1
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mitri Z, Goodyear SM, Mills G. Strategies for the prevention or reversal of PARP inhibitor resistance. Expert Rev Anticancer Ther 2024; 24:959-975. [PMID: 39145413 DOI: 10.1080/14737140.2024.2393251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Advances in our understanding of tumor biology shed light on hallmarks of cancer development and progression that include dysregulated DNA damage repair (DDR) machinery. Leveraging the underlying tumor genomic instability and tumor-specific defects in DDR, Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induced DNA damage emerges as a novel non-chemotherapy therapeutic opportunity. PARPis are currently approved in multiple tumor types, with the largest benefit seen in tumors with homologous recombination repair (HRR) deficiency, including germline and somatic mutations in BRCA1/2 genes (BRCA) and other pathway members such as PALB2 and Rad51c. AREAS COVERED This review article summarizes the current approval landscape and known and proposed mechanisms of resistance to PARPi. Further, therapeutic strategies to overcome PARPi resistance are discussed, including ongoing clinical trials. EXPERT OPINION PARPi have proven to be a safe and effective therapy and represents a cornerstone treatment across multiple solid tumor types. Elucidating innate and acquired mechanisms of resistance, coupled with the emergence of novel therapeutic options to capitalize on the activity of PARPi and prevent or reverse the acquisition of resistance, provides an opportunity to further expand the role of PARPi in cancer therapy.
Collapse
Affiliation(s)
- Zahi Mitri
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun M Goodyear
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| | - Gordon Mills
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
3
|
Lee JH. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat Rev 2024; 129:102808. [PMID: 39106770 DOI: 10.1016/j.ctrv.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Ataxia telangiectasia mutated (ATM) kinase plays a pivotal role in orchestrating the DNA damage response, maintaining genomic stability, and regulating various cellular processes. This review provides a comprehensive analysis of ATM's structure, activation mechanisms, and various functions in cancer development, progression, and treatment. I discuss ATM's dual nature as both a tumor suppressor and potential promoter of cancer cell survival in certain contexts. The article explores the complex signaling pathways mediated by ATM, its interactions with other DNA repair mechanisms, and its influence on cell cycle checkpoints, apoptosis, and metabolism. I examine the clinical implications of ATM alterations, including their impact on cancer predisposition, prognosis, and treatment response. The review highlights recent advances in ATM-targeted therapies, discussing ongoing clinical trials of ATM inhibitors and their potential in combination with other treatment modalities. I also address the challenges in developing effective biomarkers for ATM activity and patient selection strategies for personalized cancer therapy. Finally, I outline future research directions, emphasizing the need for refined biomarker development, optimized combination therapies, and strategies to overcome potential resistance mechanisms. This comprehensive overview underscores the critical importance of ATM in cancer biology and its emerging potential as a therapeutic target in precision oncology.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Department of Biological Sciences, Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
4
|
Jadav R, Weiland F, Noordermeer SM, Carroll T, Gao Y, Wang J, Zhou H, Lamoliatte F, Toth R, Macartney T, Brown F, Hastie CJ, Alabert C, van Attikum H, Zenke F, Masson JY, Rouse J. Chemo-Phosphoproteomic Profiling with ATR Inhibitors Berzosertib and Gartisertib Uncovers New Biomarkers and DNA Damage Response Regulators. Mol Cell Proteomics 2024; 23:100802. [PMID: 38880245 PMCID: PMC11338954 DOI: 10.1016/j.mcpro.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024] Open
Abstract
The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumors as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: (i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; (ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; (iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumor suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors.
Collapse
Affiliation(s)
- Rathan Jadav
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Florian Weiland
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands; Department of Genetics, Oncode Institute, Utrecht, The Netherlands
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Yuandi Gao
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - Jianming Wang
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - C James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Zenke
- EMD Serono, Research Unit Oncology, Billerica, Massachusetts, USA
| | - Jean-Yves Masson
- CHU de Quebec Research Center, Oncology Division, Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec Cit, Quebec, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit and School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK.
| |
Collapse
|
5
|
Hofstad M, Woods A, Parra K, Sychev ZE, Mazzagatti A, Yu L, Gilbreath C, Ly P, Drake JM, Kittler R. Dual inhibition of ATR and DNA-PKcs radiosensitizes ATM-mutant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602941. [PMID: 39026771 PMCID: PMC11257504 DOI: 10.1101/2024.07.10.602941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In advanced castration resistant prostate cancer (CRPC), mutations in the DNA damage response (DDR) gene ataxia telangiectasia mutated ( ATM ) are common. While poly(ADP-ribose) polymerase inhibitors are approved in this context, their clinical efficacy remains limited. Thus, there is a compelling need to identify alternative therapeutic avenues for ATM mutant prostate cancer patients. Here, we generated matched ATM-proficient and ATM-deficient CRPC lines to elucidate the impact of ATM loss on DDR in response to DNA damage via irradiation. Through unbiased phosphoproteomic screening, we unveiled that ATM-deficient CRPC lines maintain dependence on downstream ATM targets through activation of ATR and DNA-PKcs kinases. Dual inhibition of ATR and DNA-PKcs effectively inhibited downstream γH2AX foci formation in response to irradiation and radiosensitized ATM-deficient lines to a greater extent than either ATM-proficient controls or single drug treatment. Further, dual inhibition abrogated residual downstream ATM pathway signaling and impaired replication fork dynamics. To circumvent potential toxicity, we leveraged the RUVBL1/2 ATPase inhibitor Compound B, which leads to the degradation of both ATR and DNA-PKcs kinases. Compound B effectively radiosensitized ATM-deficient CRPC in vitro and in vivo , and impacted replication fork dynamics. Overall, dual targeting of both ATR and DNA-PKcs is necessary to block DDR in ATM-deficient CRPC, and Compound B could be utilized as a novel therapy in combination with irradiation in these patients.
Collapse
|
6
|
Fan Y, Liu Z, Chen Y, He Z. Homologous Recombination Repair Gene Mutations in Prostate Cancer: Prevalence and Clinical Value. Adv Ther 2024; 41:2196-2216. [PMID: 38767824 PMCID: PMC11133173 DOI: 10.1007/s12325-024-02844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
Despite advances in our understanding of the molecular landscape of prostate cancer and the development of novel biomarker-driven therapies, the prognosis of patients with metastatic prostate cancer that is resistant to conventional hormonal therapy remains poor. Data suggest that a significant proportion of patients with metastatic castration-resistant prostate cancer (mCRPC) have mutations in homologous recombination repair (HRR) genes and may benefit from poly(ADP-ribose) polymerase (PARP) inhibitors. However, the adoption of HRR gene mutation testing in prostate cancer remains low, meaning there is a missed opportunity to identify patients who may benefit from targeted therapy with PARP inhibition, with or without novel hormonal agents. Here, we review the current knowledge regarding the clinical significance of HRR gene mutations in prostate cancer and discuss the efficacy of PARP inhibition in patients with mCRPC. This comprehensive overview aims to increase the clinical implementation of HRR gene mutation testing and inform future efforts in personalized treatment of prostate cancer.
Collapse
Affiliation(s)
- Yu Fan
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China
| | - Zhenhua Liu
- Global Medical Affairs, MSD China, Shanghai, China
| | - Yuke Chen
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China
| | - Zhisong He
- Department of Urology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, China.
| |
Collapse
|
7
|
Abbas N, Chehade L, Shamseddine A. Personalized treatment with PARP inhibitors in advanced urothelial carcinoma: a case report and literature review. Ther Adv Med Oncol 2024; 16:17588359241245283. [PMID: 38638285 PMCID: PMC11025443 DOI: 10.1177/17588359241245283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Bladder cancer (BC) poses a significant health challenge, particularly in metastatic cases, where the prognosis is unfavorable and therapeutic options are limited. Poly ADP-ribose polymerase (PARP) inhibitors have gained approval for use in various cancer types, but their application in BC remains controversial, despite the notable prevalence of DNA damage response alterations in advanced or metastatic urothelial carcinomas. In this report, we describe a 66-year-old heavy-smoking female diagnosed with muscle-invasive BC. She underwent multiple rounds of chemotherapy and radiation, yet her disease remained poorly controlled, leading to metastasis in the left obturator internus muscle. Comprehensive genomic profiling through FoundationOne® Liquid CDx, examining a 324-gene panel using circulating tumor DNA from blood samples, revealed a pathogenic ATM gene alteration (p.Q654fs*10, c.1960delC), suggesting potential eligibility for PARP inhibitor therapy. Remarkably, the patient achieved a complete response to talazoparib, prompting an optimal investigation into BC candidates for this promising therapy.
Collapse
Affiliation(s)
- Noura Abbas
- Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laudy Chehade
- Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Naef K. Basile Cancer Institute, American University of Beirut Medical Center, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon
| |
Collapse
|
8
|
Dunne VL, Wright TC, Liberal FDCG, O’Sullivan JM, Prise KM. Synergistic Activity of DNA Damage Response Inhibitors in Combination with Radium-223 in Prostate Cancer. Cancers (Basel) 2024; 16:1510. [PMID: 38672592 PMCID: PMC11048209 DOI: 10.3390/cancers16081510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Radium-223 (223Ra) and Lutetium-177-labelled-PSMA-617 (177Lu-PSMA) are currently the only radiopharmaceutical treatments to prolong survival for patients with metastatic-castration-resistant prostate cancer (mCRPC); however, mCRPC remains an aggressive disease. Recent clinical evidence suggests patients with mutations in DNA repair genes associated with homologous recombination have a greater clinical benefit from 223Ra. In this study, we aimed to determine the utility of combining DNA damage response (DDR) inhibitors to increase the therapeutic efficacy of X-rays, or 223Ra. Radiobiological responses were characterised by in vitro assessment of clonogenic survival, repair of double strand breaks, cell cycle distribution, and apoptosis via PARP-1 cleavage. Here, we show that DDR inhibitors increase the therapeutic efficacy of both radiation qualities examined, which is associated with greater levels of residual DNA damage. Co-treatment of ATM or PARP inhibition with 223Ra increased cell cycle arrest in the G2/M phase. In comparison, combined ATR inhibition and radiation qualities caused G2/M checkpoint abrogation. Additionally, greater levels of apoptosis were observed after the combination of DDR inhibitors with 223Ra. This study identified the ATR inhibitor as the most synergistic inhibitor for both radiation qualities, supporting further pre-clinical evaluation of DDR inhibitors in combination with 223Ra for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Victoria L. Dunne
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (T.C.W.); (F.D.C.G.L.); (J.M.O.); (K.M.P.)
| | - Timothy C. Wright
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (T.C.W.); (F.D.C.G.L.); (J.M.O.); (K.M.P.)
| | - Francisco D. C. Guerra Liberal
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (T.C.W.); (F.D.C.G.L.); (J.M.O.); (K.M.P.)
| | - Joe M. O’Sullivan
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (T.C.W.); (F.D.C.G.L.); (J.M.O.); (K.M.P.)
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast BT9 7AB, UK
| | - Kevin M. Prise
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK; (T.C.W.); (F.D.C.G.L.); (J.M.O.); (K.M.P.)
| |
Collapse
|
9
|
Chen H, Dong K, Ding J, Xia J, Qu F, Lan F, Liao H, Qian Y, Huang J, Xu Z, Gu Z, Shi B, Yu M, Cui X, Yu Y. CRISPR genome-wide screening identifies PAK1 as a critical driver of ARSI cross-resistance in prostate cancer progression. Cancer Lett 2024; 587:216725. [PMID: 38364963 DOI: 10.1016/j.canlet.2024.216725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Next-generation androgen receptor signaling inhibitors (ARSIs), such as enzalutamide (Enza) and darolutamide (Daro), are initially effective for the treatment of advanced prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). However, patients often relapse and develop cross-resistance, which consequently makes drug resistance an inevitable cause of CRPC-related mortality. By conducting a comprehensive analysis of GEO datasets, CRISPR genome-wide screening results, ATAC-seq data, and RNA-seq data, we systemically identified PAK1 as a significant contributor to ARSI cross-resistance due to the activation of the PAK1/RELA/hnRNPA1/AR-V7 axis. Inhibition of PAK1 followed by suppression of NF-κB pathways and AR-V7 expression effectively overcomes ARSI cross-resistance. Our findings indicate that PAK1 represents a promising therapeutic target gene for the treatment of ARSI cross-resistant PCa patients in the clinic. STATEMENT OF SIGNIFICANCE: PAK1 drives ARSI cross-resistance in prostate cancer progression.
