1
|
Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr Res 2024; 273:62-77. [PMID: 36175250 DOI: 10.1016/j.schres.2022.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental disorders with abnormal mental or behavioral patterns, which severely distress or disable affected individuals and can have a grave socioeconomic burden. Growing evidence indicates that mitochondrial function plays an important role in developing psychiatric disorders. This review discusses the neuropsychiatric consequences of mitochondrial abnormalities in both animal models and patients. We also discuss recent studies associated with compromised mitochondrial function in various psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MD), and bipolar disorders (BD). These studies employ various approaches including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cells (iPSCs) studies. We also summarize the evidence from animal models and clinical trials to support mitochondrial function as a potential therapeutic target to treat various psychiatric disorders. This review will contribute to furthering our understanding of the metabolic etiology of various psychiatric disorders, and help guide the development of optimal therapies.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Yao Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
2
|
Kramar B, Pirc Marolt T, Yilmaz Goler AM, Šuput D, Milisav I, Monsalve M. Aripiprazole, but Not Olanzapine, Alters the Response to Oxidative Stress in Fao Cells by Reducing the Activation of Mitogen-Activated Protein Kinases (MAPKs) and Promoting Cell Survival. Int J Mol Sci 2024; 25:11119. [PMID: 39456900 PMCID: PMC11508229 DOI: 10.3390/ijms252011119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Prolonged use of atypical antipsychotics (AAPs) is commonly associated with increased cardiovascular disease risk. While weight gain and related health issues are generally considered the primary contributors to this risk, direct interference with mitochondrial bioenergetics, particularly in the liver where these drugs are metabolized, is emerging as an additional contributing factor. Here, we compared the effects of two AAPs with disparate metabolic profiles on the response of Fao hepatoma cells to oxidative stress: olanzapine (OLA), which is obesogenic, and aripiprazole (ARI), which is not. Results showed that cells treated with ARI exhibited resistance to H2O2-induced oxidative stress, while OLA treatment had the opposite effect. Despite enhanced survival, ARI-treated cells exhibited higher apoptotic rates than OLA-treated cells when exposed to H2O2. Gene expression analysis of pro- and anti-apoptotic factors revealed that ARI-treated cells had a generally blunted response to H2O2, contrasting with a heightened response in OLA-treated cells. This was further supported by the reduced activation of MAPKs and STAT3 in ARI-treated cells in response to H2O2, whereas OLA pre-treatment enhanced their activation. The loss of stress response in ARI-treated cells was consistent with the observed increase in the mitochondrial production of O2•-, a known desensitizing factor. The physiological relevance of O2•- in ARI-treated cells was demonstrated by the increase in mitophagy flux, likely related to mitochondrial damage. Notably, OLA treatment protected proteasome activity in Fao cells exposed to H2O2, possibly due to the better preservation of stress signaling and mitochondrial function. In conclusion, this study highlights the underlying changes in cell physiology and mitochondrial function by AAPs. ARI de-sensitizes Fao cells to stress signaling, while OLA has the opposite effect. These findings contribute to our understanding of the metabolic risks associated with prolonged AAP use and may inform future therapeutic strategies.
Collapse
Affiliation(s)
- Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Ayse Mine Yilmaz Goler
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Istanbul, Turkey
- Department of Biochemistry, School of Medicine, Marmara University, 34854 Istanbul, Turkey
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| |
Collapse
|
3
|
van Zonneveld SM, van den Oever EJ, Haarman BCM, Grandjean EL, Nuninga JO, van de Rest O, Sommer IEC. An Anti-Inflammatory Diet and Its Potential Benefit for Individuals with Mental Disorders and Neurodegenerative Diseases-A Narrative Review. Nutrients 2024; 16:2646. [PMID: 39203783 PMCID: PMC11357610 DOI: 10.3390/nu16162646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
This narrative review synthesizes current evidence regarding anti-inflammatory dietary patterns and their potential benefits for individuals with mental disorders and neurodegenerative diseases. Chronic low-grade inflammation is increasingly recognized as a key factor in the etiology and progression of these conditions. The review examines the evidence for the anti-inflammatory and neuroprotective properties of dietary components and food groups, focusing on whole foods rather than specific nutrients or supplements. Key dietary components showing potential benefits include fruits and vegetables (especially berries and leafy greens), whole grains, legumes, fatty fish rich in omega-3, nuts (particularly walnuts), olive oil, and fermented foods. These foods are generally rich in antioxidants, dietary fiber, and bioactive compounds that may help modulate inflammation, support gut health, and promote neuroprotection. Conversely, ultra-processed foods, red meat, and sugary beverages may be harmful. Based on this evidence, we designed the Brain Anti-Inflammatory Nutrition (BrAIN) diet. The mechanisms of this diet include the modulation of the gut microbiota and the gut-brain axis, the regulation of inflammatory pathways, a reduction in oxidative stress, and the promotion of neuroplasticity. The BrAIN diet shows promise as an aid to manage mental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sophie M. van Zonneveld
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Ellen J. van den Oever
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Benno C. M. Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Emmy L. Grandjean
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Jasper O. Nuninga
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Ondine van de Rest
- Department of Human Nutrition and Health, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Martin SD, Truong TTT, Liu ZSJ, Gray L, Kowalski GM, McGee SL, Kim JH, Berk M, Walder K. Effects of antipsychotic drugs on energy metabolism. Eur Arch Psychiatry Clin Neurosci 2024; 274:1125-1135. [PMID: 38072867 DOI: 10.1007/s00406-023-01727-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 07/06/2024]
Abstract
Schizophrenia (SCZ) is a complex neuropsychiatric disorder associated with altered bioenergetic pathways and mitochondrial dysfunction. Antipsychotic medications, both first and second-generation, are commonly prescribed to manage SCZ symptoms, but their direct impact on mitochondrial function remains poorly understood. In this study, we investigated the effects of commonly prescribed antipsychotics on bioenergetic pathways in cultured neurons. We examined the impact of risperidone, aripiprazole, amisulpride, and clozapine on gene expression, mitochondrial bioenergetic profile, and targeted metabolomics after 24-h treatment, using RNA-seq, Seahorse XF24 Flux Analyser, and gas chromatography-mass spectrometry (GC-MS), respectively. Risperidone treatment reduced the expression of genes involved in oxidative phosphorylation, the tricarboxylic acid cycle, and glycolysis pathways, and it showed a tendency to decrease basal mitochondrial respiration. Aripiprazole led to dose-dependent reductions in various mitochondrial function parameters without significantly affecting gene expression. Aripiprazole, amisulpride and clozapine treatment showed an effect on the tricarboxylic acid cycle metabolism, leading to more abundant metabolite levels. Antipsychotic drug effects on mitochondrial function in SCZ are multifaceted. While some drugs have greater effects on gene expression, others appear to exert their effects through enzymatic post-translational or allosteric modification of enzymatic activity. Understanding these effects is crucial for optimising treatment strategies for SCZ. Novel therapeutic interventions targeting energy metabolism by post-transcriptional pathways might be more effective as these can more directly and efficiently regulate energy production.
