1
|
Masson EAY, Serrano J, Leger-Charnay E, Acar N. Cholesterol and oxysterols in retinal neuron-glia interactions: relevance for glaucoma. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1303649. [PMID: 38983043 PMCID: PMC11182186 DOI: 10.3389/fopht.2023.1303649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 07/11/2024]
Abstract
Cholesterol is an essential component of cellular membranes, crucial for maintaining their structural and functional integrity. It is especially important for nervous tissues, including the retina, which rely on high amounts of plasma membranes for the transmission of the nervous signal. While cholesterol is by far the most abundant sterol, the retina also contains cholesterol precursors and metabolites, especially oxysterols, which are bioactive molecules. Cholesterol lack or excess is deleterious and some oxysterols are known for their effect on neuron survival. Cholesterol homeostasis must therefore be maintained. Retinal glial cells, especially Müller cells, the principal glial cells of the vertebrate retina, provide mechanical, nutritional, and metabolic support for the neighboring neurons. Several pieces of evidence indicate that Müller cells are major actors of cholesterol homeostasis in the retina, as it is known for other glial cells in the brain. This process is based on a close cooperation with neurons, and sterols can be signaling molecules participating in glia-neuron interactions. While some implication of cholesterol in age-related macular degeneration is now recognized, based on epidemiological and laboratory data, evidence for its role in glaucoma is still scarce. The association between cholesterolemia and glaucoma is controversial, but experimental data suggest that sterols could take part in the pathological processes. It has been demonstrated that Müller glial cells are implicated in the development of glaucoma through an ambivalent reactive retinal gliosis process. The early steps contribute to maintaining retinal homeostasis and favor the survival of ganglion cells, which are targeted during glaucoma. If gliosis persists, dysregulation of the neuroprotective functions, cytotoxic effects of gliotic Müller cells and disruption of glia-neuron interactions lead to an acceleration of ganglion cell death. Sterols could play a role in the glial cell response to glaucomatous injury. This represents an understudied but attractive topic to better understand glaucoma and conceive novel preventive or curative strategies. The present review describes the current knowledge on i) sterol metabolism in retinal glial cells, ii) the potential role of cholesterol in glaucoma, and iii) the possible relationships between cholesterol and oxysterols, glial cells and glaucoma. Focus is put on glia-neuron interactions.
Collapse
Affiliation(s)
- Elodie A Y Masson
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Jeanne Serrano
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
- Sensory Perception, Glia/Neuron Interaction Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Elise Leger-Charnay
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| |
Collapse
|
2
|
Dias IHK, Shokr H. Oxysterols as Biomarkers of Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:307-336. [PMID: 38036887 DOI: 10.1007/978-3-031-43883-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols derive from either enzymatic or non-enzymatic oxidation of cholesterol. Even though they are produced as intermediates of bile acid synthesis pathway, they are recognised as bioactive compounds in cellular processes. Therefore, their absence or accumulation have been shown to be associated with disease phenotypes. This chapter discusses the contribution of oxysterol to ageing, age-related diseases such as neurodegeneration and various disorders such as cancer, cardiovascular disease, diabetes, metabolic and ocular disorders. It is clear that oxysterols play a significant role in development and progression of these diseases. As a result, oxysterols are being investigated as suitable markers for disease diagnosis purposes and some drug targets are in development targeting oxysterol pathways. However, further research will be needed to confirm the suitability of these potentials.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Pikuleva IA. Challenges and Opportunities in P450 Research on the Eye. Drug Metab Dispos 2023; 51:1295-1307. [PMID: 36914277 PMCID: PMC10506698 DOI: 10.1124/dmd.122.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Of the 57 cytochrome P450 enzymes found in humans, at least 30 have ocular tissues as an expression site. Yet knowledge of the roles of these P450s in the eye is limited, in part because only very few P450 laboratories expanded their research interests to studies of the eye. Hence the goal of this review is to bring attention of the P450 community to the eye and encourage more ocular studies. This review is also intended to be educational for eye researchers and encourage their collaborations with P450 experts. The review starts with a description of the eye, a fascinating sensory organ, and is followed by sections on ocular P450 localizations, specifics of drug delivery to the eye, and individual P450s, which are grouped and presented based on their substrate preferences. In sections describing individual P450s, available eye-relevant information is summarized and concluded by the suggestions on the opportunities in ocular studies of the discussed enzymes. Potential challenges are addressed as well. The conclusion section outlines several practical suggestions on how to initiate eye-related research. SIGNIFICANCE STATEMENT: This review focuses on the cytochrome P450 enzymes in the eye to encourage their ocular investigations and collaborations between P450 and eye researchers.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
4
|
El-Darzi N, Mast N, Li Y, Dailey B, Kang M, Rhee DJ, Pikuleva IA. The normalizing effects of the CYP46A1 activator efavirenz on retinal sterol levels and risk factors for glaucoma in Apoj -/- mice. Cell Mol Life Sci 2023; 80:194. [PMID: 37392222 PMCID: PMC10314885 DOI: 10.1007/s00018-023-04848-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Apolipoprotein J (APOJ) is a multifunctional protein with genetic evidence suggesting an association between APOJ polymorphisms and Alzheimer's disease as well as exfoliation glaucoma. Herein we conducted ocular characterizations of Apoj-/- mice and found that their retinal cholesterol levels were decreased and that this genotype had several risk factors for glaucoma: increased intraocular pressure and cup-to-disk ratio and impaired retinal ganglion cell (RGC) function. The latter was not due to RGC degeneration or activation of retinal Muller cells and microglia/macrophages. There was also a decrease in retinal levels of 24-hydroxycholesterol, a suggested neuroprotectant under glaucomatous conditions and a positive allosteric modulator of N-methyl-D-aspartate receptors mediating the light-evoked response of the RGC. Therefore, Apoj-/- mice were treated with low-dose efavirenz, an allosteric activator of CYP46A1 which converts cholesterol into 24-hydroxycholesterol. Efavirenz treatment increased retinal cholesterol and 24-hydroxycholesterol levels, normalized intraocular pressure and cup-to-disk ratio, and rescued in part RGC function. Retinal expression of Abcg1 (a cholesterol efflux transporter), Apoa1 (a constituent of lipoprotein particles), and Scarb1 (a lipoprotein particle receptor) was increased in EVF-treated Apoj-/- mice, indicating increased retinal cholesterol transport on lipoprotein particles. Ocular characterizations of Cyp46a1-/- mice supported the beneficial efavirenz treatment effects via CYP46A1 activation. The data obtained demonstrate an important APOJ role in retinal cholesterol homeostasis and link this apolipoprotein to the glaucoma risk factors and retinal 24-hydroxycholesterol production by CYP46A1. As the CYP46A1 activator efavirenz is an FDA-approved anti-HIV drug, our studies suggest a new therapeutic approach for treatment of glaucomatous conditions.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong Li
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brian Dailey
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Min Kang
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Douglas J Rhee
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Singh A, Kukal S, Kanojia N, Singh M, Saso L, Kukreti S, Kukreti R. Lipid Mediated Brain Disorders: A Perspective. Prostaglandins Other Lipid Mediat 2023; 167:106737. [PMID: 37086954 DOI: 10.1016/j.prostaglandins.2023.106737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/24/2023]
Abstract
The brain, one of the most resilient organs of the body is highly enriched in lipid content, suggesting the essential role of lipids in brain physiological activities. Lipids constitute an important structural part of the brain and act as a rich source of metabolic energy. Besides, lipids in their bioactive form (known as bioactive lipids) play an essential signaling and regulatory role, facilitating neurogenesis, synaptogenesis, and cell-cell communication. Brain lipid metabolism is thus a tightly regulated process. Any alteration/dysregulation of lipid metabolism greatly impact brain health and activity. Moreover, since central nervous system (CNS) is the most metabolically active system and lacks an efficient antioxidative defence system, it acts as a hub for the production of reactive oxygen species (ROS) and subsequent lipid peroxidation. These peroxidation events are reported during pathological changes such as neuronal tissue injury and inflammation. Present review is a modest attempt to gain insights into the role of dysregulated bioactive lipid levels and lipid oxidation status in the pathogenesis and progression of neurodegenerative disorders. This may open up new avenues exploiting lipids as the therapeutic targets for improving brain health, and treatment of nervous system disorders.
