1
|
Bendas G, Gobec M, Schlesinger M. Modulating Immune Responses: The Double-Edged Sword of Platelet CD40L. Semin Thromb Hemost 2024. [PMID: 39379039 DOI: 10.1055/s-0044-1791512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The CD40-CD40L receptor ligand pair plays a fundamental role in the modulation of the innate as well as the adaptive immune response, regulating monocyte, T and B cell activation, and antibody isotype switching. Although the expression and function of the CD40-CD40L dyad is mainly attributed to the classical immune cells, the majority of CD40L is expressed by activated platelets, either in a membrane-bound form or shed as soluble molecules in the circulation. Platelet-derived CD40L is involved in the communication with different immune cell subpopulations and regulates their functions effectively. Thus, platelet CD40L contributes to the containment and clearance of bacterial and viral infections, and additionally guides leukocytes to sites of infection. However, platelet CD40L promotes inflammatory cellular responses also in a pathophysiological context. For example, in HIV infections, platelet CD40L is supportive of neuronal inflammation, damage, and finally HIV-related dementia. In sepsis, platelet CD40L can induce extensive endothelial and epithelial damage resulting in barrier dysfunction of the gut, whereby the translocation of microbiota into the circulation further aggravates the uncontrolled systemic inflammation. Nevertheless, a distinct platelet subpopulation expressing CD40L under septic conditions can attenuate systemic inflammation and reduce mortality in mice. This review focuses on recent findings in the field of platelet CD40L biology and its physiological and pathophysiological implications, and thereby highlights platelets as vital immune cells that are essential for a proper immune surveillance. In this context, platelet CD40L proves to be an interesting target for various inflammatory diseases. However, either an agonism or a blockade of CD40L needs to be well balanced since both the approaches can cause severe adverse events, ranging from hyperinflammation to immune deficiency. Thus, an interference in CD40L activities should be likely done in a context-dependent and timely restricted manner.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
2
|
Rodriguez Moore G, Melo-Escobar I, Stegner D, Bracko O. One immune cell to bind them all: platelet contribution to neurodegenerative disease. Mol Neurodegener 2024; 19:65. [PMID: 39334369 PMCID: PMC11438031 DOI: 10.1186/s13024-024-00754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) and related dementias (ADRD) collectively affect a significant portion of the aging population worldwide. The pathological progression of AD involves not only the classical hallmarks of amyloid beta (Aβ) plaque buildup and neurofibrillary tangle development but also the effects of vasculature and chronic inflammatory processes. Recently, platelets have emerged as central players in systemic and neuroinflammation. Studies have shown that patients with altered platelet receptor expression exhibit accelerated cognitive decline independent of traditional risk factors. Additionally, platelets from AD patients exhibit heightened unstimulated activation compared to control groups. Platelet granules contain crucial AD-related proteins like tau and amyloid precursor protein (APP). Dysregulation of platelet exocytosis contributes to disease phenotypes characterized by increased bleeding, stroke, and cognitive decline risk. Recent studies have indicated that these effects are not associated with the quantity of platelets present in circulation. This underscores the hypothesis that disruptions in platelet-mediated inflammation and healing processes may play a crucial role in the development of ADRD. A thorough look at platelets, encompassing their receptors, secreted molecules, and diverse roles in inflammatory interactions with other cells in the circulatory system in AD and ADRD, holds promising prospects for disease management and intervention. This review discusses the pivotal roles of platelets in ADRD.
Collapse
Affiliation(s)
| | - Isabel Melo-Escobar
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Corken AL, Ong V, Kore R, Ghanta SN, Karaduta O, Pathak R, Rose S, Porter C, Jain N. Platelets, inflammation, and purinergic receptors in chronic kidney disease. Kidney Int 2024; 106:392-399. [PMID: 38821448 PMCID: PMC11343655 DOI: 10.1016/j.kint.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 06/02/2024]
Abstract
Platelets are anucleated cells that circulate in the bloodstream. Historically, platelets were thought to perform a singular function-stop bleeding via clotting. Although platelets do play a key role in hemostasis and thrombosis, recent studies indicate that platelets also modulate inflammation, and this platelet-induced inflammation contributes to the pathophysiology of various diseases such as atherosclerosis and diabetes mellitus. Thus, in recent years, our understanding of platelet function has broadened. In this review, we revisit the classic role of platelets in hemostasis and thrombosis and describe the newly recognized function of platelets in modulating inflammation. We cover the potential use of purinergic receptor antagonists to prevent platelet-modulated inflammation, particularly in patients with chronic kidney disease, and finally, we define key questions that must be addressed to understand how platelet-modulated inflammation contributes to the pathophysiology of chronic kidney disease.