Collapse
Affiliation(s)
- Bruna Panizzutti
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Briana Spolding
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Srisaiyini Kidnapillai
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Timothy Connor
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Sheree D Martin
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Trang T T Truong
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Greg M Kowalski
- Metabolic Research Unit, School of Medicine, Institute for Physical Activity and Nutrition, Waurn Ponds, Geelong, VIC, Australia
| | - Sean L McGee
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre for Excellence in Youth Mental Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ken Walder
- Deakin University, School of Medicine, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Geelong, Australia.
| |
Collapse
|
5
|
Rosell-Hidalgo A, Eakins J, Walker P, Moore AL, Ghafourian T. Risk Assessment of Psychotropic Drugs on Mitochondrial Function Using In Vitro Assays. Biomedicines 2023; 11:3272. [PMID: 38137493 PMCID: PMC10741027 DOI: 10.3390/biomedicines11123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria are potential targets responsible for some drug- and xenobiotic-induced organ toxicities. However, molecular mechanisms of drug-induced mitochondrial toxicities are mostly unknown. Here, multiple in vitro assays were used to investigate the effects of 22 psychotropic drugs on mitochondrial function. The acute extracellular flux assay identified inhibitors of the electron transport chain (ETC), i.e., aripiprazole, phenytoin, and fluoxetine, an uncoupler (reserpine), substrate inhibitors (quetiapine, carbamazepine, buspirone, and tianeptine), and cytotoxic compounds (chlorpromazine and valproic acid) in HepG2 cells. Using permeabilized HepG2 cells revealed minimum effective concentrations of 66.3, 6730, 44.5, and 72.1 µM for the inhibition of complex-I-linked respiration for quetiapine, valproic acid, buspirone, and fluoxetine, respectively. Assessing complex-II-linked respiration in isolated rat liver mitochondria revealed haloperidol is an ETC inhibitor, chlorpromazine is an uncoupler in basal respiration and an ETC inhibitor under uncoupled respiration (IC50 = 135 µM), while olanzapine causes a mild dissipation of the membrane potential at 50 µM. This research elucidates some mechanisms of drug toxicity and provides some insight into their safety profile for clinical drug decisions.
Collapse
Affiliation(s)
- Alicia Rosell-Hidalgo
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Julie Eakins
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Paul Walker
- Cyprotex Discovery Ltd., No. 24 Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; (A.R.-H.); (J.E.)
| | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK;
| | - Taravat Ghafourian
- Department of Pharmaceutical Sciences, Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA
| |
Collapse
|
6
|
Blandino G, Fiorani M, Canonico B, De Matteis R, Guidarelli A, Montanari M, Buffi G, Coppo L, Arnér ESJ, Cantoni O. Clozapine suppresses NADPH oxidase activation, counteracts cytosolic H 2O 2, and triggers early onset mitochondrial dysfunction during adipogenesis of human liposarcoma SW872 cells. Redox Biol 2023; 67:102915. [PMID: 37866162 PMCID: PMC10623370 DOI: 10.1016/j.redox.2023.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/24/2023] Open
Abstract
Long-term treatment of schizophrenia with clozapine (CLZ), an atypical antipsychotic drug, is associated with an increased incidence of metabolic disorders mediated by poorly understood mechanisms. We herein report that CLZ, while slowing down the morphological changes and lipid accumulation occurring during SW872 cell adipogenesis, also causes an early (day 3) inhibition of the expression/nuclear translocation of CAAT/enhancer-binding protein β and peroxisome proliferator-activated receptor γ. Under the same conditions, CLZ blunts NADPH oxidase-derived reactive oxygen species (ROS) by a dual mechanism involving enzyme inhibition and ROS scavenging. These effects were accompanied by hampered activation of the nuclear factor (erythroid-derived2)-like 2 (Nrf2)-dependent antioxidant responses compared to controls, and by an aggravated formation of mitochondrial superoxide. CLZ failed to exert ROS scavenging activities in the mitochondrial compartment but appeared to actively scavenge cytosolic H2O2 derived from mitochondrial superoxide. The early formation of mitochondrial ROS promoted by CLZ was also associated with signs of mitochondrial dysfunction. Some of the above findings were recapitulated using mouse embryonic fibroblasts. We conclude that the NADPH oxidase inhibitory and cytosolic ROS scavenging activities of CLZ slow down SW872 cell adipogenesis and suppress their Nrf2 activation, an event apparently connected with increased mitochondrial ROS formation, which is associated with insulin resistance and metabolic syndrome. Thus, the cellular events characterised herein may help to shed light on the more detailed molecular mechanisms explaining some of the adverse metabolic effects of CLZ.
Collapse
Affiliation(s)
- Giulia Blandino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita De Matteis
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Gloria Buffi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
7
|
Chen X, Wang Z, Zheng P, Dongol A, Xie Y, Ge X, Zheng M, Dang X, Seyhan ZB, Nagaratnam N, Yu Y, Huang X. Impaired mitophagosome-lysosome fusion mediates olanzapine-induced aging. Aging Cell 2023; 22:e14003. [PMID: 37828862 PMCID: PMC10652317 DOI: 10.1111/acel.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome-lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome-lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.
Collapse
Affiliation(s)
- Xi Chen
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Zhizhen Wang
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Peng Zheng
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Anjila Dongol
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Yuanyi Xie
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Xuemei Dang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Zehra Boz Seyhan
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Nathan Nagaratnam
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Yinghua Yu
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Xu‐Feng Huang
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
8
|
Pirc Marolt T, Kramar B, Vovk A, Podgornik H, Šuput D, Milisav I. Therapeutic Dosage of Antipsychotic Drug Aripiprazole Induces Persistent Mitochondrial Hyperpolarisation, Moderate Oxidative Stress in Liver Cells, and Haemolysis. Antioxidants (Basel) 2023; 12:1930. [PMID: 38001783 PMCID: PMC10669280 DOI: 10.3390/antiox12111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Aripiprazole has fewer metabolic side effects than other antipsychotics; however, there are some severe ones in the liver, leading to drug-induced liver injury. Repeated treatment with aripiprazole affects cell division. Since this process requires a lot of energy, we decided to investigate the impact of aripiprazole on rat liver cells and mitochondria as the main source of cellular energy production by measuring the mitochondrial membrane potential, respiration, adenosine triphosphate (ATP) production, oxidative stress, antioxidative response, and human blood haemolysis. Here, we report that mitochondrial hyperpolarisation from aripiprazole treatment is accompanied by higher reactive oxygen species (ROS) production and increased antioxidative response. Lower mitochondrial and increased glycolytic ATP synthesis demand more glucose through glycolysis for equal ATP production and may change the partition between the glycolysis and pentose phosphate pathway in the liver. The uniform low amounts of the haemolysis of erythrocytes in the presence of aripiprazole in 25 individuals indicate lower quantities of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH+H+), which is in accordance with a decreased activity of glucose 6-phosphate dehydrogenase and the lower dehydrogenase activity upon aripiprazole treatment. The lower activity of glucose 6-phosphate dehydrogenase supports a shift to glycolysis, thus rescuing the decreased mitochondrial ATP synthesis. The putative reduction in NADPH+H+ did not seem to affect the oxidised-to-reduced glutathione ratio, as it remained equal to that in the untreated cells. The effect of aripiprazole on glutathione reduction is likely through direct binding, thus reducing its total amount. As a consequence, the low haemolysis of human erythrocytes was observed. Aripiprazole causes moderate perturbations in metabolism, possibly with one defect rescuing the other. The result of the increased antioxidant enzyme activity upon treatment with aripiprazole is increased resilience to oxidative stress, which makes it an effective drug for schizophrenia in which oxidative stress is constantly present because of disease and treatment.
Collapse
Affiliation(s)
- Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Andrej Vovk
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Helena Podgornik
- Department of Haematology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
10
|
Affiliation(s)
- Martin Harrow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas H Jobe
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Liping Tong
- Advocate Aurora Health, Downers Grove, IL, USA
| |
Collapse
|
11
|
Mednova IA, Chernonosov AA, Kornetova EG, Semke AV, Bokhan NA, Koval VV, Ivanova SA. Levels of Acylcarnitines and Branched-Chain Amino Acids in Antipsychotic-Treated Patients with Paranoid Schizophrenia with Metabolic Syndrome. Metabolites 2022; 12:metabo12090850. [PMID: 36144254 PMCID: PMC9504797 DOI: 10.3390/metabo12090850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Several studies have shown that patients with schizophrenia are at high risk for metabolic syndrome (MetS) and bioenergetic dysfunction. Because acylcarnitines are involved in bioenergetic pathways and reflect the functioning of mitochondria, we hypothesized that these compounds are biomarkers of MetS in schizophrenia. The aim of this work was to quantify acylcarnitines and branched-chain amino acids in patients with schizophrenia comorbid with MetS. The study included 112 patients with paranoid schizophrenia treated with antipsychotics. Among them, 39 subjects met criteria of MetS. Concentrations of 30 acylcarnitines and three amino acids in dry serum spots were measured by liquid chromatography coupled with tandem mass spectrometry. MetS patients were found to have higher levels of valeryl carnitine (C5), leucine/isoleucine, and alanine as compared with patients without MetS, indicating possible participation of these compounds in the pathogenesis of metabolic disorders in schizophrenia. In patients with paranoid schizophrenia with or without MetS, lower levels of carnitines C10, C10:1, C12, and C18 were recorded as compared with the healthy individuals (n = 70), implying deterioration of energy metabolism. We believe that this finding can be explained by effects of antipsychotic medication on an enzyme called carnitine-palmitoyl transferase I.