Collapse
Affiliation(s)
- Haojie Chen
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Keqin Dong
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430064, China
| | - Jie Ding
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jia Xia
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Fajun Qu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Fuying Lan
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Haihong Liao
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yuhang Qian
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jiacheng Huang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zihan Xu
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhengqin Gu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Bowen Shi
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Mingming Yu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xingang Cui
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yongjiang Yu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Zaman N, Kushwah AS, Badriprasad A, Chakraborty G. Unravelling the molecular basis of PARP inhibitor resistance in prostate cancer with homologous recombination repair deficiency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:257-301. [PMID: 39396849 DOI: 10.1016/bs.ircmb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Prostate cancer is a disease with heterogeneous characteristics, making its treatability and curability dependent on the cancer's stage. While prostate cancer is often indolent, some cases can be aggressive and evolve into metastatic castration-resistant prostate cancer (mCRPC), which is lethal. A significant subset of individuals with mCRPC exhibit germline and somatic variants in components of the DNA damage repair (DDR) pathway. Recently, PARP inhibitors (PARPi) have shown promise in treating mCRPC patients who carry deleterious alterations in BRCA2 and 13 other DDR genes that are important for the homologous recombination repair (HRR) pathway. These inhibitors function by trapping PARP, resulting in impaired PARP activity and increased DNA damage, ultimately leading to cell death through synthetic lethality. However, the response to these inhibitors only lasts for 3-4 months, after which the cancer becomes PARPi resistant. Cancer cells can develop resistance to PARPi through numerous mechanisms, such as secondary reversion mutations in DNA repair pathway genes, heightened drug efflux, loss of PARP expression, HRR reactivation, replication fork stability, and upregulation of Wnt/Catenin and ABCB1 pathways. Overcoming PARPi resistance is a critical and complex process, and there are two possible ways to sensitize the resistance. The first approach is to potentiate the PARPi agents through chemo/radiotherapy and combination therapy, while the second approach entails targeting different signaling pathways. This review article highlights the latest evidence on the resistance mechanism of PARPi in lethal prostate cancer and discusses additional therapeutic opportunities available for prostate cancer patients with DDR gene alterations who do not respond to PARPi.
Collapse
Affiliation(s)
- Nabila Zaman
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Atar Singh Kushwah
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anagha Badriprasad
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goutam Chakraborty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
11
|
Akhoundova D, Francica P, Rottenberg S, Rubin MA. DNA Damage Response and Mismatch Repair Gene Defects in Advanced and Metastatic Prostate Cancer. Adv Anat Pathol 2024; 31:61-69. [PMID: 38008971 PMCID: PMC10846598 DOI: 10.1097/pap.0000000000000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Alterations in DNA damage response (DDR) and related genes are present in up to 25% of advanced prostate cancers (PCa). Most frequently altered genes are involved in the homologous recombination repair, the Fanconi anemia, and the mismatch repair pathways, and their deficiencies lead to a highly heterogeneous spectrum of DDR-deficient phenotypes. More than half of these alterations concern non- BRCA DDR genes. From a therapeutic perspective, poly-ADP-ribose polymerase inhibitors have demonstrated robust clinical efficacy in tumors with BRCA2 and BRCA1 alterations. Mismatch repair-deficient PCa, and a subset of CDK12-deficient PCa, are vulnerable to immune checkpoint inhibitors. Emerging data point to the efficacy of ATR inhibitors in PCa with ATM deficiencies. Still, therapeutic implications are insufficiently clarified for most of the non- BRCA DDR alterations, and no successful targeted treatment options have been established.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department for BioMedical Research
- Department of Medical Oncology
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Paola Francica
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Department for BioMedical Research
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Mark A. Rubin
- Department for BioMedical Research
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Liu L, Hu X, Feng J, Lei A, Huang S, Liu X, Liu H, Luo L, Yao W. Suppression of DNMT1 combined with ATM or ATR inhibitor as a therapeutic combination of acute myeloid leukemia. Anticancer Drugs 2024; 35:251-262. [PMID: 38164802 PMCID: PMC10833198 DOI: 10.1097/cad.0000000000001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
The potential treatment option of targeting DNA methyltransferase 1 (DNMT1) has been explored, but further investigation is required to assess the efficacy of combination therapy in acute myeloid leukemia (AML). In this study, bioinformatics and online databases were utilized to select the combined therapeutic targets. The potential kinases associated with DNMT1-related genes in AML were analyzed using the Cancer Genome Atlas (TCGA) database and X2K Appyter (Expression2Kinases) database. In-vitro evaluations were conducted to assess the synergistic effects between DNMT1 and ATR/ATM in five AML cell lines (MOLM-16, NB-4, HEL 92.1.7, HEL, EOL-1). In our study, ATR and ATM are primarily the kinases associated with DNMT1-related genes in AML. We observed a significant upregulation of DNMT1, ATR, and ATM expression in AML tissues and cell lines. The five AML cell lines demonstrated sensitivity to monotherapy with GSK-368, AZD-1390, or AZD-6738 (EC50 value ranges from 5.461 to 7.349 nM, 5.821 to 10.120 nM, and 7.618 to 10.100 nM, respectively). A considerable synergistic effect was observed in AML cell lines when combining GSK-368 and AZD-1390, GSK-368 and AZD-6738, or AZD-1390 and AZD-6738, resulting in induced cell apoptosis and inhibited cell growth. DNMT1, ATM, and ATR possess potential as therapeutic targets for AML. Both individual targeting and combination targeting of these molecules have been confirmed as promising therapeutic approaches for AML.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Xiaoyan Hu
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Jing Feng
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Anhui Lei
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Shiying Huang
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Xian Liu
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Hui Liu
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Lan Luo
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| | - Wenyan Yao
- Department of Hematology and Oncology, The First People’s Hospital of Guiyang, Guiyang city, Guizhou Province, China
| |
Collapse
|
13
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
14
|
Coquan E, Penel N, Lequesne J, Leman R, Lavaud P, Neviere Z, Brachet PE, Meriaux E, Carnot A, Boutrois J, Castera M, Goardon N, Muller E, Leconte A, Thiery-Vuillemin A, Clarisse B, Joly F. Carboplatin in metastatic castration-resistant prostate cancer patients with molecular alterations of the DNA damage repair pathway: the PRO-CARBO phase II trial. Ther Adv Urol 2024; 16:17562872241229876. [PMID: 38425504 PMCID: PMC10903225 DOI: 10.1177/17562872241229876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction DNA damage repair genes are altered in 20-35% of metastatic castration-resistant prostate cancer (mCRPC). Poly-ADP (Adénosine Diphosphate)-ribose polymerase inhibitors (PARPi) showed significant activity for these selected tumors, especially with homologous recombination repair (HRR) deficiency. These alterations could also predict platinum sensitivity. Although carboplatin was inconclusive in unselected mCRPC, the literature suggests an anti-tumoral activity in mCRPC with HHR gene alterations. We aimed to assess the efficacy of carboplatin monotherapy in mCRPC patients with HRR deficiency. Methods This prospective multicenter single-arm two-stage phase II addressed mCRPC men with HRR somatic and/or germline alterations, pretreated with ⩾2 taxane chemotherapy regimens and one androgen receptor pathway inhibitor. Prior PARPi treatment was allowed. Enrolled patients received intravenous carboplatin (AUC5) every 21 days for 6-9 cycles. The primary endpoint was the best response rate according to adapted PCWG3 guidelines: radiological response (RECIST 1.1 criteria) and/or biological response [⩾50% prostate-specific antigen (PSA) decline]. Results A total of 15 out of 16 enrolled patients started carboplatin treatment. Genomic alterations were identified for BRCA2 (n = 5), CDK12 (n = 3), ATM (n = 3) CHEK2 (n = 2), CHEK1 (n = 1), and BRCA1 (n = 1) genes. Objective response (partial biological response + stable radiological response) was achieved in one patient (6.7%), carrying a BRCA2 mutation and not pre-treated with PARPi; stable disease was observed for five patients (33.5%). Among seven patients (46.7%) with previous PARPi treatment, four patients (57.1%) had a stable disease. The median progression-free and overall survivals were 1.9 [95% confidence interval (95% CI), 1.8-9.5] and 8.6 months (95% CI, 4.3-19.5), respectively. The most common severe (grade 3-4) treatment-related toxicities were thrombocytopenia (66.7%), anemia (66.7%), and nausea (60%). Overall, 8 (53.3%) patients experienced a severe hematological event. Conclusion The study was prematurely stopped as pre-planned considering the limited activity of carboplatin monotherapy in heavily pre-treated, HHR-deficient mCRPC patients. Larger experience is needed in mCRPC with BRCA alterations. Trial registration NCT03652493, EudraCT ID number 2017-004764-35.
Collapse
Affiliation(s)
- Elodie Coquan
- Department of Medical Oncology, Centre François Baclesse, Caen, France
- Department of Clinical Research, Centre François Baclesse, Caen, France
| | - Nicolas Penel
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
- Université de Lille, CHU Lille, ULR 2694 – Metrics: Evaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Justine Lequesne
- Department of Clinical Research, Centre François Baclesse, 3 Avenue du Général Harris, F-14076 CAEN Cedex 05, France
| | - Raphaël Leman
- Genetic and Oncology Biology Department, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Univ, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Pernelle Lavaud
- Department of Oncology, Institut Gustave Roussy, Villejuif, France
| | - Zoé Neviere
- Department of Medical Oncology, Centre François Baclesse, Caen, France
| | - Pierre-Emmanuel Brachet
- Department of Medical Oncology, Centre François Baclesse, Caen, France
- Department of Clinical Research, Centre François Baclesse, Caen, France
| | - Emeline Meriaux
- Department of Medical Oncology, Centre François Baclesse, Caen, France
- Department of Clinical Research, Centre François Baclesse, Caen, France
| | - Aurélien Carnot
- Department of Medical Oncology, Centre Oscar Lambret, Lille, France
| | - Jérémy Boutrois
- Department of Clinical Research, Centre François Baclesse, Caen, France
| | - Marie Castera
- Department of Clinical Research, Centre François Baclesse, Caen, France
| | - Nicolas Goardon
- Genetic and Oncology Biology Department, Centre François Baclesse, Caen, France
- Inserm U1245, Cancer Brain and Genome, Normandie Univ, UNICAEN, FHU G4 Génomique, Rouen, France
| | - Etienne Muller
- Genetic and Oncology Biology Department, Centre François Baclesse, Caen, France
| | - Alexandra Leconte
- Department of Clinical Research, Centre François Baclesse, Caen, France
| | | | | | - Florence Joly
- Department of Medical Oncology, Centre François Baclesse, Caen, France
- Department of Clinical Research, Centre François Baclesse, Caen, France
- Normandie University, UNICAEN, INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment), Centre François Baclesse, Caen, France
| |
Collapse
|
15
|
Stracker TH, Osagie OI, Escorcia FE, Citrin DE. Exploiting the DNA Damage Response for Prostate Cancer Therapy. Cancers (Basel) 2023; 16:83. [PMID: 38201511 PMCID: PMC10777950 DOI: 10.3390/cancers16010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancers that progress despite androgen deprivation develop into castration-resistant prostate cancer, a fatal disease with few treatment options. In this review, we discuss the current understanding of prostate cancer subtypes and alterations in the DNA damage response (DDR) that can predispose to the development of prostate cancer and affect its progression. We identify barriers to conventional treatments, such as radiotherapy, and discuss the development of new therapies, many of which target the DDR or take advantage of recurring genetic alterations in the DDR. We place this in the context of advances in understanding the genetic variation and immune landscape of CRPC that could help guide their use in future treatment strategies. Finally, we discuss several new and emerging agents that may advance the treatment of lethal disease, highlighting selected clinical trials.