Collapse
Affiliation(s)
- Adam L Corken
- Department of Pediatrics, Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Vincz Ong
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rajshekhar Kore
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sai N Ghanta
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Oleg Karaduta
- Department of Physician Assistant Studies, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rupak Pathak
- Department of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA; Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Craig Porter
- Department of Pediatrics, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Nishank Jain
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
4
|
Robert M, Scherlinger M. Platelets are a major player and represent a therapeutic opportunity in systemic lupus erythematosus. Joint Bone Spine 2024; 91:105622. [PMID: 37495075 DOI: 10.1016/j.jbspin.2023.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by immune dysregulation and organ injury with a premature mortality due to cardiovascular diseases. Platelets, that are primarily known for their role in hemostasis, have been shown to play an active role in the pathogenesis and in the progression of immune-mediated inflammatory diseases. Here we summarize the evidence of their roles in SLE pathogenesis which supports the development of targeted treatments. Platelets and their precursors, the megakaryocytes, are intrinsically different in SLE patients compared with healthy controls. Different triggers related to innate and adaptive immunity activate platelets which release extracellular vesicles, soluble factors and interact with immune cells, thereby perpetuating inflammation. Platelets are involved in organ damage in SLE, especially in lupus nephritis and participate in the heightened cardiovascular mortality. They also play a clear role in antiphospholipid syndrome which can be associated with both thrombocytopenia and thrombosis. To tackle platelet activation and their interactions with immune cells now constitute promising therapeutic strategies in SLE.
Collapse
Affiliation(s)
- Marie Robert
- Service de médecine interne et immunologie clinique, centre hospitalier universitaire Édouard-Herriot, hospices civils de Lyon, Lyon, France
| | - Marc Scherlinger
- Service de rhumatologie, centre hospitalier universitaire de Strasbourg, 1, avenue Molière, 67098 Strasbourg, France; Laboratoire d'immuno-rhumatologie moléculaire, Institut national de la santé et de la recherche médicale (Inserm) UMR S 1109, Strasbourg, France; Centre national de référence des maladies auto-immunes et systémiques rares, Est/Sud-Ouest (RESO), France.
| |
Collapse
|
5
|
Davenport P, Soule-Albridge E, Sola-Visner M. Hemostatic and Immunologic Effects of Platelet Transfusions in Neonates. Clin Perinatol 2023; 50:793-803. [PMID: 37866848 DOI: 10.1016/j.clp.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Liberal platelet transfusions are associated with increased morbidity and mortality among preterm neonates, and it is now recognized that platelets are both hemostatic and immune cells. Neonatal and adult platelets are functionally distinct, and adult platelets have the potential to be more immuno-active. Preclinical studies suggest that platelet transfusions (from adult donors) can trigger dysregulated immune responses in neonates, which might mediate the increased morbidity and mortality observed in clinical studies. More research is needed to understand how neonatal and adult platelets differ in their immune functions and the consequences of these differences in the setting of neonatal platelet transfusions.
Collapse
Affiliation(s)
- Patricia Davenport
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Enders 954, Boston, MA 02115, USA.