Collapse
Affiliation(s)
- Irina A. Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Correspondence:
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, 630090 Novosibirsk, Russia
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Siberian State Medical University Hospital, Moskovsky Trakt 2, 634050 Tomsk, Russia
| | - Arkadiy V. Semke
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, 634050 Tomsk, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, 630090 Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, 634050 Tomsk, Russia
| |
Collapse
|
12
|
Alonso Y, Miralles C, Algora MJ, Valiente-Pallejà A, Sánchez-Gistau V, Muntané G, Labad J, Vilella E, Martorell L. Risk factors for metabolic syndrome in individuals with recent-onset psychosis at disease onset and after 1-year follow-up. Sci Rep 2022; 12:11386. [PMID: 35794221 PMCID: PMC9259625 DOI: 10.1038/s41598-022-15479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of parameters encompassing the most dangerous heart attack risk factors, associated with increased morbidity and mortality. It is highly prevalent in recent-onset psychosis (ROP) patients. In this pilot study, we evaluated MetS parameters (fasting glucose, high-density lipoprotein (HDL) cholesterol (HDL-c), fasting triglycerides, waist circumference, and systolic and diastolic blood pressure), clinical symptoms, pharmacological treatment, lifestyle, and inflammatory markers in 69 patients with ROP and 61 healthy controls (HCs). At baseline, waist circumference (p = 0.005) and fasting triglycerides (p = 0.007) were higher in patients with ROP than in HCs. At the 1-year follow-up, patients showed clinical improvement, with a reduction in the positive and negative syndrome scale (PANSS) score (p < 0.001), dietary intake (p = 0.001), and antipsychotic medication dose (p < 0.001); however, fasting glucose (p = 0.011), HDL-c (p = 0.013) and waist circumference worsened (p < 0.001). We identified sex, age, BMI, dietary intake, physical activity, daily tobacco use, daily cannabis use, and antipsychotic doses as risk factors contributing to baseline MetS parameters. After 1-year follow-up, those factors plus the PANSS and Calgary Depression Scale for Schizophrenia (CDSS) scores were associated with MetS parameters. Further studies are needed to understand the contributions of the studied risk factors in patients with ROP at onset and during disease progression.
Collapse
|
13
|
Kim ES, Al-Salama ZT. Olanzapine/samidorphan in schizophrenia and bipolar I disorder: a profile of its use in the USA. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-022-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Fehsel K, Schwanke K, Kappel BA, Fahimi E, Meisenzahl-Lechner E, Esser C, Hemmrich K, Haarmann-Stemmann T, Kojda G, Lange-Asschenfeldt C. Activation of the aryl hydrocarbon receptor by clozapine induces preadipocyte differentiation and contributes to endothelial dysfunction. J Psychopharmacol 2022; 36:191-201. [PMID: 34979820 PMCID: PMC8847763 DOI: 10.1177/02698811211055811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The superior therapeutic benefit of clozapine is often associated with metabolic disruptions as obesity, insulin resistance, tachycardia, higher blood pressure, and even hypertension. AIMS These adverse vascular/ metabolic events under clozapine are similar to those caused by polycyclic aromatic hydrocarbons (PAHs), and clozapine shows structural similarity to well-known ligands of the aryl hydrocarbon receptor (AhR). Therefore, we speculated that the side effects caused by clozapine might rely on AhR signaling. METHODS We examined clozapine-induced AhR activation by luciferase reporter assays in hepatoma HepG2 cells and we proved upregulation of the prototypical AhR target gene Cyp1A1 by realtime-PCR (RT-PCR) analysis and enzyme activity. Next we studied the physiological role of AhR in clozapine's effects on human preadipocyte differentiation and on vasodilatation by myography in wild-type and AhR-/- mice. RESULTS In contrast to other antipsychotic drugs (APDs), clozapine triggered AhR activation and Cyp1A1 expression in HepG2 cells and adipocytes. Clozapine induced adipogenesis via AhR signaling. After PGF2α-induced constriction of mouse aortic rings, clozapine strongly reduced the maximal vasorelaxation under acetylcholine in rings from wild-type mice, but only slightly in rings from AhR-/- mice. The reduction was also prevented by pretreatment with the AhR antagonist CH-223191. CONCLUSION Identification of clozapine as a ligand for the AhR opens new perspectives to explain common clozapine therapy-associated adverse effects at the molecular level.
Collapse
Affiliation(s)
- K Fehsel
- Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,K Fehsel, Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich Heine University Düsseldorf, Bergische Landstrasse 2, 40629 Düsseldorf, Germany.
| | - K Schwanke
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - BA Kappel
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - E Fahimi
- Institute for Pharmacology and Clinical Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - E Meisenzahl-Lechner
- Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - C Esser
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - K Hemmrich
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital of the Aachen University of Technology, Aachen, Germany
| | - T Haarmann-Stemmann
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - G Kojda
- Institute for Pharmacology and Clinical Pharmacology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - C Lange-Asschenfeldt
- Neurobiochemical Research Unit, Department of Psychiatry, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: Does inflammation play a role? Mol Psychiatry 2022; 27:1095-1102. [PMID: 34650203 DOI: 10.1038/s41380-021-01312-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
Recent studies have suggested that mitochondrial dysfunction and dysregulated neuroinflammatory pathways are involved in the pathophysiology of major depressive disorder (MDD). Here, we aimed to assess the differences in markers of mitochondrial dynamics, mitophagy, general autophagy, and apoptosis in peripheral blood mononuclear cells (PBMCs) of MDD patients (n = 77) and healthy controls (HCs, n = 24). Moreover, we studied inflammation engagement as a moderator of mitochondria dysfunctions on the severity of depressive symptoms. We found increased levels of Mfn-2 (p < 0.001), short Opa-1 (S-Opa-1) (p < 0.001) and Fis-1 (p < 0.001) in MDD patients, suggesting an increase in the mitochondrial fragmentation. We also found that MDD patients had higher levels of Pink-1 (p < 0.001), p62/SQSTM1 (p < 0.001), LC3B (p = 0.002), and caspase-3 active (p = 0.001), and lower levels of parkin (p < 0.001) compared with HCs. Moreover, we showed that that MDD patients with higher CRP levels had higher levels of Mfn-2 (p = 0.001) and LC3B (p = 0.002) when compared with MDD patients with low CRP. Another notable finding was that the severity of depressive symptoms in MDD is associated with changes in protein levels in pathways related to mitochondrial dynamics and mitophagy, and can be dependent on the inflammatory status. Overall, our study demonstrated that a disruption in the mitochondrial dynamics network could initiate a cascade of abnormal changes relevant to the critical pathological changes during the course of MDD and lead to poor outcomes.
Collapse
|
16
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
17
|
The role of mitochondria in the pathophysiology of schizophrenia: A critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev 2021; 132:449-464. [PMID: 34864002 DOI: 10.1016/j.neubiorev.2021.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
There has been increasing interest in the role of mitochondrial dysfunction in the pathophysiology of schizophrenia. Mitochondrial complex one (MCI) dysfunction may represent a mechanism linking bioenergetic impairment with the alterations in dopamine signalling, glutamatergic dysfunction, and oxidative stress found in the disorder. New lines of evidence from novel approaches make it timely to review evidence for mitochondrial involvement in schizophrenia, with a specific focus on MCI. The most consistent findings in schizophrenia relative to controls are reductions in expression of MCI subunits in post-mortem brain tissue (Cohen's d> 0.8); reductions in MCI function in post-mortem brains (d> 0.7); and reductions in neural glucose utilisation (d= 0.3 to 0.6). Antipsychotics may affect glucose utilisation, and, at least in vitro, affect MC1. The findings overall are consistent with MCI dysfunction in schizophrenia, but also highlight the need for in vivo studies to determine the link between MCI dysfunction and symptoms in patients. If new imaging tools confirm MCI dysfunction in the disease, this could pave the way for new treatments targeting this enzyme.