Collapse
Affiliation(s)
- Travis H. Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Oloruntoba I. Osagie
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| | - Freddy E. Escorcia
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.I.O.); (F.E.E.); (D.E.C.)
| |
Collapse
|
16
|
Ring A, Kilburn LS, Pearson A, Moretti L, Afshari-Mehr A, Wardley AM, Gurel B, Macpherson IR, Riisnaes R, Baird RD, Martin S, Roylance R, Johnson H, Ferreira A, Winter MC, Dunne K, Copson E, Hickish T, Burcombe R, Randle K, Serra V, Llop-Guevara A, Bliss JM, Turner NC. Olaparib and Ceralasertib (AZD6738) in Patients with Triple-Negative Advanced Breast Cancer: Results from Cohort E of the plasmaMATCH Trial (CRUK/15/010). Clin Cancer Res 2023; 29:4751-4759. [PMID: 37773077 PMCID: PMC10690092 DOI: 10.1158/1078-0432.ccr-23-1696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE Approximately 10% to 15% of triple-negative breast cancers (TNBC) have deleterious mutations in BRCA1 and BRCA2 and may benefit from PARP inhibitor treatment. PARP inhibitors may also increase exogenous replication stress and thereby increase sensitivity to inhibitors of ataxia telangiectasia and Rad3-related (ATR) protein. This phase II study examined the activity of the combination of PARP inhibitor, olaparib, and ATR inhibitor, ceralasertib (AZD6738), in patients with advanced TNBC. PATIENTS AND METHODS Patients with TNBC on most recent biopsy who had received 1 or 2 lines of chemotherapy for advanced disease or had relapsed within 12 months of (neo)adjuvant chemotherapy were eligible. Treatment was olaparib 300 mg twice a day continuously and celarasertib 160 mg on days 1-7 on a 28-day cycle until disease progression. The primary endpoint was confirmed objective response rate (ORR). Tissue and plasma biomarker analyses were preplanned to identify predictors of response. RESULTS 70 evaluable patients were enrolled. Germline BRCA1/2 mutations were present in 10 (14%) patients and 3 (4%) patients had somatic BRCA mutations. The confirmed ORR was 12/70; 17.1% (95% confidence interval, 10.4-25.5). Responses were observed in patients without germline or somatic BRCA1/2 mutations, including patients with mutations in other homologous recombination repair genes and tumors with functional homologous recombination deficiency by RAD51 foci. CONCLUSIONS The response rate to olaparib and ceralasertib did not meet prespecified criteria for activity in the overall evaluable population, but responses were observed in patients who would not be expected to respond to olaparib monotherapy.
Collapse
Affiliation(s)
- Alistair Ring
- Breast Unit, The Royal Marsden Hospital, Sutton, United Kingdom
- Division of Breast Cancer Research, Institute of Cancer Research, London, United Kingdom
| | - Lucy S. Kilburn
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Alex Pearson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Laura Moretti
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Angelica Afshari-Mehr
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - Bora Gurel
- Clinical Studies – Cancer Biomarkers, The Institute of Cancer Research, London, United Kingdom
| | - Iain R. Macpherson
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ruth Riisnaes
- Clinical Studies – Cancer Biomarkers, The Institute of Cancer Research, London, United Kingdom
| | | | - Sue Martin
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Rebecca Roylance
- University College London Hospitals NHS Foundation Trust & NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Hannah Johnson
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- Clinical Studies – Cancer Biomarkers, The Institute of Cancer Research, London, United Kingdom
| | - Matthew C. Winter
- Weston Park Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Kathryn Dunne
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital, London, United Kingdom
| | - Ellen Copson
- Cancer Sciences Academic Unit, University of Southampton, Southampton, United Kingdom
| | - Tamas Hickish
- Royal Bournemouth Hospital, University Hospitals Dorset NHS Foundation Trust, Bournemouth, United Kingdom
| | - Russell Burcombe
- Maidstone and Tunbridge Wells NHS Trust, Maidstone, Kent, United Kingdom
| | - Kat Randle
- Independent Cancer Patients’ Voice, London, United Kingdom
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Judith M. Bliss
- Clinical Trials and Statistics Unit at The Institute of Cancer Research, London, United Kingdom
| | - Nicolas C. Turner
- Breast Unit, The Royal Marsden Hospital, Sutton, United Kingdom
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
17
|
Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol 2023; 199:1091-1109. [PMID: 37041372 PMCID: PMC10673805 DOI: 10.1007/s00066-023-02064-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Visionsgatan 4, 17164, Solna, Sweden
| | - Thorsten Rieckmann
- Department of Radiation Oncology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Otolaryngology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Zhou Y, Börcsök J, Adib E, Kamran SC, Neil AJ, Stawiski K, Freeman D, Stormoen DR, Sztupinszki Z, Samant A, Nassar A, Bekele RT, Hanlon T, Valentine H, Epstein I, Sharma B, Felt K, Abbosh P, Wu CL, Efstathiou JA, Miyamoto DT, Anderson W, Szallasi Z, Mouw KW. ATM deficiency confers specific therapeutic vulnerabilities in bladder cancer. SCIENCE ADVANCES 2023; 9:eadg2263. [PMID: 37992168 PMCID: PMC10664985 DOI: 10.1126/sciadv.adg2263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Ataxia-telangiectasia mutated (ATM) plays a central role in the cellular response to DNA damage and ATM alterations are common in several tumor types including bladder cancer. However, the specific impact of ATM alterations on therapy response in bladder cancer is uncertain. Here, we combine preclinical modeling and clinical analyses to comprehensively define the impact of ATM alterations on bladder cancer. We show that ATM loss is sufficient to increase sensitivity to DNA-damaging agents including cisplatin and radiation. Furthermore, ATM loss drives sensitivity to DNA repair-targeted agents including poly(ADP-ribose) polymerase (PARP) and Ataxia telangiectasia and Rad3 related (ATR) inhibitors. ATM loss alters the immune microenvironment and improves anti-PD1 response in preclinical bladder models but is not associated with improved anti-PD1/PD-L1 response in clinical cohorts. Last, we show that ATM expression by immunohistochemistry is strongly correlated with response to chemoradiotherapy. Together, these data define a potential role for ATM as a predictive biomarker in bladder cancer.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judit Börcsök
- Danish Cancer Institute, Copenhagen, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Elio Adib
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sophia C. Kamran
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander J. Neil
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Konrad Stawiski
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dory Freeman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dag Rune Stormoen
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Amruta Samant
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amin Nassar
- Department of Hematology/Oncology, Yale New Haven Hospital, New Haven, CT, USA
| | - Raie T. Bekele
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Timothy Hanlon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Henkel Valentine
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ilana Epstein
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bijaya Sharma
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kristen Felt
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip Abbosh
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Albert Einstein Medical Center, Philadelphia, PA, USA
| | - Chin-Lee Wu
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Jason A. Efstathiou
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - David T. Miyamoto
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William Anderson
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Zoltan Szallasi
- Danish Cancer Institute, Copenhagen, Denmark
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
- 2nd Department of Pathology, SE NAP, Brain Metastasis Research Group and Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Kent W. Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Cussenot O, Cancel-Tassin G, Rao SR, Woodcock DJ, Lamb AD, Mills IG, Hamdy FC. Aligning germline and somatic mutations in prostate cancer. Are genetics changing practice? BJU Int 2023; 132:472-484. [PMID: 37410655 DOI: 10.1111/bju.16120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
OBJECTIVE To review the current status of germline and somatic (tumour) genetic testing for prostate cancer (PCa), and its relevance for clinical practice. METHODS A narrative synthesis of various molecular profiles related to their clinical context was carried out. Current guidelines for genetic testing and its feasibility in clinical practice were analysed. We report the main identified genetic sequencing results or functional genomic scores for PCa published in the literature or obtained from the French PROGENE study. RESULTS The molecular alterations observed in PCa are mostly linked to disruption of the androgen receptor (AR) pathway or DNA repair deficiency. The main known germline mutations affect the BReast CAncer gene 2 (BRCA2) and homeobox B13 (HOXB13) genes, whereas AR and tumour protein p53 (TP53) are the genes with most frequent somatic alterations in tumours from men with metastatic PCa. Molecular tests are now available for detecting some of these germline or somatic alterations and sometimes recommended by guidelines, but their utilisation must combine rationality and feasibility. They can guide specific therapies, notably for the management of metastatic disease. Indeed, following androgen deprivation, targeted therapies for PCa currently include poly-(ADP-ribose)-polymerase (PARP) inhibitors, immune checkpoint inhibitors, and prostate-specific membrane antigen (PSMA)-guided radiotherapy. The genetic tests currently approved for targeted therapies remain limited to the detection of BRCA1 and BRCA2 mutation and DNA mismatch repair deficiency, while large panels are recommended for germline analyses, not only for inherited cancer predisposing syndrome, but also for metastatic PCa. CONCLUSIONS Further consensus aligning germline with somatic molecular analysis in metastatic PCa is required, including genomics scars, emergent immunohistochemistry, or functional pre-screen imaging. With rapid advances in knowledge and technology in the field, continuous updating of guidelines to help the clinical management of these individuals, and well-conducted studies to evaluate the benefits of genetic testing are needed.
Collapse
Affiliation(s)
- Olivier Cussenot
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
| | - Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Bhamidipati D, Haro-Silerio JI, Yap TA, Ngoi N. PARP inhibitors: enhancing efficacy through rational combinations. Br J Cancer 2023; 129:904-916. [PMID: 37430137 PMCID: PMC10491787 DOI: 10.1038/s41416-023-02326-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) have significantly changed the treatment landscape for tumours harbouring defects in genes involved in homologous repair (HR) such as BRCA1 and BRCA2. Despite initial responsiveness to PARPi, tumours eventually develop resistance through a variety of mechanisms. Rational combination strategies involving PARPi have been explored and are in various stages of clinical development. PARPi combinations have the potential to enhance efficacy through synergistic activity, and also potentially sensitise innately PARPi-resistant tumours to PARPi. Initial combinations involving PARPi with chemotherapy were hindered by significant overlapping haematologic toxicity, but newer combinations with fewer toxicities and more targeted approaches are undergoing evaluation. In this review, we discuss the mechanisms of PARPi resistance and review the rationale and clinical evidence for various PARPi combinations including combinations with chemotherapy, immunotherapy, and targeted therapies. We also highlight emerging PARPi combinations with promising preclinical evidence.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Department of Cancer Medicine Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
21
|
Saeidi H, Bakrin IH, Raju CS, Ismail P, Saraf M, Khairul-Asri MG. Genetic aberrations of homologous recombination repair pathways in prostate cancer: The prognostic and therapeutic implications. Adv Med Sci 2023; 68:359-365. [PMID: 37757663 DOI: 10.1016/j.advms.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. Homologous recombination repair (HRR) gene defects have been identified in a significant proportion of metastatic castration-resistant PC (mCRPC) and are associated with an increased risk of PC and more aggressive PC. Importantly, it has been well-documented that poly ADP-ribose polymerase (PARP) inhibition in cells with HR deficiency (HRD) can cause cell death. This has been exploited for the targeted treatment of PC patients with HRD by PARP inhibitors. Moreover, it has been shown that platinum-based chemotherapy is more effective in mCRPC patients with HRR gene alterations. This review highlights the prognosis and therapeutic implications of HRR gene alterations in PC.