| | - Erin Soule-Albridge
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Enders 950.5, Boston, MA 02115, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Enders 961, Boston, MA 02115, USA
| |
Collapse
|
6
|
Maiorca F, Lombardi L, Marrapodi R, Pallucci D, Sabetta A, Zingaropoli MA, Perri V, Flego D, Romiti GF, Corica B, Miglionico M, Russo G, Pasculli P, Ciardi MR, Mastroianni CM, Ruberto F, Pugliese F, Pulcinelli F, Raparelli V, Cangemi R, Visentini M, Basili S, Stefanini L. Breakthrough infections after COVID-19 vaccinations do not elicit platelet hyperactivation and are associated with high platelet-lymphocyte and low platelet-neutrophil aggregates. Res Pract Thromb Haemost 2023; 7:102262. [PMID: 38193050 PMCID: PMC10772876 DOI: 10.1016/j.rpth.2023.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 01/10/2024] Open
Abstract
Background Severe COVID-19 is associated with an excessive immunothrombotic response and thromboinflammatory complications. Vaccinations effectively reduce the risk of severe clinical outcomes in patients with COVID-19, but their impact on platelet activation and immunothrombosis during breakthrough infections is not known. Objectives To investigate how preemptive vaccinations modify the platelet-immune crosstalk during COVID-19 infections. Methods Cross-sectional flow cytometry study of the phenotype and interactions of platelets circulating in vaccinated (n = 21) and unvaccinated patients with COVID-19, either admitted to the intensive care unit (ICU, n = 36) or not (non-ICU, n = 38), in comparison to matched SARS-CoV-2-negative patients (n = 48), was performed. Results In the circulation of unvaccinated non-ICU patients with COVID-19, we detected hyperactive and hyperresponsive platelets and platelet aggregates with adaptive and innate immune cells. In unvaccinated ICU patients with COVID-19, most of whom had severe acute respiratory distress syndrome, platelets had high P-selectin and phosphatidylserine exposure but low capacity to activate integrin αIIbβ3, dysfunctional mitochondria, and reduced surface glycoproteins. In addition, in the circulation of ICU patients, we detected microthrombi and platelet aggregates with innate, but not with adaptive, immune cells. In vaccinated patients with COVID-19, who had no acute respiratory distress syndrome, platelets had surface receptor levels comparable to those in controls and did not form microthrombi or platelet-granulocyte aggregates but aggregated avidly with adaptive immune cells. Conclusion Our study provides evidence that vaccinated patients with COVID-19 are not associated with platelet hyperactivation and are characterized by platelet-leukocyte aggregates that foster immune protection but not excessive immunothrombosis. These findings advocate for the importance of vaccination in preventing severe COVID-19.
Collapse
Affiliation(s)
- Francesca Maiorca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ludovica Lombardi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ramona Marrapodi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Davide Pallucci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Annamaria Sabetta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Valentina Perri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Davide Flego
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Bernadette Corica
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marzia Miglionico
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudio M. Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Franco Ruberto
- Department of Specialist Surgery and Organ Transplantation “Paride Stefanini,” Sapienza University of Rome, Rome, Italy
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation “Paride Stefanini,” Sapienza University of Rome, Rome, Italy
| | - Fabio Pulcinelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Raparelli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
- University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
7
|
Zhao J, Xu X, Gao Y, Yu Y, Li C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int J Mol Sci 2023; 24:14133. [PMID: 37762435 PMCID: PMC10531760 DOI: 10.3390/ijms241814133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virus, causing the devastating COVID-19 pandemic, has been reported to affect platelets and cause increased thrombotic events, hinting at the possible bidirectional interactions between platelets and the virus. In this review, we discuss the potential mechanisms underlying the increased thrombotic events as well as altered platelet count and activity in COVID-19. Inspired by existing knowledge on platelet-pathogen interactions, we propose several potential antiviral strategies that platelets might undertake to combat SARS-CoV-2, including their abilities to internalize the virus, release bioactive molecules to interfere with viral infection, and modulate the functions of immune cells. Moreover, we discuss current and potential platelet-targeted therapeutic strategies in controlling COVID-19, including antiplatelet drugs, anticoagulants, and inflammation-targeting treatments. These strategies have shown promise in clinical settings to alleviate the severity of thrombo-inflammatory complications and reduce the mortality rate among COVID-19 patients. In conclusion, an in-depth understanding of platelet-SARS-CoV-2 interactions may uncover novel mechanisms underlying severe COVID-19 complications and could provide new therapeutic avenues for managing this disease.
