1
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Bale LK, West SA, Gades NM, Baker DJ, Conover CA. Gene deletion of Pregnancy-associated Plasma Protein-A (PAPP-A) improves pathology and cognition in an Alzheimer's disease mouse model. Exp Neurol 2024; 382:114976. [PMID: 39349117 PMCID: PMC11502239 DOI: 10.1016/j.expneurol.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/02/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease of age with no effective preventative or treatment approaches. Deeper understanding of the mechanisms underlying the accumulation of toxic β-amyloid oligopeptides and the formation of amyloid plaque in AD has the potential to identify new therapeutic targets. Prior research links the insulin-like growth factor (IGF) system to pathologic mechanisms underlying AD. Suppression of local IGF-I receptor (IGFIR) signaling in AD mice has been shown to reduce plaque formation in the brain and delay neurodegeneration and behavioral changes. However, direct inhibitors of IGFIR signaling are not a viable treatment option for AD due to the essentiality of the IGFIR in physiological growth and metabolism. We have previously demonstrated a more selective means to reduce local IGFIR signaling through inhibition of PAPP-A, a novel zinc metalloprotease that regulates local IGF-I bioavailability through cleavage of inhibitory IGF binding proteins. Here we tested if deletion of PAPP-A in a mouse model of AD provides protection against pathology and behavioral changes. We show that compared to AD mice, AD/PAPP-A KO mice had significantly less plaque burden, reduced astrocytic activation, decreased IGF-IR activity, and improved cognition. Human senile AD plaques showed specific immunostaining for PAPP-A. Thus, inhibition of PAPP-A expression or activity may represent a novel treatment strategy for AD.
Collapse
Affiliation(s)
- Laurie K Bale
- Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Sally A West
- Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, AZ 85259, United States of America.
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Cheryl A Conover
- Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States of America.
| |
Collapse
|
3
|
Ríos JA, Bórquez JC, Godoy JA, Zolezzi JM, Furrianca MC, Inestrosa NC. Emerging role of Metformin in Alzheimer's disease: A translational view. Ageing Res Rev 2024; 100:102439. [PMID: 39074563 DOI: 10.1016/j.arr.2024.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Alzheimer's disease (AD) constitutes a major public-health issue of our time. Regrettably, despite our considerable understanding of the pathophysiological aspects of this disease, current interventions lead to poor outcomes. Furthermore, experimentally promising compounds have continuously failed when translated to clinical trials. Along with increased population ageing, Type 2 Diabetes Mellitus (T2DM) has become an extremely common condition, mainly due to unbalanced dietary habits. Substantial epidemiological evidence correlates T2DM with cognitive impairment as well. Considering that brain insulin resistance, mitochondrial dysfunction, oxidative stress, and amyloidogenesis are common phenomena, further approaching the common features among these pathological conditions. Metformin constitutes the first-choice drug to preclude insulin resistance in T2DM clinical management. Experimental evidence suggests that its functions might include neuroprotective effects, in addition to its hypoglycemic activity. This review aims to summarize and discuss current knowledge of experimental data on metformin on this path towards translational medicine. Finally, we discuss the controversial data of responses to metformin in vitro, and in vivo, animal models and human studies.
Collapse
Affiliation(s)
- Juvenal A Ríos
- Facultad de Medicina y Ciencia, Escuela de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Juan Carlos Bórquez
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile; Facultad de Ciencias de la Salud, Universidad de Magallanes, Punta Arenas, Chile
| | - Juan A Godoy
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | | | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
4
|
Ma X, Gao H, Wu Y, Zhu X, Wu S, Lin L. Investigating Modifiable Risk Factors Across Dementia Subtypes: Insights from the UK Biobank. Biomedicines 2024; 12:1967. [PMID: 39335481 PMCID: PMC11428917 DOI: 10.3390/biomedicines12091967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the relationship between modifiable risk factors and dementia subtypes using data from 460,799 participants in the UK Biobank. Utilizing univariate Cox proportional hazards regression models, we examined the associations between 83 modifiable risk factors and the risks of all-cause dementia (ACD), Alzheimer's disease (AD), and vascular dementia (VD). Composite scores for different domains were generated by aggregating risk factors associated with ACD, AD, and VD, respectively, and their joint associations were assessed in multivariable Cox models. Additionally, population attributable fractions (PAF) were utilized to estimate the potential impact of eliminating adverse characteristics of the risk domains. Our findings revealed that an unfavorable medical history significantly increased the risk of ACD, AD, and VD (hazard ratios (HR) = 1.88, 95% confidence interval (95% CI): 1.74-2.03, p < 0.001; HR = 1.80, 95% CI: 1.54-2.10, p < 0.001; HR = 2.39, 95% CI: 2.10-2.71, p < 0.001, respectively). Blood markers (PAF = 12.1%; 17.4%) emerged as the most important risk domain for preventing ACD and VD, while psychiatric factors (PAF = 18.3%) were the most important for preventing AD. This study underscores the potential for preventing dementia and its subtypes through targeted interventions for modifiable risk factors. The distinct insights provided by HR and PAF emphasize the importance of considering both the strength of the associations and the population-level impact of dementia prevention strategies. Our research provides valuable guidance for developing effective public health interventions aimed at reducing the burden of dementia, representing a significant advancement in the field.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Lin
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China; (X.M.); (H.G.); (Y.W.); (X.Z.); (S.W.)
| |
Collapse
|
5
|
Lemche E, Killick R, Mitchell J, Caton PW, Choudhary P, Howard JK. Molecular mechanisms linking type 2 diabetes mellitus and late-onset Alzheimer's disease: A systematic review and qualitative meta-analysis. Neurobiol Dis 2024; 196:106485. [PMID: 38643861 DOI: 10.1016/j.nbd.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/23/2024] Open
Abstract
Research evidence indicating common metabolic mechanisms through which type 2 diabetes mellitus (T2DM) increases risk of late-onset Alzheimer's dementia (LOAD) has accumulated over recent decades. The aim of this systematic review is to provide a comprehensive review of common mechanisms, which have hitherto been discussed in separate perspectives, and to assemble and evaluate candidate loci and epigenetic modifications contributing to polygenic risk linkages between T2DM and LOAD. For the systematic review on pathophysiological mechanisms, both human and animal studies up to December 2023 are included. For the qualitative meta-analysis of genomic bases, human association studies were examined; for epigenetic mechanisms, data from human studies and animal models were accepted. Papers describing pathophysiological studies were identified in databases, and further literature gathered from cited work. For genomic and epigenomic studies, literature mining was conducted by formalised search codes using Boolean operators in search engines, and augmented by GeneRif citations in Entrez Gene, and other sources (WikiGenes, etc.). For the systematic review of pathophysiological mechanisms, 923 publications were evaluated, and 138 gene loci extracted for testing candidate risk linkages. 3 57 publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight insulin signalling, inflammation and inflammasome pathways, proteolysis, gluconeogenesis and glycolysis, glycosylation, lipoprotein metabolism and oxidation, cell cycle regulation or survival, autophagic-lysosomal pathways, and energy. Documented findings suggest interplay between brain insulin resistance, neuroinflammation, insult compensatory mechanisms, and peripheral metabolic dysregulation in T2DM and LOAD linkage. The results allow for more streamlined longitudinal studies of T2DM-LOAD risk linkages.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry and Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom.
| | - Richard Killick
- Section of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Jackie Mitchell
- Department of Basic and Clinical Neurosciences, Maurice Wohl CIinical Neurosciences Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Paul W Caton
- Diabetes Research Group, School of Life Course Sciences, King's College London, Hodgkin Building, Guy's Campus, London SE1 1UL, United Kingdom
| | - Pratik Choudhary
- Diabetes Research Group, Weston Education Centre, King's College London, 10 Cutcombe Road, London SE5 9RJ, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, Hodgkin Building, Guy's Campus, King's College London, Great Maze Pond, London SE1 1UL, United Kingdom
| |
Collapse
|
6
|
Miller LR, Bickel MA, Tarantini S, Runion ME, Matacchiera Z, Vance ML, Hibbs C, Vaden H, Nagykaldi D, Martin T, Bullen EC, Pinckard J, Kiss T, Howard EW, Yabluchanskiy A, Conley SM. IGF1R deficiency in vascular smooth muscle cells impairs myogenic autoregulation and cognition in mice. Front Aging Neurosci 2024; 16:1320808. [PMID: 38425784 PMCID: PMC10902040 DOI: 10.3389/fnagi.2024.1320808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Cerebrovascular pathologies contribute to cognitive decline during aging, leading to vascular cognitive impairment and dementia (VCID). Levels of circulating insulin-like growth factor 1 (IGF-1), a vasoprotective hormone, decrease during aging. Decreased circulating IGF-1 in animal models leads to the development of VCID-like symptoms, but the cellular mechanisms underlying IGF-1-deficiency associated pathologies in the aged cerebrovasculature remain poorly understood. Here, we test the hypothesis that vascular smooth muscle cells (VSMCs) play an integral part in mediating the vasoprotective effects of IGF-1. Methods We used a hypertension-based model of cerebrovascular dysfunction in mice with VSMC-specific IGF-1 receptor (Igf1r) deficiency and evaluated the development of cerebrovascular pathologies and cognitive dysfunction. Results VSMC-specific Igf1r deficiency led to impaired cerebral myogenic autoregulation, independent of blood pressure changes, which was also associated with impaired spatial learning and memory function as measured by radial arm water maze and impaired motor learning measured by rotarod. In contrast, VSMC-specific IGF-1 receptor knockdown did not lead to cerebral microvascular rarefaction. Discussion These studies suggest that VSMCs are key targets for IGF-1 in the context of cerebrovascular health, playing a role in vessel stability alongside other cells in the neurovascular unit, and that VSMC dysfunction in aging likely contributes to VCID.
