3. This study elucidates a novel mechanism for immobilizing CdS-NPs in aqueous oxidizing conditions, providing valuable insights into the behavior and distribution of toxic nanoparticles in environmental contexts. ENVIRONMENTAL IMPLICATION: This study classifies cadmium sulfide nanoparticles (CdS-NPs) as "hazardous material" due to the inherent toxicity of cadmium, posing risks to both ecological and human health. The research addresses environmental concerns by exploring the interaction between CdS-NPs and manganese (Mn) redox cycling. The formation of a Mn oxide film, encapsulating CdS-NPs, suggests a mechanism for limiting the dispersion of these hazardous nanoparticles in oxidizing water. This provides valuable insights for managing the environmental impact of CdS-NPs, offering a proactive strategy to mitigate their adverse effects in natural systems.
Collapse
Affiliation(s)
- Liuyi Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Innovation Center of Yangztze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Innovation Center of Yangztze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
6
|
Wang J, Tan L, Li Q, Wang J. Toxic effects of nSiO 2 and mPS on diatoms Nitzschia closterium f. minutissima. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106298. [PMID: 38101202 DOI: 10.1016/j.marenvres.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
To investigate the toxic mechanism of SiO2 nanoparticles (nSiO2) and polystyrene microplastics (mPS) on microalgae Nitzschia closterium f. minutissima, growth inhibition tests were carried out. The growth and biological responses of the algae exposed to nSiO2 (0.5, 1, 2, 5, 10, 30 mg L-1) and mPS (1, 5, 10, 30 and 75 mg L-1) were explored in f/2 media for 96 h. Both micro-/nano-particles (MNPs) inhibited the growth of N. closterium f. minutissima in a concentration- and time-dependent manner. The toxic effect of mPS on N. closterium f. minutissima is higher than that of nSiO2, because silicon is essential for diatoms to maintain cell wall integrity, and the addition of appropriate amounts of nSiO2 can be absorbed and used as a nutrient to promote diatom growth and protect the integrity of the siliceous shell to some extent. Both MNPs induce the production of excess oxidation and activate the cellular antioxidant defense system, leading to increased SOD and CAT activity as a means to resist oxidative damage to the cell, and eliminating excess ROS and maintaining normal cell morphology and metabolism. SEM is consistent with the results of MDA, showing that mPS with high concentrations attach to the surface of algal cells to produce heterogeneous aggregates and disrupt the cell wall and cell membrane, causing the cells to expand and rupture. This study contributes to the understanding of the size effect of MNPs on the growth of marine diatom.
Collapse
Affiliation(s)
- Jiayin Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Qi Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
7
|
Liu M, Song X, Liu C, Cui X, Sun W, Li Z, Wang J. Nanoplastics increase the adverse impacts of lead on the growth, morphological structure and photosynthesis of marine microalga Platymonashelgolandica. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106259. [PMID: 37976841 DOI: 10.1016/j.marenvres.2023.106259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Nanoplastics and heavy metals are common pollutants in coastal environments with high concerns, but their joint ecological risk to marine primary productivity remains unclear. In this study, the effects of 7, 70, 700 μg/L lead (Pb) single exposure and in combination with 200 μg/L polystyrene nanoplastics (NPs, 70 nm) on marine microalga Platymonas helgolandica were investigated. Pb single exposure induced a dose-dependent inhibition on the growth of P. helgolandica, which was associated with the reduced photosynthetic efficiency and nutrient accumulation. Compared to Pb single exposure, the addition of NPs significantly reduced the photosynthetic efficiency and aggravated the damage to cell structure. Reduced esterase activity and increased membrane permeability also indicated that NPs exacerbated the adverse effects of Pb on P. helgolandica. Thus, co-exposure to NPs and Pb induced more severe impacts on marine microalgae, suggesting that the joint ecological risk of NPs and heavy metals to marine primary productivity merits more attention.
Collapse
Affiliation(s)
- Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiukai Song
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, China.
| | - Cong Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xumeng Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wei Sun
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, China
| | - Zhengmao Li
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resources and Environment Research Institute, Yantai, 264006, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
8
|
Ullah H, Zheng W, Sheng Y. Translocation of CdS nanoparticles in maize (Zea mays L.) plant and its effect on metabolic response. CHEMOSPHERE 2023; 343:140189. [PMID: 37716569 DOI: 10.1016/j.chemosphere.2023.140189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Cadmium sulfide nanomaterials are of great concern because of their potential toxicity and unavoidable releases due to multiple commercial applications of nanoparticles (NPs). Commercial NPs act as mediators of damage to plant cells and pose potential toxicity to plants and human health. In the current study, investigated the phytotoxicology, absorption, translocation, antioxidant enzyme activity, and metabolic profiles of maize (Zea mays L.) seedlings exposed to different hydroponic treatments for fifteen days. The different concentrations of CdS NPs (3, 15, 30, 50, and 100 mg/L), 0.3 mg/L Cd ions, and unexposed control were performed in treatments. The results indicated that CdS NPs could present phytotoxic effects on seed germination and root elongation. Compared to the control, the CdS NPs dramatically reduced the shoots and root biomass, as well as the shape of the roots. Transmission electron microscopy and energy-dispersive mapping confirmed that CdS NPs could penetrate the maize root epidermis and bioaccumulate in the shoots with high concentrations. According to metabolomics studies, exposure to CdS NPs and Cd ions would result in metabolic disruption. Based on the statistical analysis, 290 out of 336 metabolites (86.30%) were obviously inhibited. The findings of this study demonstrated possible risks of emerging potential toxic NPs, and the release of these NPs to environment is a serious concern for agricultural activities.
Collapse
Affiliation(s)
- Hameed Ullah
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang Zheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
9
|
Calvo-Olvera A, Sandoval-Cárdenas DI, García-Gasca T, Amaro-Reyes A, De Donato-Capote M, Rojas-Avelizapa NG. Characterization and cytotoxicity assessment of cadmium sulfide quantum dots synthesized with Fusarium oxysporum f. sp. lycopersici. Arch Microbiol 2023; 205:259. [PMID: 37289260 DOI: 10.1007/s00203-023-03604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The potential of CdS quantum dots for biomedical and bioimaging applications depends on their cytotoxicity, which can be modulated by coating molecules. Using sulfur as a precursor can be used along with cadmium nitrate to synthesize CdS quantum dots with the fungus Fusarium oxysporum f. sp. lycopersici. The latter replaces pure chemical sulfur as a precursor for CdS quantum dot synthesis, thus transforming waste into a value-added product, increasing sustainability, reducing the environmental impact of the process through the implementation of green synthesis techniques, and contributing to the circular economy. Therefore, we compared the cytotoxicity on HT-29 cells of biogenic, and chemical CdSQDs, synthesized by a chemical method using pure sulfur. Biogenic and chemical CdSQDs had diameters of 4.08 ± 0.07 nm and 3.2 ± 0.20 nm, Cd/S molar ratio of 43.1 and 1.1, Z-potential of - 14.77 ± 0.64 mV and - 5.52 ± 1.11 mV, and hydrodynamic diameters of 193.94 ± 3.71 nm and 152.23 ± 2.31 nm, respectively. The cell viability improved 1.61 times for biogenic CdSQDs over chemical CdSQDs, while cytotoxicity, measured as IC50, diminished 1.88-times. The lower cytotoxicity of biogenic CdSQDs was attributed to their organic coating consisting of lipids, amino acids, proteins, and nitrate groups that interacted with CdS through -OH and -SH groups. Therefore, the biogenic synthesis of CdSQDs has repurposed a pathogenic fungus, taking advantage of the biomolecules it secretes, to transform hazardous sulfur waste and metal ions into stable CdSQDs with advantageous structural and cytotoxic properties for their potential application in biomedicine and bioimaging.
Collapse
Affiliation(s)
- Alexandra Calvo-Olvera
- Departamento de Biotecnología Ambiental, CICATA-Querétaro, Instituto Politécnico Nacional, Querétaro, México
| | | | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Aldo Amaro-Reyes
- Planta Piloto de Biotecnología, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, México
| | | | | |
Collapse
|
10
|
Padash A, Heydarnajad Giglou R, Torabi Giglou M, Azarmi R, Mokhtari AM, Gohari G, Amini M, Cruz C, Ghorbanpour M. Comparing the toxicity of tungsten and vanadium oxide nanoparticles on Spirulina platensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45067-45076. [PMID: 36697989 DOI: 10.1007/s11356-023-25461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The production and release of nanoparticles and their impacts on living organisms are among the most important concerns in the world. Spirulina platensis was chosen because of its ability to absorb more elements than other algae. Therefore, an experiment was conducted to improve the product quality of spirulina exposed to new type of nanoparticles. In this experiment, vanadium oxide nanoparticles (VNPs) and tungsten oxide nanoparticles (WNPs) were used at concentrations of 0, 0.001, 0.017, and 0.05 g/l. The measured indices such as protein percentage and concentrations of phycobiliproteins and carbohydrates were the most important parameters of spirulina. Results showed that the concentration of 0.001 g/l of VNPs significantly affected the amounts of protein and phycocyanin. It has also been observed that 0.001 g/l of WNPs significantly influenced the amounts of protein (5.3%) and phycocyanin (90%); however, WNPs at all concentrations increased the concentrations of protein and phycocyanin. A concentration of 0.05 g/l of WNPs increased phycocyanin content by 83% over the control. The examination of nanoparticles by spirulina showed that VNPs were more adsorbed by spirulina than WNPs. In general, VNPs were toxic to algae at concentrations of 0.017 and 0.05 g/l, but WNPs did not show any fatal toxicity.