Collapse
Affiliation(s)
- Hamidreza Saeidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia.
| | - Ikmal Hisyam Bakrin
- Department of Pathology, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | - Mohsen Saraf
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Mohd Ghani Khairul-Asri
- Department of Urology, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
22
|
Karmokar A, Sargeant R, Hughes AM, Baakza H, Wilson Z, Talbot S, Bloomfield S, Leo E, Jones GN, Likhatcheva M, Tobalina L, Dean E, Cadogan EB, Lau A. Relevance of ATM Status in Driving Sensitivity to DNA Damage Response Inhibitors in Patient-Derived Xenograft Models. Cancers (Basel) 2023; 15:4195. [PMID: 37627223 PMCID: PMC10453052 DOI: 10.3390/cancers15164195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Ataxia-telangiectasia mutated gene (ATM) is a key component of the DNA damage response (DDR) and double-strand break repair pathway. The functional loss of ATM (ATM deficiency) is hypothesised to enhance sensitivity to DDR inhibitors (DDRi). Whole-exome sequencing (WES), immunohistochemistry (IHC), and Western blotting (WB) were used to characterise the baseline ATM status across a panel of ATM mutated patient-derived xenograft (PDX) models from a range of tumour types. Antitumour efficacy was assessed with poly(ADP-ribose)polymerase (PARP, olaparib), ataxia- telangiectasia and rad3-related protein (ATR, AZD6738), and DNA-dependent protein kinase (DNA-PK, AZD7648) inhibitors as a monotherapy or in combination to associate responses with ATM status. Biallelic truncation/frameshift ATM mutations were linked to ATM protein loss while monoallelic or missense mutations, including the clinically relevant recurrent R3008H mutation, did not confer ATM protein loss by IHC. DDRi agents showed a mixed response across the PDX's but with a general trend toward greater activity, particularly in combination in models with biallelic ATM mutation and protein loss. A PDX with an ATM splice-site mutation, 2127T > C, with a high relative baseline ATM expression and KAP1 phosphorylation responded to all DDRi treatments. These data highlight the heterogeneity and complexity in describing targetable ATM-deficiencies and the fact that current patient selection biomarker methods remain imperfect; although, complete ATM loss was best able to enrich for DDRi sensitivity.
Collapse
Affiliation(s)
- Ankur Karmokar
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Rebecca Sargeant
- Imaging & Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Adina M. Hughes
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Hana Baakza
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Zena Wilson
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Sara Talbot
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Elisabetta Leo
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Gemma N. Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Maria Likhatcheva
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Luis Tobalina
- Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| |
Collapse
|
23
|
Chelariu-Raicu A, Piha-Paul SA, Chavez-MacGregor M, Johnson J, Sawaya R, McAleer MF, Nguyen A, Hartnett A, Tsimberidou AM, Meric-Bernstam F, Dumbrava EE. Multidisciplinary Care of a Large Brain Metastasis in a Patient with Hormone-Receptor-Positive Breast Cancer with Ataxia-Telangiectasia Mutation. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:158-161. [PMID: 37637237 PMCID: PMC10448731 DOI: 10.36401/jipo-22-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/23/2023] [Accepted: 05/09/2023] [Indexed: 08/29/2023]
Abstract
Poly (adenosine diphosphate-ribose) polymerase inhibitors (PARP)i are emerging as standard oncology treatments in various tumor types. The indications will expand as PARPi are being investigated in various breast cancer subtypes. Currently, except for BRCA1/2 mutation carriers with human epidermal growth factor receptor 2 (HER2)-negative breast cancer, there is inadequate identification of predictive biomarkers of response. We present a 57-year-old woman with metastatic breast cancer, hormone-receptor-positive, HER2 negative with a germline ataxia-telangiectasia mutation with a large brain metastasis with clinical benefit to talazoparib. This case report exemplifies the importance of the multidisciplinary management of patients with brain metastases and personalized biomarker selected treatment.
Collapse
Affiliation(s)
- Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Obstetrics and Gynecology, Breast Center, Gynecologic Oncology Center, and CCC Munich, LMU University Hospital, Munich, Germany
| | - Sarina A. Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mariana Chavez-MacGregor
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Health Services Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raymond Sawaya
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alissa Nguyen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Audrey Hartnett
- Department of Investigational Cancer Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Surgical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- The Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ecaterina E. Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Obata H, Ogawa M, Zalutsky MR. DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1926. [PMID: 37514113 PMCID: PMC10384049 DOI: 10.3390/pharmaceutics15071926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Michael R Zalutsky
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
25
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
26
|
Dogan S, Xu B, Rana S, Chen H, Ghossein RA, Berger MF, Ho AL, Katabi N. Loss of CDKN2A/B is a Molecular Marker of High-grade Histology and is Associated with Aggressive Behavior in Acinic Cell Carcinoma. Mod Pathol 2023; 36:100150. [PMID: 36841437 PMCID: PMC10447625 DOI: 10.1016/j.modpat.2023.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Acinic cell carcinoma (AciCC) is a rare salivary gland cancer with excellent prognosis in most cases. However, a subset of patients will develop distant metastasis and die of disease. Recently, a 2-tiered grading scheme in AciCC was proposed to recognize patients at risk of poor outcome. We performed a genetic analysis of AciCC to explore the underlying molecular correlates of the tumor grade and examined programmed death ligand 1 (PD-L1) expression to identify potential candidates for immunotherapy. A retrospective cohort of 55 patients included 34 high-grade (HG) and 21 low-grade AciCCs. Forty-three cases were subjected to targeted exome sequencing by Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets. PD-L1 immunohistochemistry was performed in 33 cases. Tumor mutation burden was low with a median of 1 and 2 mutations in low-grade and HG AciCCs, respectively. CDKN2A/B was the most frequently altered gene, and loss-of-function mutations were found only in HG but not in low-grade AciCCs (18/31 [58.1%] vs 0/12 [0%], P < .001). CDKN2A/B alterations were significantly associated with distant metastasis, which occurred in 16/18 (88.9%) CDKN2A/B mutants versus 11/25 (44%) wild-type cases (P = .004, Fisher exact test). Sequential profiling of multiple temporally distant samples from the same patient demonstrated intratumor heterogeneity, including the detection of CDKN2A/B deletion in the second, in HG metastasis only. ATM and PTEN mutations were detected in 6/31 (19.4%) and 5/31 (16.1%); ARID2, BIRC3, and FBXW7 mutations each in 4/31 (12.9%); and TP53, MTAP, and FAT1 each in 3/31 (9.7%) HG AciCC. PD-L1-positive labeling was more common in HG AciCC (9/17, 52.9% vs 3/16, 18.9%, P = .071). CDKN2A/B mutations in AciCC represent a molecular marker of HG histology and disease progression, providing a rationale for further studies to determine their prognostic and therapeutic significance in this salivary gland cancer. AciCC with ATM mutations may be amenable to targeted therapy. Immunotherapy can be considered to be a treatment option for a subset of patients with AciCC.
Collapse
Affiliation(s)
- Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Satshil Rana
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hui Chen
- Department of Pathology, MD Anderson Cancer Center, Houston, Texas
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
27
|
Shao J, Huang L, Lai W, Zou Y, Zhu Q. Design, Synthesis, and Biological Evaluation of Potent and Selective Inhibitors of Ataxia Telangiectasia Mutated and Rad3-Related (ATR) Kinase for the Efficient Treatment of Cancer. Molecules 2023; 28:molecules28114521. [PMID: 37298997 DOI: 10.3390/molecules28114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Ataxia telangiectasia mutated and Rad3-related (ATR), a vital member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, plays a critical role in the DNA damage response (DDR). Tumor cells with a loss of DDR function or defects in the ataxia telangiectasia mutated (ATM) gene are generally more dependent on ATR for survival, suggesting that ATR is an attractive anticancer drug target based on its synthetic lethality. Herein, we present a potent and highly selective ATR inhibitor, ZH-12 (IC50 = 0.0068 μM). It showed potent antitumor activity as a single agent or in combination with cisplatin in the human colorectal adenocarcinoma LoVo tumor xenograft mouse model. Overall, ZH-12 may be a promising ATR inhibitor based on the principle of synthetic lethality and deserves further in-depth study.
Collapse
Affiliation(s)
- Jialu Shao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Huang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology and Medicinal Chemistry, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Wenwen Lai
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Zou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qihua Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
28
|
Grochot R, Carreira S, Miranda S, Figueiredo I, Bertan C, Rekowski J, Yuan W, Ferreira A, Riisnaes R, Neeb A, Gurel B, de Los Dolores Fenor de la Maza M, Guo C, Carmichael J, Westaby D, Mateo J, Sharp A, McVeigh TP, De Bono J. Germline ATM Mutations Detected by Somatic DNA Sequencing in Lethal Prostate Cancer. EUR UROL SUPPL 2023; 52:72-78. [PMID: 37284046 PMCID: PMC10240520 DOI: 10.1016/j.euros.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 06/08/2023] Open
Abstract
Background Germline mutations in the ataxia telangiectasia mutated (ATM) gene occur in 0.5-1% of the overall population and are associated with tumour predisposition. The clinical and pathological features of ATM-mutated prostate cancer (PC) are poorly defined but have been associated with lethal PC. Objective To report on the clinical characteristics including family history and clinical outcomes of a cohort of patients with advanced metastatic castration-resistant PC (CRPC) who were found to have germline ATM mutations after mutation detection by initial tumour DNA sequencing. Design setting and participants We acquired germline ATM mutation data by saliva next-generation sequencing from patients with ATM mutations in PC biopsies sequenced between January 2014 and January 2022. Demographics, family history, and clinical data were collected retrospectively. Outcome measurements and statistical analysis Outcome endpoints were based on overall survival (OS) and time from diagnosis to CRPC. Data were analysed using R version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria). Results and limitations Overall, seven patients (n = 7/1217; 0.6%) had germline ATM mutations detected, with five of them having a family history of malignancies, including breast, prostate, pancreas, and gastric cancer; leukaemia; and lymphoma. Two patients had concomitant somatic mutations in tumour biopsies in genes other than ATM, while two patients were found to carry more than one ATM pathogenic mutation. Five tumours in germline ATM variant carriers had loss of ATM by immunohistochemistry. The median OS from diagnosis was 7.1 yr (range 2.9-14 yr) and the median OS from CRPC was 5.3 yr (range 2.2-7.3 yr). When comparing these data with PC patients sequenced by The Cancer Genome Atlas, we found that the spatial localisation of mutations was similar, with distribution of alterations occurring on similar positions in the ATM gene. Interestingly, these include a mutation within the FRAP-ATM-TRRAP (FAT) domain, suggesting that this represents a mutational hotspot for ATM. Conclusions Germline ATM mutations are rare in patients with lethal PC but occur at mutational hotspots; further research is warranted to better characterise the family histories of these men and PC clinical course. Patient summary In this report, we studied the clinical and pathological features of advanced prostate cancers associated with germline mutations in the ATM gene. We found that most patients had a strong family history of cancer and that this mutation might predict the course of these prostate cancers, as well as response to specific treatments.
Collapse
Affiliation(s)
- Rafael Grochot
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | | | | | | | | | - Jan Rekowski
- The Institute of Cancer Research (ICR), London, UK
| | - Wei Yuan
- The Institute of Cancer Research (ICR), London, UK
| | - Ana Ferreira
- The Institute of Cancer Research (ICR), London, UK
| | | | - Antje Neeb
- The Institute of Cancer Research (ICR), London, UK
| | - Bora Gurel
- The Institute of Cancer Research (ICR), London, UK
| | | | - Christina Guo
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | - Juliet Carmichael
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | - Daniel Westaby
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | | | - Adam Sharp
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| | | | - Johann De Bono
- The Institute of Cancer Research (ICR), London, UK
- Royal Marsden NHS Foundation Trust (RMH), London, UK
| |
Collapse
|
29
|
Brownlie J, Kulkarni S, Algethami M, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Targeting DNA damage repair precision medicine strategies in cancer. Curr Opin Pharmacol 2023; 70:102381. [PMID: 37148685 DOI: 10.1016/j.coph.2023.102381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/08/2023]
Abstract
DNA repair targeted therapeutics is a promising precision medicine strategy in cancer. The development and clinical use of PARP inhibitors has transformed lives for many patients with BRCA germline deficient breast and ovarian cancer as well as platinum sensitive epithelial ovarian cancers. However, lessons learnt from the clinical use of PARP inhibitors also confirm that not all patients respond either due to intrinsic or acquired resistance. Therefore, the search for additional synthetic lethality approaches is an active area of translational and clinical research. Here, we review the current clinical state of PARP inhibitors and other evolving DNA repair targets including ATM, ATR, WEE1 inhibitors and others in cancer.