Collapse
Affiliation(s)
- Lauren R. Miller
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Megan E. Runion
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Zoe Matacchiera
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michaela L. Vance
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Clara Hibbs
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Hannah Vaden
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Domonkos Nagykaldi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Teryn Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth C. Bullen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jessica Pinckard
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tamas Kiss
- Pediatric Center, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Eric W. Howard
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
7
|
Gulej R, Csik B, Faakye J, Tarantini S, Shanmugarama S, Chandragiri SS, Mukli P, Conley S, Csiszar A, Ungvari Z, Yabluchanskiy A, Nyúl-Tóth Á. Endothelial deficiency of insulin-like growth factor-1 receptor leads to blood-brain barrier disruption and accelerated endothelial senescence in mice, mimicking aspects of the brain aging phenotype. Microcirculation 2024; 31:e12840. [PMID: 38082450 PMCID: PMC10922445 DOI: 10.1111/micc.12840] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.
Collapse
Affiliation(s)
- Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Janet Faakye
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Santny Shanmugarama
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Siva Sai Chandragiri
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Cui L, Gao L, Geng H, Zhang H, Wei H. Analysis of the relationship between mild cognitive impairment and serum klotho protein and insulin-like growth factor-1 in the elderly. Technol Health Care 2024; 32:1455-1462. [PMID: 37599547 DOI: 10.3233/thc-230462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a mild memory or cognitive impairment. OBJECTIVE To explore the relationship between serum klotho (K1) protein and insulin-like growth factor-1 and mild cognitive impairment in the elderly in order to provide accurate and appropriate indicators for clinical diagnosis and treatment of MCI. METHODS This randomized stratified study adopted a multistage cluster sampling method. 161 elderly patients with mild cognitive impairment were included as the MCI group, and 161 healthy people matched with the MCI group in gender, age and education were selected as the control group. RESULTS The levels of serum K1 protein and insulin-like growth factor-1 in the MCI group were lower than those in the control group (P< 0.05). Both IGF-1 and K1 had predictive value for MCI (P< 0.05). The area under the curve (AUC) of IGF-1 for predicting MCI was 0.859 (95% CI: 0.790∼0.929), and the AUC of K1 for predicting MCI was 0.793 (95% CI: 0.694∼0.892). The value of joint prediction of the two indicators was the highest, with an AUC of 0.939 (95% CI: 0.896-0.993). CONCLUSION High serum K1 and insulin-like growth factor-1 are the protective factors of cognitive impairment in MCI patients. Both IGF-1 and serum K1 proteins have predictive value for MCI, and the combination of the two indicators has the highest predictive value.
Collapse
|
9
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
10
|
Chaves-Coira I, García-Magro N, Zegarra-Valdivia J, Torres-Alemán I, Núñez Á. Cognitive Deficits in Aging Related to Changes in Basal Forebrain Neuronal Activity. Cells 2023; 12:1477. [PMID: 37296598 PMCID: PMC10252596 DOI: 10.3390/cells12111477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Aging is a physiological process accompanied by a decline in cognitive performance. The cholinergic neurons of the basal forebrain provide projections to the cortex that are directly engaged in many cognitive processes in mammals. In addition, basal forebrain neurons contribute to the generation of different rhythms in the EEG along the sleep/wakefulness cycle. The aim of this review is to provide an overview of recent advances grouped around the changes in basal forebrain activity during healthy aging. Elucidating the underlying mechanisms of brain function and their decline is especially relevant in today's society as an increasingly aged population faces higher risks of developing neurodegenerative diseases such as Alzheimer's disease. The profound age-related cognitive deficits and neurodegenerative diseases associated with basal forebrain dysfunction highlight the importance of investigating the aging of this brain region.
Collapse
Affiliation(s)
- Irene Chaves-Coira
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Nuria García-Magro
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Jonathan Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Facultad de Ciencias de la Salud, Universidad Señor de Sipán, Chiclayo 02001, Peru
| | - Ignacio Torres-Alemán
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Ikerbasque Science Foundation, 48009 Bilbao, Spain
| | - Ángel Núñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| |
Collapse
|
11
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
12
|
Toth L, Czigler A, Hegedus E, Komaromy H, Amrein K, Czeiter E, Yabluchanskiy A, Koller A, Orsi G, Perlaki G, Schwarcz A, Buki A, Ungvari Z, Toth PJ. Age-related decline in circulating IGF-1 associates with impaired neurovascular coupling responses in older adults. GeroScience 2022; 44:2771-2783. [PMID: 35869380 PMCID: PMC9768079 DOI: 10.1007/s11357-022-00623-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023] Open
Abstract
Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) to the increased oxygen and energy requirements of active brain regions via neurovascular coupling (NVC) contributes to the genesis of age-related cognitive impairment. Aging is associated with marked deficiency in the vasoprotective hormone insulin-like growth factor-1 (IGF-1). Preclinical studies on animal models of aging suggest that circulating IGF-1 deficiency is causally linked to impairment of NVC responses. The present study was designed to test the hypotheses that decreases in circulating IGF-1 levels in older adults also predict the magnitude of age-related decline of NVC responses. In a single-center cross-sectional study, we enrolled healthy young (n = 31, 11 female, 20 male, mean age: 28.4 + / - 4.2 years) and aged volunteers (n = 32, 18 female, 14 male, mean age: 67.9 + / - 4.1 years). Serum IGF-1 level, basal CBF (phase contrast magnetic resonance imaging (MRI)), and NVC responses during the trail making task (with transcranial Doppler sonography) were assessed. We found that circulating IGF-1 levels were significantly decreased with age and associated with decreased basal CBF. Age-related decline in IGF-1 levels predicted the magnitude of age-related decline in NVC responses. In conclusion, our study provides additional evidence in support of the concept that age-related circulating IGF-1 deficiency contributes to neurovascular aging, impairing CBF and functional hyperemia in older adults.
Collapse
Affiliation(s)
- Luca Toth
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Czigler
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Hegedus
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Hedvig Komaromy
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Akos Koller
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Gergely Orsi
- ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Gabor Perlaki
- ELKH-PTE Clinical Neuroscience MR Research Group, Eötvös Lóránd Research Network (ELKH), Pecs, Hungary
- Department of Neurology, Medical School, University of Pecs, Pecs, Hungary
| | - Attila Schwarcz
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Andras Buki
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter J Toth
- Department of Neurosurgery, Medical School, University of Pecs, 2 Ret Street, Pecs, 7624, Hungary.
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
13
|
Al-Massadi O, Parini P, Fernø J, Luquet S, Quiñones M. Metabolic actions of the growth hormone-insulin growth factor-1 axis and its interaction with the central nervous system. Rev Endocr Metab Disord 2022; 23:919-930. [PMID: 35687272 DOI: 10.1007/s11154-022-09732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
The growth hormone/insulin growth factor-1 axis is a key endocrine system that exerts profound effects on metabolism by its actions on different peripheral tissues but also in the brain. Growth hormone together with insulin growth factor-1 perform metabolic adjustments, including regulation of food intake, energy expenditure, and glycemia. The dysregulation of this hepatic axis leads to different metabolic disorders including obesity, type 2 diabetes or liver disease. In this review, we discuss how the growth hormone/insulin growth factor-1 axis regulates metabolism and its interactions with the central nervous system. Finally, we state our vision for possible therapeutic uses of compounds based in the components of this hepatic axis.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706, Santiago de Compostela, Spain.
| | - Paolo Parini
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Stockholm, Sweden
- Department of Medicine, Metabolism Unit, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Patient Area Nephrology and Endocrinology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France
| | - Mar Quiñones
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706, Santiago de Compostela, Spain.
- Unité de Biologie Fonctionnelle et Adaptative, Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France.
| |
Collapse
|
14
|
Menne F, Schipke CG, Clark C, Popp J. Long-term stability and age-dependence of six regulatory serum proteins. Biomark Med 2022; 16:511-521. [PMID: 35272476 DOI: 10.2217/bmm-2021-0518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aim: The development of biomarker-based diagnostic procedures often relies on samples stored for several years. We aimed to investigate the influence of storage time and patient age on six neuroregulatory and immunoregulatory serum biomarkers. Materials & methods: We quantified six biomarkers in serum from 151 individuals using ELISA. Serum was stored at -80°C for up to 9.5 years. Results: When associating storage time with biomarker values, BDNF, VEGF-A and TGF-β1 showed a significant increase over time; IGF-1, MCP-1 and IL-18 did not. Associating participant age with biomarkers, only IL-18 in Alzheimer's disease patients showed a significant increase. Conclusion: Storage time can influence results of biomarkers in human serum. This needs to be considered when assessing samples stored for several years.