Collapse
Affiliation(s)
- Akbar Padash
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Rasoul Heydarnajad Giglou
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Mousa Torabi Giglou
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Rasoul Azarmi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Amir Mohammad Mokhtari
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Cristina Cruz
- Faculty of Sciences, Department of Plant Biology, Center for Ecology and Plant Biology, University of Lisbon, Lisbon, Portugal
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
11
|
Tiwari H, Prajapati SK. Allelopathic effect of benzoic acid (hydroponics root exudate) on microalgae growth. ENVIRONMENTAL RESEARCH 2023; 219:115020. [PMID: 36521539 DOI: 10.1016/j.envres.2022.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Hydroponic effluent (HE) contains a reasonable amount of residual nutrients. Therefore, HE could be used as a low-cost growth media for microalgae mediated resource recovery and water recycling. However, the presence of root exudates (particularly, benzoic acid) may lead to toxicity in microalgae.In the present study, the allelopathic effects of benzoic acid on microalgal growth was tested. During 96 h batch growth, Chlorella pyrenoidosa showed the highest biomass concentration (0.064-0.037 g.L-1) compared to Chlorella sorokiniana (0.09-0.26 g.L-1) at the tested benzoic acid doses. Moreover, both the species showed growth stimulation and growth inhibition up to certain benzoic acid doses. Hence, both the microalgal species showed allelopathic behaviour at different doses of benzoic acid. Further, the observed half effective concentration (96 h EC50) were 65.10 mg.L-1 and 105.27 mg.L-1, respectively, for Chlorella pyrenoidosa and C. sorokiniana with 95% confidence limits. Further, Haldane's model best fitted with experimental data of both the microalgae (r ∼ 0.99). Overall, the study reveals that the HE with low benzoic acid dose may serve as a suitable growth media for microalgae. However, further in-depth research interventions using real HE are desirable to determine its real-world applicability.
Collapse
Affiliation(s)
- Harshit Tiwari
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
12
|
Bui QTN, Ki JS. Two novel superoxide dismutase genes (CuZnSOD and MnSOD) in the toxic marine dinoflagellate Alexandrium pacificum and their differential responses to metal stressors. CHEMOSPHERE 2023; 313:137532. [PMID: 36509186 DOI: 10.1016/j.chemosphere.2022.137532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Superoxide dismutase (SOD) is an important antioxidant enzyme that is involved in the first line of defense against reactive oxygen species (ROS) within cells. Herein, we determined two novel CuZnSOD and MnSOD genes from the toxic marine dinoflagellate Alexandrium pacificum (designated as ApCuZnSOD and ApMnSOD) and characterized their structural features and phylogenetic affiliations. In addition, we examined the relative gene expression and ROS levels following exposure to heavy metals. ApCuZnSOD encoded 358 amino acids (aa) with two CuZnSOD-conserved domains. ApMnSOD encoded 203 aa that contained a mitochondrial-targeting signal and a MnSOD signature motif but missed an N-terminal domain. Phylogenetic trees showed that ApCuZnSOD clustered with other dinoflagellates, whereas ApMnSOD formed a clade with green algae and plants. Based on the 72-h median effective concentration (EC50), A. pacificum showed toxic responses in the order of Cu, Ni, Cr, Zn, Cd, and Pb. SOD expression levels dramatically increased after 6 h of Pb (≥6.5 times) and 48 h of Cu treatment (≥3.9 times). These results are consistent with the significant increase in ROS production in the A. pacificum exposed to Pb and Cu. These suggest that the two ApSODs are involved in the antioxidant defense system but respond differentially to individual metals.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
13
|
Pikula K, Kirichenko K, Chernousov V, Parshin S, Masyutin A, Parshina Y, Pogodaev A, Gridasov A, Tsatsakis A, Golokhvast K. The Impact of Metal-Based Nanoparticles Produced by Different Types of Underwater Welding on Marine Microalgae. TOXICS 2023; 11:105. [PMID: 36850981 PMCID: PMC9966890 DOI: 10.3390/toxics11020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Underwater wet welding is commonly used in joining pipelines and in underwater construction. Harmful and hazardous compounds are added to many flux-cored wires for underwater welding and cutting, and can have a negative impact on marine life. The specific objective of this study was to evaluate the aquatic toxicity of two suspension samples obtained using welding electrode and flux-cored wire in marine microalgae Attheya ussuriensis and Porphyridium purpureum. Growth rate inhibition, cell size, and biochemical changes in microalgae were evaluated by flow cytometry. The results of the bioassay demonstrated that the suspension obtained after welding with electrode had an acute toxic impact on diatomic microalgae A. ussuriensis, and both tested suspensions revealed chronic toxicity in this microalga with a 40% growth rate inhibition after exposure to 40-50% of prepared suspensions for 7 days. Red algae P. purpureum revealed tolerance to both suspensions caused by exopolysaccharide covering, which prevents the toxic impact of metal cations such as Al, Ti, Mn, Fe, and Zn, which are considered the main toxic components of underwater welding emissions.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Konstantin Kirichenko
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
| | - Vladimir Chernousov
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
| | - Sergey Parshin
- Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str., St. Petersburg 195251, Russia
| | - Alexander Masyutin
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Yulia Parshina
- St. Petersburg University, 7–9 Universitetskaya Embankment, Str., St. Petersburg 199034, Russia
| | - Anton Pogodaev
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Alexander Gridasov
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Aristidis Tsatsakis
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
- Medical School, University of Crete, 13 Andrea Kalokerinou, Heraklion 71003, Greece
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya Str., Presidium, Krasnoobsk 633501, Russia
| |
Collapse
|
14
|
Khepar V, Sidhu A, Sharma AB. Nanomaterized zinc sulfide-meerschaum biomatrix efficiently suppressed Fusarium verticilloides with augmented rice seed quality benefits during storage. PEST MANAGEMENT SCIENCE 2023; 79:244-256. [PMID: 36131552 DOI: 10.1002/ps.7194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The seed-borne mycopathogen Fusarium verticilliodes is a serious and deleterious pathogen causing substantial losses of rice seeds and grains. Rice seeds are prone to infestation at all points of the production chain and the fungal pathogen continues dormant devastation even during storage, adversely affecting the seed parameters. Its control is compromised due to the nonavailability of recommended fungicides during storage. Nanotechnological interventions can provide effective and ecofriendly alternative against mycopathogens during resting periods. Herein, the zinc sulfide-meerschaum nano bio-matrix (nZnS-MR) is presented to show this strategy, which worked well against F. verticilliodes when applied on freshly harvested rice seeds during 6 months of storage. RESULTS The healthy, smooth and rounded girths of F. verticilloides mycelium were reduced with loss of turgidity, disrupting the hyphal exterior architecture, during in vitro treatment with nZnS-MR, endorsed by staining methodology, crystal violet and intracellular soluble protein leakage assays. In vivo application on rice seeds optimized 750 μg g-1 of nano zinc sulfide (nZnS) for 6 months of application during storage with maximum reduction of disease parameters [seedling blight (1.19%) and seed rot (5.43%)] and most augmented quality parameters [maximum germination (94.14%), seedling length (22.50 cm), dry weight (0.121 g) and vigor index (11.37)]. nZnS-MR acted as a slow release nanoformulation of nZnS for long-term antifungal activity. CONCLUSION nZnS-MR is presented as an ecofriendly, biocompatible, bio-efficient, profertilization, cost-effective green material for the control of F. verticilliodes with rice seed invigorating effect, describing it as new a nano-generation material for efficient storage application.