Collapse
Affiliation(s)
- Anju Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India; Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India
| | - Mahak Singh
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB) Campus, Delhi 110007, India.
| |
Collapse
|
6
|
Chen CT, Shao Z, Fu Z. Dysfunctional peroxisomal lipid metabolisms and their ocular manifestations. Front Cell Dev Biol 2022; 10:982564. [PMID: 36187472 PMCID: PMC9524157 DOI: 10.3389/fcell.2022.982564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Retina is rich in lipids and dyslipidemia causes retinal dysfunction and eye diseases. In retina, lipids are not only important membrane component in cells and organelles but also fuel substrates for energy production. However, our current knowledge of lipid processing in the retina are very limited. Peroxisomes play a critical role in lipid homeostasis and genetic disorders with peroxisomal dysfunction have different types of ocular complications. In this review, we focus on the role of peroxisomes in lipid metabolism, including degradation and detoxification of very-long-chain fatty acids, branched-chain fatty acids, dicarboxylic acids, reactive oxygen/nitrogen species, glyoxylate, and amino acids, as well as biosynthesis of docosahexaenoic acid, plasmalogen and bile acids. We also discuss the potential contributions of peroxisomal pathways to eye health and summarize the reported cases of ocular symptoms in patients with peroxisomal disorders, corresponding to each disrupted peroxisomal pathway. We also review the cross-talk between peroxisomes and other organelles such as lysosomes, endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhuo Shao
- Post-Graduate Medical Education, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, the Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- The Genetics Program, North York General Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
El-Darzi N, Mast N, Buchner DA, Saadane A, Dailey B, Trichonas G, Pikuleva IA. Low-Dose Anti-HIV Drug Efavirenz Mitigates Retinal Vascular Lesions in a Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:902254. [PMID: 35721135 PMCID: PMC9198296 DOI: 10.3389/fphar.2022.902254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
A small dose of the anti-HIV drug efavirenz (EFV) was previously discovered to activate CYP46A1, a cholesterol-eliminating enzyme in the brain, and mitigate some of the manifestation of Alzheimer's disease in 5XFAD mice. Herein, we investigated the retina of these animals, which were found to have genetically determined retinal vascular lesions associated with deposits within the retinal pigment epithelium and subretinal space. We established that EFV treatment activated CYP46A1 in the retina, enhanced retinal cholesterol turnover, and diminished the lesion frequency >5-fold. In addition, the treatment mitigated fluorescein leakage from the aberrant blood vessels, deposit size, activation of retinal macrophages/microglia, and focal accumulations of amyloid β plaques, unesterified cholesterol, and Oil Red O-positive lipids. Studies of retinal transcriptomics and proteomics identified biological processes enriched with differentially expressed genes and proteins. We discuss the mechanisms of the beneficial EFV effects on the retinal phenotype of 5XFAD mice. As EFV is an FDA-approved drug, and we already tested the safety of small-dose EFV in patients with Alzheimer's disease, our data support further clinical investigation of this drug in subjects with retinal vascular lesions or neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Nicole El-Darzi
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - David A. Buchner
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aicha Saadane
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Brian Dailey
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Georgios Trichonas
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States
| | - Irina A. Pikuleva
- Departments of Ophthalmology and Visual Sciences, Cleveland, OH, United States,*Correspondence: Irina A. Pikuleva,
| |
Collapse
|
8
|
Ghzaiel I, Sassi K, Zarrouk A, Nury T, Ksila M, Leoni V, Bouhaouala-Zahar B, Hammami S, Hammami M, Mackrill JJ, Samadi M, Ghrairi T, Vejux A, Lizard G. 7-Ketocholesterol: Effects on viral infections and hypothetical contribution in COVID-19. J Steroid Biochem Mol Biol 2021; 212:105939. [PMID: 34118414 PMCID: PMC8188774 DOI: 10.1016/j.jsbmb.2021.105939] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
7-Ketocholesterol, which is one of the earliest cholesterol oxidization products identified, is essentially formed by the auto-oxidation of cholesterol. In the body, 7-ketocholesterol is both provided by food and produced endogenously. This pro-oxidant and pro-inflammatory molecule, which can activate apoptosis and autophagy at high concentrations, is an abundant component of oxidized Low Density Lipoproteins. 7-Ketocholesterol appears to significantly contribute to the development of age-related diseases (cardiovascular diseases, age-related macular degeneration, and Alzheimer's disease), chronic inflammatory bowel diseases and to certain cancers. Recent studies have also shown that 7-ketocholesterol has anti-viral activities, including on SARS-CoV-2, which are, however, lower than those of oxysterols resulting from the oxidation of cholesterol on the side chain. Furthermore, 7-ketocholesterol is increased in the serum of moderately and severely affected COVID-19 patients. In the case of COVID-19, it can be assumed that the antiviral activity of 7-ketocholesterol could be counterbalanced by its toxic effects, including pro-oxidant, pro-inflammatory and pro-coagulant activities that might promote the induction of cell death in alveolar cells. It is therefore suggested that this oxysterol might be involved in the pathophysiology of COVID-19 by contributing to the acute respiratory distress syndrome and promoting a deleterious, even fatal outcome. Thus, 7-ketocholesterol could possibly constitute a lipid biomarker of COVID-19 outcome and counteracting its toxic effects with adjuvant therapies might have beneficial effects in COVID-19 patients.
Collapse
Affiliation(s)
- Imen Ghzaiel
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia.
| | - Khouloud Sassi
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis El Manar, Laboratory of Onco-Hematology (LR05ES05), Faculty of Medicine, 1007 Tunis, Tunisia.
| | - Amira Zarrouk
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University of Sousse, Faculty of Medicine, Sousse, Tunisia.
| | - Thomas Nury
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Mohamed Ksila
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of Tunis & University of Tunis El Manar, 1002 Tunis, Tunisia.
| | - Sonia Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - Mohamed Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Dept of Chemistry, Univ. Lorraine, Metz Technopôle, Metz, France.
| | - Taoufik Ghrairi
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Anne Vejux
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| |
Collapse
|
9
|
Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F, Samadi M, Rup-Jacques S, Vervandier-Fasseur D, Pais de Barros J, Bergas V, Ghosh S, Majeed M, Pande A, Atanasov A, Hammami S, Hammami M, Mackrill J, Nasser B, Andreoletti P, Cherkaoui-Malki M, Vejux A, Lizard G. Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 2021; 68:101324. [PMID: 33774195 DOI: 10.1016/j.arr.2021.101324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7β-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7β-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7β-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7β-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7β-hydroxycholesterol.
Collapse
|
10
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
11
|
Zhang X, Alhasani RH, Zhou X, Reilly J, Zeng Z, Strang N, Shu X. Oxysterols and retinal degeneration. Br J Pharmacol 2021; 178:3205-3219. [PMID: 33501641 DOI: 10.1111/bph.15391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Retinal degeneration, characterised by the progressive death of retinal neurons, is the most common cause of visual impairment. Oxysterols are the cholesterol derivatives produced via enzymatic and/or free radical oxidation that regulate cholesterol homeostasis in the retina. Preclinical and clinical studies have suggested a connection between oxysterols and retinal degeneration. Here, we summarise early and recent work related to retina oxysterol-producing enzymes and the distribution of oxysterols in the retina. We examine the impact of loss of oxysterol-producing enzymes on retinal pathology and explore the molecular mechanisms associated with the toxic or protective roles of individual oxysterols in different types of retinal degeneration. We conclude that increased efforts to better understand the oxysterol-associated pathophysiology will help in the development of effective retinal degeneration therapies. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Reem Hasaballah Alhasani
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.,Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha, Hunan, China
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow, UK
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK.,Department of Vision Science, Glasgow Caledonian University, Glasgow, UK.,School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan, China
| |
Collapse
|
12
|
Park SJ, Park DH. REvisiting Lipids in REtinal Diseases: A Focused Review on Age-related Macular Degeneration and Diabetic Retinopathy. J Lipid Atheroscler 2020; 9:406-418. [PMID: 33024733 PMCID: PMC7521975 DOI: 10.12997/jla.2020.9.3.406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/24/2022] Open
Abstract
Dyslipidemia refers to an abnormal amount of lipid in the blood, and the total cholesterol level is defined as the sum of high-density lipoprotein cholesterol, low-density lipoprotein (LDL) cholesterol, and very-LDL cholesterol concentrations. In Korea, the westernization of lifestyle habits in recent years has caused an increase in the incidence of dyslipidemia, which is an important risk factor of cardiovascular disease (CVD). Several studies have been conducted on how dyslipidemia affects not only CVD, but also chorioretinal diseases such as age-related macular degeneration (AMD) and diabetic retinopathy. Recently, a pathological model of AMD was proposed under the assumption that AMD proceeds through a mechanism similar to that of atherosclerotic CVD. However, controversy remains regarding the relationship between chorioretinal diseases and lipid levels in the blood, and the effects of lipid-lowering agents. Herein, we summarize the role of lipids in chorioretinal diseases. In addition, the effects of lipid-lowering agents on the prevention and progression of chorioretinal diseases are presented.