Collapse
|
18
|
Effect of Novel Antipsychotics on Energy Metabolism - In Vitro Study in Pig Brain Mitochondria. Mol Neurobiol 2021; 58:5548-5563. [PMID: 34365585 DOI: 10.1007/s12035-021-02498-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
The identification and quantification of mitochondrial effects of novel antipsychotics (brexpiprazole, cariprazine, loxapine, and lurasidone) were studied in vitro in pig brain mitochondria. Selected parameters of mitochondrial metabolism, electron transport chain (ETC) complexes, citrate synthase (CS), malate dehydrogenase (MDH), monoamine oxidase (MAO), mitochondrial respiration, and total ATP and reactive oxygen species (ROS) production were evaluated and associated with possible adverse effects of drugs. All tested antipsychotics decreased the ETC activities (except for complex IV, which increased in activity after brexpiprazole and loxapine addition). Both complex I- and complex II-linked respiration were dose-dependently inhibited, and significant correlations were found between complex I-linked respiration and both complex I activity (positive correlation) and complex IV activity (negative correlation). All drugs significantly decreased mitochondrial ATP production at higher concentrations. Hydrogen peroxide production was significantly increased at 10 µM brexpiprazole and lurasidone and at 100 µM cariprazine and loxapine. All antipsychotics acted as partial inhibitors of MAO-A, brexpiprazole and loxapine partially inhibited MAO-B. Based on our results, novel antipsychotics probably lacked oxygen uncoupling properties. The mitochondrial effects of novel antipsychotics might contribute on their adverse effects, which are mostly related to decreased ATP production and increased ROS production, while MAO-A inhibition might contribute to their antidepressant effect, and brexpiprazole- and loxapine-induced MAO-B inhibition might likely promote neuroplasticity and neuroprotection. The assessment of drug-induced mitochondrial dysfunctions is important in development of new drugs as well as in the understanding of molecular mechanism of adverse or side drug effects.
Collapse
|
19
|
Molina JD, Avila S, Rubio G, López-Muñoz F. Metabolomic connections between schizophrenia, antipsychotic drugs and metabolic syndrome: A variety of players. Curr Pharm Des 2021; 27:4049-4061. [PMID: 34348619 DOI: 10.2174/1381612827666210804110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND Diagnosis of schizophrenia lacks of reliable medical diagnostic tests and robust biomarkers applied to clinical practice. Schizophrenic patients undergoing treatment with antipsychotics suffer a reduced life expectancy due to metabolic disarrangements that co-exist with their mental illness and predispose them to develop metabolic syndrome, also exacerbated by medication. Metabolomics is an emerging and potent technology able to accelerate this biomedical research. <P> Aim: This review focus on a detailed vision of the molecular mechanisms involved both in schizophrenia and antipsychotic-induced metabolic syndrome, based on innovative metabolites that consistently change in nascent metabolic syndrome, drug-naïve, first episode psychosis and/or schizophrenic patients compared to healthy subjects. <P> Main lines: Supported by metabolomic approaches, although not exclusively, noteworthy variations are reported mainly through serum samples of patients and controls in several scenes: 1) alterations in fatty acids, inflammatory response indicators, amino acids and biogenic amines, biometals and gut microbiota metabolites (schizophrenia); 2) alterations in metabolites involved in carbohydrate and gut microbiota metabolism, inflammation and oxidative stress (metabolic syndrome), some of them shared with the schizophrenia scene; 3) alterations of cytokines secreted by adipose tissue, phosphatidylcholines, acylcarnitines, Sirtuin 1, orexin-A and changes in microbiota composition (antipsychotic-induced metabolic syndrome). <P> Conclusion: Novel insights into the pathogenesis of schizophrenia and metabolic side-effects associated to its antipsychotic treatment, represent an urgent request for scientifics and clinicians. Leptin, carnitines, adiponectin, insulin or interleukin-6 represent some examples of candidate biomarkers. Cutting-edge technologies like metabolomics have the power of strengthen research for achieving preventive, diagnostic and therapeutical solutions for schizophrenia.
Collapse
Affiliation(s)
- Juan D Molina
- Clinical Management Area of Psychiatry and Mental Health, Psychiatric Service, 12 de Octubre University Hospital, Madrid. Spain
| | - Sonia Avila
- Department of Psychiatry, Faculty of Medicine, Complutense University of Madrid. Spain
| | - Gabriel Rubio
- Clinical Management Area of Psychiatry and Mental Health, Psychiatric Service, 12 de Octubre University Hospital, Madrid. Spain
| | | |
Collapse
|
20
|
Abstract
Samidorphan, which was developed by Alkermes, is an opioid receptor antagonist that has been co-formulated with olanzapine into a single-dose oral tablet to mitigate the risk of weight gain while providing the therapeutic effect of olanzapine. Olanzapine/samidorphan (LYBALVI™) was recently approved in the USA for the treatment of schizophrenia and bipolar I disorder. This article summarizes the milestones in the development of samidorphan leading to this first approval of olanzapine/samidorphan.
Collapse
|
21
|
Abdulhaq B, Dardas LA, Sami O. Monitoring for the metabolic side effects of second-generation antipsychotic medications: Psychiatrists' views and practices. Perspect Psychiatr Care 2021; 57:1237-1243. [PMID: 33156542 DOI: 10.1111/ppc.12679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/01/2022] Open
Abstract
PURPOSE The aims of this study were to explore (1) the knowledge, attitudes, practices, and adherence of psychiatrists in Jordan regarding published guidelines for metabolic monitoring of patients taking second-generation antipsychotics (SGAs), and (2) their perceived barriers to metabolic screening. METHODS The study utilized a cross-sectional survey. Data were collected from 91 psychiatrists using a self-administered questionnaire. FINDINGS Almost 74% of psychiatrists reported they were aware of metabolic screening guidelines for patients taking SGA. However, the results of their assessment practices revealed a lack of adherence to these guidelines. Reported barriers to metabolic screening were the financial burden on the family and lack of family and patient compliance with recommendations of monitoring. PRACTICE IMPLICATIONS Metabolic side effects of SGAs are important in Arab countries, where baseline levels of obesity and metabolic syndrome are already high in the general population. By virtue of their close proximity to patients, nurses are ideally placed to monitor how patients perceive SGAs and to provide information, advice, and counseling support.
Collapse
Affiliation(s)
| | - Latefa A Dardas
- The University of Jordan School of Nursing, Amman, Jordan.,Psychological Sciences Association, Amman, Jordan
| | - Omar Sami
- The University of Jordan School of Medicine, Amman, Jordan
| |
Collapse
|
22
|
Liu JCW, Gorbovskaya I, Hahn MK, Müller DJ. The Gut Microbiome in Schizophrenia and the Potential Benefits of Prebiotic and Probiotic Treatment. Nutrients 2021; 13:nu13041152. [PMID: 33807241 PMCID: PMC8065775 DOI: 10.3390/nu13041152] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GMB) plays an important role in developmental processes and has been implicated in the etiology of psychiatric disorders. However, the relationship between GMB and schizophrenia remains unclear. In this article, we review the existing evidence surrounding the gut microbiome in schizophrenia and the potential for antipsychotics to cause adverse metabolic events by altering the gut microbiome. We also evaluate the current evidence for the clinical use of probiotic and prebiotic treatment in schizophrenia. The current data on microbiome alteration in schizophrenia remain conflicting. Longitudinal and larger studies will help elucidate the confounding effect on the microbiome. Current studies help lay the groundwork for further investigations into the role of the GMB in the development, presentation, progression and potential treatment of schizophrenia.