Collapse
Affiliation(s)
- Varinder Khepar
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Anjali Sidhu
- Department of Soil Science, Punjab Agricultural University, Ludhiana, India
| | - Anju Bala Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
15
|
Burić P, Čarapar I, Pavičić-Hamer D, Kovačić I, Jurković L, Dutour Sikirić M, Domazet Jurašin D, Mikac N, Bačić N, Lyons DM. Particle Size Modulates Silver Nanoparticle Toxicity during Embryogenesis of Urchins Arbacia lixula and Paracentrotus lividus. Int J Mol Sci 2023; 24:745. [PMID: 36614188 PMCID: PMC9821580 DOI: 10.3390/ijms24010745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Silver nanoparticles represent a threat to biota and have been shown to cause harm through a number of mechanisms, using a wide range of bioassay endpoints. While nanoparticle concentration has been primarily considered, comparison of studies that have used differently sized nanoparticles indicate that nanoparticle diameter may be an important factor that impacts negative outcomes. In considering this, the aim of the present study was to determine if different sizes of silver nanoparticles (AgNPs; 10, 20, 40, 60 and 100 nm) give rise to similar effects during embryogenesis of Mediterranean sea urchins Arbacia lixula and Paracentrotus lividus, or if nanoparticle size is a parameter that can modulate embryotoxicity and spermiotoxicity in these species. Fertilised embryos were exposed to a range of AgNP concentrations (1−1000 µg L−1) and after 48 h larvae were scored. Embryos exposed to 1 and 10 µg L−1 AgNPs (for all tested sizes) showed no negative effect in both sea urchins. The smaller AgNPs (size 10 and 20 nm) caused a decrease in the percentage of normally developed A. lixula larvae at concentrations ≥50 µg L−1 (EC50: 49 and 75 μg L−1, respectively) and at ≥100 µg L−1 (EC50: 67 and 91 μg L−1, respectively) for P. lividus. AgNPs of 40 nm diameter was less harmful in both species ((EC50: 322 and 486 μg L−1, for P. lividus and A. lixula, respectively)). The largest AgNPs (60 and 100 nm) showed a dose-dependent response, with little effect at lower concentrations, while more than 50% of larvae were developmentally delayed at the highest tested concentrations of 500 and 1000 µg L−1 (EC50(100 nm); 662 and 529 μg L−1, for P. lividus and A. lixula, respectively. While AgNPs showed no effect on the fertilisation success of treated sperm, an increase in offspring developmental defects and arrested development was observed in A. lixula larvae for 10 nm AgNPs at concentrations ≥50 μg L−1, and for 20 and 40 nm AgNPs at concentrations >100 μg L−1. Overall, toxicity was mostly ascribed to more rapid oxidative dissolution of smaller nanoparticles, although, in cases, Ag+ ion concentrations alone could not explain high toxicity, indicating a nanoparticle-size effect.
Collapse
Affiliation(s)
- Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Ivana Čarapar
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Dijana Pavičić-Hamer
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Ines Kovačić
- Faculty of Educational Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Lara Jurković
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Maja Dutour Sikirić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nevenka Mikac
- Division of Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Niko Bačić
- Division of Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| |
Collapse
|
16
|
Wang Z, Zhang Z, Yuan T, Shimizu K, Wang D, Luo D, Wang D, Ru J. Direct electroseparation of zinc from zinc sulfide in eco-friendly deep eutectic solvent: Highlighting the role of malonic acid. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Naikoo GA, Arshad F, Almas M, Hassan IU, Pedram MZ, Aljabali AA, Mishra V, Serrano-Aroca Á, Birkett M, Charbe NB, Goyal R, Negi P, El-Tanani M, Tambuwala MM. 2D materials, synthesis, characterization and toxicity: A critical review. Chem Biol Interact 2022; 365:110081. [PMID: 35948135 DOI: 10.1016/j.cbi.2022.110081] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
|
18
|
Chen CA, Hsiao HC, Cheng YH, Wu PY, Hu PS. Phototoxicity effects of NIR-irradiated cesium tungsten oxide (Cs0.33WO3) nanoparticles on zebrafish embryos: a direct immersion study. Toxicol Rep 2022; 9:1120-1129. [DOI: 10.1016/j.toxrep.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022] Open
|
19
|
Lin JY, Tan SI, Yi YC, Hsiang CC, Chang CH, Chen CY, Chang JS, Ng IS. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC7002 for antioxidation, antibacterial and lead adsorption. ENVIRONMENTAL RESEARCH 2022; 206:112283. [PMID: 34699757 DOI: 10.1016/j.envres.2021.112283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Global warming and climate change because carbon dioxide (CO2) release to atmosphere is the forecasting challenges to human being. We are facing how to overcome the dilemma on the balance between economic and environment, thus taking more efforts on green processes to meet agreement of sustainable society are urgent and crucial. The absorption of CO2 by microalgae reduces the impact of CO2 on the environment. In this study, the CO2 removal efficiency was the highest in the culture of Cyanobacterium Synechococcus sp. PCC7002 (also called blue-green algae), at 2% CO2 to reach a value of 0.86 g-CO2/g-DCW. The main product of PCC7002 is C-phycocyanin (C-PC) which regarding to phycobilisome complex in all cyanobacterial species. A 160% increasing C-PC was achieved in the cultivation under 100 μmol/m2/s light intensity, 12:12 light-period with 2% CO2 at 30 °C. The mix-culture of nitric and ammonia ions had positive effect on the cell growth and C-PC accumulation, thus realized the highest yield of 0.439 g-CPC/g-DCW. Additionally, the partial purified C-PC displayed 89% antioxidant activity of 2,2-diphenyl-1-picryhydrazyl (DPPH) and 11% of superoxide free radical scavenging activity, respectively. The production of C-PC from PCC7002 reduced the CO2 emission and exhibited antibacterial activity against Escherichia coli and lead ion adsorption at room temperature, which has the great potential for eco-friendly application.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chuan-Chieh Hsiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
20
|
Bameri L, Sourinejad I, Ghasemi Z, Fazelian N. Toxicity of TiO 2 nanoparticles to the marine microalga Chaetoceros muelleri Lemmermann, 1898 under long-term exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30427-30440. [PMID: 35000175 DOI: 10.1007/s11356-021-17870-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) have been extensively used in industry, raising many concerns about their release into the aquatic environments. In marine ecosystems, microalgae are major primary producers; among them, Chaetoceros muelleri is an important microalga in the aquaculture industry as live feed. The impacts of TiO2NPs on the growth, photosynthetic pigments, protein and lipid contents, and the interaction of TiO2NPs with the cell wall of C. muelleri were investigated in the present study. Algal cells were exposed to concentrations of 5, 10, 50, 100, 200, and 400 mg/L TiO2NPs for 10 days. There was a significant difference in the growth between the control and TiO2NPs treatments on each day. The half-maximal inhibitory concentration (IC50) of TiO2NPs on algal cells was found to be 10.08 and 5.01 mg/L on the 3rd and 10th days, respectively. The contents of chlorophyll a and c reduced significantly in the TiO2NPs-treated microalgae. TiO2NPs also reduced the protein and lipid contents in the treated microalgae, up to 13.02% and 47.6% respectively, at the highest concentration. The interaction of TiO2NPs with the C. muelleri cells was obvious based on Fourier transform infrared spectroscopy, microscopic images, EDS, and Mapping analyses. Toxic effects of the released TiO2NPs can damage the stocks of C. muelleri as an important live feed in mariculture.
Collapse
Affiliation(s)
- Leila Bameri
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Iman Sourinejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Zahra Ghasemi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Nasrin Fazelian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
21
|
Esfanjani L, Farhadyar N, Shahbazi HR, Fathi F. Development of a method for cadmium ion removal from the water using nano γ-alumina/β-cyclodextrin. Toxicol Rep 2021; 8:1877-1882. [PMID: 34900603 PMCID: PMC8639390 DOI: 10.1016/j.toxrep.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/17/2021] [Accepted: 11/08/2021] [Indexed: 12/07/2022] Open
Abstract
Cadmium is one of the heavy metals, which is harmful to humans and animals. The toxicity of this metal in the body has caused many studies to remove it in water and soil. Because according to WHO, the maximum concentration of cadmium in drinking water is 3 μg/L. In this study, trace amount of Cd ion or Cd(II) in water and in the industrial effluent sample were determined via the solid phase extraction approach based on the γ-Alumina/β-Cyclodextrin as a sorbent followed by flame atomic absorption spectrometry. The effects of various parameters such as pH, the Cd(II) concentration, amount of sorbent, and type and concentration of the eluting agents were determined on the removal efficiency. Maximum removal of Cd(II) was obtained at pH 7. The limit of detection (LOD) and repeatability (RSD%) values (0.389) obtained were found to be in the ranges of 6.77-6.81 μg/L. The results showed adsorbed cadmium ions are recovered on the nano γ- alumina/β-cyclodextrin surface with an optimum amount of 16 mL of 0.3 M nitric acid as eluting agent at pH 7.
Collapse
Affiliation(s)
- L Esfanjani
- Department of Chemistry, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran
| | - N Farhadyar
- Department of Chemistry, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran
| | - H R Shahbazi
- Department of Chemistry, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran
| | - F Fathi
- Department of Medicinal Chemistry, Pharmacy Faculty, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
22
|
Biosorption of Zn(II) from Seawater Solution by the Microalgal Biomass of Tetraselmis marina AC16-MESO. Int J Mol Sci 2021; 22:ijms222312799. [PMID: 34884601 PMCID: PMC8657923 DOI: 10.3390/ijms222312799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
Biosorption refers to a physicochemical process where substances are removed from the solution by a biological material (live or dead) via adsorption processes governed by mechanisms such as surface complexation, ion exchange, and precipitation. This study aimed to evaluate the adsorption of Zn2+ in seawater using the microalgal biomass of Tetraselmis marina AC16-MESO “in vivo” and “not alive” at different concentrations of Zn2+ (0, 5, 10, and 20 mg L−1) at 72 h. Analysis was carried out by using the Langmuir isotherms and by evaluating the autofluorescence from microalgae. The maximum adsorption of Zn2+ by the Langmuir model using the Qmax parameter in the living microalgal biomass (Qmax = 0.03051 mg g−1) was more significant than the non-living microalgal biomass of T. marine AC16-MESO (Qmax = 0.02297 mg g−1). Furthermore, a decrease in fluorescence was detected in cells from T. marina AC16-MESO, in the following order: Zn2+ (0 < 20 < 5 < 10) mg L−1. Zn2+ was adsorbed quickly by living cells from T. marine AC16-MESO compared to the non-living microalgal biomass, with a decrease in photosystem II activities from 0 to 20 mg L−1 Zn2+ in living cells.