Collapse
Affiliation(s)
- Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Sanat Kulkarni
- Department of Medicine, Sandwell and West Birmingham Hospitals, Lyndon, West Bromwich B71 4HJ, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK
| | - Emad A Rakha
- Department of Pathology, Nottingham University Hospital, City Campus, Hucknall Road, Nottingham NG51PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK; Department of Oncology, Nottingham University Hospitals, Nottingham NG51PB, UK.
| |
Collapse
|
30
|
Han S, Shi T, Liao Y, Chen D, Yang F, Wang M, Ma J, Li H, Xu Y, Zhu T, Chen W, Wang G, Han Y, Xu C, Wang W, Cai S, Zhang X, Xing N. Tumor immune contexture predicts recurrence after prostatectomy and efficacy of androgen deprivation and immunotherapy in prostate cancer. J Transl Med 2023; 21:194. [PMID: 36918939 PMCID: PMC10012744 DOI: 10.1186/s12967-022-03827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/11/2022] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most common cancers in men with notable interpatient heterogeneity. Implications of the immune microenvironment in predicting the biochemical recurrence-free survival (BCRFS) after radical prostatectomy and the efficacy of systemic therapies in prostate cancer remain ambiguous. METHODS The tumor immune contexture score (TICS) involving eight immune contexture-related signatures was developed using seven cohorts of 1120 patients treated with radical prostatectomy (training: GSE46602, GSE54460, GSE70769, and GSE94767; validation: GSE70768, DKFZ2018, and TCGA). The association between the TICS and treatment efficacy was investigated in GSE111177 (androgen deprivation therapy [ADT]) and EGAS00001004050 (ipilimumab). RESULTS A high TICS was associated with prolonged BCRFS after radical prostatectomy in the training (HR = 0.32, 95% CI 0.24-0.45, P < 0.001) and the validation cohorts (HR = 0.45, 95% CI 0.32-0.62, P < 0.001). The TICS showed stable prognostic power independent of tumor stage, surgical margin, pre-treatment prostatic specific antigen (PSA), and Gleason score (multivariable HR = 0.50, 95% CI 0.39-0.63, P < 0.001). Adding the TICS into the prognostic model constructed using clinicopathological features significantly improved its 1/2/3/4/5-year area under curve (P < 0.05). A low TICS was associated with high homologous recombination deficiency scores, abnormally activated pathways concerning DNA replication, cell cycle, steroid hormone biosynthesis, and drug metabolism, and fewer tumor-infiltrating immune cells (P < 0.05). The patients with a high TICS had favorable BCRFS with ADT (HR = 0.25, 95% CI 0.06-0.99, P = 0.034) or ipilimumab monotherapy (HR = 0.23, 95% CI 0.06-0.81, P = 0.012). CONCLUSIONS Our study delineates the associations of tumor immune contexture with molecular features, recurrence after radical prostatectomy, and the efficacy of ADT and immunotherapy. The TICS may improve the existing risk stratification systems and serve as a patient-selection tool for ADT and immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Taoping Shi
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China
| | - Yuchen Liao
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jing Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Hu Li
- Department of Urology, Shanxian Central Hospital of Shandong Province, Heze, 274300, Shandong, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Tengfei Zhu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Wenxi Chen
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Yusheng Han
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China.
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
31
|
Maslov DV, Sember Q, Cham J, Bhangoo M. A review of treatments targeting DNA-repair gene defects in metastatic castration resistant prostate cancer. Front Oncol 2023; 13:1150777. [PMID: 36998466 PMCID: PMC10046303 DOI: 10.3389/fonc.2023.1150777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Prostate cancer is the most common cancer in men. About 6% of those diagnosed will develop metastatic disease. Unfortunately, metastatic prostate cancer is fatal. Prostate cancer can be castration sensitive or castration resistant. Many treatments have been shown to improve progression free survival and overall survival in metastatic castration resistant prostate cancer (mCRPC). In recent years, studies have been exploring targeting mutations in the DNA Damage Repair (DDR) response that may amplify oncogenes. In this paper, we aim to discuss DDR, new approved targeted therapies, and the most recent clinical trials in the setting of metastatic CRPC.
Collapse
Affiliation(s)
- Diana V. Maslov
- Department of Hematology/Oncology, Scripps Health System, San Diego, CA, United States
| | - Quinne Sember
- Department of Hematology/Oncology, Scripps Health System, San Diego, CA, United States
| | - Jason Cham
- Scripps Clinic/Green Hospital, Department of Internal Medicine, San Diego, CA, United States
| | - Munveer Bhangoo
- Department of Hematology/Oncology, Scripps Health System, San Diego, CA, United States
| |
Collapse
|
32
|
Liu JS, Liu JY, Xiao Q, Li XP, Chen J, Liu ZQ. Association of variations in the CAT and prognosis in lung cancer patients with platinum-based chemotherapy. Front Pharmacol 2023; 14:1119837. [PMID: 36969849 PMCID: PMC10033691 DOI: 10.3389/fphar.2023.1119837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
PURPOSE: To explore the relationship between ATM, ATR and CAT polymorphisms and prognosis of lung cancer patients received platinum-based chemotherapy.METHODS: 404 patients with lung cancer who received platinum-chemotherapy were enrolled and DNA typing was performed. Cox regression analysis and stratification analyses was performed to assess relationships between OS and PFS with SNPs genotypes. The prognosis of lung adenocarcinomaand squamous cell carcinomapatients was analyzed with The Cancer Genome Atlas (TCGA) database according to the grouping of CAT expression.RESULTS:CAT rs769217 was significantly related to PFS of patients with lung cancer who received platinum-chemotherapy. In the Additive model, rs769217 was associated with PFS (HR = 0.747, 95% CI = 0.581–0.960, p = 0.023). In the Dominant model, CT and TT genotypes led to lung cancer progression 0.738 times more than CC genotype. In stratification analyses of association between CAT rs769217 polymorphisms and PFS, the HR of patients at stage IV in additive model was 0.73, and HR was 0.745 (p = 0.034) in dominant model. For OS analyses, HR was 0.672 in the older lung cancer patients (>55 years old) in additive model. Meanwhile, in the Dominant model, it was found that the older patients with CT and TT genotypes had better prognosis, and the risk of death after receiving platinum-based chemotherapy was 0.692 times that of patients with CC genotype (p = 0.037). TCGA data shows that LUAD patients with high CAT expression have longer OS (p = 0.020).CONCLUSION:CAT rs769217 is significantly related to PSF of platinum-based chemotherapy in lung cancer patients and may be a biomarker for predicting the prognosis of lung cancer patients with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jia-Si Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Human Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Human Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
| | - Xiang-Ping Li
- 5Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Chen
- Human Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
- 5Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Qian Liu, ; Juan Chen,
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Human Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China
- *Correspondence: Zhao-Qian Liu, ; Juan Chen,
| |
Collapse
|
33
|
Jiménez-Vacas JM, Montero-Hidalgo AJ, Gómez-Gómez E, Sáez-Martínez P, Fuentes-Fayos AC, Closa A, González-Serrano T, Martínez-López A, Sánchez-Sánchez R, López-Casas PP, Sarmento-Cabral A, Olmos D, Eyras E, Castaño JP, Gahete MD, Luque RM. Tumor suppressor role of RBM22 in prostate cancer acting as a dual-factor regulating alternative splicing and transcription of key oncogenic genes. Transl Res 2023; 253:68-79. [PMID: 36089245 DOI: 10.1016/j.trsl.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. However, the presence and functional role of RBM22, a key spliceosome component, in PCa remains unknown. Therefore, RBM22 levels were firstly interrogated in 3 human cohorts and 2 preclinical mouse models (TRAMP/Pbsn-Myc). Results were validated in in silico using 2 additional cohorts. Then, functional effects in response to RBM22 overexpression (proliferation, migration, tumorspheres/colonies formation) were tested in PCa models in vitro (LNCaP, 22Rv1, and PC-3 cell-lines) and in vivo (xenograft). High throughput methods (ie, RNA-seq, nCounter PanCancer Pathways Panel) were performed in RBM22 overexpressing cells and xenograft tumors. We found that RBM22 levels were down-regulated (mRNA and protein) in PCa samples, and were inversely associated with key clinical aggressiveness features. Consistently, a gradual reduction of RBM22 from non-tumor to poorly differentiated PCa samples was observed in transgenic models (TRAMP/Pbsn-Myc). Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.
Collapse
Affiliation(s)
- Juan M Jiménez-Vacas
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Urology Service, HURS/IMIBIC, Cordoba, Spain
| | - Prudencio Sáez-Martínez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Adrià Closa
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia; EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
| | - Teresa González-Serrano
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Ana Martínez-López
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Rafael Sánchez-Sánchez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Anatomical Pathology Service, HURS, Cordoba, Spain
| | - Pedro P López-Casas
- Prostate Cancer Clinical Research Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - André Sarmento-Cabral
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eduardo Eyras
- The John Curtin School of Medical Research, Australian National University, Canberra, Australia; EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia; Catalan Institution for Research and Advanced Studies. Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raul M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía (HURS), Cordoba, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
34
|
Dhital B, Santasusagna S, Kirthika P, Xu M, Li P, Carceles-Cordon M, Soni RK, Li Z, Hendrickson RC, Schiewer MJ, Kelly WK, Sternberg CN, Luo J, Lujambio A, Cordon-Cardo C, Alvarez-Fernandez M, Malumbres M, Huang H, Ertel A, Domingo-Domenech J, Rodriguez-Bravo V. Harnessing transcriptionally driven chromosomal instability adaptation to target therapy-refractory lethal prostate cancer. Cell Rep Med 2023; 4:100937. [PMID: 36787737 PMCID: PMC9975292 DOI: 10.1016/j.xcrm.2023.100937] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa.
Collapse
Affiliation(s)
- Brittiny Dhital
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA; Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Sandra Santasusagna
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Perumalraja Kirthika
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Xu
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Peiyao Li
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | | | - Rajesh K Soni
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhuoning Li
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew J Schiewer
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - William K Kelly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Department of Medicine, Meyer Cancer Center, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Jun Luo
- Urology Department, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amaia Lujambio
- Oncological Sciences Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Cordon-Cardo
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monica Alvarez-Fernandez
- Head & Neck Cancer Department, Institute de Investigación Sanitaria Principado de Asturias (ISPA), Institute Universitario de Oncología Principado de Asturias (IUOPA), 33011 Oviedo, Spain
| | - Marcos Malumbres
- Cell Division & Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Cancer Cell Cycle group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Haojie Huang
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Adam Ertel
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Josep Domingo-Domenech
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| | - Veronica Rodriguez-Bravo
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
35
|
Che Y, Liu Y, Yao Y, Hill HA, Li Y, Cai Q, Yan F, Jain P, Wang W, Rui L, Wang M. Exploiting PRMT5 as a target for combination therapy in mantle cell lymphoma characterized by frequent ATM and TP53 mutations. Blood Cancer J 2023; 13:27. [PMID: 36797243 PMCID: PMC9935633 DOI: 10.1038/s41408-023-00799-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Constant challenges for the treatment of mantle cell lymphoma (MCL) remain to be recurrent relapses and therapy resistance, especially in patients harboring somatic mutations in the tumor suppressors ATM and TP53, which are accumulated as therapy resistance emerges and the disease progresses, consistent with our OncoPrint results that ATM and TP53 alterations were most frequent in relapsed/refractory (R/R) MCL. We demonstrated that protein arginine methyltransferase-5 (PRMT5) was upregulated in R/R MCL, which predicted a poor prognosis. PRMT5 inhibitors displayed profound antitumor effects in the mouse models of MCL with mutated ATM and/or TP53, or refractory to CD19-targeted CAR T-cell therapy. Genetic knockout of PRMT5 robustly inhibited tumor growth in vivo. Co-targeting PRMT5, and ATR or CDK4 by using their inhibitors showed synergistic antitumor effects both in vitro and in vivo. Our results have provided a rational combination therapeutic strategy targeting multiple PRMT5-coordinated tumor-promoting processes for the treatment of R/R MCL with high mutation burdens.