Collapse
Affiliation(s)
- Jonathan C. W. Liu
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada; (J.C.W.L.); (I.G.); (M.K.H.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ilona Gorbovskaya
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada; (J.C.W.L.); (I.G.); (M.K.H.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada; (J.C.W.L.); (I.G.); (M.K.H.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Banting and Best Diabetes Centre, University of Toronto, ON M5G 2C4, Canada
| | - Daniel J. Müller
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON M5T 1R8, Canada; (J.C.W.L.); (I.G.); (M.K.H.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Correspondence:
| |
Collapse
|
23
|
Carnovale C, Lucenteforte E, Battini V, Mazhar F, Fornili M, Invernizzi E, Mosini G, Gringeri M, Capuano A, Scavone C, Nobile M, Vantaggiato C, Pisano S, Bravaccio C, Radice S, Clementi E, Pozzi M. Association between the glyco-metabolic adverse effects of antipsychotic drugs and their chemical and pharmacological profile: a network meta-analysis and regression. Psychol Med 2021; 52:1-13. [PMID: 33622426 DOI: 10.1017/s0033291721000180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glyco-metabolic deteriorations are the most limiting adverse reactions to antipsychotics in the long term. They have been incompletely investigated and the properties of antipsychotics that determine their magnitude are not clarified.To rank antipsychotics by the magnitude of glyco-metabolic alterations and to associate it to their pharmacological and chemical properties, we conducted a network meta-analysis. METHODS We searched PubMed, Embase, and Psycinfo on 10 September 2020. We selected studies containing the endpoint-baseline difference or the distinct values of at least one outcome among glucose, HbA1c, insulin, HOMA-IR, triglycerides, total/HDL/LDL cholesterols. Of 2094 articles, 46 were included in network meta-analysis. Study quality was assessed by the RoB 2 and ROBINS-I tools. Mean differences (MD) were obtained by random-effects network meta-analysis; relations between MD and antipsychotic properties were analyzed by linear regressions. Antipsychotic properties investigated were acidic and basic pKa, polar surface area, polarizability, and occupancies of D2, H1, M1, M3, α1A, α2A, 5-HT1A, 5-HT2A, 5-HT2C receptors. RESULTS We meta-analyzed 46 studies (11 464 patients); on average, studies lasted 15.47 weeks, patients had between 17.68 and 61.06 years of mean age and 61.64% were males. Olanzapine and clozapine associated with greater deteriorations, aripiprazole and ziprasidone with smaller deteriorations. Higher polarizability and 5-HT1A receptor occupancy were associated with smaller deteriorations, H1, M1, and M3 receptor occupancies with larger deteriorations. CONCLUSIONS Drug rankings may guide antipsychotic switching toward metabolically safer drugs. Mechanistic insights may suggest improvements for combination therapies and drug development. More data are required regarding newer antipsychotics.
Collapse
Affiliation(s)
- Carla Carnovale
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Ersilia Lucenteforte
- Unit of Medical Statistics, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126Pisa, Italy
| | - Vera Battini
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Faizan Mazhar
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Marco Fornili
- Unit of Medical Statistics, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126Pisa, Italy
| | - Elena Invernizzi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Giulia Mosini
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Michele Gringeri
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Nobile
- Scientific institute IRCCS E. Medea, Bosisio Parini, LC, 23892, Italy
| | | | - Simone Pisano
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Neuroscience, AORN Santobono-Pausilipon, Naples, Italy
| | - Carmela Bravaccio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Sonia Radice
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, Università di Milano, Milan, Italy
- Scientific institute IRCCS E. Medea, Bosisio Parini, LC, 23892, Italy
| | - Marco Pozzi
- Scientific institute IRCCS E. Medea, Bosisio Parini, LC, 23892, Italy
| |
Collapse
|
24
|
Bortolasci CC, Spolding B, Kidnapillai S, Richardson MF, Vasilijevic N, Martin SD, Gray LJ, McGee SL, Berk M, Walder K. Effects of psychoactive drugs on cellular bioenergetic pathways. World J Biol Psychiatry 2021; 22:79-93. [PMID: 32295468 DOI: 10.1080/15622975.2020.1755450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate the actions of lithium, valproate, lamotrigine and quetiapine on bioenergetic pathways in cultured NT2-N neuronal-like cells and C8-B4 microglial cells. METHODS NT2-N and C8-B4 cells were cultured and treated with lithium (2.5 mM), valproate (0.5 mM), quetiapine (0.05 mM) or lamotrigine (0.05 mM) for 24 hours. Gene expression and the mitochondrial bioenergetic profile were measured in both cell lines. RESULTS In NT2-N cells, valproate increased oxidative phosphorylation (OXPHOS) gene expression, mitochondrial uncoupling and maximal respiratory capacity, while quetiapine decreased OXPHOS gene expression and respiration linked to ATP turnover, as well as decreasing the expression of genes in the citric acid cycle. Lamotrigine decreased OXPHOS gene expression but had no effect on respiration, while lithium reduced the expression of genes in the citric acid cycle. In C8-B4 cells, valproate and lithium increased OXPHOS gene expression, and valproate increased basal respiratory rate and maximal and spare respiratory capacities. In contrast, quetiapine significantly reduced basal respiratory rate and maximal and spare respiratory capacities. CONCLUSIONS Overall our data suggest that some drugs used to treat neuropsychiatric and affective disorders have actions on a range of cellular bioenergetic processes, which could impact their effects in patients.
Collapse
Affiliation(s)
- Chiara C Bortolasci
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Briana Spolding
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Srisaiyini Kidnapillai
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Mark F Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Nina Vasilijevic
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Sheree D Martin
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Laura J Gray
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Sean L McGee
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia.,Orygen, the National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| |
Collapse
|
25
|
Risperidone Exacerbates Glucose Intolerance, Nonalcoholic Fatty Liver Disease, and Renal Impairment in Obese Mice. Int J Mol Sci 2021; 22:ijms22010409. [PMID: 33401717 PMCID: PMC7795724 DOI: 10.3390/ijms22010409] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/26/2022] Open
Abstract
Risperidone, a second-generation antipsychotic drug used for schizophrenia treatment with less-severe side effects, has recently been applied in major depressive disorder treatment. The mechanism underlying risperidone-associated metabolic disturbances and liver and renal adverse effects warrants further exploration. This research explores how risperidone influences weight, glucose homeostasis, fatty liver scores, liver damage, and renal impairment in high-fat diet (HFD)-administered C57BL6/J mice. Compared with HFD control mice, risperidone-treated obese mice exhibited increases in body, liver, kidney, and retroperitoneal and epididymal fat pad weights, daily food efficiency, serum triglyceride, blood urea nitrogen, creatinine, hepatic triglyceride, and aspartate aminotransferase, and alanine aminotransferase levels, and hepatic fatty acid regulation marker expression. They also exhibited increased insulin resistance and glucose intolerance but decreased serum insulin levels, Akt phosphorylation, and glucose transporter 4 expression. Moreover, their fatty liver score and liver damage demonstrated considerable increases, corresponding to increases in sterol regulatory element-binding protein 1 mRNA, fatty acid-binding protein 4 mRNA, and patatin-like phospholipid domain containing protein 3 expression. Finally, these mice demonstrated renal impairment, associated with decreases in glutathione peroxidase, superoxide dismutase, and catalase levels. In conclusion, long-term administration of risperidone may exacerbate diabetes syndrome, nonalcoholic fatty liver disease, and kidney injury.