Collapse
|
23
|
Mičušík M, Kleinová A, Oros M, Šimon P, Dubaj T, Procházka M, Omastová M. Plastic ingestion by the Wels catfish ( Silurus glanis L.): detailed chemical analysis and degradation state evaluation. Toxicol Rep 2021; 8:1869-1876. [PMID: 34849352 PMCID: PMC8609109 DOI: 10.1016/j.toxrep.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
Plastic ingestion by various organisms within different trophic levels, including humans, is becoming a serious problem worldwide. Plastic waste samples are often found concentrated in an organism's digestive tract and can be degraded and further translocate to the surrounding tissue or circulatory systems and accumulate in food chains. In the present work, we report a detailed chemical analysis and degradation state evaluation of a relatively large piece of plastic waste found in the gastrointestinal tract of a Wels catfish (Silurus glanis L.) caught in the Bodrog River (Danube River basin), eastern Slovakia. Chemical analysis by surface-sensitive X-ray photoelectron spectroscopy (XPS) was performed to identify the surface composition of the digested plastic piece. Micro-Fourier transform infrared (μFTIR) spectroscopy showed that the plastic waste was oxidized low-density polyethylene (LDPE), with some nylon fibers adhered on the surface. Glyceraldehyde adhered onto LDPE was also detected, which might come from the carbohydrate metabolism of that fish. A morphology study by digital optical microscopy indicated solid inorganic particles attached to the surface of LDPE. A degradation study by differential scanning calorimetry (DSC) showed considerable oxidation of LDPE, leading to fragmentation and disintegration of the plastic waste material.
Collapse
Affiliation(s)
- Matej Mičušík
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Angela Kleinová
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Peter Šimon
- Department of Physical Chemistry, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Tibor Dubaj
- Department of Physical Chemistry, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Michal Procházka
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Mária Omastová
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| |
Collapse
|
24
|
Bibi M, Zhu X, Munir M, Angelidaki I. Bioavailability and effect of α-Fe 2O 3 nanoparticles on growth, fatty acid composition and morphological indices of Chlorella vulgaris. CHEMOSPHERE 2021; 282:131044. [PMID: 34470146 DOI: 10.1016/j.chemosphere.2021.131044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The wide application of α-Fe2O3 nanoparticles (NPs) in different fields has resulted in release and accumulation of these materials into the aquatic ecosystem. Therefore, it is important to understand the potential impact of these NPs on aquatic organisms especially primary producers i.e., microalgae. Present study aimed to investigate the bioavailability and the effect of α-Fe2O3 NPs on growth of iron deprived cells of Chlorella vulgaris. Results showed that α-Fe2O3 NPs are not available as iron source to support the growth of C. vulgaris. Moreover,α-Fe2O3 NPs induced stress condition to C. vulgaris, which were reflected in its growth rates, total lipid contents, fatty acid profile and cell morphology. Specifically, low concentrations of α-Fe2O3 NPs (0.1, 0.5, 2.5, 5, 10 mg/L) showed similar growth profile and total lipid contents at both exponential and stationary growth phases. At 50 and 100 mg/L α-Fe2O3 NPs concentrations biomass reduced by 41.2% and 83.7% whereas total lipid contents increased by 39.7% and 25.5% respectively at exponential growth phase along with reduction in fatty acids. The results illustrated novel insights into the microalgal interaction with nanoparticles, providing fundamental knowledge for the development of future microalgae ecology and cultivation technology.
Collapse
Affiliation(s)
- Muhammadi Bibi
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark; Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
25
|
Pikula K, Tretyakova M, Zakharenko A, Johari SA, Ugay S, Chernyshev V, Chaika V, Kalenik T, Golokhvast K. Environmental Risk Assessment of Vehicle Exhaust Particles on Aquatic Organisms of Different Trophic Levels. TOXICS 2021; 9:toxics9100261. [PMID: 34678957 PMCID: PMC8539507 DOI: 10.3390/toxics9100261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
Vehicle emission particles (VEPs) represent a significant part of air pollution in urban areas. However, the toxicity of this category of particles in different aquatic organisms is still unexplored. This work aimed to extend the understanding of the toxicity of the vehicle exhaust particles in two species of marine diatomic microalgae, the planktonic crustacean Artemia salina, and the sea urchin Strongylocentrotus intermedius. These aquatic species were applied for the first time in the risk assessment of VEPs. Our results demonstrated that the samples obtained from diesel-powered vehicles completely prevented egg fertilization of the sea urchin S. intermedius and caused pronounced membrane depolarization in the cells of both tested microalgae species at concentrations between 10 and 100 mg/L. The sample with the highest proportion of submicron particles and the highest content of polycyclic aromatic hydrocarbons (PAHs) had the highest growth rate inhibition in both microalgae species and caused high toxicity to the crustacean. The toxicity level of the other samples varied among the species. We can conclude that metal content and the difference in the concentrations of PAHs by itself did not directly reflect the toxic level of VEPs, but the combination of both a high number of submicron particles and high PAH concentrations had the highest toxic effect on all the tested species.
Collapse
Affiliation(s)
- Konstantin Pikula
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (M.T.); (S.U.); (V.C.); (K.G.)
- Federal Research Center the Yakut Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 2, Petrovskogo Str., 677000 Yakutsk, Russia
- Correspondence:
| | - Mariya Tretyakova
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (M.T.); (S.U.); (V.C.); (K.G.)
| | - Alexander Zakharenko
- Siberian Federal Scientific Center of Agrobiotechnologies of the Russian Academy of Sciences, SFSCA RAS, P.O. Box 267, 630501 Krasnoobsk, Russia; (A.Z.); (V.C.)
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Pasdaran St, Sanandaj 66177-15175, Iran;
| | - Sergey Ugay
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (M.T.); (S.U.); (V.C.); (K.G.)
| | - Valery Chernyshev
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (M.T.); (S.U.); (V.C.); (K.G.)
| | - Vladimir Chaika
- Siberian Federal Scientific Center of Agrobiotechnologies of the Russian Academy of Sciences, SFSCA RAS, P.O. Box 267, 630501 Krasnoobsk, Russia; (A.Z.); (V.C.)
| | - Tatiana Kalenik
- Institute of Life Science and Biomedicine, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia;
| | - Kirill Golokhvast
- Polytechnical Institute, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia; (M.T.); (S.U.); (V.C.); (K.G.)
- Federal Research Center the Yakut Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 2, Petrovskogo Str., 677000 Yakutsk, Russia
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| |
Collapse
|
26
|
Quan H, Zhang Y, Yin P, Zhao L. Effects of two algicidal substances, ortho-tyrosine and urocanic acid, on the growth and physiology of Heterosoigma akashiwo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117004. [PMID: 33906037 DOI: 10.1016/j.envpol.2021.117004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Heterosigma akashiwo is a commonly found harmful microalgae, however, there are only few studies on its control using algicidal components particularly those identified from algicidal bacteria. In our previous study, ortho-tyrosine and urocanic acid identified from Bacillus sp. B1 showed a significantly high algicidal effect on H. akashiwo. The growth inhibition rates of H. akashiwo after 96 h of treatment with 300 μg/mL o-tyrosine and 500 μg/mL urocanic acid were 91.06% and 88.07%, respectively. Through non-destructive testing by Pulse Amplitude Modulation fluorometry and flow cytometer, the effects of o-tyrosine and urocanic acid on H. akashiwo PS II and physiological parameters (cell volume, mitochondrial membrane potential, and membrane permeability) were estimated. This study shows that o-tyrosine affected the photosynthesis system of H. akashiwo, decreased the mitochondrial membrane potential, and increased the membrane permeability of the algal cells. Treatment with urocanic acid decreased the mitochondrial membrane potential, resulting in the inhibition of algal cell growth and reproduction, but had little effect on membrane permeability and photosynthetic system. Our results may imply that when uridine degrades, surviving H. akashiwo cells may be reactivated. Therefore, o-tyrosine and urocanic acid have the potential to become new biological algicides, which can effectively control the growth of H. akashiwo.