Collapse
Affiliation(s)
| | | | | | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| |
Collapse
|
8
|
Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol 2023; 23:495-510. [PMID: 36707719 PMCID: PMC9882748 DOI: 10.1038/s41577-023-00834-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/28/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by excessive and uncontrolled inflammation and thrombosis, both of which are responsible for organ damage, morbidity and death. Platelets have long been known for their role in primary haemostasis, but they are now also considered to be components of the immune system and to have a central role in the pathogenesis of IMIDs. In patients with IMIDs, platelets are activated by disease-specific factors, and their activation often reflects disease activity. Here we summarize the evidence showing that activated platelets have an active role in the pathogenesis and the progression of IMIDs. Activated platelets produce soluble factors and directly interact with immune cells, thereby promoting an inflammatory phenotype. Furthermore, platelets participate in tissue injury and promote abnormal tissue healing, leading to fibrosis. Targeting platelet activation and targeting the interaction of platelets with the immune system are novel and promising therapeutic strategies in IMIDs.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Laboratoire d'ImmunoRhumatologie Moléculaire UMR_S 1109, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.
| | - Christophe Richez
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche ARThrite, Université Laval, Quebec City, Quebec, Canada
| | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France.
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France.
| |
Collapse
|
9
|
Takada YK, Shimoda M, Takada Y. CD40L Activates Platelet Integrin αIIbβ3 by Binding to the Allosteric Site (Site 2) in a KGD-Independent Manner and HIGM1 Mutations Are Clustered in the Integrin-Binding Sites of CD40L. Cells 2023; 12:1977. [PMID: 37566056 PMCID: PMC10416995 DOI: 10.3390/cells12151977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
CD40L is expressed in activated T cells, and it plays a major role in immune response and is a major therapeutic target for inflammation. High IgM syndrome type 1 (HIGM1) is a congenital functional defect in CD40L/CD40 signaling due to defective CD40L. CD40L is also stored in platelet granules and transported to the surface upon platelet activation. Platelet integrin αIIbβ3 is known to bind to fibrinogen and activation of αIIbβ3 is a key event that triggers platelet aggregation. Also, the KGD motif is critical for αIIbβ3 binding and the interaction stabilizes thrombus. Previous studies showed that CD40L binds to and activates integrins αvβ3 and α5β1 and that HIGM1 mutations are clustered in the integrin-binding sites. However, the specifics of CD40L binding to αIIbβ3 were unclear. Here, we show that CD40L binds to αIIbβ3 in a KGD-independent manner using CD40L that lacks the KGD motif. Two HIGM1 mutants, S128E/E129G and L155P, reduced the binding of CD40L to the classical ligand-binding site (site 1) of αIIbβ3, indicating that αIIbβ3 binds to the outer surface of CD40L trimer. Also, CD40L bound to the allosteric site (site 2) of αIIbβ3 and allosterically activated αIIbβ3 without inside-out signaling. Two HIMG1 mutants, K143T and G144E, on the surface of trimeric CD40L suppressed CD40L-induced αIIbβ3 activation. These findings suggest that CD40L binds to αIIbβ3 in a manner different from that of αvβ3 and α5β1 and induces αIIbβ3 activation. HIGM1 mutations are clustered in αIIbβ3 binding sites in CD40L and are predicted to suppress thrombus formation and immune responses through αIIbβ3.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
| | - Michiko Shimoda
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95817, USA (M.S.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| |
Collapse
|
10
|
Szepanowski RD, Haupeltshofer S, Vonhof SE, Frank B, Kleinschnitz C, Casas AI. Thromboinflammatory challenges in stroke pathophysiology. Semin Immunopathol 2023:10.1007/s00281-023-00994-4. [PMID: 37273022 DOI: 10.1007/s00281-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Despite years of encouraging translational research, ischemic stroke still remains as one of the highest unmet medical needs nowadays, causing a tremendous burden to health care systems worldwide. Following an ischemic insult, a complex signaling pathway emerges leading to highly interconnected thrombotic as well as neuroinflammatory signatures, the so-called thromboinflammatory cascade. Here, we thoroughly review the cell-specific and time-dependent role of different immune cell types, i.e., neutrophils, macrophages, T and B cells, as key thromboinflammatory mediators modulating the neuroinflammatory response upon stroke. Similarly, the relevance of platelets and their tight crosstalk with a variety of immune cells highlights the relevance of this cell-cell interaction during microvascular dysfunction, neovascularization, and cellular adhesion. Ultimately, we provide an up-to-date overview of therapeutic approaches mechanistically targeting thromboinflammation currently under clinical translation, especially focusing on phase I to III clinical trials.