Collapse
Affiliation(s)
- Su Jin Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
13
|
Léger-Charnay E, Masson EAY, Morala T, Martine L, Buteau B, Leclere L, Bretillon L, Gambert S. Is 24(S)-hydroxycholesterol a potent modulator of cholesterol metabolism in Müller cells? An in vitro study about neuron to glia communication in the retina. Exp Eye Res 2019; 189:107857. [PMID: 31654618 DOI: 10.1016/j.exer.2019.107857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 11/19/2022]
Abstract
Communication between neurons and glia plays a major role in nervous tissue homeostasis. It is thought to participate in tuning cholesterol metabolism to cellular demand, which is a critical issue for neuronal health. Cholesterol is a membrane lipid crucial for nervous tissue functioning, and perturbed regulation of its metabolism has been linked to several neurodegenerative disorders. In the brain, 24(S)-hydroxycholesterol (24S-OHC) is an oxysterol synthesized by neurons to eliminate cholesterol, and 24S-OHC has been shown to regulate cholesterol metabolism in astrocytes, glial cells which provide cholesterol to neurons. In the retina, 24S-OHC is also an elimination product of cholesterol produced by neurons, especially the retinal ganglion cells. However, it is not known whether Müller cells, the major macroglial cells of the retina, play the role of cholesterol provider for retinal neurons and whether they respond to 24S-OHC signaling, similarly to brain glial cells. In the present study, primary cultures of rat Müller cells were treated with 0, 0.5 or 1.5 μM 24S-OHC for 48 hours. The levels of cholesterol, precursors and oxysterols were quantified using gas chromatography coupled to flame-ionization detection or mass spectrometry. In addition, the expression of key genes related to cholesterol metabolism was analyzed using RTq-PCR. Müller cells were shown to express many genes linked to cholesterol metabolism, including genes coding for proteins implicated in cholesterol biosynthesis (HMGCR), cholesterol uptake and export via lipoproteins (LDL-R, SR-BI, ApoE and ABACA1) and regulation of cholesterol metabolism (SREBP2 and LXRβ). Cholesterol and several of its precursors and oxidative products were present. CYP27A1, the main retinal enzyme implicated in cholesterol elimination via oxysterol production, was quantified at low transcript levels but neither of its two typical products were detected in Müller cells. Furthermore, our results demonstrate that 24S-OHC has a strong hypocholesterolemic effect in Müller cells, leading to cholesterol depletion (-37 % at 1.5 μM). This was mediated by a decrease in cholesterol synthesis, as illustrated by reduced levels of cholesterol precursors: desmosterol (-38 % at 1.5 μM) and lathosterol (-84 % at 1.5 μM), and strong downregulation of HMGCR gene expression (2.4 fold decrease at 1.5μM). In addition, LDL-R and SR-BI gene expression were reduced in response to 24S-OHC treatment (2 fold and 1.6 fold at 1.5 μM, respectively), suggesting diminished lipoprotein uptake by the cells. On the contrary, there was a dramatic overexpression of ABCA1 transporter (10 fold increase at 1.5 μM), probably mediating an increase in cholesterol efflux. Finally, 24S-OHC induced a small but significant upregulation of the CYP27A1 gene. These data indicate that Müller cells possess the necessary cholesterol metabolism machinery and that they are able to sharply adjust their cholesterol metabolism in response to 24S-OHC, a signal molecule of neuronal cholesterol status. This suggests that Müller cells could be major players of cholesterol homeostasis in the retina via neuron-glia crosstalk.
Collapse
Affiliation(s)
- Elise Léger-Charnay
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Elodie A Y Masson
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Tristan Morala
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lucy Martine
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Bénédicte Buteau
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Laurent Leclere
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Lionel Bretillon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Ségolène Gambert
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France; Laboratoire de Biochimie Médicale, Plateforme de Biologie Hospitalo-Universitaire, F-21000, Dijon, France.
| |
Collapse
|
14
|
Pariente A, Peláez R, Pérez-Sala Á, Larráyoz IM. Inflammatory and cell death mechanisms induced by 7-ketocholesterol in the retina. Implications for age-related macular degeneration. Exp Eye Res 2019; 187:107746. [DOI: 10.1016/j.exer.2019.107746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022]
|
15
|
Gavrilova NA, Borzenok SA, Zaletaev DV, Solomin VA, Gadzhieva NS, Tishchenko OE, Komova OU, Zinov'eva AV. Molecular genetic mechanisms of influence of laser radiation with 577 nm wavelength in a microimpulse mode on the condition of the retina. Exp Eye Res 2019; 185:107650. [PMID: 31075223 DOI: 10.1016/j.exer.2019.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
THE AIM OF THE STUDY was to investigate the molecular genetic mechanisms of the influence of laser radiation with 577 nm wavelength in a microimpulse mode on the retina in the experimental conditions after the intravitreal injection of VEGF. MATERIALS AND METHODS The study was performed on 4-5 week-old male mice of the line C57BL/6J. The animals were divided into 4 groups of 5 mice in each group, one eye was excremental, the contralateral eye remained intact. In the first group, intravitreal injection of PBS was performed; in the second group, intravitreal injection of 50 ng/ml of recombinant VEGF165 in 2 μL of phosphate-buffered saline (PBS) was performed; in the third and fourth groups, a day after the intravitreal injection of recombinant VEGF165, laser radiation with wavelength 577 nm was applied in the micropulse and continuous modes, respectively. Tissue samples (neuroepithelium, pigment epithelium) for the microarray transcription analysis in the animals from group 1 and 2 were taken 2 days after the injection of PBS and VEGF, in the animals from group 3 and 4 - a day after the retina was exposed to laser radiation. RESULTS AND CONCLUSION Molecular genetic mechanisms of the influence of laser radiation with wavelength 577 nm in a microimpulse mode on the retina in experimental conditions were studied and the genes that significantly changed the level of expression (the genes that take part in the regulation of neoangiogenesis, structural cell functions, processes of cells proliferation, transcription, differentiation, transmembrane transport, signaling, synaptic transmission, etc.) were identified.
Collapse
Affiliation(s)
- Natalya A Gavrilova
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia.
| | - Sergey A Borzenok
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia; The S. Fyodorov Eye Microsurgery Federal State Institution, 127486, 59a Beskudnikovskiy Boulevard, Moscow, Russia
| | - Dmitri V Zaletaev
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, 8/2 Trubetskaya Str., Moscow, Russia; Research Centre for Medical Genetics, Russian Academy of Sciences, Moscow, 115522, 1 Moscvorechie, Moscow, Russia
| | - Vladislav A Solomin
- The S. Fyodorov Eye Microsurgery Federal State Institution, 127486, 59a Beskudnikovskiy Boulevard, Moscow, Russia
| | - Nuriya S Gadzhieva
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia
| | - Olga E Tishchenko
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia
| | - Olga U Komova
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia
| | - Aleksandra V Zinov'eva
- The A.I. Evdokimov Моscow State University of Medicine and Dentistry of the Ministry of Healthcare the Russian Federation, 127473, 20/1 Delegatskaya Str., Moscow, Russia
| |
Collapse
|
16
|
Saadane A, Mast N, Trichonas G, Chakraborty D, Hammer S, Busik JV, Grant MB, Pikuleva IA. Retinal Vascular Abnormalities and Microglia Activation in Mice with Deficiency in Cytochrome P450 46A1-Mediated Cholesterol Removal. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:405-425. [PMID: 30448403 DOI: 10.1016/j.ajpath.2018.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
CYP46A1 is the cytochrome P450 enzyme that converts cholesterol to 24-hydroxycholesterol, a cholesterol elimination product and a potent liver X receptor (LXR) ligand. We conducted retinal characterizations of Cyp46a1-/- mice that had normal fasting blood glucose levels but up to a 1.8-fold increase in retinal cholesterol. The retina of Cyp46a1-/- mice exhibited venous beading and tortuosity, microglia/macrophage activation, and increased vascular permeability, features commonly associated with diabetic retinopathy. The expression of Lxrα and Lxrβ was increased in both the whole Cyp46a1-/- retina and retinal macroglia/macrophages. The LXR-target genes were affected as well, primarily in activated microglial cells and macrophages. In the latter, the LXR-transactivated genes (Abca1, Abcg1, Apod, Apoe, Mylip, and Arg2) were up-regulated; similarly, there was an up-regulation of the LXR-transrepressed genes (Ccl2, Ptgs2, Cxcl1, Il1b, Il6, Nos2, and Tnfa). For comparison, gene expression was investigated in bone marrow-derived macrophages from Cyp46a1-/- mice as well as retinal and bone marrow-derived macrophages from Cyp27a1-/- and Cyp27a1-/-Cyp46a1-/- mice. CYP46A1 expression was detected in retinal endothelial cells, and this expression was increased in the proinflammatory environment. Retinal Cyp46a1-/- phosphoproteome revealed altered phosphorylation of 30 different proteins, including tight junction protein zonula occludens 1 and aquaporin 4. Collectively, the data obtained establish metabolic and regulatory significance of CYP46A1 for the retina and suggest pharmacologic activation of CYP46A1 as a potential therapeutic approach to dyslipidemia-induced retinal damage.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | - George Trichonas
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio
| | | | - Sandra Hammer
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Maria B Grant
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, the University Hospitals, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
17
|
Saadane A, Mast N, Dao T, Ahmad B, Pikuleva IA. Retinal Hypercholesterolemia Triggers Cholesterol Accumulation and Esterification in Photoreceptor Cells. J Biol Chem 2016; 291:20427-39. [PMID: 27514747 DOI: 10.1074/jbc.m116.744656] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 01/01/2023] Open
Abstract
The process of vision is impossible without the photoreceptor cells, which have a unique structure and specific maintenance of cholesterol. Herein we report on the previously unrecognized cholesterol-related pathway in the retina discovered during follow-up characterizations of Cyp27a1(-/-)Cyp46a1(-/-) mice. These animals have retinal hypercholesterolemia and convert excess retinal cholesterol into cholesterol esters, normally present in the retina in very small amounts. We established that in the Cyp27a1(-/-)Cyp46a1(-/-) retina, cholesterol esters are generated by and accumulate in the photoreceptor outer segments (OS), which is the retinal layer with the lowest cholesterol content. Mouse OS were also found to express the cholesterol-esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT1), but not lecithin-cholesterol acyltransferase (LCAT), and to differ from humans in retinal expression of ACAT1. Nevertheless, cholesterol esters were discovered to be abundant in human OS. We suggest a mechanism for cholesterol ester accumulation in the OS and that activity impairment of ACAT1 in humans may underlie the development of subretinal drusenoid deposits, a hallmark of age-related macular degeneration, which is a common blinding disease. We generated Cyp27a1(-/-)Cyp46a1(-/-)Acat1(-/-) mice, characterized their retina by different imaging modalities, and confirmed that unesterified cholesterol does accumulate in their OS and that there is photoreceptor apoptosis and OS degeneration in this line. Our results provide insights into the retinal response to local hypercholesterolemia and the retinal significance of cholesterol esterification, which could be cell-specific and both beneficial and detrimental for retinal structure and function.