Collapse
Affiliation(s)
- Honglin Quan
- College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, PR China.
| | - Yuan Zhang
- College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, PR China.
| | - Pinghe Yin
- College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, PR China.
| | - Ling Zhao
- School of Environment, Jinan University, 511443, Guangzhou, PR China.
| |
Collapse
|
27
|
Tretyakova MO, Vardavas AI, Vardavas CI, Iatrou EI, Stivaktakis PD, Burykina TI, Mezhuev YO, Tsatsakis AM, Golokhvast KS. Effects of coal microparticles on marine organisms: A review. Toxicol Rep 2021; 8:1207-1219. [PMID: 34189057 PMCID: PMC8220176 DOI: 10.1016/j.toxrep.2021.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Coal dust is a source of pollution not only for atmospheric air but also for the marine environment. In places of storage and handling of coal near water bodies, visible pollution of the water area can be observed. Coal, despite its natural origin, can be referred to as anthropogenic sources of pollution. If coal microparticles enter the marine environment, it may cause both physical and toxic effects on organisms. The purpose of this review is to assess the stage of knowledge of the impact of coal particles on marine organisms, to identify the main factors affecting them, and to define advanced research directions. The results presented in the review have shown that coal dust in seawater is generally not an inert substance for marine organisms, and there is a need for further study of the impact of coal dust particles on marine ecosystems.
Collapse
Affiliation(s)
- M O Tretyakova
- Far Eastern Federal University, Vladivostok, Russian Federation
| | - A I Vardavas
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - C I Vardavas
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - E I Iatrou
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - P D Stivaktakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - T I Burykina
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Y O Mezhuev
- Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russian Federation
| | - A M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - K S Golokhvast
- Far Eastern Federal University, Vladivostok, Russian Federation.,Pacific Institute of Geography FEB RAS, Vladivostok, Russian Federation.,Siberian Federal Scientific Center for Agrobiotechnology RAS, Krasnoobsk, Russian Federation
| |
Collapse
|
28
|
Vardakas P, Skaperda Z, Tekos F, Trompeta AF, Tsatsakis A, Charitidis CA, Kouretas D. An integrated approach for assessing the in vitro and in vivo redox-related effects of nanomaterials. ENVIRONMENTAL RESEARCH 2021; 197:111083. [PMID: 33775680 DOI: 10.1016/j.envres.2021.111083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, nanotechnology has risen to the forefront of both the research and industrial interest, resulting in the manufacture and utilization of various nanomaterials, as well as in their integration into a wide range of fields. However, the consequent elevated exposure to such materials raises serious concerns regarding their effects on human health and safety. Existing scientific data indicate that the induction of oxidative stress, through the excessive generation of Reactive Oxygen Species (ROS), might be the principal mechanism of exerting their toxicity. Meanwhile, a number of nanomaterials exhibit antioxidant properties, either intrinsic or resulting from their functionalization with conventional antioxidants. Considering that their redox properties are implicated in the manifestation of their biological effects, we propose an integrated approach for the assessment of the redox-related activities of nanomaterials at three biological levels (in vitro-cell free systems, cell cultures, in vivo). Towards this direction, a battery of translational biomarkers is recommended, and a series of reliable protocols are presented in detail. The aim of the present approach is to acquire a better understanding with respect to the biological actions of nanomaterials in the interrelated fields of Redox Biology and Toxicology.
Collapse
Affiliation(s)
- Periklis Vardakas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Zoi Skaperda
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece
| | - Aikaterini-Flora Trompeta
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 157 80, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500, Larissa, Greece.
| |
Collapse
|
29
|
Markina ZV, Orlova TY, Vasyanovich YA, Vardavas AI, Stivaktakis PD, Vardavas CI, Kokkinakis MN, Rezaee R, Ozcagli E, Golokhvast KS. Porphyridium purpureum microalga physiological and ultrastructural changes under copper intoxication. Toxicol Rep 2021; 8:988-993. [PMID: 34026563 PMCID: PMC8131853 DOI: 10.1016/j.toxrep.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022] Open
Abstract
The number of cells did not differ significantly at Cu 50 and 100 μg/L compared to the control, whereas Cu 150 μg/L inhibited population growth. The fluorescence of chlorophyll a increased following exposure to Cu 100 μg/L and fluorescence of phycoerythrin enhanced by Cu 150 μg/L. The content of ROS increased with increasing Cu concentration in a dose-dependent manner. The population size structure was also changed by Cu as the number of cells sized 4−6 μm increased in the presence of Cu, especially with Cu 150 μg/L.
The present work assessed the effect of copper (Cu) on cell dynamics and structure of the microalga Porphyridium purpureum (Rhodophyta, Bangiophycidae). Ultrastructure of the microalga was investigated and fluorescence of chlorophyll a and phycoerythrin, and content of reactive oxygen species (ROS) were estimated by flow cytometry. The number of cells did not show statistically significant differences at concentrations of 50 and 100 μg/L of Cu compared to the control, whereas 150 μg/L of Cu inhibited population growth. The fluorescence of chlorophyll a increased following exposure to Cu 100 μg/L and fluorescence of phycoerythrin enhanced by Cu 150 μg/L. There was no alteration in the above indicators at other concentrations. The content of ROS increased with increasing Cu concentration in a dose-dependent manner. The population size structure was also changed by Cu as the number of cells sized 4–6 μm was increased in the presence of Cu, especially with Cu 150 μg/L. Changes in the topography of thylakoids grew larger with Cu concentration.
Collapse
Affiliation(s)
- Zhanna V Markina
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Vladivostok, 690041, Russia
| | - Tatyana Yu Orlova
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Vladivostok, 690041, Russia
| | | | - Alexander I Vardavas
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | | | | | - Manolis N Kokkinakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece.,Hellenic Mediterranean University, Department of Nutrition and Dietetics, Heraklion, Greece
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eren Ozcagli
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116, Beyazıt, Istanbul, Turkey
| | - Kirill S Golokhvast
- Far Eastern Federal University, Vladivostok, 690950 Russia.,Pacific Geografical Institite FEB RAS, Vladivostok, 690014, Russia.,N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, Saint Petersburg, Russia.,Siberian Federal Scientific Center of Agrobiotechnology RAS, Krasnoobsk, Russia
| |
Collapse
|
30
|
Pikula K, Kirichenko K, Vakhniuk I, Kalantzi OI, Kholodov A, Orlova T, Markina Z, Tsatsakis A, Golokhvast K. Aquatic toxicity of particulate matter emitted by five electroplating processes in two marine microalgae species. Toxicol Rep 2021; 8:880-887. [PMID: 33981588 PMCID: PMC8085665 DOI: 10.1016/j.toxrep.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022] Open
Abstract
Electroplating is a widely used group of industrial processes that make a metal coating on a solid substrate. Our previous research studied the concentrations, characteristics, and chemical composition of nano- and microparticles emitted during different electroplating processes. The objective of this study was to evaluate the environmental toxicity of particulate matter obtained from five different electrochemical processes. We collected airborne particle samples formed during aluminum cleaning, aluminum etching, chemical degreasing, nonferrous metals etching, and nickel plating. The toxicity of the particles was evaluated by the standard microalgae growth rate inhibition test. Additionally, we evaluated membrane potential and cell size changes in the microalgae H. akashiwo and P. purpureum exposed to the obtained suspensions of electroplating particles. The findings of this research demonstrate that the aquatic toxicity of electroplating emissions significantly varies between different industrial processes and mostly depends on particle chemical composition and solubility rather than the number of insoluble particles. The sample from an aluminum cleaning workshop was significantly more toxic for both microalgae species compared to the other samples and demonstrated dose and time-dependent toxicity. The samples obtained during chemical degreasing and nonferrous metals etching processes induced depolarization of microalgal cell membranes, demonstrated the potential of chronic toxicity, and stimulated the growth rate of microalgae after 72 h of exposure. Moreover, the sample from a nonferrous metals etching workshop revealed hormetic dose-response toxicity in H. akashiwo, which can lead to harmful algal blooms in the environment.
Collapse
Affiliation(s)
- Konstantin Pikula
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
- Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Konstantin Kirichenko
- Far Eastern Federal University, Vladivostok, 690922, Russia
- Siberian Federal Scientific Center of Agrobiotechnologies of the Russian Academy of Sciences, SFSCA RAS, 630501, Krasnoobsk, Novosibirsk region, Russia
| | - Igor Vakhniuk
- Far Eastern Federal University, Vladivostok, 690922, Russia
- Siberian Federal Scientific Center of Agrobiotechnologies of the Russian Academy of Sciences, SFSCA RAS, 630501, Krasnoobsk, Novosibirsk region, Russia
| | | | - Aleksei Kholodov
- Far East Geological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Tatiana Orlova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Zhanna Markina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russia
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia
| | - Kirill Golokhvast
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
- Far Eastern Federal University, Vladivostok, 690922, Russia
- Siberian Federal Scientific Center of Agrobiotechnologies of the Russian Academy of Sciences, SFSCA RAS, 630501, Krasnoobsk, Novosibirsk region, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041, Vladivostok, Russia
| |
Collapse
|
31
|
Saxena P, Saharan V, Baroliya PK, Gour VS, Rai MK, Harish. Mechanism of nanotoxicity in Chlorella vulgaris exposed to zinc and iron oxide. Toxicol Rep 2021; 8:724-731. [PMID: 33868956 PMCID: PMC8042424 DOI: 10.1016/j.toxrep.2021.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
Growth kinetics of C. vulgaris is influenced by NPs exposure. NPs exposure influence proline, carotenoid, activity of SOD, CAT and LDH. NPs exposure disintegrate cellular membrane. Zinc and iron oxide NPs are more toxic to C. vulgaris compared to bulk counterpart.