Collapse
Affiliation(s)
- Felix Menne
- Predemtec AG, Rudower Chaussee 29, Berlin, 12489, Germany
| | | | - Christopher Clark
- Institute for Regenerative Medicine, University of Zürich, Wagistrasse 12, Schlieren, 8952, Switzerland.,Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, University of Zürich, Minervastrasse 145, PO Box 341, Zürich, 8032, Switzerland
| | - Julius Popp
- Old Age Psychiatry, University Hospital of Lausanne, Rue du Bugnon 46, Lausanne, 1011, Switzerland.,Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, University of Zürich, Minervastrasse 145, PO Box 341, Zürich, 8032, Switzerland
| |
Collapse
|
15
|
IGF-1 Gene Transfer Modifies Inflammatory Environment and Gene Expression in the Caudate-Putamen of Aged Female Rat Brain. Mol Neurobiol 2022; 59:3337-3352. [DOI: 10.1007/s12035-022-02791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/04/2022] [Indexed: 11/26/2022]
|
16
|
García-Magro N, Zegarra-Valdivia JA, Troyas-Martinez S, Torres-Aleman I, Nuñez A. Response Facilitation Induced by Insulin-Like Growth Factor-I in the Primary Somatosensory Cortex of Mice Was Reduced in Aging. Cells 2022; 11:cells11040717. [PMID: 35203366 PMCID: PMC8870291 DOI: 10.3390/cells11040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Aging is accompanied by a decline in cognition that can be due to a lower IGF-I level. We studied response facilitation induced in primary somatosensory (S1) cortical neurons by repetitive stimulation of whiskers in young and old mice. Layer 2/3 and 5/6 neurons were extracellularly recorded in young (≤ 6 months of age) and old (≥ 20 month of age) anesthetized mice. IGF-I injection in S1 cortex (10 nM; 0.2 μL) increased whisker responses in young and old animals. A stimulation train at 8 Hz induced a long-lasting response facilitation in only layer 2/3 neurons of young animals. However, all cortical neurons from young and old animals showed long-lasting response facilitation when IGF-I was applied in the S1 cortex. The reduction in response facilitation in old animals can be due to a reduction in the IGF-I receptors as was indicated by the immunohistochemistry study. Furthermore, a reduction in the performance of a whisker discrimination task was observed in old animals. In conclusion, our findings indicate that there is a reduction in the synaptic plasticity of S1 neurons during aging that can be recovered by IGF-I. Therefore, it opens the possibility of use IGF-I as a therapeutic tool to ameliorate the effects of heathy aging.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (N.G.-M.); (J.A.Z.-V.); (S.T.-M.)
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Jonathan A. Zegarra-Valdivia
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (N.G.-M.); (J.A.Z.-V.); (S.T.-M.)
- Cajal Institute, Cibernet (CSIC), 28002 Madrid, Spain;
- Universidad Señor de Sipán, Chiclayo 02001, Peru
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
- Ikerbasque Foundation for Science, 48009 Bilbao, Spain
| | - Sara Troyas-Martinez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (N.G.-M.); (J.A.Z.-V.); (S.T.-M.)
| | - Ignacio Torres-Aleman
- Cajal Institute, Cibernet (CSIC), 28002 Madrid, Spain;
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
- Ikerbasque Foundation for Science, 48009 Bilbao, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (N.G.-M.); (J.A.Z.-V.); (S.T.-M.)
- Correspondence:
| |
Collapse
|
17
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
18
|
Tarantini S, Nyúl-Tóth Á, Yabluchanskiy A, Csipo T, Mukli P, Balasubramanian P, Ungvari A, Toth P, Benyo Z, Sonntag WE, Ungvari Z, Csiszar A. Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype. GeroScience 2021; 43:2387-2394. [PMID: 34383203 PMCID: PMC8599783 DOI: 10.1007/s11357-021-00405-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022] Open
Abstract
Age-related impairment of neurovascular coupling (NVC; or "functional hyperemia") compromises moment-to-moment adjustment of regional cerebral blood flow to increased neuronal activity and thereby contributes to the pathogenesis of vascular cognitive impairment (VCI). Previous studies established a causal link among age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), neurovascular dysfunction and cognitive impairment. Endothelium-mediated microvascular dilation plays a central role in NVC responses. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, endothelium-mediated NVC responses were studied in a novel mouse model of accelerated neurovascular aging: mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2/Igf1rf/f). Increases in cerebral blood flow in the somatosensory whisker barrel cortex (assessed using laser speckle contrast imaging through a cranial window) in response to contralateral whisker stimulation were significantly attenuated in VE-Cadherin-CreERT2/Igf1rf/f mice as compared to control mice. In VE-Cadherin-CreERT2/Igf1rf/f mice, the effects of the NO synthase inhibitor L-NAME were significantly decreased, suggesting that endothelium-specific disruption of IGF1R signaling impairs the endothelial NO-dependent component of NVC responses. Collectively, these findings provide additional evidence that IGF-1 is critical for cerebromicrovascular endothelial health and maintenance of normal NVC responses.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Peter Toth
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, University of Pécs Clinical Center, 72359, Pecs, Baranya, Hungary
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences, Center 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
19
|
Zegarra-Valdivia JA, Chaves-Coira I, Fernandez de Sevilla ME, Martinez-Rachadell L, Esparza J, Torres-Aleman I, Nuñez A. Reduced Insulin-Like Growth Factor-I Effects in the Basal Forebrain of Aging Mouse. Front Aging Neurosci 2021; 13:682388. [PMID: 34539376 PMCID: PMC8442768 DOI: 10.3389/fnagi.2021.682388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
It is known that aging is frequently accompanied by a decline in cognition. Furthermore, aging is associated with lower serum IGF-I levels that may contribute to this deterioration. We studied the effect of IGF-I in neurons of the horizontal diagonal band of Broca (HDB) of young (≤6 months old) and old (≥20-month-old) mice to determine if changes in the response of these neurons to IGF-I occur along with aging. Local injection of IGF-I in the HDB nucleus increased their neuronal activity and induced fast oscillatory activity in the electrocorticogram (ECoG). Furthermore, IGF-I facilitated tactile responses in the primary somatosensory cortex elicited by air-puffs delivered in the whiskers. These excitatory effects decreased in old mice. Immunohistochemistry showed that cholinergic HDB neurons express IGF-I receptors and that IGF-I injection increased the expression of c-fos in young, but not in old animals. IGF-I increased the activity of optogenetically-identified cholinergic neurons in young animals, suggesting that most of the IGF-I-induced excitatory effects were mediated by activation of these neurons. Effects of aging were partially ameliorated by chronic IGF-I treatment in old mice. The present findings suggest that reduced IGF-I activity in old animals participates in age-associated changes in cortical activity.
Collapse
Affiliation(s)
- Jonathan A Zegarra-Valdivia
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Irene Chaves-Coira
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Ignacio Torres-Aleman
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Zappa Villar MF, López Hanotte J, Crespo R, Pardo J, Reggiani PC. Insulin-like growth factor 1 gene transfer for sporadic Alzheimer's disease: New evidence for trophic factor mediated hippocampal neuronal and synaptic recovery-based behavior improvement. Hippocampus 2021; 31:1137-1153. [PMID: 34324234 DOI: 10.1002/hipo.23379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Sporadic Alzheimer's disease (sAD) is the most prevalent neurodegenerative disorder with no cure. Patients typically suffer from cognitive impairment imprinted by irreversible neocortex and hippocampal degeneration with overt synaptic and neuron dysfunction. Insulin-like growth factor 1 (IGF1) has proven to be a potent neuroprotective molecule in animal models of age-related neurodegeneration. In this regard, adenoviral gene transfer aiming at IGF1 brain overexpression has been hitherto an underexplored approach for the sAD treatment. We postulated enhanced IGF1 signaling in the brain as a restorative means in the diseased brain to revert cognitive deficit and restore hippocampal function. We implemented recombinant adenovirus mediated intracerebroventricular IGF1 gene transfer on the streptozotocin (STZ) induced sAD rat model, using 3-month-old male Sprague Dawley rats. This approach enhanced IGF1 signaling in the hippocampus and dampened sAD phosphorylated Tau. We found a remarkable short-term improvement in species-typical behavior, recognition memory, spatial memory, and depressive-like behavior. Histological analysis revealed a significant recovery of immature hippocampal neurons. We additionally recorded an increase in hippocampal microglial cells, which we suggest to exert anti-inflammatory effects. Finally, we found decreased levels of pre- and postsynaptic proteins in the hippocampus of STZ animals. Interestingly, IGF1 gene transfer increased the levels of PSD95 and GAD65/67 synaptic markers, indicating that the treatment enhanced the synaptic plasticity. We conclude that exogenous activation of IGF1 signaling pathway, 1 week after intracerebroventricular STZ administration, protects hippocampal immature neurons, dampens phosphorylated Tau levels, improves synaptic function and therefore performs therapeutically on the sAD STZ model. Hence, this study provides strong evidence for the use of this trophic factor to treat AD and age-related neurodegeneration.