Collapse
Affiliation(s)
- R D Szepanowski
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S Haupeltshofer
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - S E Vonhof
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - B Frank
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
| | - C Kleinschnitz
- Department of Neurology, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany.
| | - A I Casas
- Department of Neurology, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Yan C, Wu H, Fang X, He J, Zhu F. Platelet, a key regulator of innate and adaptive immunity. Front Med (Lausanne) 2023; 10:1074878. [PMID: 36968817 PMCID: PMC10038213 DOI: 10.3389/fmed.2023.1074878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Platelets, anucleate blood components, represent the major cell type involved in the regulation of hemostasis and thrombosis. In addition to performing haemostatic roles, platelets can influence both innate and adaptive immune responses. In this review, we summarize the development of platelets and their functions in hemostasis. We also discuss the interactions between platelet products and innate or adaptive immune cells, including neutrophils, monocytes, macrophages, T cells, B cells and dendritic cells. Activated platelets and released molecules regulate the differentiation and function of these cells via platelet-derived receptors or secreting molecules. Platelets have dual effects on nearly all immune cells. Understanding the exact mechanisms underlying these effects will enable further application of platelet transfusion.
Collapse
Affiliation(s)
- Cheng Yan
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haojie Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianchun Fang
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junji He
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhu
- Department of Blood Transfusion, Nanjing Jiangning Hospital, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Feng Zhu,
| |
Collapse
|
12
|
Li Y, Wang H, Zhao Z, Yang Y, Meng Z, Qin L. Effects of the interactions between platelets with other cells in tumor growth and progression. Front Immunol 2023; 14:1165989. [PMID: 37153586 PMCID: PMC10158495 DOI: 10.3389/fimmu.2023.1165989] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
It has been confirmed that platelets play a key role in tumorigenesis. Tumor-activated platelets can recruit blood cells and immune cells to migrate, establish an inflammatory tumor microenvironment at the sites of primary and metastatic tumors. On the other hand, they can also promote the differentiation of mesenchymal cells, which can accelerate the proliferation, genesis and migration of blood vessels. The role of platelets in tumors has been well studied. However, a growing number of studies suggest that interactions between platelets and immune cells (e.g., dendritic cells, natural killer cells, monocytes, and red blood cells) also play an important role in tumorigenesis and tumor development. In this review, we summarize the major cells that are closely associated with platelets and discuss the essential role of the interaction between platelets with these cells in tumorigenesis and tumor development.
Collapse
|
13
|
Chen X, Xu Y, Chen Q, Zhang H, Zeng Y, Geng Y, Shen L, Li F, Chen L, Chen GQ, Huang C, Liu J. The phosphatase PTEN links platelets with immune regulatory functions of mouse T follicular helper cells. Nat Commun 2022; 13:2762. [PMID: 35589797 PMCID: PMC9120038 DOI: 10.1038/s41467-022-30444-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/30/2022] [Indexed: 01/10/2023] Open
Abstract
Beyond a function in hemostasis and thrombosis, platelets can regulate innate and adaptive immune responses. Hyperactive platelets are frequently associated with multiple human autoimmune diseases, yet their pathogenic functions in these diseases have not been fully established. Emerging studies show an essential function of the phosphatase and tensin homolog (PTEN) in maintenance of immune homeostasis. Here, we show that mice with platelet-specific deletion of Pten, develop age-related lymphoproliferative diseases and humoral autoimmunity not seen in wildtype animals. Platelet-specific Pten-deficient mice have aberrant T cell activation, excessive T follicular helper (Tfh) cell responses and accumulation of platelet aggregates in lymph nodes. Transferred Pten-deficient platelets are able to infiltrate into the peripheral lymphoid tissues and form more aggregates. Moreover, Pten-deficient platelets are hyperactive and overproduce multiple Tfh-promoting cytokines via activation of the PDK1/mTORC2-AKT-SNAP23 pathway. Pten-deficient platelets show enhanced interaction with CD4+ T cells and promote conversion of CD4+ T cells into Tfh cells. Our results implicate PTEN in platelet-mediated immune homeostasis, and provide evidence that hyperactive platelets function as an important mediator in autoimmune diseases using mouse models.