Usage of nanoparticle in various products has increased tremendously in the recent past. Toxicity of these nanoparticles can have a huge impact on aquatic ecosystem. Algae are the ideal organism of the aquatic ecosystem to understand the toxicity impact of nanoparticles. The present study focuses on the toxicity evaluation of zinc oxide (ZnO) and iron oxide (Fe2O3) nanoparticles towards freshwater microalgae, Chlorella vulgaris. The dose dependent growth retardation in Chlorella vulgaris is observed under ZnO and Fe2O3 nanoparticles and nanoform attributed more toxicity than their bulk counterparts. The IC50 values of ZnO and Fe2O3 nanoparticles was reported at 0.258 mg L−1 and 12.99 mg L-1 whereas, for the bulk-form, it was 1.255 mgL-1 and 17.88 mg L−1, respectively. The significant decline in chlorophyll content and increase in proline content, activity of superoxide dismutase and catalase, indicated the stressful physiological state of microalgae. An increased lactate dehydrogenase level in treated samples suggested membrane disintegration by ZnO and Fe2O3 nanoparticles. Compound microscopy, scanning electron microscopy and transmission electron microscopy confirm cell entrapment, deposition of nanoparticles on the cell surface and disintegration of algal cell wall. Higher toxicity of nanoform in comparison to bulk chemistry is a point of concern.
Collapse
Key Words
- ANOVA, analysis of variance
- Algae
- Antioxidant
- Aquatic-ecosystem
- BG-11, blue green-11
- BSA, bovine serum albumin
- CAT, catalase
- CDH, central drug house
- DDW, double distilled water
- FTIR, fourier-transform infrared spectroscopy
- Fe2O3, ferric oxide
- IC50, half maximal inhibitory concentration
- JCPDS, Joint Committee on Powder Diffraction Standards
- LDH, lactate dehydrogenase
- MDA, malondialdehyde assay
- NADH, nicotinamide adenine dinucleotide (reduced form)
- NCBI, national center for biotechnology information
- NPs, nanoparticles
- Nanoparticles
- OD, optical density
- PBS, phosphate-buffered saline
- PDI, polydispersity index
- ROS, reactive oxygen species
- SD, standard deviation
- SEM, scanning electron microscopy
- SOD, superoxide dismutase
- Stress
- TEM, transmission electron microscopy
- UV, ultra violet
- XRD, X-ray diffraction
- ZnO, zinc oxide
Collapse
Affiliation(s)
- Pallavi Saxena
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313 001, Rajasthan, India
| | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313 001, Rajasthan, India
| | - Prabhat Kumar Baroliya
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313 001, Rajasthan, India
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Manoj Kumar Rai
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, 313 001, Rajasthan, India
| |
Collapse
|
32
|
Jeong E, Park HY, Lee J, Kim HE, Lee C, Kim EJ, Hong SW. Long-term and stable antimicrobial properties of immobilized Ni/TiO 2 nanocomposites against Escherichia coli, Legionella thermalis, and MS2 bacteriophage. ENVIRONMENTAL RESEARCH 2021; 194:110657. [PMID: 33388287 DOI: 10.1016/j.envres.2020.110657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Nickel has been extensively used as a high work function metal because of its abundance, low cost, relatively non-toxic nature, and environmentally benign characteristics. However, it has rarely been extended in a form of immobilized composite, which is a practical strategy applicable for photocatalytic antimicrobial activities. In this study, a composite of nickel and TiO2 (Ni/TiO2) was prepared using a photodeposition method, and its antibacterial properties were investigated using Escherichia coli (E. coli). To optimize Ni/TiO2 synthesis, the effect of various photodeposition conditions on antibacterial performance were investigated, such as the light irradiation time, metal content, TiO2 crystalline structure, and presence or absence of electron donors (i.e., methanol). The optimized 2 wt% Ni/TiO2 exhibited an antibacterial efficiency of 3.74 log within 7 min, which is more than 10-fold higher than that of pristine TiO2 (2.54 log). Based on this optimized weight ratio, Ni/TiO2 was immobilized on a steel mesh using an electrospray/thermal compression method, and its antibacterial performance was further assessed against E. coli, MS2 bacteriophage virus (MS2 phage), and a common pulmonary pathogen (Legionella thermalis, L. thermalis). Within 70 min, all target microorganisms achieved an inactivation that exceeded 4 log. Furthermore, the long-term stability and sustainable usability of the Ni/TiO2 mesh were confirmed by performing more than 50 antibacterial evaluation cycles using E. coli. The results of this study facilitate the successful utilization of immobilized Ni/TiO2 mesh in water disinfection applications.
Collapse
Affiliation(s)
- Eunhoo Jeong
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyeon Yeong Park
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiho Lee
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyung-Eun Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process, Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Ju Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Seok Won Hong
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
33
|
Bushueva TV, Minigalieva IA, Panov VG, Sutunkova MP, Gurvich VB, Shur VY, Shishkina EV, Naumova AS, Artemenko EP, Katsnelson BA. Comparative and Combined In Vitro Vasotoxicity of Nanoparticles Containing Lead and Cadmium. Dose Response 2021; 19:1559325820982163. [PMID: 33628148 PMCID: PMC7882761 DOI: 10.1177/1559325820982163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/26/2020] [Indexed: 01/15/2023] Open
Abstract
In vitro toxicological experiments were performed on an endothelial cell line exposed to different doses of spherical nanoparticles of cadmium and/or of lead sulfides with mean diameter 37 ± 5 nm and 24 ± 4 nm, respectively. Toxic effects were estimated by Luminescent Cell Viability Assay, endothelin-1 concentration and cell size determination. Some dose-response relationships were typically monotonic (well approximated with hyperbolic function) while others were bi- or even 3-phasic and could be described within the expanded hormesis paradigm. The combined toxicity type variated depending on the effect it was assessed by.
Collapse
Affiliation(s)
- Tatiana V Bushueva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Ilzira A Minigalieva
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir G Panov
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia.,Institute of Industrial Ecology, the Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Marina P Sutunkova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir B Gurvich
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Vladimir Ya Shur
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Ekaterina V Shishkina
- Institute of Natural Sciences and Mathematics, The Ural Federal University, Yekaterinburg, Russia
| | - Anna S Naumova
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Elizaveta P Artemenko
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| | - Boris A Katsnelson
- The Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Yekaterinburg, Russia
| |
Collapse
|
34
|
Mohammadi H, Nekobahr E, Akhtari J, Saeedi M, Akbari J, Fathi F. Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicol Rep 2021; 8:331-336. [PMID: 33659189 PMCID: PMC7892792 DOI: 10.1016/j.toxrep.2021.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Modified magnetite nanoparticles had low cytotoxicity. Nanoparticles had high surface modification and manipulation. Magnetite nanoprticles coated with silica and oleic acid was lower toxicity than other coatings.
Recent advances in the use of magnetite nanoparticles for biomedical applications have led to special attention to these nanoparticles. The unique properties of magnetite nanoparticles such as superparamagnetism, low toxicity, and the ability to bond with biological molecules, are suitable for drug delivery, diagnostic methods and therapeutic approaches. The aim of this study was to synthesize magnetite nanoparticles with different biocompatible coatings and investigate their cytotoxicity. Magnetite nanoparticles were synthesized by co-precipitation method and the cytotoxicity of these nanoparticles was investigated with Hepatoma G2 cell using the MTT assay. Treated cells, did not showed any evident cell cycle arrest. The Fourier Transmission Infrared (FTIR) spectroscopy, X- ray powder Diffraction (XRD), Transmission Electron Microscopy (TEM) were evaluated. The results of XRD showed the coated magnetite nanoparticles were 10−12 nm and this size also achieved with TEM images. Synthesized magnetite nanoparticles with SiO2 and oleic acid coatings had lower cytotoxicity than other coatings.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elahe Nekobahr
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Javad Akhtari
- The Health of Plant and Livestock Products Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Fathi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
35
|
Mahana A, Guliy OI, Mehta SK. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: Current status and future challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111662. [PMID: 33396172 DOI: 10.1016/j.ecoenv.2020.111662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Metal nanoparticles (MNPs) are employed in a variety of medical and non-medical applications. Over the past two decades, there has been substantial research on the impact of metallic nanoparticles on algae and cyanobacteria, which are at the base of aquatic food webs. In this review, the current status of our understanding of mechanisms of uptake and toxicity of MNPs and metal ions released from MNPs after dissolution in the surrounding environment were discussed. Also, the trophic transfer of MNPs in aquatic food webs was analyzed in this review. Approximately all metallic nanoparticles cause toxicity in algae. Predominantly, MNPs are less toxic compared to their corresponding metal ions. There is a sufficient evidence for the trophic transfer of MNPs in aquatic food webs. Internalization of MNPs is indisputable in algae, however, mechanisms of their transmembrane transport are inadequately known. Most of the toxicity studies are carried out with solitary species of MNPs under laboratory conditions rarely found in natural ecosystems. Oxidative stress is the primary toxicity mechanism of MNPs, however, oxidative stress seems a general response predictable to other abiotic stresses. MNP-specific toxicity in an algal cell is yet unknown. Lastly, the mechanism of MNP internalization, toxicity, and excretion in algae needs to be understood carefully for the risk assessment of MNPs to aquatic biota.