Collapse
Affiliation(s)
- Aicha Saadane
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio and
| | - Natalia Mast
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio and
| | - Tung Dao
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio and
| | - Baseer Ahmad
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio and the University Hospitals, Cleveland, Ohio 44106
| | - Irina A Pikuleva
- From the Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio and
| |
Collapse
|
18
|
Pfeffer BA, Xu L, Porter NA, Rao SR, Fliesler SJ. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density. Exp Eye Res 2016; 145:297-316. [PMID: 26854824 PMCID: PMC5024725 DOI: 10.1016/j.exer.2016.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/21/2015] [Accepted: 01/26/2016] [Indexed: 01/18/2023]
Abstract
Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL >> DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that retinal degeneration as well as to SLOS.
Collapse
Affiliation(s)
- Bruce A Pfeffer
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Ned A Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Sriganesh Ramachandra Rao
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Steven J Fliesler
- Research Service, VA Western New York Healthcare System, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA; Departments of Ophthalmology and Biochemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA.
| |
Collapse
|
19
|
Cascio C, Deidda I, Russo D, Guarneri P. The estrogenic retina: The potential contribution to healthy aging and age-related neurodegenerative diseases of the retina. Steroids 2015; 103:31-41. [PMID: 26265586 DOI: 10.1016/j.steroids.2015.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 12/18/2022]
Abstract
These last two decades have seen an explosion of clinical and epidemiological research, and basic research devoted to envisage the influence of gender and hormonal fluctuations in the retina/ocular diseases. Particular attention has been paid to age-related disorders because of the overlap of endocrine and neuronal dysfunction with aging. Hormonal withdrawal has been considered among risk factors for diseases such as glaucoma, diabetic retinopathy and age-related macular disease (AMD), as well as, for Alzheimer's disease, Parkinson's disease, or other neurodegenerative disorders. Sex hormones and aging have been also suggested to drive the incidence of ocular surface diseases such as dry eye and cataract. Hormone therapy has been approached in several clinical trials. The discovery that the retina is another CNS tissue synthesizing neurosteroids, among which neuroactive steroids, has favored these studies. However, the puzzling data emerged from clinical, epidemiological and experimental studies have added several dimensions of complexity; the current landscape is inherently limited to the weak information on the influence and interdependence of endocrine, paracrine and autocrine regulation in the retina, but also in the brain. Focusing on the estrogenic retina, we here review our knowledge on local 17β-oestradiol (E2) synthesis from cholesterol-based neurosteroidogenic path and testosterone aromatization, and presence of estrogen receptors (ERα and ERβ). The first cholesterol-limiting step and the final aromatase-limiting step are discussed as possible check-points of retinal functional/dysfunctional E2. Possible E2 neuroprotection is commented as a group of experimental evidence on excitotoxic and oxidative retinal paradigms, and models of retinal neurodegenerative diseases, such as glaucoma, diabetic retinopathy and AMD. These findings may provide a framework to support clinical studies, although further basic research is needed.
Collapse
Affiliation(s)
- Caterina Cascio
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Irene Deidda
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Domenica Russo
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy
| | - Patrizia Guarneri
- CNR Institute of Biomedicine and Molecular Immunology, Neuroscience Unit, Palermo, Italy.
| |
Collapse
|
20
|
|
21
|
Barau C, Ghaleh B, Berdeaux A, Morin D. Cytochrome P450 and myocardial ischemia: potential pharmacological implication for cardioprotection. Fundam Clin Pharmacol 2014; 29:1-9. [DOI: 10.1111/fcp.12087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/20/2014] [Accepted: 06/13/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Caroline Barau
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Bijan Ghaleh
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Alain Berdeaux
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| | - Didier Morin
- Inserm, U955, Equipe 03; F-94000 Créteil France
- UMR_S955, UPEC; Université Paris-Est; F-94000 Créteil France
| |
Collapse
|
22
|
Saadane A, Mast N, Charvet CD, Omarova S, Zheng W, Huang SS, Kern TS, Peachey NS, Pikuleva IA. Retinal and nonocular abnormalities in Cyp27a1(-/-)Cyp46a1(-/-) mice with dysfunctional metabolism of cholesterol. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2403-19. [PMID: 25065682 DOI: 10.1016/j.ajpath.2014.05.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/21/2014] [Accepted: 05/29/2014] [Indexed: 01/08/2023]
Abstract
Cholesterol elimination from nonhepatic cells involves metabolism to side-chain oxysterols, which serve as transport forms of cholesterol and bioactive molecules modulating a variety of cellular processes. Cholesterol metabolism is tissue specific, and its significance has not yet been established for the retina, where cytochromes P450 (CYP27A1 and CYP46A1) are the major cholesterol-metabolizing enzymes. We generated Cyp27a1(-/-)Cyp46a1(-/-) mice, which were lean and had normal serum cholesterol and glucose levels. These animals, however, had changes in the retinal vasculature, retina, and several nonocular organs (lungs, liver, and spleen). Changes in the retinal vasculature included structural abnormalities (retinal-choroidal anastomoses, arteriovenous shunts, increased permeability, dilation, nonperfusion, and capillary degeneration) and cholesterol deposition and oxidation in the vascular wall, which also exhibited increased adhesion of leukocytes and activation of the complement pathway. Changes in the retina included increased content of cholesterol and its metabolite, cholestanol, which were focally deposited at the apical and basal sides of the retinal pigment epithelium. Retinal macrophages of Cyp27a1(-/-)Cyp46a1(-/-) mice were activated, and oxidative stress was noted in their photoreceptor inner segments. Our findings demonstrate the importance of retinal cholesterol metabolism for maintenance of the normal retina, and suggest new targets for diseases affecting the retinal vasculature.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology and Visual Sciences, Cleveland, Ohio
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Cleveland, Ohio
| | - Casey D Charvet
- Department of Ophthalmology and Visual Sciences, Cleveland, Ohio
| | - Saida Omarova
- Department of Ophthalmology and Visual Sciences, Cleveland, Ohio
| | - Wenchao Zheng
- Department of Ophthalmology and Visual Sciences, Cleveland, Ohio
| | - Suber S Huang
- Department of Ophthalmology and Visual Sciences, Cleveland, Ohio; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Timothy S Kern
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Neal S Peachey
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Cleveland VA Medical Center, Cleveland, Ohio; Department of Medicine, University Hospitals, Cleveland, Ohio
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Cleveland, Ohio.
| |
Collapse
|
23
|
Cholesterol in the retina: the best is yet to come. Prog Retin Eye Res 2014; 41:64-89. [PMID: 24704580 DOI: 10.1016/j.preteyeres.2014.03.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
Abstract
Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because of eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes' roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link.
Collapse
|
24
|
Li J, Daly E, Campioli E, Wabitsch M, Papadopoulos V. De novo synthesis of steroids and oxysterols in adipocytes. J Biol Chem 2013; 289:747-64. [PMID: 24280213 DOI: 10.1074/jbc.m113.534172] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Local production and action of cholesterol metabolites such as steroids or oxysterols within endocrine tissues are currently recognized as an important principle in the cell type- and tissue-specific regulation of hormone effects. In adipocytes, one of the most abundant endocrine cells in the human body, the de novo production of steroids or oxysterols from cholesterol has not been examined. Here, we demonstrate that essential components of cholesterol transport and metabolism machinery in the initial steps of steroid and/or oxysterol biosynthesis pathways are present and active in adipocytes. The ability of adipocyte CYP11A1 in producing pregnenolone is demonstrated for the first time, rendering adipocyte a steroidogenic cell. The oxysterol 27-hydroxycholesterol (27HC), synthesized by the mitochondrial enzyme CYP27A1, was identified as one of the major de novo adipocyte products from cholesterol and its precursor mevalonate. Inhibition of CYP27A1 activity or knockdown and deletion of the Cyp27a1 gene induced adipocyte differentiation, suggesting a paracrine or autocrine biological significance for the adipocyte-derived 27HC. These findings suggest that the presence of the 27HC biosynthesis pathway in adipocytes may represent a defense mechanism to prevent the formation of new fat cells upon overfeeding with dietary cholesterol.