Collapse
Affiliation(s)
- María Florencia Zappa Villar
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Juliette López Hanotte
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Rosana Crespo
- Institute of Experimental Pharmacology of Córdoba (IFEC-CONICET), Department of Pharmacology, School of Chemical Sciences, National University of Córdoba, Córdoba, Argentina
| | - Joaquín Pardo
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina.,Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Paula Cecilia Reggiani
- Institute for Biochemical Research (INIBIOLP)-National Scientific and Technical Research Council (CONICET)-School of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina.,Department of Cytology, Histology and Embryology B, School of Medical Sciences, UNLP, La Plata, Argentina
| |
Collapse
|
21
|
Salzmann A, James SN, Williams DM, Richards M, Cadar D, Schott JM, Coath W, Sudre CH, Chaturvedi N, Garfield V. Investigating the Relationship Between IGF-I, IGF-II, and IGFBP-3 Concentrations and Later-Life Cognition and Brain Volume. J Clin Endocrinol Metab 2021; 106:1617-1629. [PMID: 33631000 PMCID: PMC8118585 DOI: 10.1210/clinem/dgab121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND The insulin/insulin-like signaling (IIS) pathways, including insulin-like growth factors (IGFs), vary with age. However, their association with late-life cognition and neuroimaging parameters is not well characterized. METHODS Using data from the British 1946 birth cohort, we investigated associations of IGF-I, IGF-II and IGF binding protein 3 (IGFBP-3; measured at 53 and 60-64 years of age) with cognitive performance [word-learning test (WLT) and visual letter search (VLS) at 60-64 years and 69 years of age] and cognitive state [Addenbrooke's Cognitive Exam III (ACE-III) at 69-71 years of age], and in a proportion, quantified neuroimaging measures [whole brain volume (WBV), white matter hyperintensity volume (WMHV), hippocampal volume (HV)]. Regression models included adjustments for demographic, lifestyle, and health factors. RESULTS Higher IGF-I and IGF-II at 53 years of age was associated with higher ACE-III scores [ß 0.07 95% confidence interval (CI) (0.02, 0.12); scoreACE-III 89.48 (88.86, 90.1), respectively). IGF-II at 53 years of age was additionally associated with higher WLT scores [scoreWLT 20 (19.35, 20.65)]. IGFBP-3 at 60 to 64 years of age was associated with favorable VLS score at 60 to 64 and 69 years of age [ß 0.07 (0.01, 0.12); ß 0.07 (0.02, 0.12), respectively], higher memory and cognitive state at 69 years of age [ß 0.07 (0.01, 0.12); ß 0.07 (0.01, 0.13), respectively], and reduced WMHV [ß -0.1 (-0.21, -0.00)]. IGF-I/IGFBP-3 at 60 to 64 years of was associated with lower VLS scores at 69 years of age [ß -0.08 (-0.15, -0.02)]. CONCLUSIONS Increased measure in IIS parameters (IGF-I, IGF-II, and IGFBP-3) relate to better cognitive state in later life. There were apparent associations with specific cognitive domains (IGF-II relating to memory; IGFBP-3 relating to memory, processing speed, and WMHV; and IGF-I/IGFBP-3 molar ratio related to slower processing speed). IGFs and IGFBP-3 are associated with favorable cognitive function outcomes.
Collapse
Affiliation(s)
- Antoine Salzmann
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Dylan M Williams
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Dorina Cadar
- Department of Behavioural Science and Health, University College London, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - William Coath
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Carole H Sudre
- Department of Neurodegenerative Disease, The Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Victoria Garfield
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| |
Collapse
|
22
|
Positive Association Between Serum Insulin-Like Growth Factor-1 and Cognition in Patients with Cerebral Small Vessel Disease. J Stroke Cerebrovasc Dis 2021; 30:105790. [PMID: 33878547 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cognitive impairment is one of the main complications of cerebral small vessel disease (CSVD). Serum insulin-like growth factor-1 (IGF-1) might serve as a marker for the risk of cognitive decline in patients with CSVD. We investigated the association of IGF-1 with the development of cognitive impairment in patients with CSVD. We included 216 patients with CVSD (mean age, 67.57 ± 8.53 years; 31.9% female). We compared 117 (54.2%) patients who developed cognitive impairment with 99 (45.8%) patients without cognitive impairment. Patients who developed cognitive impairment had significantly lower levels of IGF-I (p < 0 .001), suggesting that altered IGF-1 signaling may be a risk factor for cognitive decline in patients with CSVD.
Collapse
|
23
|
Tarantini S, Balasubramanian P, Yabluchanskiy A, Ashpole NM, Logan S, Kiss T, Ungvari A, Nyúl-Tóth Á, Schwartzman ML, Benyo Z, Sonntag WE, Csiszar A, Ungvari Z. IGF1R signaling regulates astrocyte-mediated neurovascular coupling in mice: implications for brain aging. GeroScience 2021; 43:901-911. [PMID: 33674953 PMCID: PMC8110646 DOI: 10.1007/s11357-021-00350-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a significant deficiency in circulating insulin-like growth factor-1 (IGF-1), which has an important role in the pathogenesis of age-related vascular cognitive impairment (VCI). Impairment of moment-to-moment adjustment of regional cerebral blood flow via neurovascular coupling (NVC) importantly contributes to VCI. Previous studies established a causal link between circulating IGF-1 deficiency and neurovascular dysfunction. Release of vasodilator mediators from activated astrocytes plays a key role in NVC. To determine the impact of impaired IGF-1 signaling on astrocytic function, astrocyte-mediated NVC responses were studied in a novel mouse model of astrocyte-specific knockout of IGF1R (GFAP-CreERT2/Igf1rf/f) and accelerated neurovascular aging. We found that mice with disrupted astrocytic IGF1R signaling exhibit impaired NVC responses, decreased stimulated release of the vasodilator gliotransmitter epoxy-eicosatrienoic acids (EETs), and upregulation of soluble epoxy hydrolase (sEH), which metabolizes and inactivates EETs. Collectively, our findings provide additional evidence that IGF-1 promotes astrocyte health and maintains normal NVC, protecting cognitive health.
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicole M Ashpole
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Pharmacology Division, Department of BioMolecular Sciences, University of Mississippi School of Pharmacy, Oxford, MS, USA
| | - Sreemathi Logan
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Zoltan Benyo
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Reynolds Oklahoma Center on Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School/Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- Vascular Cognitive Impairment and Neurodegeneration Program/HCEMM, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Nishida F, Zanuzzi CN, Sisti MS, Falomir Lockhart E, Camiña AE, Hereñú CB, Bellini MJ, Portiansky EL. Intracisternal IGF-1 gene therapy abrogates kainic acid-induced excitotoxic damage of the rat spinal cord. Eur J Neurosci 2020; 52:3339-3352. [PMID: 32573850 DOI: 10.1111/ejn.14876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Abstract
Development of alternative therapies for treating functional deficits after different neurological damages is a challenge in neuroscience. Insulin-like growth factor-1 (IGF-1) is a potent neurotrophic factor exerting neuroprotective actions in brain and spinal cord. It is used to prevent or treat injuries of the central nervous system using different administration routes in different animal models. In this study, we evaluated whether intracisternal (IC) route for IGF-1 gene therapy may abrogate or at least reduce the structural and behavioral damages induced by the intraparenchymal injection of kainic acid (KA) into the rat spinal cord. Experimental (Rad-IGF-1) and control (Rad-DsRed-KA) rats were evaluated using a battery of motor and sensory tests before the injection of the recombinant adenovector (day -3), before KA injection (day 0) and at every post-injection (pi) time point (days 1, 2, 3 and 7 pi). Histopathological changes and neuronal and glial counting were assessed. Pretreatment using IC delivery of RAd-IGF-1 improved animal's general condition and motor and sensory functions as compared to Rad-DsRed-KA-injected rats. Besides, IC Rad-IGF-1 therapy abrogated later spinal cord damage and reduced the glial response induced by KA as observed in Rad-DsRed-KA rats. We conclude that the IC route for delivering RAd-IGF-1 prevents KA-induced excitotoxicity in the spinal cord.
Collapse
Affiliation(s)
- Fabián Nishida
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Carolina N Zanuzzi
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,Department of Histology and Embryology, School of Veterinary Sciences, National University of La Plata (UNLP), Buenos Aires, Argentina
| | - María S Sisti
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| | - Eugenia Falomir Lockhart
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP-Histology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Agustina E Camiña
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Claudia B Hereñú
- Department of Pharmacology, School of Chemistry, National University of Córdoba (UNC), Córdoba, Argentina.,Institute for Experimental Pharmacology, Córdoba, Argentina
| | - María J Bellini
- National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina.,INIBIOLP-Histology B, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Enrique L Portiansky
- Image Analysis Laboratory, School of Veterinary Sciences, National University of La Plata (UNLP), La Plata, Argentina.,National Research Council of Science and Technology (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Value of a Panel of 6 Serum Biomarkers to Differentiate Between Healthy Controls and Mild Cognitive Impairment Due to Alzheimer Disease. Alzheimer Dis Assoc Disord 2020; 34:318-324. [PMID: 32649324 DOI: 10.1097/wad.0000000000000397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is considerable evidence suggesting that inflammatory responses may be involved in the neurodegenerative cascade of Alzheimer disease (AD). Blood-based biomarker analysis of inflammatory markers indicative of dementia could serve as a minimally invasive and easy-to-administer diagnostic tool in primary care. MATERIAL AND METHODS The authors quantified 6 markers (brain-derived neurotrophic factor, insulin-like growth factor 1, vascular endothelial growth factor, transforming growth factor-beta type 1, monocyte chemoattractant protein 1, and interleukin-18) in blood serum of 68 healthy blood donors (controls), 42 patients with AD at the dementia stage, 55 patients with AD at the stage of mild cognitive impairment (MCI-AD), and 25 patients with MCI non-AD. All patients have been fully characterized, including AD biomarker analyses in cerebrospinal fluid. Data were analyzed in an algorithm that was trained, validated, and then used for dichotomous classification of unknown data into data sets suspicious and not suspicious of AD. RESULTS Using this algorithm, 47 of 55 MCI-AD (85.5%) and 20 of 25 MCI non-AD (80%) cases were classified as suspicious of AD. CONCLUSIONS This panel of 6 markers in blood serum may indicate underlying neurodegenerative processes in patients with AD at the MCI stage. The authors assume that a deranged equilibrium of neuroprotective and inflammatory processes is an overall major cause for neurodegeneration and cognitive decline.