Collapse
Affiliation(s)
- Yuxuan Che
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Holly A Hill
- Department of Bioinformatics and Computer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yijing Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Qingsong Cai
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Fangfang Yan
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, 7000 Fannin Street, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Wei Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Lixin Rui
- Department of Medicine, the University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53726, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA. .,Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Zhang K, Yin W, Ma L, Liu Z, Li Q. HSPB8 facilitates prostate cancer progression via activating the JAK/STAT3 signaling pathway. Biochem Cell Biol 2023; 101:1-11. [PMID: 36318825 DOI: 10.1139/bcb-2022-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PC) is a clinically and biologically heterogeneous disease that lacks effective treatment. Heat shock protein B8 (HSPB8) is an important factor in the progression of various types of cancer. However, the clinical significance and biological role of HSPB8 in PC are still unclear. In this study, we determined HSPB8 expression in PC tissues by immunohistochemical staining and explored the in vitro functions of HSPB8 using HSPB8 knockdown DU145 and LNcap PC cell lines. The in vivo effect of HSPB8 was explored by a subcutaneous xenograft mice model. The human phospho-kinase array and signal transducer and activator of transcription (STAT) 3 activator were utilized to explore the potential mechanism of HSPB8-induced PC progression. As a result, we found that HSPB8 was abundantly expressed in PC tissues and cell lines. HSPB8 knockdown inhibited cell proliferation and migration, promoted apoptosis and cycle repression, as well as weakened tumorigenesis ability. Mechanistically, we demonstrated that HSPB8 facilitates the malignant phenotypes of PC by activating the Janus kinase/STAT3 signaling pathway. These results proposed that HSPB8 seems to be an attractive therapeutic target for PC patients.
Collapse
Affiliation(s)
- Kan Zhang
- Department of urinary surgery, Ningbo First Hospital, No.59, Liuting Street, Haishu District, Ningbo, Zhejiang Province 315000, China
| | - Weiqi Yin
- Department of urinary surgery, Ningbo First Hospital, No.59, Liuting Street, Haishu District, Ningbo, Zhejiang Province 315000, China
| | - Luping Ma
- Department of urinary surgery, First Affiliated Hospital School of Medicine, Shihezi University, No.107, North 2nd Road, Shihezi, Xinjiang Province 832008, China
| | - Zhili Liu
- Department of urinary surgery, First Affiliated Hospital School of Medicine, Shihezi University, No.107, North 2nd Road, Shihezi, Xinjiang Province 832008, China
| | - Qiang Li
- Department of urinary surgery, First Affiliated Hospital School of Medicine, Shihezi University, No.107, North 2nd Road, Shihezi, Xinjiang Province 832008, China
| |
Collapse
|
37
|
Sun G, Fu G, Tang Y, Yi J, Su R, Liu W, Lu X, Li X. A novel frameshift mutation of the ATM gene in a Chinese family with hereditary gastrointestinal tumors. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2087105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Gongping Sun
- The Third General Surgery of the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Guanyu Fu
- China Medical University, Shenyang, People’s Republic of China
| | - Yuanxin Tang
- The Third General Surgery of the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Junjie Yi
- China Medical University, Shenyang, People’s Republic of China
| | - Rongjun Su
- The Second General Surgery of Yan’an People’s Hospital, Yan’an City, People’s Republic of China
| | - Wei Liu
- The Second General Surgery of Yan’an People’s Hospital, Yan’an City, People’s Republic of China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Xiaoxia Li
- The Sixth General Surgery of the Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
38
|
Neuberger M, Weiß C, Goly N, Skladny J, Nitschke K, Wessels F, Kowalewski KF, Waldbillig F, Hartung F, Nientiedt M, Egen L, Herrmann J, Jarczyk J, Walach MT, Kriegmair MC, Westhoff N, Worst TS, Nuhn P. Changes in neutrophile-to-lymphocyte ratio as predictive and prognostic biomarker in metastatic prostate cancer treated with taxane-based chemotherapy. Discov Oncol 2022; 13:140. [PMID: 36522513 PMCID: PMC9755453 DOI: 10.1007/s12672-022-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To assess the predictive and prognostic value of changes in longitudinal neutrophile-to-lymphocyte (NLR) ratios in men receiving taxane-based chemotherapy for metastatic prostate cancer (PC). METHODS Retrospective, unicentric cohort study of patients treated with either docetaxel for metastatic hormone-sensitive PC (mHSPC) or docetaxel or cabazitaxel for metastatic castration-refractory PC (mCRPC) at a tertiary referral hospital between 2010 and 2019. NLR ratios were calculated for each cycle. Next, slopes over the first three (NLR3) and over six cycles (NLR6) were calculated and analysed for biochemical/radiologic response and survival. RESULTS A total of 36 mHSPC (docetaxel), 118 mCRPC (docetaxel) and 38 mCRPC (cabazitaxel) patients were included. NLR3 was significantly associated with 1-year-survival, radiographic and biochemical response in mCRPC (docetaxel) in uni- and multivariable analyses. In mCRPC (docetaxel), positive NLR3s were associated with favourable 1-year-survival. CONCLUSION This study demonstrated NLR3 as a prognostic marker in men receiving docetaxel for mCRPC. NLR3 might be a clinical tool to reflect the individual's response to taxane-based chemotherapy. Thereby, NLR3 could complement existing biomarkers and help to early identify treatment failure before complications arise. Further prospective and multicentric studies are needed to extend and confirm the presented results.
Collapse
Affiliation(s)
- Manuel Neuberger
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany.
| | - Christel Weiß
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Nora Goly
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Janina Skladny
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Katja Nitschke
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Frederik Wessels
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Karl F Kowalewski
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Frank Waldbillig
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Friedrich Hartung
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Malin Nientiedt
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Luisa Egen
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Jonas Herrmann
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Jonas Jarczyk
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Margarete Teresa Walach
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Maximilian C Kriegmair
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Niklas Westhoff
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Thomas S Worst
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| | - Philipp Nuhn
- Department of Urology and Urologic Surgery, University Medical Centre Mannheim (UMM), Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Baden-Württemberg, Germany
| |
Collapse
|
39
|
Fenor de la Maza MD, Chandran K, Rekowski J, Shui IM, Gurel B, Cross E, Carreira S, Yuan W, Westaby D, Miranda S, Ferreira A, Seed G, Crespo M, Figueiredo I, Bertan C, Gil V, Riisnaes R, Sharp A, Rodrigues DN, Rescigno P, Tunariu N, Liu XQ, Cristescu R, Schloss C, Yap C, de Bono JS. Immune Biomarkers in Metastatic Castration-resistant Prostate Cancer. Eur Urol Oncol 2022; 5:659-667. [PMID: 35491356 DOI: 10.1016/j.euo.2022.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease in which molecular stratification is needed to improve clinical outcomes. The identification of predictive biomarkers can have a major impact on the care of these patients, but the availability of metastatic tissue samples for research in this setting is limited. OBJECTIVE To study the prevalence of immune biomarkers of potential clinical utility to immunotherapy in mCRPC and to determine their association with overall survival (OS). DESIGN, SETTING, AND PARTICIPANTS From 100 patients, mCRPC biopsies were assayed by whole exome sequencing, targeted next-generation sequencing, RNA sequencing, tumor mutational burden, T-cell-inflamed gene expression profile (TcellinfGEP) score (Nanostring), and immunohistochemistry for programmed cell death 1 ligand 1 (PD-L1), ataxia-telangiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), SRY homology box 2 (SOX2), and the presence of neuroendocrine features. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The phi coefficient determined correlations between biomarkers of interest. OS was assessed using Kaplan-Meier curves and adjusted hazard ratios (aHRs) from Cox regression. RESULTS AND LIMITATIONS PD-L1 and SOX2 protein expression was detected by immunohistochemistry (combined positive score ≥1 and >5% cells, respectively) in 24 (33%) and 27 (27%) mCRPC biopsies, respectively; 23 (26%) mCRPC biopsies had high TcellinfGEP scores (>-0.318). PD-L1 protein expression and TcellinfGEP scores were positively correlated (phi 0.63 [0.45; 0.76]). PD-L1 protein expression (aHR: 1.90 [1.05; 3.45]), high TcellinfGEP score (aHR: 1.86 [1.04; 3.31]), and SOX2 expression (aHR: 2.09 [1.20; 3.64]) were associated with worse OS. CONCLUSIONS PD-L1, TcellinfGEP score, and SOX2 are prognostic of outcome from the mCRPC setting. If validated, predictive biomarker studies incorporating survival endpoints need to take these findings into consideration. PATIENT SUMMARY This study presents an analysis of immune biomarkers in biopsies from patients with metastatic prostate cancer. We describe tumor alterations that predict prognosis that can impact future studies.
Collapse
Affiliation(s)
| | - Khobe Chandran
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | - Emily Cross
- The Institute of Cancer Research, London, UK
| | | | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | - Daniel Westaby
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | - Susana Miranda
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | - George Seed
- The Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Adam Sharp
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | - Nina Tunariu
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | | | | | - Johann S de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK.
| |
Collapse
|
40
|
Llorca-Cardenosa MJ, Aronson LI, Krastev DB, Nieminuszczy J, Alexander J, Song F, Dylewska M, Broderick R, Brough R, Zimmermann A, Zenke FT, Gurel B, Riisnaes R, Ferreira A, Roumeliotis T, Choudhary J, Pettitt SJ, de Bono J, Cervantes A, Haider S, Niedzwiedz W, Lord CJ, Chong IY. SMG8/SMG9 Heterodimer Loss Modulates SMG1 Kinase to Drive ATR Inhibitor Resistance. Cancer Res 2022; 82:3962-3973. [PMID: 36273494 PMCID: PMC9627126 DOI: 10.1158/0008-5472.can-21-4339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 01/07/2023]
Abstract
Gastric cancer represents the third leading cause of global cancer mortality and an area of unmet clinical need. Drugs that target the DNA damage response, including ATR inhibitors (ATRi), have been proposed as novel targeted agents in gastric cancer. Here, we sought to evaluate the efficacy of ATRi in preclinical models of gastric cancer and to understand how ATRi resistance might emerge as a means to identify predictors of ATRi response. A positive selection genome-wide CRISPR-Cas9 screen identified candidate regulators of ATRi resistance in gastric cancer. Loss-of-function mutations in either SMG8 or SMG9 caused ATRi resistance by an SMG1-mediated mechanism. Although ATRi still impaired ATR/CHK1 signaling in SMG8/9-defective cells, other characteristic responses to ATRi exposure were not seen, such as changes in ATM/CHK2, γH2AX, phospho-RPA, or 53BP1 status or changes in the proportions of cells in S- or G2-M-phases of the cell cycle. Transcription/replication conflicts (TRC) elicited by ATRi exposure are a likely cause of ATRi sensitivity, and SMG8/9-defective cells exhibited a reduced level of ATRi-induced TRCs, which could contribute to ATRi resistance. These observations suggest ATRi elicits antitumor efficacy in gastric cancer but that drug resistance could emerge via alterations in the SMG8/9/1 pathway. SIGNIFICANCE These findings reveal how cancer cells acquire resistance to ATRi and identify pathways that could be targeted to enhance the overall effectiveness of these inhibitors.