Collapse
Affiliation(s)
- Abhijeet Mahana
- Laboratory of Algal Biology, Department of Botany, Mizoram University, Aizawl 796004, India
| | - Olga I Guliy
- Leading Researcher Microbial Physiology Lab., Institute of Biochemistry & Physiology of Plants & Microorganisms, Russian Academy of Sciences, Entuziastov av., 13, 410049 Saratov, Russia
| | - Surya Kant Mehta
- Laboratory of Algal Biology, Department of Botany, Mizoram University, Aizawl 796004, India.
| |
Collapse
|
36
|
Luo SW, Alimujiang A, Cui J, Chen TT, Balamurugan S, Zheng JW, Wang X, Yang WD, Li HY. Molybdenum disulfide nanoparticles concurrently stimulated biomass and β-carotene accumulation in Dunaliella salina. BIORESOURCE TECHNOLOGY 2021; 320:124391. [PMID: 33220546 DOI: 10.1016/j.biortech.2020.124391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide nanoparticles (MoS2 NPs) hold tremendous properties in wide domain of applications. In this study, the impact of MoS2 NPs was investigated on algal physiological and metabolic properties and a two-stage strategy was acquired to enhance the commercial potential of Dunaliella salina. With 50 µg/L of MoS2 NPs exposure, cellular growth and biomass production were promoted by 1.47- and 1.33-fold than that in control, respectively. MoS2 NPs treated cells were subject to high light intensity for 7 days after 30 days of normal light cultivation, which showed that high light intensity gradually increased β-carotene content by 1.48-fold. Furthermore, analyses of primary metabolites showed that combinatorial approach significantly altered the biochemical composition of D. salina. Together, these findings demonstrated that MoS2 NPs at an optimum concentration combined with high light intensity could be a promising approach to concurrently enhance biomass and β-carotene production in microalgae.
Collapse
Affiliation(s)
- Shan-Wei Luo
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Adili Alimujiang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ting-Ting Chen
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | - Jian-Wei Zheng
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
37
|
Loganathan S, Shivakumar MS, Karthi S, Nathan SS, Selvam K. Metal oxide nanoparticle synthesis (ZnO-NPs) of Knoxia sumatrensis (Retz.) DC. Aqueous leaf extract and It's evaluation of their antioxidant, anti-proliferative and larvicidal activities. Toxicol Rep 2020; 8:64-72. [PMID: 33391999 PMCID: PMC7773563 DOI: 10.1016/j.toxrep.2020.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022] Open
Abstract
In around the world, mosquito control is considered a most important because of the incapable of synthetic insecticides and the ecological pollution about by them. In this manner, need the eco-friendly insecticides to efficient control the mosquito disease is the need of the hour. We synthesized the eco-friendly of zinc oxide nanoparticles (ZnO-NPs) using the Knoxia sumatrensis aqueous leaf extract (Ks-ALE) as a reducing and stabilizing agent. The synthesis of ZnO-NPs was confirmed by UV with an absorption peak at 354 nm. ZnO-NPs crystal structure was analyzed by X-ray diffraction (XRD). Fourier transform infrared spectroscopy (FT-IR) spectra revealed the chloride, cyclic alcohols, sulfonamies, carboxylic acids, oximes, phosphines, alkenes and alcohol & phenol. Field emission-scanning electron microscopy (FE-SEM) showed that the NP's are rod shaped with 50-80 nm size and also energy dispersive spectra (EDaX) spectra showed presence of zinc. Antioxidant assay showed superior activity and evidenced by DPPH, ABTS and H2O2 radical assays. Furthermore, the ZnO-NPs exhibited strong activity in MCF-7 cell line with IC50 value is 58.87 μg/mL. Mosquito larvicidal activity of ZnO-NPs produced significant activity and excellent larvicidal activity was noticed in Cx. quinquefasciatus with LC50 0.08, mg/mL and LC9019.46 mg/mL. This study suggests that synthesized ZnO-NPs using Knoxia sumatrensis leaf extract have good biological activities and it makes them an ideal candidate for pharmacological studies.
Collapse
Affiliation(s)
- Settu Loganathan
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | | | - Sengodan Karthi
- Sri Paramakalyani Centre for Excellence and Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627 412, India
| | - Sengottayan Senthil Nathan
- Sri Paramakalyani Centre for Excellence and Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627 412, India
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| |
Collapse
|
38
|
Kong IC, Ko KS, Koh DC. Evaluation of the Effects of Particle Sizes of Silver Nanoparticles on Various Biological Systems. Int J Mol Sci 2020; 21:E8465. [PMID: 33187117 PMCID: PMC7696109 DOI: 10.3390/ijms21228465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Seven biological methods were adopted (three bacterial activities of bioluminescence, enzyme, enzyme biosynthetic, algal growth, seed germination, and root and shoot growth) to compare the toxic effects of two different sizes of silver nanoparticles (AgNPs). AgNPs showed a different sensitivity in each bioassay. Overall, the order of inhibitory effects was roughly observed as follows; bacterial bioluminescence activity ≈ root growth > biosynthetic activity of enzymes ≈ algal growth > seed germination ≈ enzymatic activity > shoot growth. For all bacterial activities (bioluminescence, enzyme, and enzyme biosynthesis), the small AgNPs showed statistically significantly higher toxicity than the large ones (p < 0.0036), while no significant differences were observed among other biological activities. The overall effects on the biological activities (except shoot growth) of the small AgNPs were shown to have about 4.3 times lower EC50 (high toxicity) value than the large AgNPs. These results also indicated that the bacterial bioluminescence activity appeared to be an appropriate method among the tested ones in terms of both sensitivity and the discernment of particle sizes of AgNPs.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea;
| | - Kyung-Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| | - Dong-Chan Koh
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| |
Collapse
|
39
|
Kong IC, Ko KS, Koh DC, Chon CM. Comparative Effects of Particle Sizes of Cobalt Nanoparticles to Nine Biological Activities. Int J Mol Sci 2020; 21:E6767. [PMID: 32942696 PMCID: PMC7555351 DOI: 10.3390/ijms21186767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
The differences in the toxicity of cobalt oxide nanoparticles (Co-NPs) of two different sizes were evaluated in the contexts of the activities of bacterial bioluminescence, xyl-lux gene, enzyme function and biosynthesis of β-galactosidase, bacterial gene mutation, algal growth, and plant seed germination and root/shoot growth. Each size of Co-NP exhibited a different level of toxicity (sensitivity) in each biological activity. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under the test conditions in the case of gene-mutation experiments. Overall, the inhibitory effects on all five bacterial bioassays were greater than those on algal growth, seed germination, and root growth. However, in all cases, the small Co-NPs showed statistically greater (total average about two times) toxicity than the large Co-NPs, except in shoot growth, which showed no observable inhibition. These findings demonstrate that particle size may be an important physical factor determining the fate of Co-NPs in the environment. Moreover, combinations of results based on various biological activities and physicochemical properties, rather than only a single activity and property, would better facilitate accurate assessment of NPs' toxicity in ecosystems.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea;
| | - Kyung-Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea; (D.-C.K.); (C.-M.C.)
| | - Dong-Chan Koh
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea; (D.-C.K.); (C.-M.C.)
| | - Chul-Min Chon
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea; (D.-C.K.); (C.-M.C.)
| |
Collapse
|
40
|
Pikula K, Zakharenko A, Chaika V, Em I, Nikitina A, Avtomonov E, Tregubenko A, Agoshkov A, Mishakov I, Kuznetsov V, Gusev A, Park S, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to Sea Urchin Strongylocentrotus Intermedius. NANOMATERIALS 2020; 10:nano10091825. [PMID: 32933127 PMCID: PMC7557930 DOI: 10.3390/nano10091825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
With the increasing annual production of nanoparticles (NPs), the risks of their harmful influence on the environment and human health are rising. However, our knowledge about the mechanisms of interaction between NPs and living organisms is limited. Prior studies have shown that echinoderms, and especially sea urchins, represent one of the most suitable models for risk assessment in environmental nanotoxicology. To the best of the authors’ knowledge, the sea urchin Strongylocentrotus intermedius has not been used for testing the toxicity of NPs. The present study was designed to determine the effect of 10 types of common NPs on spermatozoa activity, egg fertilization, and early stage of embryo development of the sea urchin S. intermedius. In this research, we used two types of multiwalled carbon nanotubes (CNT-1 and CNT-2), two types of carbon nanofibers (CNF-1 and CNF-2), two types of silicon nanotubes (SNT-1 and SNT-2), nanocrystals of cadmium and zinc sulfides (CdS and ZnS), gold NPs (Au), and titanium dioxide NPs (TiO2). The results of the embryotoxicity test showed the following trend in the toxicity level of used NPs: Au > SNT-2 > SNT-1 > CdS > ZnS > CNF-2 > CNF-1 > TiO2 > CNT-1 > CNT-2. This research confirmed that the sea urchin S. intermedius can be considered as a sensitive and stable test model in marine nanotoxicology.