Collapse
|
26
|
Herrera ML, Basmadjian OM, Falomir‐Lockhart E, Dolcetti FJ, Hereñú CB, Bellini MJ. Sex frailty differences in ageing mice: Neuropathologies and therapeutic projections. Eur J Neurosci 2020; 52:2827-2837. [DOI: 10.1111/ejn.14703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Macarena Lorena Herrera
- Departamento de Farmacología Facultad de Ciencias Químicas Instituto de Farmacología Experimental Córdoba (IFEC‐CONICET) Universidad Nacional de Córdoba Córdoba Argentina
- Facultad de Ciencias Médicas Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP‐CONICET) Universidad Nacional de La Plata Buenos Aires Argentina
| | - Osvaldo Martin Basmadjian
- Departamento de Farmacología Facultad de Ciencias Químicas Instituto de Farmacología Experimental Córdoba (IFEC‐CONICET) Universidad Nacional de Córdoba Córdoba Argentina
| | - Eugenia Falomir‐Lockhart
- Facultad de Ciencias Médicas Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP‐CONICET) Universidad Nacional de La Plata Buenos Aires Argentina
| | - Franco Juan‐Cruz Dolcetti
- Facultad de Ciencias Médicas Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP‐CONICET) Universidad Nacional de La Plata Buenos Aires Argentina
| | - Claudia Beatriz Hereñú
- Departamento de Farmacología Facultad de Ciencias Químicas Instituto de Farmacología Experimental Córdoba (IFEC‐CONICET) Universidad Nacional de Córdoba Córdoba Argentina
| | - María José Bellini
- Facultad de Ciencias Médicas Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP‐CONICET) Universidad Nacional de La Plata Buenos Aires Argentina
| |
Collapse
|
27
|
Schipke CG, Günter O, Weinert C, Scotton P, Sigle JP, Kallarackal J, Kabelitz D, Finzen A, Feuerhelm-Heidl A. Definition and quantification of six immune- and neuroregulatory serum proteins in healthy and demented elderly. Neurodegener Dis Manag 2019; 9:193-203. [DOI: 10.2217/nmt-2019-0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Blood-based biomarkers related to immune- and neuroregulatory processes may be indicative of dementia but lack standardization and proof-of-principle studies. Materials & methods: The blood serum collection protocol as well as the analytic procedure to quantify the markers BDNF, IGF-1, VEGF, TGF-β 1, MCP-1 and IL-18 in blood serum were standardized and their concentrations were compared between groups of 81 Alzheimer’s disease patients and 79 healthy controls. Results: Applying standardized methods, results for the quantification of the six markers in blood serum are stable and their concentrations significantly differ for all analytes except VEGF between patients diagnosed with Alzheimer’s disease and healthy controls. Conclusion: Analyzing a panel of six markers in blood serum under standardized conditions may serve as a diagnostic tool in primary dementia care in the future.
Collapse
Affiliation(s)
- Carola G Schipke
- Charité–Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, & Berlin Institute of Health, Experimental & Clinical Research Center (ECRC), Lindenberger Weg 80, 13125 Berlin, Germany
- Predemtec AG, St. Gallerstrasse 99, 9200 Gossau SG, Switzerland
| | - Oliver Günter
- Department of Geriatry, MSZ Uckermark GmbH, Kreiskrankenhaus Prenzlau, Stettiner Straße 121, 17291 Prenzlau, Germany
| | | | - Patrick Scotton
- Predemtec AG, St. Gallerstrasse 99, 9200 Gossau SG, Switzerland
| | - Jörg-Peter Sigle
- Blood Transfusion Center SRK Aarau-Solothurn, Kantonsspital Aarau AG, Haus 40, Südallee 5001 Aarau, Switzerland
| | | | - Dieter Kabelitz
- Institute of Immunology, Universitätsklinikum Schleswig-Holstein, Michaelisstraße 5 24105 Kiel, Germany
| | - Asmus Finzen
- Predemtec AG, St. Gallerstrasse 99, 9200 Gossau SG, Switzerland
| | | |
Collapse
|
28
|
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol 2019; 56:3501-3521. [PMID: 30140974 PMCID: PMC6476865 DOI: 10.1007/s12035-018-1286-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Bioactive sphingolipids: sphingosine, sphingosine-1-phosphate (S1P), ceramide, and ceramide-1-phosphate (C1P) are increasingly implicated in cell survival, proliferation, differentiation, and in multiple aspects of stress response in the nervous system. The opposite roles of closely related sphingolipid species in cell survival/death signaling is reflected in the concept of tightly controlled sphingolipid rheostat. Aging has a complex influence on sphingolipid metabolism, disturbing signaling pathways and the properties of lipid membranes. A metabolic signature of stress resistance-associated sphingolipids correlates with longevity in humans. Moreover, accumulating evidence suggests extensive links between sphingolipid signaling and the insulin-like growth factor I (IGF-I)-Akt-mTOR pathway (IIS), which is involved in the modulation of aging process and longevity. IIS integrates a wide array of metabolic signals, cross-talks with p53, nuclear factor κB (NF-κB), or reactive oxygen species (ROS) and influences gene expression to shape the cellular metabolic profile and stress resistance. The multiple connections between sphingolipids and IIS signaling suggest possible engagement of these compounds in the aging process itself, which creates a vulnerable background for the majority of neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland
| | - Adam Stępień
- Central Clinical Hospital of the Ministry of National Defense, Department of Neurology, Military Institute of Medicine, Warsaw, Szaserów, 128, 04-141, Poland
| | - Walter J Lukiw
- LSU Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, USA
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland.
| |
Collapse
|
29
|
Falomir-Lockhart E, Dolcetti FJC, García-Segura LM, Hereñú CB, Bellini MJ. IGF1 Gene Therapy Modifies Microglia in the Striatum of Senile Rats. Front Aging Neurosci 2019; 11:48. [PMID: 30890930 PMCID: PMC6411822 DOI: 10.3389/fnagi.2019.00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Microglial cells become dystrophic with aging; this phenotypic alteration contributes to basal central nervous system (CNS) neuroinflammation being a risk factor for age related neurodegenerative diseases. In previous studies we have observed that insulin like growth factor 1 (IGF1) gene therapy is a feasible approach to target brain cells, and that is effective to modify inflammatory response in vitro and to ameliorate cognitive or motor deficits in vivo. Based on these findings, the main aim of the present study is to investigate the effect of IGF1 gene therapy on microglia distribution and morphology in the senile rat. We found that IGF1 therapy leads to a region-specific modification of aged microglia population.
Collapse
Affiliation(s)
- Eugenia Falomir-Lockhart
- Laboratorio de Bioquimica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Franco Juan Cruz Dolcetti
- Laboratorio de Bioquimica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Luis Miguel García-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación, Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Claudia Beatriz Hereñú
- Instituto de Farmacología Experimental de Córdoba-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, UNC-CONICET, Córdoba, Argentina
| | - Maria Jose Bellini
- Laboratorio de Bioquimica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
30
|
Dobolyi A, Lékó AH. The insulin-like growth factor-1 system in the adult mammalian brain and its implications in central maternal adaptation. Front Neuroendocrinol 2019; 52:181-194. [PMID: 30552909 DOI: 10.1016/j.yfrne.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/04/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Our knowledge on the bioavailability and actions of insulin-like growth factor-1 (IGF-1) has markedly expanded in recent years as novel mechanisms were discovered on IGF binding proteins (IGFBPs) and their ability to release IGF-1. The new discoveries allowed a better understanding of the endogenous physiological actions of IGF-1 and also its applicability in therapeutics. The focus of the present review is to summarize novel findings on the neuronal, neuroendocrine and neuroplastic actions of IGF-1 in the adult brain. As most of the new regulatory mechanisms were described in the periphery, their implications on brain IGF system will also be covered. In addition, novel findings on the effects of IGF-1 on lactation and maternal behavior are described. Based on the enormous neuroplastic changes related to the peripartum period, IGF-1 has great but largely unexplored potential in maternal adaptation of the brain, which is highlighted in the present review.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - András H Lékó
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
31
|
Rotermund C, Machetanz G, Fitzgerald JC. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2018; 9:400. [PMID: 30072954 PMCID: PMC6060268 DOI: 10.3389/fendo.2018.00400] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
The search for treatments for neurodegenerative diseases is a major concern in light of today's aging population and an increasing burden on individuals, families, and society. Although great advances have been made in the last decades to understand the underlying genetic and biological cause of these diseases, only some symptomatic treatments are available. Metformin has long since been used to treat Type 2 Diabetes and has been shown to be beneficial in several other conditions. Metformin is well-tested in vitro and in vivo and an approved compound that targets diverse pathways including mitochondrial energy production and insulin signaling. There is growing evidence for the benefits of metformin to counteract age-related diseases such as cancer, cardiovascular disease, and neurodegenerative diseases. We will discuss evidence showing that certain neurodegenerative diseases and diabetes are explicitly linked and that metformin along with other diabetes drugs can reduce neurological symptoms in some patients and reduce disease phenotypes in animal and cell models. An interesting therapeutic factor might be how metformin is able to balance survival and death signaling in cells through pathways that are commonly associated with neurodegenerative diseases. In healthy neurons, these overarching signals keep energy metabolism, oxidative stress, and proteostasis in check, avoiding the dysfunction and neuronal death that defines neurodegenerative disease. We will discuss the biological mechanisms involved and the relevance of neuronal vulnerability and potential difficulties for future trials and development of therapies.