Collapse
Affiliation(s)
- Jiehan Li
- From the Research Institute, McGill University Health Centre, and
| | | | | | | | | |
Collapse
|
25
|
Dasari B, Prasanthi JRP, Meiers C, Singh BB, Ghribi O. Differential effects of the estrogen receptor agonist estradiol on toxicity induced by enzymatically-derived or autoxidation-derived oxysterols in human ARPE-19 cells. Curr Eye Res 2013; 38:1159-71. [PMID: 23841471 DOI: 10.3109/02713683.2013.811257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE/AIM OF THE STUDY Disturbances in cholesterol metabolism and increased levels of cholesterol oxidation products (oxysterols) in retina may contribute to age-related macular degeneration (AMD). The role of oxysterols or of their target receptors liver X receptors (LXRs) and estrogen receptors (ERs) in the pathogenesis of MD is ill-known. The purpose of this study is to determine the extent to which the oxysterols 27-hydroxycholesterol (27-OHC), 25-hydroxycholesterol (25-OHC) and 7-ketocholesterol (7-KC) affect the transcriptional activity of LXR and ER. MATERIALS AND METHODS ARPE-19 cells, untreated or incubated with 27-OHC, 25-OHC or 7-KC for 24 h were harvested. We used Western blot analyses for detecting ERs and LXRs expression, dual luciferase assays for measuring LXRs and ERs transcriptional activity, cytotox-ONE homogeneous membrane integrity assay for measuring cytotoxicity, JC-1 method for measuring mitochondrial membrane potential changes and ELISA for measuring cytokine levels. RESULTS Both LXRs and ERs are expressed and are transcriptionally active in ARPE-19 cells. 27-OHC, 25-OHC and 7-KC inhibited ER-mediated transcriptional activity, whereas 27-OHC and 25-OHC increased LXR-mediated transcription. E2 reduced 25-OHC and 27-OHC-induced cytotoxicity, mitochondrial permeability potential decline, and cytokine secretion. The LXR agonist GW3965 or the LXR antagonist 5α-6α-epoxycholesterol-3-sulfate (ECHS) did not offer protection against either 27-OHC and 25-OHC or 7-KC. CONCLUSIONS Increased levels of oxysterols can decrease ER and increase LXR signaling. ER agonists can offer protection against cytotoxic effects of 27-OHC and 25-OHC, two oxysterols derived by enzymatic reactions. Although they exert similar toxicity, the cellular mechanisms involved in the toxic effects of oxysterols whether derived by enzymatic or autoxidation reactions appear to be different.
Collapse
Affiliation(s)
- Bhanu Dasari
- Department of Pharmacology, Physiology and Therapeutics and
| | | | | | | | | |
Collapse
|
26
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
27
|
Tuong ZK, Lau P, Yeo JC, Pearen MA, Wall AA, Stanley AC, Stow JL, Muscat GEO. Disruption of Rorα1 and cholesterol 25-hydroxylase expression attenuates phagocytosis in male Rorαsg/sg mice. Endocrinology 2013; 154:140-9. [PMID: 23239817 DOI: 10.1210/en.2012-1889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We and others have previously demonstrated that congenital deficiency of the nuclear hormone receptor, Rorα1, in staggerer (sg/sg) mice results in resistance to diet-induced obesity and increased insulin sensitivity. Paradoxically, the sg/sg mice are susceptible to atherosclerosis and display impaired innate immunity, underscoring the regulatory links between metabolic disease, inflammation, and susceptibility to infection. Here, we present novel evidence that Rorα1 regulates innate immune function by demonstrating impaired phagocytosis in sg/sg mice. The early stages of Fc-γ receptor-mediated phagocytosis in lipopolysaccharide-activated sg/sg bone marrow-derived macrophages (BMMs) were significantly impaired compared with wild-type cells. Moreover, in sg/sg BMMs, the phagocytic cup membranes had reduced levels of cholesterol. Expression profiling revealed dysregulated expression of genes involved in inflammation and lipid metabolism in sg/sg BMMs. Notably, we identified decreased expression of the mRNA encoding cholesterol 25-hydroxylase (Ch25h), an enzyme that converts cholesterol to 25-hydroxycholesterol (25HC), an oxysterol with emerging roles in immunity. Treatment of sg/sg BMMs with 25HC rescued phagocytosis in a dose-dependent manner, whereas small interfering RNA knockdown of Ch25h mRNA expression in wild-type cells attenuated phagocytosis. Hence, we propose that 25HC is essential for optimizing membrane internalization during phagocytosis and that aberrant Ch25h expression in Rorα1-deficient sg/sg macrophages disrupts phagocytosis. Our studies reveal new roles for Rorα1, Ch25h, and 25HC in phagocytosis. Aberrant 25HC underpins the paradoxical association between insulin sensitivity and impaired innate immunity in Rorα1-deficient mice, heralding a wider and essential role for this oxysterol at the nexus of metabolism and immunity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Hydroxycholesterols/pharmacology
- Immunity, Innate/genetics
- Immunity, Innate/physiology
- Lipopolysaccharides/pharmacology
- Male
- Mice
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Phagocytosis/genetics
- Phagocytosis/physiology
- Polymerase Chain Reaction
- RNA, Small Interfering/genetics
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Steroid Hydroxylases/genetics
- Steroid Hydroxylases/metabolism
Collapse
Affiliation(s)
- Zewen K Tuong
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Omarova S, Charvet CD, Reem RE, Mast N, Zheng W, Huang S, Peachey NS, Pikuleva IA. Abnormal vascularization in mouse retina with dysregulated retinal cholesterol homeostasis. J Clin Invest 2012; 122:3012-23. [PMID: 22820291 DOI: 10.1172/jci63816] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/24/2012] [Indexed: 11/17/2022] Open
Abstract
Several lines of evidence suggest a link between age-related macular degeneration and retinal cholesterol maintenance. Cytochrome P450 27A1 (CYP27A1) is a ubiquitously expressed mitochondrial sterol 27-hydroxylase that plays an important role in the metabolism of cholesterol and cholesterol-related compounds. We conducted a comprehensive ophthalmic evaluation of mice lacking CYP27A1. We found that the loss of CYP27A1 led to dysregulation of retinal cholesterol homeostasis, including unexpected upregulation of retinal cholesterol biosynthesis. Cyp27a1-/- mice developed retinal lesions characterized by cholesterol deposition beneath the retinal pigment epithelium. Further, Cyp27a1-null mice showed pathological neovascularization, which likely arose from both the retina and the choroid, that led to the formation of retinal-choroidal anastomosis. Blood flow alterations and blood vessel leakage were noted in the areas of pathology. The Cyp27a1-/- retina was hypoxic and had activated Müller cells. We suggest a mechanism whereby abolished sterol 27-hydroxylase activity leads to vascular changes and identify Cyp27a1-/- mice as a model for one of the variants of type 3 retinal neovascularization occurring in some patients with age-related macular degeneration.
Collapse
Affiliation(s)
- Saida Omarova
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zheng W, Reem RE, Omarova S, Huang S, DiPatre PL, Charvet CD, Curcio CA, Pikuleva IA. Spatial distribution of the pathways of cholesterol homeostasis in human retina. PLoS One 2012; 7:e37926. [PMID: 22629470 PMCID: PMC3358296 DOI: 10.1371/journal.pone.0037926] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/30/2012] [Indexed: 01/25/2023] Open
Abstract
Background The retina is a light-sensitive tissue lining the inner surface of the eye and one of the few human organs whose cholesterol maintenance is still poorly understood. Challenges in studies of the retina include its complex multicellular and multilayered structure; unique cell types and functions; and specific physico-chemical environment. Methodology/Principal Findings We isolated specimens of the neural retina (NR) and underlying retinal pigment epithelium (RPE)/choroid from six deceased human donors and evaluated them for expression of genes and proteins representing the major pathways of cholesterol input, output and regulation. Eighty-four genes were studied by PCR array, 16 genes were assessed by quantitative real time PCR, and 13 proteins were characterized by immunohistochemistry. Cholesterol distribution among different retinal layers was analyzed as well by histochemical staining with filipin. Our major findings pertain to two adjacent retinal layers: the photoreceptor outer segments of NR and the RPE. We demonstrate that in the photoreceptor outer segments, cholesterol biosynthesis, catabolism and regulation via LXR and SREBP are weak or absent and cholesterol content is the lowest of all retinal layers. Cholesterol maintenance in the RPE is different, yet the gene expression also does not appear to be regulated by the SREBPs and varies significantly among different individuals. Conclusions/Significance This comprehensive investigation provides important insights into the relationship and spatial distribution of different pathways of cholesterol input, output and regulation in the NR-RPE region. The data obtained are important for deciphering the putative link between cholesterol and age-related macular degeneration, a major cause of irreversible vision loss in the elderly.
Collapse
Affiliation(s)
- Wenchao Zheng
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Rachel E. Reem
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Saida Omarova
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Suber Huang
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- University Hospitals, Cleveland, Ohio, United States of America
| | - Pier Luigi DiPatre
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Casey D. Charvet
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States of America
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Heo GY, Liao WL, Turko IV, Pikuleva IA. Features of the retinal environment which affect the activities and product profile of cholesterol-metabolizing cytochromes P450 CYP27A1 and CYP11A1. Arch Biochem Biophys 2011; 518:119-26. [PMID: 22227097 DOI: 10.1016/j.abb.2011.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/28/2022]
Abstract
The retina is the sensory organ in the back of the eye which absorbs and converts light to electrochemical impulses transferred to the brain. Herein, we studied how retinal environment affects enzyme-mediated cholesterol removal. We focused on two mitochondrial cytochrome P450 enzymes, CYPs 27A1 and 11A1, which catalyze the first steps in metabolism of cholesterol in the retina and other tissues. Phospholipids (PL) from mitochondria of bovine neural retina, retinal pigment epithelium, liver and adrenal cortex were isolated and compared for the effect on kinetic properties of purified recombinant CYPs in the reconstituted system in vitro. The four studied tissues were also evaluated for the mitochondrial PL and cholesterol content and levels of CYPs 27A1, 11A1 and their redox partners. The data obtained were used for modeling the retinal environment in the in vitro enzyme assays in which we detected the P450 metabolites, 22R-hydroxycholesterol and 5-cholestenoic acid, unexpectedly found by us in the retina in our previous studies. The effect of the by-product of the visual cycle pyridinium bis-retinoid A2E on kinetics of CYP27A1-mediated cholesterol metabolism was also investigated. The results provide insight into the retina's regulation of the enzyme-mediated cholesterol removal.