Collapse
Affiliation(s)
- Xue Chen
- School of Life Sciences, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China.
| | - Yanyan Xu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Qidi Chen
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Heng Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yu Zeng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yan Geng
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Lei Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Fubin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Guo-Qiang Chen
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
14
|
Flego D, Cesaroni S, Romiti GF, Corica B, Marrapodi R, Scafa N, Maiorca F, Lombardi L, Pallucci D, Pulcinelli F, Raparelli V, Visentini M, Cangemi R, Piconese S, Alvaro D, Polimeni A, Basili S, Stefanini L. Platelet and immune signature associated with a rapid response to the BNT162b2 mRNA COVID-19 vaccine. J Thromb Haemost 2022; 20:961-974. [PMID: 35032087 PMCID: PMC9302646 DOI: 10.1111/jth.15648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND A rapid immune response is critical to ensure effective protection against COVID-19. Platelets are first-line sentinels of the vascular system able to rapidly alert and stimulate the immune system. However, their role in the immune response to vaccines is not known. OBJECTIVE To identify features of the platelet-immune crosstalk that would provide an early readout of vaccine efficacy in adults who received the mRNA-based COVID-19 vaccine (BNT162b2). METHODS We prospectively enrolled 11 young healthy volunteers (54% females, median age: 28 years) who received two doses of BNT162b2, 21 days apart, and we studied their platelet and immune response before and after each dose of the vaccine (3 and 10 ± 2 days post-injection), in relation to the kinetics of the humoral response. RESULTS Participants achieving an effective level of neutralizing antibodies before the second dose of the vaccine (fast responders) had a higher leukocyte count, mounted a rapid cytokine response that incremented further after the second dose, and an elevated platelet turnover that ensured platelet count stability. Their circulating platelets were not more reactive but expressed lower surface levels of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-coupled receptor CD31 (PECAM-1) compared to slow responders, and formed specific platelet-leukocyte aggregates, with B cells, just 3 days after the first dose, and with non-classical monocytes and eosinophils. CONCLUSION We identified features of the platelet-immune crosstalk that are associated with the development of a rapid humoral response to an mRNA-based vaccine (BNT162b2) and that could be exploited as early biomarkers of vaccine efficacy.
Collapse
Affiliation(s)
- Davide Flego
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Cesaroni
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulio F Romiti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Bernadette Corica
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ramona Marrapodi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Noemi Scafa
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Maiorca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ludovica Lombardi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Davide Pallucci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabio Pulcinelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Raparelli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Wang M, Li X, Wang Q, Zhang M, He J, Ming S, Wang Z, Cao C, Zhang S, Geng L, Gong S, Huang X, Chen K, Wu Y. TLT-1 Promotes Platelet-Monocyte Aggregate Formation to Induce IL-10-Producing B Cells in Tuberculosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1642-1651. [PMID: 35277419 DOI: 10.4049/jimmunol.2001218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The immunoregulation of platelets and platelet-monocyte aggregates (PMAs) is increasingly recognized, but it roles in tuberculosis (TB) remain to be elucidated. In this study, we found that CD14+CD41+ PMAs were increased in peripheral blood of patients with active TB. CD14+CD41+ PMAs highly expressed triggering receptors expressed on myeloid cells (TREMs)-like transcript-1 (TLT-1), P-selectin (CD62P), and CD40L. Our in vitro study found that platelets from patients with active TB aggregate with monocytes to induce IL-1β and IL-6 production by monocytes. Importantly, we identified that TLT-1 was required for formation of PMAs. The potential TLT-1 ligand was expressed and increased on CD14+ monocytes of patients with TB determined by using TLT-1 fusion protein (TLT-1 Fc). Blocking of ligand-TLT-1 interaction with TLT-1 Fc reduced PMA formation and IL-1β and IL-6 production by monocytes. Further results demonstrated that PMAs induced IL-10 production by B cells (B10) dependent on IL-1β, IL-6, and CD40L signals in a coculture system. Moreover, TLT-1 Fc treatment suppressed B10 polarization via blocking PMA formation. Taking all of these data together, we elucidated that TLT-1 promoted PMA-mediated B10 polarization through enhancing IL-1β, IL-6, and CD40L origin from PMAs, which may provide potential targeting strategies for TB disease treatment.