Collapse
Affiliation(s)
| | - Gerrit Machetanz
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C. Fitzgerald
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Rotermund C, Machetanz G, Fitzgerald JC. The Therapeutic Potential of Metformin in Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2018; 9:400. [PMID: 30072954 DOI: 10.3389/fendo.2018.00400/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/27/2018] [Indexed: 05/25/2023] Open
Abstract
The search for treatments for neurodegenerative diseases is a major concern in light of today's aging population and an increasing burden on individuals, families, and society. Although great advances have been made in the last decades to understand the underlying genetic and biological cause of these diseases, only some symptomatic treatments are available. Metformin has long since been used to treat Type 2 Diabetes and has been shown to be beneficial in several other conditions. Metformin is well-tested in vitro and in vivo and an approved compound that targets diverse pathways including mitochondrial energy production and insulin signaling. There is growing evidence for the benefits of metformin to counteract age-related diseases such as cancer, cardiovascular disease, and neurodegenerative diseases. We will discuss evidence showing that certain neurodegenerative diseases and diabetes are explicitly linked and that metformin along with other diabetes drugs can reduce neurological symptoms in some patients and reduce disease phenotypes in animal and cell models. An interesting therapeutic factor might be how metformin is able to balance survival and death signaling in cells through pathways that are commonly associated with neurodegenerative diseases. In healthy neurons, these overarching signals keep energy metabolism, oxidative stress, and proteostasis in check, avoiding the dysfunction and neuronal death that defines neurodegenerative disease. We will discuss the biological mechanisms involved and the relevance of neuronal vulnerability and potential difficulties for future trials and development of therapies.
Collapse
Affiliation(s)
| | - Gerrit Machetanz
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Department of Neurodegenerative Diseases, Centre of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Ogundele OM, Pardo J, Francis J, Goya RG, Lee CC. A Putative Mechanism of Age-Related Synaptic Dysfunction Based on the Impact of IGF-1 Receptor Signaling on Synaptic CaMKIIα Phosphorylation. Front Neuroanat 2018; 12:35. [PMID: 29867375 PMCID: PMC5960681 DOI: 10.3389/fnana.2018.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 04/18/2018] [Indexed: 01/13/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) signaling regulates the activity and phosphorylation of downstream kinases linked to inflammation, neurodevelopment, aging and synaptic function. In addition to the control of Ca2+ currents, IGF-1R signaling modulates the activity of calcium-calmodulin-dependent kinase 2 alpha (CaMKIIα) and mitogen activated protein kinase (MAPK/ErK) through multiple signaling pathways. These proteins (CaMKIIα and MAPK) regulate Ca2+ movement and long-term potentiation (LTP). Since IGF-1R controls the synaptic activity of Ca2+, CaMKIIα and MAPK signaling, the possible mechanism through which an age-dependent change in IGF-1R can alter the synaptic expression and phosphorylation of these proteins in aging needs to be investigated. In this study, we evaluated the relationship between an age-dependent change in brain IGF-1R and phosphorylation of CaMKIIα/MAPK. Furthermore, we elucidated possible mechanisms through which dysregulated CaMKIIα/MAPK interaction may be linked to a change in neurotransmitter processing and synaptic function. Male C57BL/6 VGAT-Venus mice at postnatal days 80 (P80), 365 and 730 were used to study age-related neural changes in two brain regions associated with cognitive function: hippocampus and prefrontal cortex (PFC). By means of high throughput confocal imaging and quantitative immunoblotting, we evaluated the distribution and expression of IGF-1, IGF-1R, CaMKIIα, p-CaMKIIα, MAPK and p-MAPK in whole brain lysate, hippocampus and cortex. Furthermore, we compared protein expression patterns and regional changes at P80, P365 and P730. Ultimately, we determined the relative phosphorylation pattern of CaMKIIα and MAPK through quantification of neural p-CaMKIIα and p-MAPK/ErK, and IGF-1R expression for P80, P365 and P730 brain samples. In addition to a change in synaptic function, our results show a decrease in neural IGF-1/IGF-1R expression in whole brain, hippocampus and cortex of aged mice. This was associated with a significant upregulation of phosphorylated neural MAPK (p-MAPK) and decrease in total brain CaMKIIα (i.e., CaMKIIα and p-CaMKIIα) in the aged brain. Taken together, we showed that brain aging is associated with a change in neural IGF-1/IGF-1R expression and may be linked to a change in phosphorylation of synaptic kinases (CaMKIIα and MAPK) that are involved in the modulation of LTP.
Collapse
Affiliation(s)
- Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Joaquin Pardo
- Institute for Biochemical Research of La Plata, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Rodolfo G. Goya
- Institute for Biochemical Research of La Plata, School of Medicine, National University of La Plata, La Plata, Argentina
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
34
|
Analysis of Association of Genetic Markers in the LUZP2 and FBXO40 Genes with the Normal Variability in Cognitive Performance in the Elderly. Int J Alzheimers Dis 2018; 2018:2686045. [PMID: 29850221 PMCID: PMC5933020 DOI: 10.1155/2018/2686045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 11/17/2022] Open
Abstract
Cognitive performance is an important endophenotype for various neurodegenerative and neuropsychiatric traits. In the present study two genetic variants in the leucine-zipper protein (LUZP2) and the F-box 40 protein (FBXO40) genes, previously reported to be genome-wide significant for Alzheimer's diseases and schizophrenia, were examined for an association with cognitive abilities in normal elderly from the Russian population. Rs1021261 in the LUZP2 and rs3772130 in the FBXO40 were genotyped by multiplex PCR and MALDI-TOF mass spectrometry in a sample of 708 normal elderly subjects tested for cognitive performance using the Montreal Cognitive Assessment (MoCA). Association of genetic variability with the MoCA scores was estimated by parametric and nonparametric analysis of variance and by the frequency comparison between upper and lower quartiles of MoCA distribution. Significantly higher frequency of "TT" genotype of rs1021261 in the LUZP2 gene as well as "A" allele and "AA" genotype of rs3772130 in the FBXO40 gene was found in a subsample of individuals with the MoCA score less than 20 comparing to the fourth quartile's subsample (MoCA > 25). The data of the present study suggests that genetic variability in the LUZP2 and FBXO40 loci associated with neurodegenerative and neuropsychiatric diseases is also contributed to the normal variability in cognitive performance in the elderly.
Collapse
|
35
|
Frater J, Lie D, Bartlett P, McGrath JJ. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review. Ageing Res Rev 2018; 42:14-27. [PMID: 29233786 DOI: 10.1016/j.arr.2017.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
Abstract
Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline.
Collapse
|
36
|
Rodriguez-Perez AI, Borrajo A, Diaz-Ruiz C, Garrido-Gil P, Labandeira-Garcia JL. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging. Oncotarget 2017; 7:30049-67. [PMID: 27167199 PMCID: PMC5058663 DOI: 10.18632/oncotarget.9174] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023] Open
Abstract
The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
37
|
Logan MA. Glial contributions to neuronal health and disease: new insights from Drosophila. Curr Opin Neurobiol 2017; 47:162-167. [PMID: 29096245 PMCID: PMC5741183 DOI: 10.1016/j.conb.2017.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
Glial cells are essential for proper formation and maintenance of the nervous system. During development, glia keep neuronal cell numbers in check and ensure that mature neural circuits are appropriately sculpted by engulfing superfluous cells and projections. In the adult brain, glial cells offer metabolic sustenance and provide critical immune support in the face of acute and chronic challenges. Dysfunctional glial immune activity is believed to contribute to age-related cognitive decline, as well as neurodegenerative disease risk, but we still know surprisingly little about the specific molecular pathways that govern glia-neuron communication in the healthy or diseased brain. Drosophila offers a versatile in vivo model to explore the conserved molecular underpinnings of glial cell biology and glial cell contributions to brain function, health, and disease susceptibility. This review addresses recent findings describing how Drosophila glial cells influence neuronal activity in the adult fly brain to support optimal brain function and, importantly, highlights new insights into specific glial defects that may contribute to neuronal demise.
Collapse
Affiliation(s)
- Mary A Logan
- Jungers Center, Department of Neurology, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
38
|
Delgado-Morales R, Esteller M. Opening up the DNA methylome of dementia. Mol Psychiatry 2017; 22:485-496. [PMID: 28044062 PMCID: PMC5378809 DOI: 10.1038/mp.2016.242] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023]
Abstract
Dementia is a complex clinical condition characterized by several cognitive impairments that interfere with patient independence in executing everyday tasks. Various neurodegenerative disorders have dementia in common among their clinical manifestations. In addition, these diseases, such as Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies and frontotemporal dementia, share molecular alterations at the neuropathological level. In recent years, the field of neuroepigenetics has expanded massively and it is now clear that epigenetic processes, such as DNA methylation, are mechanisms involved in both normal and pathological brain function. Despite the persistent methodological and conceptual caveats, it has been reported that several genes fundamental to the development of neurodegenerative disorders are deregulated by aberrant methylation patterns of their promoters, and even common epigenetic signatures for some dementia-associated pathologies have been identified. Therefore, understanding the epigenetic mechanisms that are altered in dementia, especially those associated with the initial phases, will allow us not only to understand the etiopathology of dementia and its progression but also to design effective therapies to reduce this global public health problem. This review provides an in-depth summary of our current knowledge about DNA methylation in dementia, focusing exclusively on the analyses performed in human brain.