Collapse
|
26
|
Giménez-Palomo A, Dodd S, Anmella G, Carvalho AF, Scaini G, Quevedo J, Pacchiarotti I, Vieta E, Berk M. The Role of Mitochondria in Mood Disorders: From Physiology to Pathophysiology and to Treatment. Front Psychiatry 2021; 12:546801. [PMID: 34295268 PMCID: PMC8291901 DOI: 10.3389/fpsyt.2021.546801] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Seetal Dodd
- Deakin University, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Department of Psychiatry, Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Anmella
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Isabella Pacchiarotti
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Eduard Vieta
- Bipolar and Depressives Disorders Unit, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Michael Berk
- School of Medicine, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Barwon Health, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia.,Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
27
|
iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function. Mol Psychiatry 2020; 25:2873-2888. [PMID: 31019265 PMCID: PMC6813882 DOI: 10.1038/s41380-019-0423-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/23/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ) is a neurodevelopmental disorder. Thus, studying pathogenetic mechanisms underlying SCZ requires studying the development of brain cells. Cortical interneurons (cINs) are consistently observed to be abnormal in SCZ postmortem brains. These abnormalities may explain altered gamma oscillation and cognitive function in patients with SCZ. Of note, currently used antipsychotic drugs ameliorate psychosis, but they are not very effective in reversing cognitive deficits. Characterizing mechanisms of SCZ pathogenesis, especially related to cognitive deficits, may lead to improved treatments. We generated homogeneous populations of developing cINs from 15 healthy control (HC) iPSC lines and 15 SCZ iPSC lines. SCZ cINs, but not SCZ glutamatergic neurons, show dysregulated Oxidative Phosphorylation (OxPhos) related gene expression, accompanied by compromised mitochondrial function. The OxPhos deficit in cINs could be reversed by Alpha Lipoic Acid/Acetyl-L-Carnitine (ALA/ALC) but not by other chemicals previously identified as increasing mitochondrial function. The restoration of mitochondrial function by ALA/ALC was accompanied by a reversal of arborization deficits in SCZ cINs. OxPhos abnormality, even in the absence of any circuit environment with other neuronal subtypes, appears to be an intrinsic deficit in SCZ cINs.
Collapse
|
28
|
Bryll A, Krzyściak W, Karcz P, Śmierciak N, Kozicz T, Skrzypek J, Szwajca M, Pilecki M, Popiela TJ. The Relationship between the Level of Anterior Cingulate Cortex Metabolites, Brain-Periphery Redox Imbalance, and the Clinical State of Patients with Schizophrenia and Personality Disorders. Biomolecules 2020; 10:E1272. [PMID: 32899276 PMCID: PMC7565827 DOI: 10.3390/biom10091272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a complex mental disorder whose course varies with periods of deterioration and symptomatic improvement without diagnosis and treatment specific for the disease. So far, it has not been possible to clearly define what kinds of functional and structural changes are responsible for the onset or recurrence of acute psychotic decompensation in the course of schizophrenia, and to what extent personality disorders may precede the appearance of the appropriate symptoms. The work combines magnetic resonance spectroscopy imaging with clinical evaluation and laboratory tests to determine the likely pathway of schizophrenia development by identifying peripheral cerebral biomarkers compared to personality disorders. The relationship between the level of metabolites in the brain, the clinical status of patients according to International Statistical Classification of Diseases and Related Health Problems, 10th Revision ICD-10, duration of untreated psychosis (DUP), and biochemical indices related to redox balance (malondialdehyde), the efficiency of antioxidant systems (FRAP), and bioenergetic metabolism of mitochondria, were investigated. There was a reduction in the level of brain N-acetyl-aspartate and glutamate in the anterior cingulate gyrus of patients with schisophrenia compared to the other groups that seems more to reflect a biological etiopathological factor of psychosis. Decreased activity of brain metabolites correlated with increased peripheral oxidative stress (increased malondialdehyde MDA) associated with decreased efficiency of antioxidant systems (FRAP) and the breakdown of clinical symptoms in patients with schizophrenia in the course of psychotic decompensation compared to other groups. The period of untreated psychosis correlated negatively with glucose value in the brain of people with schizophrenia, and positively with choline level. The demonstrated differences between two psychiatric units, such as schizophrenia and personality disorders in relation to healthy people, may be used to improve the diagnosis and prognosis of schizophrenia compared to other heterogenous psychopathology in the future. The collapse of clinical symptoms of patients with schizophrenia in the course of psychotic decompensation may be associated with the occurrence of specific schizotypes, the determination of which is possible by determining common relationships between changes in metabolic activity of particular brain structures and peripheral parameters, which may be an important biological etiopathological factor of psychosis. Markers of peripheral redox imbalance associated with disturbed bioenergy metabolism in the brain may provide specific biological factors of psychosis however, they need to be confirmed in further studies.
Collapse
Affiliation(s)
- Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Michałowskiego 12, 31-126 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Justyna Skrzypek
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tadeusz J. Popiela
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| |
Collapse
|
29
|
Bar-Yosef T, Hussein W, Yitzhaki O, Damri O, Givon L, Marom C, Gurman V, Levine J, Bersudsky Y, Agam G, Ben-Shachar D. Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Sci Rep 2020; 10:12258. [PMID: 32703977 PMCID: PMC7378204 DOI: 10.1038/s41598-020-69207-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmacological treatment of mental disorders is currently decided based on "trial and error" strategy. Mitochondrial multifaceted dysfunction is assumed to be a major factor in the pathophysiology and treatment of schizophrenia (SZ) and bipolar disorder (BD). This study aimed to explore the feasibility of using a profile of mitochondrial function parameters as a tool to predict the optimal drug for an individual patient (personalized medicine). Healthy controls (n = 40), SZ (n = 48) and BD (n = 27) patients were recruited. Mental and global state of the subjects, six mitochondrial respiration parameters and 14 mitochondrial function-related proteins were assessed in fresh lymphocytes following in-vitro or in-vivo treatment with five antipsychotic drugs and two mood-stabilizers. In healthy controls, hierarchal clustering shows a drug-specific effect profile on the different mitochondrial parameters following in-vitro exposure. Similar changes were observed in untreated SZ and BD patients with psychosis. Following a month of treatment of the latter patients, only responders showed a significant correlation between drug-induced in-vitro effect (prior to in-vivo treatment) and short-term in-vivo treatment effect for 45% of the parameters. Long- but not short-term psychotropic treatment normalized mitochondria-related parameters in patients with psychosis. Taken together, these data substantiate mitochondria as a target for psychotropic drugs and provide a proof of concept for selective mitochondrial function-related parameters as a predictive tool for an optimized psychotropic treatment in a given patient. This, however, needs to be repeated with an expanded sample size and additional mitochondria related parameters.
Collapse
Affiliation(s)
- Tamara Bar-Yosef
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Wessal Hussein
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel
| | - Ofer Yitzhaki
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Odeya Damri
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Limor Givon
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel
| | | | | | - Joseph Levine
- Division of Psychiatry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel
| | - Yuly Bersudsky
- Division of Psychiatry, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel.
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer Sheva, Israel.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine and Rappaport Family Institute for Research in Medical Sciences, Technion IIT, 31096, Haifa, Israel.
| |
Collapse
|
30
|
Ni P, Chung S. Mitochondrial Dysfunction in Schizophrenia. Bioessays 2020; 42:e1900202. [PMID: 32338416 DOI: 10.1002/bies.201900202] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/29/2020] [Indexed: 02/05/2023]
Abstract
Schizophrenia (SCZ) is a severe neurodevelopmental disorder affecting 1% of populations worldwide with a grave disability and socioeconomic burden. Current antipsychotic medications are effective treatments for positive symptoms, but poorly address negative symptoms and cognitive symptoms, warranting the development of better treatment options. Further understanding of SCZ pathogenesis is critical in these endeavors. Accumulating evidence has pointed to the role of mitochondria and metabolic dysregulation in SCZ pathogenesis. This review critically summarizes recent studies associating a compromised mitochondrial function with people with SCZ, including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cell studies. This review also discusses animal models with mitochondrial dysfunction resulting in SCZ-relevant neurobehavioral abnormalities, as well as restoration of mitochondrial function as potential therapeutic targets. Further understanding of mitochondrial dysfunction in SCZ may open the door to develop novel therapeutic strategies that can address the symptoms that cannot be adequately addressed by current antipsychotics alone.