Collapse
Affiliation(s)
- Manni Wang
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xingyu Li
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Qiaohua Wang
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Mei Zhang
- Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, China
| | - Jianzhong He
- Department of Pathology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Siqi Ming
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- National Clinical Research Center for Infectious Diseases, Third People's Hospital of Shenzhen, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ziqing Wang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Can Cao
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Xi Huang
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China;
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong Province, China
- Department of Laboratory Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China
| | - Kang Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong Province, China; and
| | - Yongjian Wu
- Center for Infection and Immunity, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
- Department of Interventional Medicine, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
16
|
Gockel LM, Nekipelov K, Ferro V, Bendas G, Schlesinger M. Tumour cell-activated platelets modulate the immunological activity of CD4 +, CD8 +, and NK cells, which is efficiently antagonized by heparin. Cancer Immunol Immunother 2022; 71:2523-2533. [PMID: 35285006 PMCID: PMC9463253 DOI: 10.1007/s00262-022-03186-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Platelets, key players in haemostasis, are progressively investigated with respect to their role in immunity and inflammation. Although the platelet support to haematogenous cancer cell metastasis has been the subject of multiple studies, their impact on anti-cancer immunity remains unaddressed. Here, we investigated the immunomodulatory potential of platelets upon their activation by MDA-MB-231 breast cancer cells in various in vitro approaches. We provide evidence that platelets as well as their tumour cell-induced releasates increased the ratio of regulatory T cells, shaping an immunosuppressive phenotype in isolated CD4+ cultures. The influence on CD8+ T cells was assessed by detecting the expression of activation markers CD25/CD69 and release of cytolytic and pro-inflammatory proteins. Notably, the platelet preparations differentially influenced CD8+ T cell activation, while platelets were found to inhibit the activation of CD8+ T cells, platelet releasates, in contrast, supported their activation. Furthermore, the NK cell cytolytic activity was attenuated by platelet releasates. Low molecular weight heparin (LMWH), the guideline-based anticoagulant for cancer-associated thrombotic events, is known to interfere with tumour cell-induced platelet activation. Thus, we aimed to investigate whether, unfractionated heparin, LMWH or novel synthetic heparin mimetics can also reverse the immunosuppressive platelet effects. The releasate-mediated alteration in immune cell activity was efficiently abrogated by heparin, while the synthetic heparin mimetics partly outperformed the commercial heparin derivatives. This is the first report on the effects of heparin on rebalancing immunosuppression in an oncological context emerging as a novel aspect in heparin anti-tumour activities.
Collapse
Affiliation(s)
- Lukas M Gockel
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany.
| | - Katrin Nekipelov
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gerd Bendas
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| | - Martin Schlesinger
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121, Bonn, Germany
| |
Collapse
|
17
|
COVID-19 Induced Coagulopathy (CIC): Thrombotic Manifestations of Viral Infection. TH OPEN : COMPANION JOURNAL TO THROMBOSIS AND HAEMOSTASIS 2022; 6:e70-e79. [PMID: 35280973 PMCID: PMC8913175 DOI: 10.1055/s-0042-1744185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and may result in an overactive coagulative system, thereby resulting in serious cardiovascular consequences in critically affected patients. The respiratory tract is a primary target for COVID-19 infection, which is manifested as acute lung injury in the most severe form of the viral infection, leading to respiratory failure. A proportion of infected patients may progress to serious systemic disease including dysfunction of multiple organs, acute respiratory distress syndrome (ARDS), and coagulation abnormalities, all of which are associated with increased mortality, additionally depending on age and compromised immunity. Coagulation abnormalities associated with COVID-19 mimic other systemic coagulopathies otherwise involved in other severe infections, such as disseminated intravascular coagulation (DIC) and may be termed COVID-19 induced coagulopathy (CIC). There is substantial evidence that patients with severe COVID-19 exhibiting CIC can develop venous and arterial thromboembolic complications. In the initial stages of CIC, significant elevation of D-dimer and fibrin/fibrinogen degradation products is observed. Alteration in prothrombin time, activated partial thromboplastin time, and platelet counts are less common in the early phase of the disease. In patients admitted to intensive care units (ICUs), coagulation test screening involving the measurement of D-dimer and fibrinogen levels, has been recommended. Prior established protocols for thromboembolic prophylaxis are also followed for CIC, including the use of heparin and other standard supportive care measures. In the present review, we summarize the characteristics of CIC and its implications for thrombosis, clinical findings of coagulation parameters in SARS-CoV-2 infected patients with incidences of thromboembolic events and plausible therapeutic measures.