Collapse
Affiliation(s)
- R Delgado-Morales
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - M Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
39
|
Jęśko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochem Res 2016; 42:876-890. [PMID: 27882448 PMCID: PMC5357501 DOI: 10.1007/s11064-016-2110-y] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Sirtuins (SIRT1-SIRT7) are unique histone deacetylases (HDACs) whose activity depends on NAD+ levels and thus on the cellular metabolic status. SIRTs regulate energy metabolism and mitochondrial function. They orchestrate the stress response and damage repair. Through these functions sirtuins modulate the course of aging and affect neurodegenerative diseases. SIRTSs interact with multiple signaling proteins, transcription factors (TFs) and poly(ADP-ribose) polymerases (PARPs) another class of NAD+-dependent post-translational protein modifiers. The cross-talk between SIRTs TFs and PARPs is a highly promising research target in a number of brain pathologies. This review describes updated results on sirtuins in brain aging/neurodegeneration. It focuses on SIRT1 but also on the roles of mitochondrial SIRTs (SIRT3, 4, 5) and on SIRT6 and SIRT2 localized in the nucleus and in cytosol, respectively. The involvement of SIRTs in regulation of insulin-like growth factor signaling in the brain during aging and in Alzheimer's disease was also focused. Moreover, we analyze the mechanism(s) and potential significance of interactions between SIRTs and several TFs in the regulation of cell survival and death. A critical view is given on the application of SIRT activators/modulators in therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Przemysław Wencel
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland.
| | - Joanna B Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego st., 02106, Warsaw, Poland
| |
Collapse
|
40
|
Conover CA. Discrepancies in insulin-like growth factor signaling? No, not really. Growth Horm IGF Res 2016; 30-31:42-44. [PMID: 27792888 DOI: 10.1016/j.ghir.2016.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/03/2016] [Accepted: 10/21/2016] [Indexed: 01/03/2023]
Abstract
Why do studies on insulin-like growth factors (IGFs) and IGF signaling seem so contradictory? The answer is "It depends". This mini- review will explore a few of the factors that are likely to contribute to a seemingly confusing message. Most of the evidence comes from experimental animal models.
Collapse
Affiliation(s)
- Cheryl A Conover
- Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
41
|
Musashe DT, Purice MD, Speese SD, Doherty J, Logan MA. Insulin-like Signaling Promotes Glial Phagocytic Clearance of Degenerating Axons through Regulation of Draper. Cell Rep 2016; 16:1838-50. [PMID: 27498858 DOI: 10.1016/j.celrep.2016.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 05/23/2016] [Accepted: 07/09/2016] [Indexed: 01/15/2023] Open
Abstract
Neuronal injury triggers robust responses from glial cells, including altered gene expression and enhanced phagocytic activity to ensure prompt removal of damaged neurons. The molecular underpinnings of glial responses to trauma remain unclear. Here, we find that the evolutionarily conserved insulin-like signaling (ILS) pathway promotes glial phagocytic clearance of degenerating axons in adult Drosophila. We find that the insulin-like receptor (InR) and downstream effector Akt1 are acutely activated in local ensheathing glia after axotomy and are required for proper clearance of axonal debris. InR/Akt1 activity, it is also essential for injury-induced activation of STAT92E and its transcriptional target draper, which encodes a conserved receptor essential for glial engulfment of degenerating axons. Increasing Draper levels in adult glia partially rescues delayed clearance of severed axons in glial InR-inhibited flies. We propose that ILS functions as a key post-injury communication relay to activate glial responses, including phagocytic activity.
Collapse
Affiliation(s)
- Derek T Musashe
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Maria D Purice
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sean D Speese
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | - Johnna Doherty
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, 55 North Lake Avenue, Worcester, MA 01605, USA
| | - Mary A Logan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
42
|
Campos C, Rocha NBF, Lattari E, Paes F, Nardi AE, Machado S. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors. Expert Rev Neurother 2016; 16:723-34. [PMID: 27086703 DOI: 10.1080/14737175.2016.1179582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.
Collapse
Affiliation(s)
- Carlos Campos
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,b School of Allied Health Sciences , Polytechnic Institute of Porto , Porto , Portugal
| | - Nuno Barbosa F Rocha
- b School of Allied Health Sciences , Polytechnic Institute of Porto , Porto , Portugal
| | - Eduardo Lattari
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Flávia Paes
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - António E Nardi
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil
| | - Sérgio Machado
- a Laboratory of Panic and Respiration , Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ) , Rio de Janeiro , Brazil.,c Physical Activity Neuroscience Laboratory , Physical Activity Sciences Postgraduate Program - Salgado de Oliveira University (UNIVERSO) , Niterói , Brazil
| |
Collapse
|
43
|
Huffman DM, Farias Quipildor G, Mao K, Zhang X, Wan J, Apontes P, Cohen P, Barzilai N. Central insulin-like growth factor-1 (IGF-1) restores whole-body insulin action in a model of age-related insulin resistance and IGF-1 decline. Aging Cell 2016; 15:181-6. [PMID: 26534869 PMCID: PMC4717281 DOI: 10.1111/acel.12415] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
Low insulin‐like growth factor‐1 (IGF‐1) signaling is associated with improved longevity, but is paradoxically linked with several age‐related diseases in humans. Insulin‐like growth factor‐1 has proven to be particularly beneficial to the brain, where it confers protection against features of neuronal and cognitive decline. While aging is characterized by central insulin resistance in the face of hyperinsulinemia, the somatotropic axis markedly declines in older humans. Thus, we hypothesized that increasing IGF‐1 in the brain may prove to be a novel therapeutic alternative to overcome central insulin resistance and restore whole‐body insulin action in aging. Utilizing hyperinsulinemic‐euglycemic clamps, we show that old insulin‐resistant rats with age‐related declines in IGF‐1 level demonstrate markedly improved whole‐body insulin action, when treated with central IGF‐1, as compared to central vehicle or insulin (P < 0.05). Furthermore, central IGF‐1, but not insulin, suppressed hepatic glucose production and increased glucose disposal rates in aging rats (P < 0.05). Taken together, IGF‐1 action in the brain and periphery provides a ‘balance’ between its beneficial and detrimental actions. Therefore, we propose that strategies aimed at ‘tipping the balance’ of IGF‐1 action centrally are the optimal approach to achieve healthy aging and longevity in humans.
Collapse
Affiliation(s)
- Derek M. Huffman
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Molecular Pharmacology Albert Einstein College of MedicineBronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Gabriela Farias Quipildor
- Department of Molecular Pharmacology Albert Einstein College of MedicineBronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Kai Mao
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Molecular Pharmacology Albert Einstein College of MedicineBronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Xueying Zhang
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Institute of Zoology Chinese Academy of Sciences 1 Beichen West Road Chaoyang Beijing 100101 China
| | - Junxiang Wan
- Davis School of Gerontology University of Southern California Los Angeles CA 90089 USA
| | - Pasha Apontes
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
| | - Pinchas Cohen
- Davis School of Gerontology University of Southern California Los Angeles CA 90089 USA
| | - Nir Barzilai
- Division of Endocrinology Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Institute for Aging Research Albert Einstein College of Medicine Bronx NY 10461 USA
- Department of Genetics Albert Einstein College of Medicine Bronx NY 10461 USA
| |
Collapse
|
44
|
Jiang J, Chen Z, Liang B, Yan J, Zhang Y, Jiang H. Insulin-like growth factor-1 and insulin-like growth factor binding protein 3 and risk of postoperative cognitive dysfunction. SPRINGERPLUS 2015; 4:787. [PMID: 26702376 PMCID: PMC4684561 DOI: 10.1186/s40064-015-1586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/04/2015] [Indexed: 01/16/2023]
Abstract
Insulin-like growth factor (IGF)-1 is implicated in learning and memory. Experimental studies have suggested that the IGF-1 system is beneficial in cognition, especially in Alzheimer’s disease (AD), by opposing Aβ amyloid processing and hyperphosphorylated tau toxicity. Low IGF-I and insulin-like growth factor binding protein (IGFBP)-3 serum levels are significantly associated with AD. To assess the relationship between circulating IGF-I and IGFBP3 levels and change of postoperative cognition. The study was performed in patients scheduled for elective head and neck carcinoma surgery under general anesthesia. On the day before the operation and postoperative days 1, 3 and 7, mini-mental state examination (MMSE) was performed by the same doctor, and blood samples were collected at 08:00 h after overnight fasting. The circulating levels of IGF-1 and IGFBP3 were measured by enzyme-linked immunosorbent assay. One hundred and two patients completed all four MMSE tests and forty-four of them completed all the four blood samples collection. Postoperative circulating IGF-1 level, ratio of IGF-1/IGFBP3 and MMSE score significantly decreased, whereas IGFBP3 level significantly increased compared with preoperative values in total patients. The change trends of circulating IGF-1 level and MMSE score were similar. Preoperative circulating IGF-1 level, ratio and MMSE score were significantly lower in POCD group compared to non-POCD group. There was no significant difference in preoperative level of circulating IGFBP3 between the two groups. Preoperative circulating IGF-1 level was negatively correlated with age and positively with MMSE. Logistic regression analysis revealed that lower preoperative IGF-1 level and elderly patients increased the odds of POCD. Down-regulation of circulating IGF-1 level may be involved in the mechanism of postoperative cognitive dysfunction. Older patients had lower circulating IGF-1 levels and were more susceptible to POCD.