Collapse
Affiliation(s)
| | | | - Dragomir B. Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - John Alexander
- The Institute of Cancer Research, London, United Kingdom
| | - Feifei Song
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Astrid Zimmermann
- The healthcare business of Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Frank T. Zenke
- The healthcare business of Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Johann de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Andres Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, 46010, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - Christopher J. Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Irene Y. Chong
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
41
|
Li S, Wang L, Wang Y, Zhang C, Hong Z, Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J Hematol Oncol 2022; 15:147. [PMID: 36253861 PMCID: PMC9578258 DOI: 10.1186/s13045-022-01360-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through “synthetic lethality” mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Collapse
Affiliation(s)
- Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
42
|
Liu J, Dong L, Zhu Y, Dong B, Sha J, Zhu HH, Pan J, Xue W. Prostate cancer treatment - China's perspective. Cancer Lett 2022; 550:215927. [PMID: 36162714 DOI: 10.1016/j.canlet.2022.215927] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022]
Abstract
Prostate cancer (PCa) incidence and mortality have rapidly increased in China. Notably, unique epidemiological characteristics of PCa are found in the Chinese PCa population, including a low but rising incidence and an inferior but improving disease prognosis. Consequently, the current treatment landscape of PCa in China demonstrates distinct features. Establishing a more thorough understanding of the characteristics of Chinese patients may help provide novel insights into potential treatment strategies for PCa patients. Herein, we review the epidemiological status and differences in treatment modalities of Chinese PCa patients. In addition, we discuss the underlying socioeconomic and biological factors that contribute to such diversity and further propose directions for future efforts in optimizing the PCa treatment in China.
Collapse
Affiliation(s)
- Jiazhou Liu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jianjun Sha
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Helen He Zhu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiahua Pan
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
43
|
Guha M, Sobol Z, Martin M, Hemkens M, Sung T, Rubitski E, Spellman R, Finkelstein M, Khan N, Hu W. Comparative Analyses of Poly(ADP-Ribose) Polymerase Inhibitors. Int J Toxicol 2022; 41:442-454. [DOI: 10.1177/10915818221121325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPi) are approved as monotherapies in BRCA1/2-mutated (m BRCA1/2) metastatic breast and ovarian cancers, and in advanced pancreatic and metastatic castration-resistant prostate cancers. Differential safety profiles across PARPi necessitate improved mechanistic understanding of inhibitor differences, especially with expansion of PARPi indications and drug combinations. Here, we report in vitro evaluations of PARPi (–/+ PARP trapper temozolomide, TMZ) with reference to total clinical mean concentration average or maximum (tCavg, tCmax), to elucidate contributions of primary pharmacology and structural differences to clinical efficacy and safety. In biochemical assays, rucaparib and niraparib demonstrated off-target secondary pharmacology activities, and in selectivity assays, talazoparib, olaparib, and rucaparib inhibited a broader panel of PARP enzymes. In donor-derived human bone marrow mononuclear cells, only olaparib both increased early apoptosis and decreased the cell viability half inhibitory concentration (IC50) at ≤ tCavg, whereas other PARPi only did so in the presence of TMZ. In cancer cell lines with DNA damage repair mutations, all PARPi decreased cell viability in H1048 but not TK6 cells, and only talazoparib decreased cell growth in DU145 cells at ≤ tCavg concentrations. When combined with low dose TMZ, only talazoparib left-shifted the functional consequences of PARP trapping (S-phase arrest, apoptosis, S-phase double-stranded breaks) and reduced cell viability/growth in TK6 and DU145 cell lines at ≤ tCavg, whereas the other inhibitors required high-dose TMZ. Our study suggests structural differences across PARPi may contribute to differences in PARP selectivity and off-target activities, which along with distinct pharmacokinetic properties, may influence inhibitor-specific toxicities in patients.
Collapse
|
44
|
Systemic inflammatory biomarkers as predictive and prognostic factors in men with metastatic castration-refractory prostate cancer treated with docetaxel therapy: a comprehensive analysis in a German real-world cohort. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04220-w. [PMID: 35939112 DOI: 10.1007/s00432-022-04220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Advances in therapy of metastatic castration-refractory prostate cancer (mCRPC) resulted in more therapeutic options and led to a higher need of predictive/prognostic biomarkers. Systemic inflammatory biomarkers could provide the basis for personalized treatment selection. This study aimed to assess the modified Glasgow Prognostic Score (mGPS), the neutrophile-to-lymphocyte ratio (NLR), the platelet-to-lymphocyte ratio (PLR) and the systemic immune-inflammation index (SII) in men with mCRPC under docetaxel. METHODS Patients with mCRPC and taxane chemotherapy at a tertiary care centre between 2010 and 2019 were screened retrospectively. The biomarkers mGPS, NLR, PLR and SII were assessed and analyzed for biochemical/radiologic response and survival. RESULTS We included 118 patients. Of these, 73 (61.9%) had received docetaxel as first-line, 31 (26.2%) as second-line and 14 (11.9%) as third-line treatment. For biochemical response, mGPS (odds ratio (OR) 0.54, p = 0.04) and PLR (OR 0.63, p = 0.04) were independent predictors in multivariable analysis. SII was significant in first-line cohort only (OR 0.29, p = 0.02). No inflammatory marker was predictive for radiologic response. In multivariable analysis, mGPS and NLR (hazard ratio (HR) 1.71 and 1.12, both p < 0.01) showed significant association with OS in total cohort and mGPS in the first-line cohort (HR 2.23, p < 0.01). Haemoglobin (Hb) and alkaline phosphatase (AP) showed several significant associations regarding 1 year, 3 year, OS and biochemical/radiologic response. CONCLUSIONS Pre-treatment mGPS seems a promising prognostic biomarker. A combination of mGPS, NLR and further routine markers (e.g., Hb and AP) could yield optimized stratification for treatment selection. Further prospective and multicentric assessment is needed.
Collapse
|
45
|
Sutera P, Deek MP, Van der Eecken K, Wyatt AW, Kishan AU, Molitoris JK, Ferris MJ, Minhaj Siddiqui M, Rana Z, Mishra MV, Kwok Y, Davicioni E, Spratt DE, Ost P, Feng FY, Tran PT. Genomic biomarkers to guide precision radiotherapy in prostate cancer. Prostate 2022; 82 Suppl 1:S73-S85. [PMID: 35657158 PMCID: PMC9202472 DOI: 10.1002/pros.24373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Our ability to prognosticate the clinical course of patients with cancer has historically been limited to clinical, histopathological, and radiographic features. It has long been clear however, that these data alone do not adequately capture the heterogeneity and breadth of disease trajectories experienced by patients. The advent of efficient genomic sequencing has led to a revolution in cancer care as we try to understand and personalize treatment specific to patient clinico-genomic phenotypes. Within prostate cancer, emerging evidence suggests that tumor genomics (e.g., DNA, RNA, and epigenetics) can be utilized to inform clinical decision making. In addition to providing discriminatory information about prognosis, it is likely tumor genomics also hold a key in predicting response to oncologic therapies which could be used to further tailor treatment recommendations. Herein we review select literature surrounding the use of tumor genomics within the management of prostate cancer, specifically leaning toward analytically validated and clinically tested genomic biomarkers utilized in radiotherapy and/or adjunctive therapies given with radiotherapy.
Collapse
Affiliation(s)
- Philip Sutera
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew P. Deek
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Kim Van der Eecken
- Department of Pathology, Ghent University Hospital, Cancer Research Institute (CRIG), Ghent, Belgium
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amar U. Kishan
- Department of Radiation Oncology, UCLA, Los Angeles, CA, USA
| | - Jason K. Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew J. Ferris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M. Minhaj Siddiqui
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zaker Rana
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark V. Mishra
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Young Kwok
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Daniel E. Spratt
- Department of Radiation Oncology, University Hospitals, Cleveland, OH, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Network, Antwerp, Belgium and Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Felix Y. Feng
- Departments of Radiation Oncology, Medicine and Urology, UCSF, San Francisco, CA, USA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Gillessen S, Armstrong A, Attard G, Beer TM, Beltran H, Bjartell A, Bossi A, Briganti A, Bristow RG, Bulbul M, Caffo O, Chi KN, Clarke CS, Clarke N, Davis ID, de Bono JS, Duran I, Eeles R, Efstathiou E, Efstathiou J, Ekeke ON, Evans CP, Fanti S, Feng FY, Fizazi K, Frydenberg M, George D, Gleave M, Halabi S, Heinrich D, Higano C, Hofman MS, Hussain M, James N, Jones R, Kanesvaran R, Khauli RB, Klotz L, Leibowitz R, Logothetis C, Maluf F, Millman R, Morgans AK, Morris MJ, Mottet N, Mrabti H, Murphy DG, Murthy V, Oh WK, Ost P, O'Sullivan JM, Padhani AR, Parker C, Poon DMC, Pritchard CC, Rabah DM, Rathkopf D, Reiter RE, Rubin M, Ryan CJ, Saad F, Sade JP, Sartor O, Scher HI, Shore N, Skoneczna I, Small E, Smith M, Soule H, Spratt DE, Sternberg CN, Suzuki H, Sweeney C, Sydes MR, Taplin ME, Tilki D, Tombal B, Türkeri L, Uemura H, Uemura H, van Oort I, Yamoah K, Ye D, Zapatero A, Omlin A. Management of Patients with Advanced Prostate Cancer: Report from the Advanced Prostate Cancer Consensus Conference 2021. Eur Urol 2022; 82:115-141. [PMID: 35450732 DOI: 10.1016/j.eururo.2022.04.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Innovations in treatments, imaging, and molecular characterisation in advanced prostate cancer have improved outcomes, but various areas of management still lack high-level evidence to inform clinical practice. The 2021 Advanced Prostate Cancer Consensus Conference (APCCC) addressed some of these questions to supplement guidelines that are based on level 1 evidence. OBJECTIVE To present the voting results from APCCC 2021. DESIGN, SETTING, AND PARTICIPANTS The experts identified three major areas of controversy related to management of advanced prostate cancer: newly diagnosed metastatic hormone-sensitive prostate cancer (mHSPC), the use of prostate-specific membrane antigen ligands in diagnostics and therapy, and molecular characterisation of tissue and blood. A panel of 86 international prostate cancer experts developed the programme and the consensus questions. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The panel voted publicly but anonymously on 107 pre-defined questions, which were developed by both voting and non-voting panel members prior to the conference following a modified Delphi process. RESULTS AND LIMITATIONS The voting reflected the opinions of panellists and did not incorporate a standard literature review or formal meta-analysis. The answer options for the consensus questions received varying degrees of support from panellists, as reflected in this article and the detailed voting results reported in the Supplementary material. CONCLUSIONS These voting results from a panel of experts in advanced prostate cancer can help clinicians and patients to navigate controversial areas of management for which high-level evidence is scant. However, diagnostic and treatment decisions should always be individualised according to patient characteristics, such as the extent and location of disease, prior treatment(s), comorbidities, patient preferences, and treatment recommendations, and should also incorporate current and emerging clinical evidence and logistic and economic constraints. Enrolment in clinical trials should be strongly encouraged. Importantly, APCCC 2021 once again identified salient questions that merit evaluation in specifically designed trials. PATIENT SUMMARY The Advanced Prostate Cancer Consensus Conference is a forum for discussing current diagnosis and treatment options for patients with advanced prostate cancer. An expert panel votes on predefined questions focused on the most clinically relevant areas for treatment of advanced prostate cancer for which there are gaps in knowledge. The voting results provide a practical guide to help clinicians in discussing treatment options with patients as part of shared decision-making.