Collapse
Affiliation(s)
- Konstantin Pikula
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Correspondence:
| | - Alexander Zakharenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
| | - Vladimir Chaika
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Iurii Em
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Nikitina
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Evgenii Avtomonov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Tregubenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Alexander Agoshkov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Ilya Mishakov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Vladimir Kuznetsov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Alexander Gusev
- Tambov State University Named after G.R. Derzhavin, Internatsionalnaya 33, 392000 Tambov, Russia;
- National University of Science and Technology «MISIS», Leninskiy prospekt 4, 119049 Moscow, Russia
| | - Soojin Park
- Inha University, 100 Inharo, Nam-gu, Incheon 22212, Korea;
| | - Kirill Golokhvast
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
41
|
Wang S, Liu M, Wang J, Huang J, Wang J. Polystyrene nanoplastics cause growth inhibition, morphological damage and physiological disturbance in the marine microalga Platymonas helgolandica. MARINE POLLUTION BULLETIN 2020; 158:111403. [PMID: 32753188 DOI: 10.1016/j.marpolbul.2020.111403] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 05/25/2023]
Abstract
Effects of nanoplastics at low level on the marine primary producer are largely unclear. To assess the potential risk of nanoplastic pollution, this study exposed marine green microalgae Platymonas helgolandica to 20, 200, and 2000 μg/L 70-nm polystyrene nanoplastics for 6 days. Nanoplastics significantly inhibited the growth of P. helgolandica during the first 4 days of exposure, and elevated heterocyst frequency was observed in 200 and 2000 μg/L exposure groups in the early exposure stage. Exposure to 200 and 2000 μg/L nanoplastics for 4 days increased the membrane permeability and mitochondrial membrane potential, and decreased light energy used in photochemical processes of microalgae. Moreover, clear morphological changes, including surface folds, fragmentation, aggregation cluster, and rupture, in the microalgae exposed to nanoplastics were observed under scanning electron microscope and transmission electron microscope. These results demonstrate that nanoplastics could reduce the microalgal vitality by the damage on cell morphology and organelle function.
Collapse
Affiliation(s)
- Shuyu Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Minhao Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jinman Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingshan Huang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
42
|
Chaika V, Pikula K, Vshivkova T, Zakharenko A, Reva G, Drozdov K, Vardavas AI, Stivaktakis PD, Nikolouzakis TK, Stratidakis AK, Kokkinakis MN, Kalogeraki A, Burykina T, Sarigiannis DA, Kholodov A, Golokhvast K. The toxic influence and biodegradation of carbon nanofibers in freshwater invertebrates of the families Gammaridae, Ephemerellidae, and Chironomidae. Toxicol Rep 2020; 7:947-954. [PMID: 32793424 PMCID: PMC7415770 DOI: 10.1016/j.toxrep.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Carbon nanofibers had no pronounced pathomorphic effect on freshwater insects. Carbon nanofibers were absorbed in the intestine of freshwater insects. Biodegradation of carbon nanofibers was detected in the digestive tract of insects.
Carbon nanofibers (CNFs) are widely used in consumer products today. In this study, we assessed the effects of CNFs on the digestive system of three freshwater invertebrate species (Gammaridae, Ephemerellidae, and Chironomidae). The aquatic insects Diamesa sp., Drunella cryptomeria, and Gammarus suifunensis were incubated with the CNFs at the concentration of 100 mg/L during the 7-days period. Histological examination of the whole specimens and the longitudinal sections revealed no toxic effects of CNFs. However, a noticeable change in the structure of the CNFs accumulated in the intestines of the aquatic insects was found by Raman spectroscopy. The registered decrease in the relative proportion of amorphous carbon included in the CNF sample was found in the intestines of Diamesa sp. and D. cryptomeria. The registered effect can indicate a biodegradation of amorphous carbon in the digestive tract of these two insect species. In contrast, the decrease of highly structured carbons and the decrease of G-bonds intensity were registered in the digestive tract of G. suifunensis. This observation demonstrates the partial biodegradation of CNFs in the digestive tract of G. suifunensis.
Collapse
Affiliation(s)
- Vladimir Chaika
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia
| | - Konstantin Pikula
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
| | - Tatyana Vshivkova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, Vladivostok, 6900022, Russia
| | - Alexander Zakharenko
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia
| | - Galina Reva
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia
| | - Konstantin Drozdov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, Vladivostok, 690022, Russia
| | - Alexander I Vardavas
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Crete, 71003, Greece
| | | | - Taxiarchis K Nikolouzakis
- Laboratory of Anatomy-Histology Embryology, School of Medicine, University of Crete, Heraklion, Crete, 71110, Greece
| | - Antonios K Stratidakis
- Environmental Health Engineering, University School of Advanced Studies IUSS, Pavia, 27100, Italy
| | - Manolis N Kokkinakis
- Hellenic Mediterranean University, Department of Nutrition and Dietetics, Heraklion, 71004, Greece
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, School of Medicine, University of Crete, Heraklion, 71003, Greece
| | - Tatyana Burykina
- Department of Analytical and Forensic Medical Toxicology, M.I. Sechenov University, Moscow, 119048, Russia
| | - Dimosthenis A Sarigiannis
- Environmental Health Engineering, University School of Advanced Studies IUSS, Pavia, 27100, Italy.,Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Aleksei Kholodov
- Far East Geological Institute, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Kirill Golokhvast
- School of Engineering, Far Eastern Federal University Vladivostok, 690950, Russia.,N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, 190000, Russia.,Pacific Geographical Institute FEB RAS, Vladivostok, 690014, Russia
| |
Collapse
|
43
|
Pikula K, Chaika V, Zakharenko A, Savelyeva A, Kirsanova I, Anisimova A, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to the Hemocytes of Three Marine Bivalves. Animals (Basel) 2020; 10:ani10050827. [PMID: 32397595 PMCID: PMC7278372 DOI: 10.3390/ani10050827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The growing nanotechnology industry disposes of a variety of nanoparticles with different physiochemical properties in everyday life. However, the dependence of the safety and toxicity of nanoparticles on their physicochemical properties remains unclear. Bivalve molluscs represent an efficient model for the investigation of nanoparticle toxicity owing to their filtrating ability and feeding on particles suspended in the water. Moreover, the blood cells of bivalve molluscs, the hemocytes, have been suggested as a good analog test-object to mammalian immune cells, phagocytes. In this study, we used hemocytes of three marine bivalve species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate and compare the toxic effects of 10 different types of nanoparticles. We gave short-term exposure of the nanoparticles to the hemocytes and registered viability and changes in their cell membrane polarization by employing flow cytometry. Metal-based nanoparticles were the most toxic to the cells of all three tested bivalve mollusc species. However, the sensitivity to different nanoparticle types varied between species. Moreover, the registered cell membrane depolarization indicated an early toxic response and raised concern that chronic long-term exposure of nanoparticles (even if they were previously declared as safe) is a serious threat for aquatic organisms. Abstract Nanoparticles (NPs) have broad applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With increasing annual production of NPs, the risks of their harmful influence on the environment and human health are also increasing. Currently, our knowledge about the mechanisms of the interaction between NPs and living organisms is limited. The marine species and their habitat environment are under continuous stress owing to the anthropogenic activities, which result in the release of NPs in the aquatic environment. We used a bioassay model with hemocytes of three bivalve mollusc species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate the toxicity of 10 different types of NPs. Specifically, we compared the cytotoxic effects and cell-membrane polarization changes in the hemocytes exposed to carbon nanotubes, carbon nanofibers, silicon nanotubes, cadmium and zinc sulfides, Au-NPs, and TiO2 NPs. Viability and the changes in hemocyte membrane polarization were measured by the flow cytometry method. The highest aquatic toxicity was registered for metal-based NPs, which caused cytotoxicity to the hemocytes of all the studied bivalve species. Our results also highlighted different sensitivities of the used tested mollusc species to specific NPs.
Collapse
Affiliation(s)
- Konstantin Pikula
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Correspondence:
| | - Vladimir Chaika
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
| | - Alexander Zakharenko
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
| | - Anastasia Savelyeva
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Irina Kirsanova
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Anna Anisimova
- School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.S.); (I.K.); (A.A.)
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (V.C.); (A.Z.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|