Collapse
Affiliation(s)
- Jue Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Zhifeng Chen
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Bing Liang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Ying Zhang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, Shanghai, 200011 China
| |
Collapse
|
45
|
Giuffrida ML, Tomasello MF, Pandini G, Caraci F, Battaglia G, Busceti C, Di Pietro P, Pappalardo G, Attanasio F, Chiechio S, Bagnoli S, Nacmias B, Sorbi S, Vigneri R, Rizzarelli E, Nicoletti F, Copani A. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons. Front Cell Neurosci 2015; 9:297. [PMID: 26300732 PMCID: PMC4528168 DOI: 10.3389/fncel.2015.00297] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/20/2015] [Indexed: 12/12/2022] Open
Abstract
ß-amyloid (Aß1−42) is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1−42self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer's disease (AD). However, Aß1−42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1−42 in neuronal function is largely unknown. We report that the monomer of Aß1−42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1−42 was added. These data suggest that Aß1−42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1−42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice.
Collapse
Affiliation(s)
- Maria L Giuffrida
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy
| | - Marianna F Tomasello
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy ; PhD Program in Neuropharmacology, University of Catania Catania, Italy
| | - Giuseppe Pandini
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy ; Department of Clinical and Molecular Biomedicine, University of Catania Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania Catania, Italy ; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging Troina, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, Neuropharmacology Unit, IRCCS Neuromed Pozzilli, Italy
| | - Carla Busceti
- Department of Molecular Pathology, Neuropharmacology Unit, IRCCS Neuromed Pozzilli, Italy
| | - Paola Di Pietro
- Department of Molecular Pathology, Neuropharmacology Unit, IRCCS Neuromed Pozzilli, Italy
| | - Giuseppe Pappalardo
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy
| | - Francesco Attanasio
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, University of Catania Catania, Italy
| | | | | | - Sandro Sorbi
- NEUROFARBA, University of Florence Florence, Italy
| | - Riccardo Vigneri
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy ; Department of Clinical and Molecular Biomedicine, University of Catania Catania, Italy
| | - Enrico Rizzarelli
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, Neuropharmacology Unit, IRCCS Neuromed Pozzilli, Italy ; Department of Human Physiology and Pharmacology, University "La Sapienza" Rome, Italy
| | - Agata Copani
- National Research Council, Institute of Biostructure and Bioimaging Catania, Italy ; Department of Drug Sciences, University of Catania Catania, Italy
| |
Collapse
|
46
|
Delirium and Obstructive Sleep Apnea: Exploring the Molecular Link. CURRENT ANESTHESIOLOGY REPORTS 2015. [DOI: 10.1007/s40140-014-0092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Hakuno F, Fukushima T, Yoneyama Y, Kamei H, Ozoe A, Yoshihara H, Yamanaka D, Shibano T, Sone-Yonezawa M, Yu BC, Chida K, Takahashi SI. The Novel Functions of High-Molecular-Mass Complexes Containing Insulin Receptor Substrates in Mediation and Modulation of Insulin-Like Activities: Emerging Concept of Diverse Functions by IRS-Associated Proteins. Front Endocrinol (Lausanne) 2015; 6:73. [PMID: 26074875 PMCID: PMC4443775 DOI: 10.3389/fendo.2015.00073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022] Open
Abstract
Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Fukushima
- Laboratory of Biomedical Chemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yosuke Yoneyama
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Kamei
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsufumi Ozoe
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidehito Yoshihara
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Yamanaka
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Shibano
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Meri Sone-Yonezawa
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Bu-Chin Yu
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Chida
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Shin-Ichiro Takahashi, Laboratory of Cell Regulation, Departments of Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
| |
Collapse
|
48
|
Liu L, Liu XD. Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances. Front Pharmacol 2014; 5:273. [PMID: 25540622 PMCID: PMC4261906 DOI: 10.3389/fphar.2014.00273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/24/2014] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a systematic metabolic disease, which often develops a number of well-recognized vascular complications including brain complications which may partly result from the dysfunction of blood-brain barrier (BBB). BBB is generally considered as a mechanism for protecting the brain from unwanted actions resulting from substances in the blood and maintaining brain homeostasis via monitoring the entry or efflux of compounds. ATP-binding cassette (ABC) family of transporters including P-glycoprotein (P-GP) and breast cancer-related protein (BCRP), widely expressed in the luminal membrane of the microvessel endothelium and in the apical membrane of the choroids plexus epithelium, play important roles in the function of BBB. However, these transporters are easily altered by some diseases. The present article was focused on the alteration in expression and function of both P-GP and BCRP at BBB by diabetes and the clinical significances.
Collapse
Affiliation(s)
- Li Liu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University Nanjing, China
| | - Xiao-Dong Liu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University Nanjing, China
| |
Collapse
|
49
|
Romain G, Opacka-Juffry J. Cerebral ageing-the role of insulin and insulin-like growth factor signalling: A review. World J Neurol 2014; 4:12-22. [DOI: 10.5316/wjn.v4.i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Cerebral ageing is a complex biological process associated with progressing cerebrovascular disease and neuronal death. It does not always, however, associate with a functional decline, as the ageing mammalian brain retains considerable functional plasticity which supports successful cerebral ageing where age-related cognitive decline is modest. On the contrary, pathological cerebral ageing results in memory impairment and cognitive deterioration, with Alzheimer’s disease (AD) being a florid example. Trophic/growth factors promote brain plasticity; among them are peptides which belong to the insulin family. Preclinical research suggests that the evolutionarily conserved brain insulin/insulin-like growth factor-1 (IGF-1) signalling system controls lifespan and protects against some features of AD such as neurodegeneration-related accumulation of toxic proteins and cognitive deficiencies, as observed in animal models. Insulin and IGF-1 activate cell signalling mechanisms which play protective and regenerative roles; abnormalities in the insulin/IGF-1 system may trigger a cascade of neurodegeneration in AD. AD patients show cerebral resistance to insulin which associates with IGF-I resistance and dysregulation of insulin/IGF-1 receptors as well as cognitive deterioration. This review is focused on the roles of the insulin/IGF-1 signalling system in cerebral ageing and its potential involvement in neurodegeneration in the human brain as seen against the background of preclinical evidence.
Collapse
|
50
|
Braskie MN, Boyle CP, Rajagopalan P, Gutman BA, Toga AW, Raji CA, Tracy RP, Kuller LH, Becker JT, Lopez OL, Thompson PM. Physical activity, inflammation, and volume of the aging brain. Neuroscience 2014; 273:199-209. [PMID: 24836855 PMCID: PMC4076831 DOI: 10.1016/j.neuroscience.2014.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/23/2014] [Accepted: 05/02/2014] [Indexed: 01/06/2023]
Abstract
Physical activity influences inflammation, and both affect brain structure and Alzheimer's disease (AD) risk. We hypothesized that older adults with greater reported physical activity intensity and lower serum levels of the inflammatory marker tumor necrosis factor α (TNFα) would have larger regional brain volumes on subsequent magnetic resonance imaging (MRI) scans. In 43 cognitively intact older adults (79.3±4.8 years) and 39 patients with AD (81.9±5.1 years at the time of MRI) participating in the Cardiovascular Health Study, we examined year-1 reported physical activity intensity, year-5 blood serum TNFα measures, and year-9 volumetric brain MRI scans. We examined how prior physical activity intensity and TNFα related to subsequent total and regional brain volumes. Physical activity intensity was measured using the modified Minnesota Leisure Time Physical Activities questionnaire at year 1 of the study, when all subjects included here were cognitively intact. Stability of measures was established for exercise intensity over 9 years and TNFα over 3 years in a subset of subjects who had these measurements at multiple time points. When considered together, more intense physical activity intensity and lower serum TNFα were both associated with greater total brain volume on follow-up MRI scans. TNFα, but not physical activity, was associated with regional volumes of the inferior parietal lobule, a region previously associated with inflammation in AD patients. Physical activity and TNFα may independently influence brain structure in older adults.
Collapse
Affiliation(s)
- M N Braskie
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Dept. of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C P Boyle
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Dept. of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Rajagopalan
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Dept. of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - B A Gutman
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Dept. of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - A W Toga
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Dept. of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C A Raji
- Department of Radiology, University of California Los Angeles School of Medicine, Los Angeles, CA, USA
| | - R P Tracy
- Departments of Pathology, Biochemistry, and Center for Clinical and Translational Science, University of Vermont, Burlington, VT, USA
| | - L H Kuller
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - J T Becker
- Departments of Neurology, Psychiatry, and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - O L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - P M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, Dept. of Neurology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA; Depts. of Psychiatry, Engineering, Radiology, & Ophthalmology, Keck/USC School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|