Collapse
Affiliation(s)
- Peiyan Ni
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
31
|
Chan ST, McCarthy MJ, Vawter MP. Psychiatric drugs impact mitochondrial function in brain and other tissues. Schizophr Res 2020; 217:136-147. [PMID: 31744750 PMCID: PMC7228833 DOI: 10.1016/j.schres.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
Mitochondria have been linked to the etiology of schizophrenia (SZ). However, studies of mitochondria in SZ might be confounded by the effects of pharmacological treatment with antipsychotic drugs (APDs) and other common medications. This review summarizes findings on relevant mitochondria mechanisms underlying SZ, and the potential impact of psychoactive drugs including primarily APDs, but also antidepressants and anxiolytics. The summarized data suggest that APDs impair mitochondria function by decreasing Complex I activity and ATP production and dissipation of the mitochondria membrane potential. At the same time, in the brains of patients with SZ, antipsychotic drug treatment normalizes gene expression modules enriched in mitochondrial genes that are decreased in SZ. This indicates that APDs may have both positive and negative effects on mitochondria. The available evidence suggests three conclusions i) alterations in mitochondria functions in SZ exist prior to APD treatment, ii) mitochondria alterations in SZ can be reversed by APD treatment, and iii) APDs directly cause impairment of mitochondria function. Overall, the mechanisms of action of psychiatric drugs on mitochondria are both direct and indirect; we conclude the effects of APDs on mitochondria may contribute to both their therapeutic and metabolic side effects. These studies support the hypothesis that neuronal mitochondria are an etiological factor in SZ. Moreover, APDs and other drugs must be considered in the evaluation of this pathophysiological role of mitochondria in SZ. Considering these effects, pharmacological actions on mitochondria may be a worthwhile target for further APD development.
Collapse
Affiliation(s)
- Shawna T Chan
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA; School of Medicine University of California, Irvine, USA
| | - Michael J McCarthy
- Psychiatry Service VA San Diego Healthcare System, Department of Psychiatry, University of California, San Diego, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Human Behavior and Psychiatry, University of California, Irvine, USA.
| |
Collapse
|
32
|
Clozapine-induced transcriptional changes in the zebrafish brain. NPJ SCHIZOPHRENIA 2020; 6:3. [PMID: 32015324 PMCID: PMC6997376 DOI: 10.1038/s41537-019-0092-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Clozapine is an atypical antipsychotic medication that is used to treat schizophrenia patients who are resistant to other antipsychotic drugs. The molecular mechanisms mediating the effects of clozapine are not well understood and its use is often associated with severe side-effects. In this study, we exposed groups of wild-type zebrafish to two doses of clozapine (‘low’ (20 µg/L) and ‘high’ (70 µg/L)) over a 72-h period, observing dose-dependent effects on behaviour. Using RNA sequencing (RNA-seq) we identified multiple genes differentially expressed in the zebrafish brain following exposure to clozapine. Network analysis identified co-expression modules characterised by striking changes in module connectivity in response to clozapine, and these were enriched for regulatory pathways relevant to the etiology of schizophrenia. Our study highlights the utility of zebrafish as a model for assessing the molecular consequences of antipsychotic medications and identifies genomic networks potentially involved in schizophrenia.
Collapse
|
33
|
Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R. Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal 2019; 31:275-317. [PMID: 30585734 PMCID: PMC6602118 DOI: 10.1089/ars.2018.7606] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
Significance: Our current knowledge of the pathophysiology and molecular mechanisms causing psychiatric disorders is modest, but genetic susceptibility and environmental factors are central to the etiology of these conditions. Autism, schizophrenia, bipolar disorder and major depressive disorder show genetic gene risk overlap and share symptoms and metabolic comorbidities. The identification of such common features may provide insights into the development of these disorders. Recent Advances: Multiple pieces of evidence suggest that brain energy metabolism, mitochondrial functions and redox balance are impaired to various degrees in psychiatric disorders. Since mitochondrial metabolism and redox signaling can integrate genetic and environmental environmental factors affecting the brain, it is possible that they are implicated in the etiology and progression of psychiatric disorders. Critical Issue: Evidence for direct links between cellular mitochondrial dysfunction and disease features are missing. Future Directions: A better understanding of the mitochondrial biology and its intracellular connections to the nuclear genome, the endoplasmic reticulum and signaling pathways, as well as its role in intercellular communication in the organism, is still needed. This review focuses on the findings that implicate mitochondrial dysfunction, the resultant metabolic changes and oxidative stress as important etiological factors in the context of psychiatric disorders. We also propose a model where specific pathophysiologies of psychiatric disorders depend on circuit-specific impairments of mitochondrial dysfunction and redox signaling at specific developmental stages.
Collapse
Affiliation(s)
- Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, South Korea
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Krishna C. Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Zsolt Lenkei
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| |
Collapse
|
34
|
The effects of antipsychotic medications on microbiome and weight gain in children and adolescents. BMC Med 2019; 17:112. [PMID: 31215494 PMCID: PMC6582584 DOI: 10.1186/s12916-019-1346-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Atypical antipsychotics, also known as second-generation antipsychotics, are commonly prescribed as treatment for psychotic disorders in adults, as well as in children and adolescents with behavioral problems. However, in many cases, second-generation antipsychotics have unwanted side effects, such as weight gain, potentially further increasing risk for morbidities including obesity, diabetes, and cardiovascular disease. While various mechanisms for this weight gain have been proposed, including effects on metabolic hormone signaling, recent evidence points to the importance of the gut microbiome in this process. The microbial communities residing within the gut are affected by second-generation antipsychotics and can confer weight gain. MAIN TEXT This review summarizes recent findings and presents data linking second-generation antipsychotics, gut microbiota alterations and weight gain. The review focuses on children and adolescent populations, which have not previously received much attention, but are of great interest because they may be most vulnerable to gut microbiome changes and may carry long-term metabolic effects into adulthood. CONCLUSIONS We present correlations between second-generation antipsychotics, gut microbiota alterations and weight gain, and suggest some mechanisms that may link them. A better understanding of the underlying mechanisms may lead to the design of improved treatments for psychotic disorders with fewer harmful side effects.
Collapse
|
35
|
Cikánková T, Fišar Z, Bakhouche Y, Ľupták M, Hroudová J. In vitro effects of antipsychotics on mitochondrial respiration. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1209-1223. [PMID: 31104106 DOI: 10.1007/s00210-019-01665-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
Assessment of drug-induced mitochondrial dysfunctions is important in drug development as well as in the understanding of molecular mechanism of therapeutic or adverse effects of drugs. The aim of this study was to investigate the effects of three typical antipsychotics (APs) and seven atypical APs on mitochondrial bioenergetics. The effects of selected APs on citrate synthase, electron transport chain complexes (ETC), and mitochondrial complex I- or complex II-linked respiratory rate were measured using mitochondria isolated from pig brain. Complex I activity was decreased by chlorpromazine, haloperidol, zotepine, aripiprazole, quetiapine, risperidone, and clozapine. Complex II + III was significantly inhibited by zotepine, aripiprazole, quetiapine, and risperidone. Complex IV was inhibited by zotepine, chlorpromazine, and levomepromazine. Mitochondrial respiratory rate was significantly inhibited by all tested APs, except for olanzapine. Typical APs did not exhibit greater efficacy in altering mitochondrial function compared to atypical APs except for complex I inhibition by chlorpromazine and haloperidol. A comparison of the effects of APs on individual respiratory complexes and on the overall mitochondrial respiration has shown that mitochondrial functions may not fully reflect the disruption of complexes of ETC, which indicates AP-induced modulation of other mitochondrial proteins. Due to the complicated processes associated with mitochondrial activity, it is necessary to measure not only the effect of the drug on individual mitochondrial enzymes but also the respiration rate of the mitochondria or a similar complex process. The experimental approach used in the study can be applied to mitochondrial toxicity testing of newly developed drugs.