Collapse
Affiliation(s)
- Gun-Young Heo
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | | | | | | |
Collapse
|
31
|
24S-hydroxycholesterol and cholesterol-24S-hydroxylase (CYP46A1) in the retina: from cholesterol homeostasis to pathophysiology of glaucoma. Chem Phys Lipids 2011; 164:496-9. [DOI: 10.1016/j.chemphyslip.2011.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 04/11/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
|
32
|
Charvet C, Liao WL, Heo GY, Laird J, Salomon RG, Turko IV, Pikuleva IA. Isolevuglandins and mitochondrial enzymes in the retina: mass spectrometry detection of post-translational modification of sterol-metabolizing CYP27A1. J Biol Chem 2011; 286:20413-22. [PMID: 21498512 PMCID: PMC3121529 DOI: 10.1074/jbc.m111.232546] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Indexed: 11/06/2022] Open
Abstract
We report the first peptide mapping and sequencing of an in vivo isolevuglandin-modified protein. Mitochondrial cytochrome P450 27A1 (CYP27A1) is a ubiquitous multifunctional sterol C27-hydroxylase that eliminates cholesterol and likely 7-ketocholesterol from the retina and many other tissues. We investigated the post-translational modification of this protein with isolevuglandins, arachidonate oxidation products. Treatment of purified recombinant CYP27A1 with authentic iso[4]levuglandin E(2) (iso[4]LGE(2)) in vitro diminished enzyme activity in a time- and phospholipid-dependent manner. A multiple reaction monitoring protocol was then developed to identify the sites and extent of iso[4]LGE(2) adduction. CYP27A1 exhibited only three Lys residues, Lys(134), Lys(358), and Lys(476), that readily interact with iso[4]LGE(2) in vitro. Such selective modification enabled the generation of an internal standard, (15)N-labeled CYP27A1 modified with iso[4]LGE(2), for the subsequent analysis of a human retinal sample. Two multiple reaction monitoring transitions arising from the peptide AVLK(358)(-C(20)H(26)O(3))ETLR in the retinal sample were observed that co-eluted with the corresponding two (15)N transitions from the supplemented standard. These data demonstrate that modified CYP27A1 is present in the retina. We suggest that such protein modification impairs sterol elimination and likely has other pathological sequelae. We also propose that the post-translational modifications identified in CYP27A1 exemplify a general mechanism whereby oxidative stress and inflammation deleteriously affect protein function, contributing, for example, to cholesterol-rich lesions associated with age-related macular degeneration and cardiovascular disease. The proteomic protocols developed in this study are generally applicable to characterization of lipid-derived oxidative protein modifications occurring in vivo, including proteins bound to membranes.
Collapse
Affiliation(s)
- Casey Charvet
- From the Departments of Ophthalmology and Visual Sciences and
| | - Wei-Li Liao
- the Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, and
| | - Gun-Young Heo
- From the Departments of Ophthalmology and Visual Sciences and
| | - James Laird
- Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | | | - Illarion V. Turko
- the Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, and
- the Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
| | | |
Collapse
|
33
|
Heo GY, Bederman I, Mast N, Liao WL, Turko IV, Pikuleva IA. Conversion of 7-ketocholesterol to oxysterol metabolites by recombinant CYP27A1 and retinal pigment epithelial cells. J Lipid Res 2011; 52:1117-1127. [PMID: 21411718 DOI: 10.1194/jlr.m014217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Of the different oxygenated cholesterol metabolites, 7-ketocholesterol (7KCh) is considered a noxious oxy-sterol implicated in the development of certain pathologies, including those found in the eye. Here we elucidated whether sterol 27-hydroxylase cytochrome P450 27A1 (CYP27A1) is involved in elimination of 7KCh from the posterior part of the eye: the neural retina and underlying retinal pigment epithelium (RPE). We first established that the affinities of purified recombinant CYP27A1 for 7KCh and its endogenous substrate cholesterol are similar, yet 7KCh is metabolized at a 4-fold higher rate than cholesterol in the reconstituted system in vitro. Lipid extracts from bovine neural retina and RPE were then analyzed by isotope dilution GC-MS for the presence of the 7KCh-derived oxysterols. Two metabolites, 3β,27-dihydroxy-5-cholesten-7-one (7KCh-27OH) and 3β-hydroxy-5-cholesten-7-one-26-oic acid (7KCh-27COOH), were detected in the RPE but not in the neural retina. 7KCh-27OH was also formed when RPE homogenates were supplemented with NADPH and the mitochondrial redox system. Quantifications in human RPE showed that CYP27A1 is indeed expressed in the RPE at 2-4-fold higher levels than in the neural retina. The data obtained represent evidence for the role of CYP27A1 in retinal metabolism of 7KCh and suggest that, in addition to cholesterol removal, the functions of this enzyme could also include elimination of toxic endogenous compounds.
Collapse
Affiliation(s)
- Gun-Young Heo
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| | - Ilya Bederman
- Pediatrics, Case Western Reserve University, Cleveland, OH
| | - Natalia Mast
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH
| | - Wei-Li Liao
- Institute for Bioscience and Biotechnology Research, Rockville, MD
| | - Illarion V Turko
- Institute for Bioscience and Biotechnology Research, Rockville, MD; Division Analytical Chemistry, National Institute of Standards and Technology, Gaithersburg, MD
| | - Irina A Pikuleva
- Departments of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
34
|
Mast N, Reem R, Bederman I, Huang S, DiPatre PL, Bjorkhem I, Pikuleva IA. Cholestenoic Acid is an important elimination product of cholesterol in the retina: comparison of retinal cholesterol metabolism with that in the brain. Invest Ophthalmol Vis Sci 2011; 52:594-603. [PMID: 20881306 DOI: 10.1167/iovs.10-6021] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Accumulating evidence indicates a link between cholesterol and age-related macular degeneration. Yet, little is known about cholesterol elimination from the retina and retinal pigment epithelium (RPE), the two layers that are damaged in this blinding disease. Several different pathways of enzymatic cholesterol removal exist in extraocular tissues. The authors tested whether metabolites from these pathways could also be quantified in the bovine and human retina and RPE. For comparison, they measured cholesterol oxidation products in two regions of the bovine and human brain and in the bovine liver and adrenal glands. METHODS Sterol quantification was carried out by isotope dilution gas chromatography-mass spectrometry. Bovine tissues were used first to optimize analytical procedures and to investigate postmortem changes in oxysterol concentrations. Then human specimens were analyzed for oxysterol concentrations. RESULTS Qualitatively, oxysterol profiles were similar in the bovine and human tissues. In the human retina and RPE, the authors could not detect 27-hydroxycholesterol but unexpectedly found that its oxidation product, 5-cholestenoic acid, is the most abundant oxysterol, varying up to threefold in different persons. 24S-Hydroxysterol and pregnenolone were also present in the retina, but at much lower quantities and without significant interindividual variability. In the brain, the predominant oxysterol was 24S-hydroxycholesterol. CONCLUSIONS The oxysterol profile of the retina suggests that all known pathways of cholesterol elimination in extraocular organs are operative in the retina and that they likely vary depending on specific cell type. However, overall oxidation to 5-cholestenoic acid appears to be the predominant mechanism for cholesterol elimination from this organ.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Liao WL, Heo GY, Dodder NG, Reem RE, Mast N, Huang S, Dipatre PL, Turko IV, Pikuleva IA. Quantification of cholesterol-metabolizing P450s CYP27A1 and CYP46A1 in neural tissues reveals a lack of enzyme-product correlations in human retina but not human brain. J Proteome Res 2010; 10:241-8. [PMID: 21049985 DOI: 10.1021/pr1008898] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 enzymes (CYP or P450) 46A1 and 27A1 play important roles in cholesterol elimination from the brain and retina, respectively, yet they have not been quantified in human organs because of their low abundance and association with membrane. On the basis of our previous development of a multiple reaction monitoring (MRM) workflow for measurements of low-abundance membrane proteins, we quantified CYP46A1 and CYP27A1 in human brain and retina samples from four donors. These enzymes were quantified in the total membrane pellet, a fraction of the whole tissue homogenate, using ¹⁵N-labled recombinant P450s as internal standards. The average P450 concentrations/mg of total tissue protein were 345 fmol of CYP46A1 and 110 fmol of CYP27A1 in the temporal lobe, and 60 fmol of CYP46A1 and 490 fmol of CYP27A1 in the retina. The corresponding P450 metabolites were then measured in the same tissue samples and compared to the P450 enzyme concentrations. Investigation of the enzyme-product relationships and analysis of the P450 measurements based on different signature peptides revealed a possibility of retina-specific post-translational modification of CYP27A1. The data obtained provide important insights into the mechanisms of cholesterol elimination from different neural tissues.