Collapse
Affiliation(s)
- Silke Gillessen
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Universita della Svizzera Italiana, Lugano, Switzerland; University of Berne, Berne, Switzerland; Division of Cancer Sciences, University of Manchester, Manchester, UK.
| | - Andrew Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Durham, NC, USA
| | - Gert Attard
- University College London Cancer Institute, London, UK
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Himisha Beltran
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Alberto Bossi
- Genitourinary Oncology, Prostate Brachytherapy Unit, Gustave Roussy, Paris, France
| | - Alberto Briganti
- Unit of Urology/Division of Oncology, Urological Research Institute, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Robert G Bristow
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Christie NHS Trust and CRUK Manchester Institute and Cancer Centre, Manchester, UK
| | - Muhammad Bulbul
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Orazio Caffo
- Department of Medical Oncology, Santa Chiara Hospital, Trento, Italy
| | - Kim N Chi
- BC Cancer, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Caroline S Clarke
- Research Department of Primary Care & Population Health, Royal Free Campus, University College London, London, UK
| | - Noel Clarke
- The Christie and Salford Royal Hospitals, Manchester, UK
| | - Ian D Davis
- Monash University and Eastern Health, Victoria, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Ignacio Duran
- Department of Medical Oncology, Hospital Universitario Marques de Valdecilla, IDIVAL, Santander, Spain
| | - Ros Eeles
- The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Jason Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Onyeanunam Ngozi Ekeke
- Department of Surgery, University of Port Harcourt Teaching Hospital, Port Harcourt, Nigeria
| | | | - Stefano Fanti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Felix Y Feng
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, USA
| | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Saclay, Villejuif, France
| | - Mark Frydenberg
- Department of Surgery, Prostate Cancer Research Program, Monash University, Melbourne, Australia
| | - Dan George
- Departments of Medicine and Surgery, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Martin Gleave
- Urological Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Daniel Heinrich
- Department of Oncology and Radiotherapy, Innlandet Hospital Trust, Gjøvik, Norway
| | | | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Maha Hussain
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Nick James
- The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Robert Jones
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Raja B Khauli
- Department of Urology and the Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laurence Klotz
- Division of Urology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Raya Leibowitz
- Oncology Institute, Shamir Medical Center and Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Chris Logothetis
- Department of Genitourinary Medical Oncology, David H. Koch Centre, MD Anderson Cancer Centre, Houston, TX, USA; Department of Clinical Therapeutics, University of Athens Alexandra Hospital, Athens, Greece
| | - Fernando Maluf
- Beneficiência Portuguesa de São Paulo, São Paulo, SP, Brazil; Departamento de Oncologia, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Alicia K Morgans
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hind Mrabti
- National Institute of Oncology, Mohamed V University, Rabat, Morocco
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | | | - William K Oh
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, The Tisch Cancer Institute, New York, NY, USA
| | - Piet Ost
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium; Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Joe M O'Sullivan
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, UK
| | - Anwar R Padhani
- The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Sutton, UK; Mount Vernon Cancer Centre, London, UK
| | - Chris Parker
- The Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Danny M Rabah
- The Cancer Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Dana Rathkopf
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rob E Reiter
- University of California-Los Angeles, Los Angeles, CA, USA
| | - Mark Rubin
- Bern Center for Precision Medicine and Department for Biomedical Research, Bern, Switzerland
| | - Charles J Ryan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Fred Saad
- Centre Hospitalier de Université de Montréal, Montreal, Canada
| | - Juan P Sade
- Instituto Alexander Fleming, Buenos Aires, Argentina
| | | | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | - Iwona Skoneczna
- Rafal Masztak Grochowski Hospital and Maria Sklodowska Curie National Research Institute of Oncology, Warsaw, Poland
| | - Eric Small
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, San Francisco, CA, USA
| | - Matthew Smith
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Howard Soule
- Prostate Cancer Foundation, Santa Monica, CA, USA
| | - Daniel E Spratt
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine Division of Hematology and Oncology, Meyer Cancer Center, New York Presbyterian Hospital, New York, NY, USA
| | | | - Christopher Sweeney
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew R Sydes
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, UK
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Derya Tilki
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, Koc University Hospital, Istanbul, Turkey
| | | | - Levent Türkeri
- Department of Urology, M.A. Aydınlar Acıbadem University, Altunizade Hospital, Istanbul, Turkey
| | - Hiroji Uemura
- Yokohama City University Medical Center, Yokohama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Inge van Oort
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kosj Yamoah
- Department of Radiation Oncology & Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, FL, USA
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Almudena Zapatero
- Department of Radiation Oncology, Hospital Universitario de La Princesa, Health Research Institute, Madrid, Spain
| | - Aurelius Omlin
- Department of Medical Oncology and Haematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
47
|
Dillon KM, Bekele RT, Sztupinszki Z, Hanlon T, Rafiei S, Szallasi Z, Choudhury AD, Mouw KW. PALB2 or BARD1 loss confers homologous recombination deficiency and PARP inhibitor sensitivity in prostate cancer. NPJ Precis Oncol 2022; 6:49. [PMID: 35768576 PMCID: PMC9242979 DOI: 10.1038/s41698-022-00291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
PARP inhibitors were recently approved for treatment of molecularly-defined subsets of metastatic castrate-resistant prostate cancer (mCRPC) patients. Although the PARP inhibitor olaparib was approved for use in patients with a mutation in one of fourteen genes, the mutation frequency of the genes varies widely in mCRPC and the impact of the less commonly altered genes on PARP inhibitor sensitivity is uncertain. We used functional approaches to directly test the impact of PALB2 and BARD1 loss on homologous recombination (HR) function and PARP inhibitor sensitivity in prostate cancer cell lines. PALB2 or BARD1 loss led to decreased HR function as measured by loss of radiation-induced Rad51 foci formation as well as decreased HR capacity in a cell-based reporter assay. PALB2 or BARD1 loss also significantly increased sensitivity to the PARP inhibitors olaparib and rucaparib across a panel of prostate cancer cell lines. These data support PALB2 and BARD1 loss as markers of clinically relevant PARP inhibitor sensitivity and highlight the potential to use functional approaches to complement and extend findings from clinical trials of targeted agents.
Collapse
Affiliation(s)
- Kasia M Dillon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Raie T Bekele
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Timothy Hanlon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shahrzad Rafiei
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA.,Second Department of Pathology, SE NAP, Brain Metastasis Research Goup, Semmelweis University, Budapest, Hungary
| | - Atish D Choudhury
- Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Radiation Oncology, Brigham & Women's Hospital, Boston, MA, USA.
| |
Collapse
|
48
|
Gulliver C, Hoffmann R, Baillie GS. Ataxia-telangiectasia mutated and ataxia telangiectasia and Rad3-related kinases as therapeutic targets and stratification indicators for prostate cancer. Int J Biochem Cell Biol 2022; 147:106230. [PMID: 35609768 DOI: 10.1016/j.biocel.2022.106230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022]
Abstract
The DNA damage response is an integral part of a cells' ability to maintain genomic integrity by responding to and ameliorating DNA damage, or initiating cell death for irrepairably damaged cells. This response is often hijacked by cancer cells to evade cell death allowing mutant cells to persist, as well as in the development of treatment resistance to DNA damaging agents such as chemotherapy and radiation. Prostate cancer (PCa) cells often exhibit alterations in DNA damage response genes including ataxia telangiectasia mutated (ATM), correlating with aggressive disease phenotype. The recent success of Poly (ADP-ribose) polymerase (PARP) inhibition has led to several clinically approved PARP inhibitors for the treatment of men with metastatic PCa, however a key limitation is the development of drug resistance and relapse. An alternative approach is selectively targeting ATM and ataxia telangiectasia and Rad3-related (ATR) which, due to their position at the forefront of the DDR, represent attractive pharmacological targets. ATR inhibition has been shown to act synergistically with PARP inhibition and other cancer treatments to enhance anti-tumour activity. ATM-deficiency is a common characteristic of PCa and a synthetic lethal relationship exists between ATM and ATR, with ATR inhibition inducing selective cell death in ATM-deficient PCa cells. The current research highlights the feasibility of therapeutically targeting ATR in ATM-deficient prostate tumours and in combination with other treatments to enhance overall efficacy and reduce therapeutic resistance. ATM also represents an important molecular biomarker to stratify patients into targeted treatment groups and aid prognosis for personalised medicine.
Collapse
Affiliation(s)
- Chloe Gulliver
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| | - Ralf Hoffmann
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK; Philips Research Europe, High Tech Campus, Eindhoven, the Netherlands.
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Veterinary, Medical and Life Science, University of Glasgow, Glasgow, UK.
| |
Collapse
|
49
|
Zimmermann A, Zenke FT, Chiu LY, Dahmen H, Pehl U, Fuchss T, Grombacher T, Blume B, Vassilev LT, Blaukat A. A New Class of Selective ATM Inhibitors as Combination Partners of DNA Double-Strand Break Inducing Cancer Therapies. Mol Cancer Ther 2022; 21:859-870. [PMID: 35405736 PMCID: PMC9381122 DOI: 10.1158/1535-7163.mct-21-0934] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 01/07/2023]
Abstract
Radiotherapy and chemical DNA-damaging agents are among the most widely used classes of cancer therapeutics today. Double-strand breaks (DSB) induced by many of these treatments are lethal to cancer cells if left unrepaired. Ataxia telangiectasia-mutated (ATM) kinase plays a key role in the DNA damage response by driving DSB repair and cell-cycle checkpoints to protect cancer cells. Inhibitors of ATM catalytic activity have been shown to suppress DSB DNA repair, block checkpoint controls and enhance the therapeutic effect of radiotherapy and other DSB-inducing modalities. Here, we describe the pharmacological activities of two highly potent and selective ATM inhibitors from a new chemical class, M3541 and M4076. In biochemical assays, they inhibited ATM kinase activity with a sub-nanomolar potency and showed remarkable selectivity against other protein kinases. In cancer cells, the ATM inhibitors suppressed DSB repair, clonogenic cancer cell growth, and potentiated antitumor activity of ionizing radiation in cancer cell lines. Oral administration of M3541 and M4076 to immunodeficient mice bearing human tumor xenografts with a clinically relevant radiotherapy regimen strongly enhanced the antitumor activity, leading to complete tumor regressions. The efficacy correlated with the inhibition of ATM activity and modulation of its downstream targets in the xenograft tissues. In vitro and in vivo experiments demonstrated strong combination potential with PARP and topoisomerase I inhibitors. M4076 is currently under clinical investigation.
Collapse
Affiliation(s)
- Astrid Zimmermann
- Translational Innovation Platform Oncology and Immuno-Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Frank T. Zenke
- Translational Innovation Platform Oncology and Immuno-Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Li-Ya Chiu
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono, Billerica, Massachusetts
| | - Heike Dahmen
- Translational Innovation Platform Oncology and Immuno-Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Ulrich Pehl
- Discovery and Development Technologies, Cellular Pharmacology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Thomas Fuchss
- Discovery and Development Technologies, Global Medicinal Chemistry, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Thomas Grombacher
- Translational Medicine, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Beatrix Blume
- Discovery and Development Technologies, Cellular Pharmacology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Lyubomir T. Vassilev
- Translational Innovation Platform Oncology and Immuno-Oncology, EMD Serono, Billerica, Massachusetts
| | - Andree Blaukat
- Translational Innovation Platform Oncology and Immuno-Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
50
|
Yin C, Kulasekaran M, Roy T, Decker B, Alexander S, Margolis M, Jha RC, Kupfer GM, He AR. Homologous Recombination Repair in Biliary Tract Cancers: A Prime Target for PARP Inhibition? Cancers (Basel) 2022; 14:2561. [PMID: 35626165 PMCID: PMC9140037 DOI: 10.3390/cancers14102561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023] Open
Abstract
Biliary tract cancers (BTCs) are a heterogeneous group of malignancies that make up ~7% of all gastrointestinal tumors. It is notably aggressive and difficult to treat; in fact, >70% of patients with BTC are diagnosed at an advanced, unresectable stage and are not amenable to curative therapy. For these patients, chemotherapy has been the mainstay treatment, providing an inadequate overall survival of less than one year. Despite the boom in targeted therapies over the past decade, only a few targeted agents have been approved in BTCs (i.e., IDH1 and FGFR inhibitors), perhaps in part due to its relatively low incidence. This review will explore current data on PARP inhibitors (PARPi) used in homologous recombination deficiency (HRD), particularly with respect to BTCs. Greater than 28% of BTC cases harbor mutations in genes involved in homologous recombination repair (HRR). We will summarize the mechanisms for PARPi and its role in synthetic lethality and describe select genes in the HRR pathway contributing to HRD. We will provide our rationale for expanding patient eligibility for PARPi use based on literature and anecdotal evidence pertaining to mutations in HRR genes, such as RAD51C, and the potential use of reliable surrogate markers of HRD.
Collapse
Affiliation(s)
- Chao Yin
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Monika Kulasekaran
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Tina Roy
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Brennan Decker
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Sonja Alexander
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Mathew Margolis
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Reena C. Jha
- Department of Radiology, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Gary M. Kupfer
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA;
| | - Aiwu R. He
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| |
Collapse
|