Collapse
Affiliation(s)
- Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Yousra Bakhouche
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00, Prague 2, Czech Republic. .,Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
36
|
Correlations between Body Mass Index, Plasma High-Sensitivity C-Reactive Protein and Lipids in Patients with Schizophrenia. Psychiatr Q 2019; 90:101-110. [PMID: 30315442 DOI: 10.1007/s11126-018-9606-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High prevalence of obesity in individuals with schizophrenia, associated with metabolic syndrome, leads to high rate of premature deaths from cardiovascular disease (CVD) in this population. Body mass index (BMI) and C-reactive protein (CRP) are correlated in the general population but this relationship has not been fully elucidated in patients with schizophrenia. We aimed to evaluate the correlation between BMI and CRP while relating both variables to plasma lipids in patients with schizophrenia. BMI, fasting high sensitivity CRP (hs-CRP), cotinine, and lipids were measured in 106 patients with schizophrenia (diagnosis confirmed with MINI). Pearson's and partial correlations (adjusting for age, sex, race, education and cotinine) between BMI, hs-CRP and lipids were calculated. Based on BMI, the patients were divided into normal-weight vs. overweight/obese and t-tests and linear regression were done to compare hs-CRP and lipids in the 2 groups. BMI positively correlated with hs-CRP (r = 0.29, p = 0.004). BMI and hs-CRP negatively correlated with HDL in the total sample (r = -0.29, p = 0.004; r = -0.37, p < 0.001 respectively). Furthermore, hs-CRP negatively correlated with HDL in overweight/obese patients (r = -0.41, p = 0.003), but not in normal-weight patients. hs-CRP and triglycerides were higher (1.62 ± 0.09 mg/L vs. 0.56 ± 0.08 mg/L, p < 0.001; 121.77 ± 8.96 mg/dL vs. 91.23 ± 6.52 mg/dL, p = 0.008 respectively) and HDL lower (39.55 ± 1.48 mg/dL vs. 50.68 ± 2.24 mg/dL, p < 0.001) in overweight/obese patients. Being overweight/obese is associated with increased inflammation and dyslipidemia in patients with schizophrenia. Effective interventions to prevent weight gain in schizophrenia are urgently needed.
Collapse
|
37
|
Fernandes MS, Barbisan F, Azzolin VF, do Prado-Lima PAS, Teixeira CF, da Cruz Jung IE, Assmann CE, Riffel RT, Duarte MMMF, Aguiar- Ribeiro EM, da Cruz IBM. Lithium is able to minimize olanzapine oxidative-inflammatory induction on macrophage cells. PLoS One 2019; 14:e0209223. [PMID: 30695037 PMCID: PMC6350970 DOI: 10.1371/journal.pone.0209223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/30/2018] [Indexed: 01/22/2023] Open
Abstract
Background Olanzapine (OLZ) is a second-generation antipsychotic drug used for treatment of schizophrenia, bipolar disorder, and other neuropsychiatric conditions. Undesirable side effects of OLZ include metabolic alterations associated with chronic oxidative-inflammation events. It is possible that lithium (Li), a mood modulator that exhibits anti-inflammatory properties may attenuate OLZ-induced oxi-inflammatory effects. Methodology To test this hypothesis we activated RAW 264.7 immortalized macrophages with OLZ and evaluated oxidation and inflammation at the gene and protein levels. Li and OLZ concentrations were determined using estimated plasma therapeutic concentrations. Results OLZ triggered a significant increase in macrophage proliferation at 72 h. Higher levels of oxidative markers and proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6, with a concomitant reduction in IL-10, were observed in OLZ-exposed macrophages. Lithium (Li) exposure triggered a short and attenuated inflammatory response demonstrated by elevation of superoxide anion (SA), reactive oxygen species (ROS), IL-1β, and cellular proliferation followed by elevation of anti-inflammatory IL-10 levels. Li treatment of OLZ-supplemented macrophages was able to reverse elevation of oxidative and inflammatory markers and increase IL-10 levels. Conclusions Despite methodological limitations related to in vitro protocols, results suggested that Li may attenuate OLZ-induced oxidative and inflammatory responses that result from metabolic side effects associated with OLZ.
Collapse
Affiliation(s)
- Marcelo Soares Fernandes
- Pharmacology Graduate Program, Federal University of Santa Maria, Santa Maria, RS,Brazil
- Federal University of the Southern Frontier, Passo Fundo, RS, Brazil
| | - Fernanda Barbisan
- Gerontology Graduate Program, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | - Charles Elias Assmann
- Biochemical Toxicology Graduate Program, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rogerio Tomasi Riffel
- Federal University of the Southern Frontier, Passo Fundo, RS, Brazil
- Hospital of Clinics of Passo Fundo, Passo Fundo, RS, Brazil
| | | | | | - Ivana Beatrice Mânica da Cruz
- Pharmacology Graduate Program, Federal University of Santa Maria, Santa Maria, RS,Brazil
- Gerontology Graduate Program, Federal University of Santa Maria, Santa Maria, RS, Brazil
- * E-mail:
| |
Collapse
|
38
|
Petruzzelli MG, Margari M, Peschechera A, de Giambattista C, De Giacomo A, Matera E, Margari F. Hyperprolactinemia and insulin resistance in drug naive patients with early onset first episode psychosis. BMC Psychiatry 2018; 18:246. [PMID: 30068291 PMCID: PMC6090964 DOI: 10.1186/s12888-018-1827-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hyperprolactinemia and glucose and lipid metabolism abnormalities are often found in patients with schizophrenia and are generally considered secondary to the use of antipsychotic drugs. More recent studies have shown these same neuroendocrine and metabolic abnormalities in antipsychotic naïve patients with first episode psychosis (FEP), rising the hypothesis that schizophrenia itself may be related to an abnormal regulation of prolactin secretion and to impaired glucose tolerance. The aim of this study was to compare prolactin levels, glycometabolism parameters and lipid profile between a sample of 31 drug-naive adolescents in the acute phase of FEP and a control group of 23 subjects at clinical high risk (CHR) of developing psychosis. METHODS The assessment involved anthropometric data (weight, height, BMI index, pubertal stage) and blood tests (levels of glucose, glycated hemoglobin, serum insulin, triglycerides, total and fractionated cholesterol, prolactin). Insulin resistance (IR) was calculated through the homeostatic model of assessment (HOMA-IR), assuming a cut-off point of 3.16 for adolescent population. FEP patients and CHR controls were compared by using Student's t-distribution (t-test) for parametric data. P < 0.05 was considered significant. RESULTS Significant higher level of prolactin was found in FEP group than in CHR group (mean = 28.93 ± 27.16 vs 14.29 ± 7.86, P = 0.009), suggesting a condition of hyperprolactinemia (HPRL). Patients with FEP were more insulin resistant compared to patients at CHR, as assessed by HOMA-IR (mean = 3.07 ± 1.76 vs 2.11 ± 1.11, P = 0.043). Differences of fasting glucose (FEP = 4.82 ± 0.71, CHR = 4.35 ± 0.62, P = 0.016) and HbA1c (FEP = 25.86 ± 13.31, CHR = 33.00 ± 2.95, P = 0.013), were not clinically significant as the mean values were within normal range for both groups. No significant differences were found for lipid profile. A BMI value within the range of normal weight was found for both groups, with no significant differences. CONCLUSION We suggested that HPRL, increase in HOMA-IR, and psychotic symptoms may be considered different manifestations of the acute onset of schizophrenia spectrum psychosis, with a common neurobiological vulnerability emerging since adolescence. The influence of age and gender on clinical manifestations of psychotic onset should be considered for early prevention and treatment of both schizophrenia spectrum psychosis and neuroendocrine-metabolic dysfunctions.
Collapse
Affiliation(s)
- Maria Giuseppina Petruzzelli
- Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Azienda Ospedaliero-Universitaria Policlinico di Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Mariella Margari
- 0000 0001 0120 3326grid.7644.1Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Azienda Ospedaliero-Universitaria Policlinico di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonia Peschechera
- 0000 0001 0120 3326grid.7644.1Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Azienda Ospedaliero-Universitaria Policlinico di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Concetta de Giambattista
- 0000 0001 0120 3326grid.7644.1Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Azienda Ospedaliero-Universitaria Policlinico di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Andrea De Giacomo
- 0000 0001 0120 3326grid.7644.1Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Azienda Ospedaliero-Universitaria Policlinico di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Emilia Matera
- 0000 0001 0120 3326grid.7644.1Child Neuropsychiatry Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Azienda Ospedaliero-Universitaria Policlinico di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Margari
- 0000 0001 0120 3326grid.7644.1Psychiatry Unit , Department of Basic Medical Sciences, Neuroscience and Sense Organ, University of Bari “Aldo Moro”, Azienda Ospedaliero-Universitaria Policlinico di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|