Collapse
Affiliation(s)
- Wei-Li Liao
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liao WL, Heo GY, Dodder NG, Pikuleva IA, Turko IV. Optimizing the conditions of a multiple reaction monitoring assay for membrane proteins: quantification of cytochrome P450 11A1 and adrenodoxin reductase in bovine adrenal cortex and retina. Anal Chem 2010; 82:5760-7. [PMID: 20521825 DOI: 10.1021/ac100811x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Approximately 30% of naturally occurring proteins are predicted to be embedded in biological membranes. Nevertheless, this group of proteins is traditionally understudied due to limitations of the available analytical tools. To facilitate the analysis of membrane proteins, the analytical methods for their soluble counterparts must be optimized or modified. Multiple reaction monitoring (MRM) assays have proven successful for the absolute quantification of proteins and for profiling protein modifications in cell lysates and human plasma/serum but have found little application in the analysis of membrane proteins. We report on the optimization of sample preparation conditions for the quantification of two membrane proteins, cytochrome P450 11A1 (CYP11A1) and adrenodoxin reductase (AdR). These conditions can be used for the analysis of other membrane proteins. We have demonstrated that membrane proteins that are tightly associated with the membrane, such as CYP11A1, can be quantified in the total tissue membrane pellet obtained after high-speed centrifugation, whereas proteins that are weakly associated with the membrane, such as AdR, must be quantified in the whole tissue homogenate. We have compared quantifications of CYP11A1 using two different detergents, RapiGest SP and sodium cholate, and two different trypsins, sequencing grade modified trypsin and trypsin, type IX-S from porcine pancreas. The measured concentrations in these experiments were similar and encouraged the use of either combination of detergent/trypsin for quantification of other membrane proteins. Overall, the CYP11A1 and AdR quantified in this work ranged from 110 pmol to 10 fmol per milligram of tissue protein.
Collapse
Affiliation(s)
- Wei-Li Liao
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | |
Collapse
|
37
|
Fliesler SJ, Bretillon L. The ins and outs of cholesterol in the vertebrate retina. J Lipid Res 2010; 51:3399-413. [PMID: 20861164 DOI: 10.1194/jlr.r010538] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The vertebrate retina has multiple demands for utilization of cholesterol and must meet those demands either by synthesizing its own supply of cholesterol or by importing cholesterol from extraretinal sources, or both. Unlike the blood-brain barrier, the blood-retina barrier allows uptake of cholesterol from the circulation via a lipoprotein-based/receptor-mediated mechanism. Under normal conditions, cholesterol homeostasis is tightly regulated; also, cholesterol exists in the neural retina overwhelmingly in unesterified form, and sterol intermediates are present in minimal to negligible quantities. However, under certain pathological conditions, either due to an inborn error in cholesterol biosynthesis or as a consequence of exposure to selective inhibitors of enzymes in the cholesterol pathway, the ratio of sterol intermediates to cholesterol in the retina can rise dramatically and persist, in some cases resulting in progressive degeneration that significantly compromises the structure and function of the retina. Although the relative contributions of de novo synthesis versus extraretinal uptake are not yet known, herein we review what is known about these processes and the dynamics of cholesterol in the vertebrate retina and indicate some future avenues of research in this area.
Collapse
Affiliation(s)
- Steven J Fliesler
- Research Service, Veterans Administration Western New York Healthcare System, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | | |
Collapse
|
38
|
Dasari B, Prasanthi JRP, Marwarha G, Singh BB, Ghribi O. The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells. BMC Ophthalmol 2010; 10:22. [PMID: 20836858 PMCID: PMC2946278 DOI: 10.1186/1471-2415-10-22] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/13/2010] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer's disease (AD) and age-related macular degeneration (AMD) share several pathological features including β-amyloid (Aβ) peptide accumulation, oxidative damage, and cell death. The causes of AD and AMD are not known but several studies suggest disturbances in cholesterol metabolism as a culprit of these diseases. We have recently shown that the cholesterol oxidation metabolite 27-hydroxycholesterol (27-OHC) causes AD-like pathology in human neuroblastoma SH-SY5Y cells and in organotypic hippocampal slices. However, the extent to which and the mechanisms by which 27-OHC may also cause pathological hallmarks related to AMD are ill-defined. In this study, the effects of 27-OHC on AMD-related pathology were determined in ARPE-19 cells. These cells have structural and functional properties relevant to retinal pigmented epithelial cells, a target in the course of AMD. Methods ARPE-19 cells were treated with 0, 10 or 25 μM 27-OHC for 24 hours. Levels of Aβ peptide, mitochondrial and endoplasmic reticulum (ER) stress markers, Ca2+ homeostasis, glutathione depletion, reactive oxygen species (ROS) generation, inflammation and cell death were assessed using ELISA, Western blot, immunocytochemistry, and specific assays. Results 27-OHC dose-dependently increased Aβ peptide production, increased levels of ER stress specific markers caspase 12 and gadd153 (also called CHOP), reduced mitochondrial membrane potential, triggered Ca2+ dyshomeostasis, increased levels of the nuclear factor κB (NFκB) and heme-oxygenase 1 (HO-1), two proteins activated by oxidative stress. Additionally, 27-OHC caused glutathione depletion, ROS generation, inflammation and apoptotic-mediated cell death. Conclusions The cholesterol metabolite 27-OHC is toxic to RPE cells. The deleterious effects of this oxysterol ranged from Aβ accumulation to oxidative cell damage. Our results suggest that high levels of 27-OHC may represent a common pathogenic factor for both AMD and AD.
Collapse
Affiliation(s)
- Bhanu Dasari
- Department of Pharmacology, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, North Dakota 58202, USA.
| | | | | | | | | |
Collapse
|
39
|
Rodríguez IR, Larrayoz IM. Cholesterol oxidation in the retina: implications of 7KCh formation in chronic inflammation and age-related macular degeneration. J Lipid Res 2010; 51:2847-62. [PMID: 20567027 DOI: 10.1194/jlr.r004820] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review will discuss the formation and potential implications of 7-ketocholesterol (7KCh) in the retina. 7KCh is a proinflammatory oxysterol known to be present in high amounts in oxidized LDL deposits associated with atheromatous plaques. 7KCh is generated in situ in these lipoprotein deposits where it can accumulate and reach very high concentrations. In normal primate retina, 7KCh has been found associated with lipoprotein deposits in the choriocapillaris, Bruch's membrane, and the retinal pigment epithelium (RPE). In photodamaged rats, 7KCh has been found in the neural retina in areas of high mitochondrial content, ganglion cells, photoreceptor inner segments and synapses, and the RPE. Intermediates found by LCMS indicate 7KCh is formed via a free radical-mediated mechanism catalyzed by iron. 7KCh seems to activate several kinase signaling pathways that work via nuclear factor κB and cause the induction of vascular endothelial growth factor, interleukin (IL)-6, and IL-8. There seems to be little evidence of 7KCh metabolism in the retina, although some form of efflux mechanism may be active. The chronic mode of formation and the potent inflammatory properties of 7KCh indicate it may be an "age-related" risk factor in aging diseases such as atherosclerosis, Alzheimer's, and age-related macular degeneration.
Collapse
Affiliation(s)
- Ignacio R Rodríguez
- Mechanisms of Retinal Diseases Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|
40
|
Mast N, Shafaati M, Zaman W, Zheng W, Prusak D, Wood T, Ansari GAS, Lövgren-Sandblom A, Olin M, Bjorkhem I, Pikuleva I. Marked variability in hepatic expression of cytochromes CYP7A1 and CYP27A1 as compared to cerebral CYP46A1. Lessons from a dietary study with omega 3 fatty acids in hamsters. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:674-81. [PMID: 20298807 PMCID: PMC2866082 DOI: 10.1016/j.bbalip.2010.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/05/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Two diets simulating the recommendations of the American Heart Association to increase the intake of n-3 polyunsaturated fatty acids (n-3 PUFAs) were tested on Golden Syrian hamsters and compared to the diet simulating the current estimated consumption of fat in the United States. N-3 PUFAs were evaluated for their effects on serum and brain lipids and on the three cytochrome P450 enzymes (CYPs 7A1, 27A1, and 46A1) that play key roles in cholesterol elimination from different organs. Hamsters on the highest concentration of n-3 PUFAs had a statistically significant decrease in LDL and HDL cholesterol and no change in serum total cholesterol and triglycerides levels. CYP27A1 and CYP46A1 mRNA levels were increased in the liver and brain, respectively, whereas possible effects on CYP7A1 were obscured by a marked intergroup variability at mRNA, protein, and sterol product levels. Increased levels of CYP46A1 mRNA in the brain did not lead to significant changes in the levels of lathosterol, 24S-hydroxycholesterol or cholesterol in this organ. The data obtained are discussed in relation to inconsistent effects of n-3 PUFAs on serum lipids in human trials and reported positive effects of fish oil on cognitive function.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Marjan Shafaati
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Wahiduz Zaman
- Department of Pharmacology and Toxicology, University of Texas, Medical Branch, Galveston, TX, USA
| | - Wenchao Zheng
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Deborah Prusak
- Department of Biochemistry and Molecular Biology, University of Texas, Medical Branch, Galveston, TX, USA
| | - Thomas Wood
- Department of Biochemistry and Molecular Biology, University of Texas, Medical Branch, Galveston, TX, USA
| | - G. A. S. Ansari
- Department of Biochemistry and Molecular Biology, University of Texas, Medical Branch, Galveston, TX, USA
| | - Anita Lövgren-Sandblom
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Maria Olin
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Ingemar Bjorkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Irina Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
41
|
Li Y, Wu X, Lee TB, Isbell EK, Parish EJ, Gorden AEV. An effective method for allylic oxidation of Delta5-steroids using tert-butyl hydroperoxide. J Org Chem 2010; 75:1807-10. [PMID: 20141120 DOI: 10.1021/jo902637k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An allylic oxidation method for Delta(5)-steroids using TBHP as oxidant with a 2-quinoxalinol salen Cu(II) complex as catalyst is reported. A variety of Delta(5)-steroidal substrates are selectively oxidized to the corresponding enones. Excellent yields are achieved (up to 99% under optimized conditions) while significantly reducing reaction times required as compared to other current methods.
Collapse
Affiliation(s)
- Yuancheng Li
- Department of Chemistry and Biochemistry, College of Science and Mathematics, Auburn Univeristy, Auburn, Alabama 36849-5319, USA
| | | | | | | | | | | |
Collapse
|
42
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28:393-422. [PMID: 19698799 PMCID: PMC4319375 DOI: 10.1016/j.preteyeres.2009.08.001] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch's membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA.
| | | | | | | |
Collapse
|
43
|
Javitt NB, Javitt JC. The retinal oxysterol pathway: a unifying hypothesis for the cause of age-related macular degeneration. Curr Opin Ophthalmol 2009; 20:151-7. [DOI: 10.1097/icu.0b013e32832af468] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Luthra S, Dong J, Gramajo AL, Chwa M, Kim DW, Neekhra A, Kuppermann BD, Kenney MC. 7-Ketocholesterol activates caspases-3/7, -8, and -12 in human microvascular endothelial cells in vitro. Microvasc Res 2008; 75:343-50. [PMID: 18068200 DOI: 10.1016/j.mvr.2007.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 09/18/2007] [Accepted: 10/19/2007] [Indexed: 11/30/2022]
Abstract
7-Ketocholesterol (7kCh) is a major oxysterol found associated with vascular diseases. Human microvascular endothelial cells (HMVECs) were cultured with different concentrations of 7kCh with and without inhibitors. Cell viabilities and caspase activities were assessed. 7kCh caused loss of cell viability in a dose-dependent manner. Caspases-8, -12, and -3/7 but not caspase-9 were activated by 7kCh treatment. The 7kCh-induced caspase-8 activity was blocked partially by pre-treatment with z-VAD-fmk and z-IETD-fmk, a caspase-8 inhibitor. However, pre-treatment with z-ATAD-fmk, a caspase-12 inhibitor, followed by 7kCh exposure lead to significantly increased caspase-8 activity. This suggests that caspase-8 and caspase-12 pathways have unique inhibition patterns and that caspase-12 is likely not upstream and feeding into caspase-8 but the pathways may function in parallel to each other. Caspase-3/7 activation was inhibited partially by low density lipoprotein (LDL), high density lipoprotein (HDL), z-VAD-fmk (pan-caspase inhibitor), and low doses (0.01 and 0.001 microM) of the cholesterol lowering drug, simvastatin. However, only LDL partially protected against 7kCh-induced loss of cell viability suggesting that caspase-independent pathways also contributed to the cell loss and that protection from oxysterol damage may require inhibition of multiple pathways. Moreover, our data suggest that oxysterols such as 7kCh can damage HMVECs cells in part via caspase-dependent apoptosis and may play a role in vascular and retinal diseases.
Collapse
|
45
|
Javitt NB. Oxysterols: novel biologic roles for the 21st century. Steroids 2008; 73:149-57. [PMID: 18068744 DOI: 10.1016/j.steroids.2007.10.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/17/2007] [Accepted: 10/12/2007] [Indexed: 01/17/2023]
Abstract
A major focus for the 21st century are the sterol intermediates in cholesterol synthesis and their metabolites. No longer considered inactive way stations in their transformation to cholesterol, both physiologic and pathophysiologic studies, though early in their development, indicate novel biologic roles for these sterols, and their oxysterol metabolites that bypass cholesterol, the expected end product. A major impetus for further inquiry is the recognition that in genetically determined errors in cholesterol synthesis such as Smith-Lemil-Opitz syndrome, the phenotypic effects on the developing fetus are not solely attributable to the lack of cholesterol but the accumulation of 7-dehydrocholesterol and its 27-hydroxy metabolite. This view is now supported by a new mouse model, the double knockout Insig1 & 2 (insulin-induced genes 1 & 2) in which lack of the protein product results in a greater production of lanosterol compared to cholesterol during fetal life with severe dysmorphic consequences. Further support can be derived from in vitro studies of the Sonic hedgehog signaling pathway, essential for normal morphogenesis in the central nervous system and perhaps other organs, which may require the local presence of oxysterols for full expression. Future studies that can delineate the specific role of a sterol intermediate or its metabolite require a paradigm shift away from the generic use of oxysterols as a class of compounds to a focus on specific sterols that can be expected in tissues and techniques for mimicking the local environment. Another class of oxysterols are those arising by photoxidation, now considered to be an expected event generated by the photons of visible blue light and therefore pari passu with normal vision. The sequence of events from peroxides of cholesterol to hydroxy and keto derivatives is the signature of singlet oxygen as opposed to free radicals and other mechanisms for generating reactive oxygen species. Perhaps surprisingly, the retina expresses CYP 27A1 and CYP 46A1, enzymes with broad substrate specificity for ring-modified sterols, implying that, in addition to a rich blood supply for disposing of potentially toxic oxysterols, they can be detoxified locally. Recognition that the retina has nuclear receptors similar to those found in other tissues raises the possibility that the sterols that are generated may function in their traditional role as ligands for modulating gene expression but other, nonligand, activities can be expected since other proteins such as the oxysterol-binding proteins exist and are considered to have biologic activities. To critically evaluate these potentially new biologic roles for oxysterols a need exists for the synthesis and utilization of the expected naturally occurring metabolites rather than available surrogates that may not be truly representative of their tissue effects and to utilize analytical techniques that can identify their existence at the expected concentrations in tissues.
Collapse
Affiliation(s)
- Norman B Javitt
- Department of Pediatrics and Medicine, NYU School of Medicine, 550 First Avenue, New York, NY 10016, United States.
| |
Collapse
|
46
|
Choi H, Doyle MP. Optimal TBHP allylic oxidation of Delta5-steroids catalyzed by dirhodium caprolactamate. Org Lett 2007; 9:5349-52. [PMID: 18027961 PMCID: PMC2596589 DOI: 10.1021/ol7025284] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dirhodium caprolactamate is the most efficient catalyst for the oxidation of Delta5-steroids to 7-keto-Delta5-steroids by 70% tert-butyl hydroperoxide in water (T-HYDRO). Isolated product yields range from 38 to 87%.
Collapse
Affiliation(s)
- Hojae Choi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Michael P. Doyle
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
47
|
Fuda H, Javitt NB, Mitamura K, Ikegawa S, Strott CA. Oxysterols are substrates for cholesterol sulfotransferase. J Lipid Res 2007; 48:1343-52. [PMID: 17347498 DOI: 10.1194/jlr.m700018-jlr200] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxysterols constitute a class of cholesterol derivatives that exhibit broad biological effects ranging from cytotoxicity to regulation of nuclear receptors. The role of oxysterols such as 7-ketocholesterol (7-KC) in the development of retinal macular degeneration and atheromatous lesions is of particular interest, but little is known of their metabolic fate. We establish that the steroid/sterol sulfotransferase SULT2B1b, known to efficiently sulfonate cholesterol, also effectively sulfonates a variety of oxysterols, including 7-KC. The cytotoxic effect of 7-KC on 293T cells was attenuated when these cells, which do not express SULT2B1b, were transfected with SULT2B1b cDNA. Importantly, protection from 7-KC-induced loss of cell viability with transfection correlated with the synthesis of SULT2B1b protein and the production of the 7-KC sulfoconjugate (7-KCS). Moreover, when 7-KCS was added to the culture medium of 293T cells in amounts equimolar to 7-KC, no loss of cell viability occurred. Additionally, MCF-7 cells, which highly express SULT2B1b, were significantly more resistant to the cytotoxic effect of 7-KC. We extended the range of oxysterol substrates for SULT2B1b to include 7alpha/7beta-hydroxycholesterol and 5alpha,6alpha/5beta,6beta-epoxycholesterol as well as the 7alpha-hydroperoxide derivative of cholesterol. Thus, SULT2B1b, by acting on a variety of oxysterols, offers a potential pathway for modulating in vivo the injurious effects of these compounds.
Collapse
Affiliation(s)
- Hirotoshi Fuda
- Section on Steroid Regulation, Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
48
|
Javitt NB. Oxysterols: functional significance in fetal development and the maintenance of normal retinal function. Curr Opin Lipidol 2007; 18:283-8. [PMID: 17495602 DOI: 10.1097/mol.0b013e328133851e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Recent findings extend the biologic activities of oxysterols as ligands for nuclear receptors to a role in morphogenesis during fetal development and to a role in the metabolism of photooxidation products of cholesterol in the retina. RECENT FINDINGS A 1000-fold increase of the 27-hydroxy metabolite of 7-dehydrocholesterol in the plasma of children with Smith-Lemli-Opitz syndrome imply that intermediates in cholesterol synthesis follow alternate pathways of metabolism that generate novel oxysterols. A mouse model also finds an increase in sterol intermediates as the proximate cause of dysmorphisms. A role for oxysterols in the effects of Sonic hedgehog protein focuses on their role in normal fetal development. Both CYP27A1 and CYP46A1 are expressed in primate retina indicating that local metabolism of 7-ketocholesterol to nontoxic derivatives is important for preventing retinal degeneration. SUMMARY Recent data expand the functional roles of oxysterols to fetal development and to the detoxification of oxidation products of cholesterol. This review shifts the focus of attention from studies of their ligand-binding activity to studies of animal models that indicate a number of important biologic effects during fetal development and during the aging process.
Collapse
Affiliation(s)
- Norman B Javitt
- New York University School of Medicine, New York, New York, USA.
| |
Collapse
|