Collapse
|
18
|
Panahibakhsh M, Amiri F, Doroudi T, Sadeghi M, Kolivand P, Alipour F, Gorji A. The association between micronutrients and the SARS-CoV-2-specific antibodies in convalescent patients. Infection 2022; 50:965-972. [PMID: 35190974 PMCID: PMC8860137 DOI: 10.1007/s15010-022-01774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/02/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Various micronutrients play key roles in the immune responses to viral infection, antibody synthesis, and susceptibility to infection. This study aimed to investigate the role of micronutrients on the immune responses following SARS-CoV-2 infection. METHODS To evaluate humoral immunity following SARS-CoV-2 infection, the levels of SARS-CoV-2-specific IgM and IgG, as well as the concentrations of different micronutrients, were determined in 36 convalescent COVID-19 patients 60 days after infection. Furthermore, the correlation between biochemical and hematological parameters, clinical features, and the changes in adiposity with SARS-CoV-2 antibodies was evaluated. RESULTS Serum IgM and IgG antibodies were detected in 38.8% and 83.3% of recovered patients after 60 days of COVID-19 infection, respectively. The values of SARS-CoV-2-specific IgG were negatively correlated with the number of the platelet. Moreover, the values of SARS-CoV-2-specific IgM were positively correlated with LDH and the vitamin B12 concentration. Furthermore, a gender-specific association of SARS-CoV-2-specific IgG and IgM with vitamins D as well as with B9 and zinc was observed. A significant negative correlation was observed between the values of IgG with vitamin D in male participants and a positive correlation was detected between IgG values and B9 in female participants. Moreover, IgM levels with serum zinc values in females were negatively correlated. CONCLUSION Our study suggests the potential role of micronutrients in gender-specific humoral immunity following SARS-CoV-2 infection. Further studies are required with a greater sample of subjects to substantiate the validity and robustness of our findings.
Collapse
Affiliation(s)
| | - Faramarz Amiri
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Taher Doroudi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mostafa Sadeghi
- Department of Anesthesiology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Alipour
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany. .,Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany. .,Department of Neurology with Institute of Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
| |
Collapse
|
19
|
Ostermeier B, Soriano-Sarabia N, Maggirwar SB. Platelet-Released Factors: Their Role in Viral Disease and Applications for Extracellular Vesicle (EV) Therapy. Int J Mol Sci 2022; 23:2321. [PMID: 35216433 PMCID: PMC8876984 DOI: 10.3390/ijms23042321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets, which are small anuclear cell fragments, play important roles in thrombosis and hemostasis, but also actively release factors that can both suppress and induce viral infections. Platelet-released factors include sCD40L, microvesicles (MVs), and alpha granules that have the capacity to exert either pro-inflammatory or anti-inflammatory effects depending on the virus. These factors are prime targets for use in extracellular vesicle (EV)-based therapy due to their ability to reduce viral infections and exert anti-inflammatory effects. While there are some studies regarding platelet microvesicle-based (PMV-based) therapy, there is still much to learn about PMVs before such therapy can be used. This review provides the background necessary to understand the roles of platelet-released factors, how these factors might be useful in PMV-based therapy, and a critical discussion of current knowledge of platelets and their role in viral diseases.
Collapse
Affiliation(s)
| | | | - Sanjay B. Maggirwar
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA; (B.O.); (N.S.-S.)
| |
Collapse
|
20
|
Cheng Y, Wang Y, Wang X, Jiang Z, Zhu L, Fang S. Neutrophil-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Monocyte-to-Lymphocyte Ratio in Depression: An Updated Systematic Review and Meta-Analysis. Front Psychiatry 2022; 13:893097. [PMID: 35782448 PMCID: PMC9240476 DOI: 10.3389/fpsyt.2022.893097] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Research on neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) in depression is still emerging and has increased 3-fold since the first meta-analysis. An updated meta-analysis with sufficient studies can provide more evidence for a potential relationship between NLR, PLR, MLR, and depression. METHODS We identified 18 studies from the PubMed, EMBASE, Cochrane library, and Web of Science databases. Meta-analyses were performed to generate pooled standardized mean differences (SMDs) and 95% confidence intervals (CIs) between patients with depression and controls. Sensitivity analysis, subgroup analysis, meta-regression, and publication bias were conducted. RESULTS A total of 18 studies including 2,264 depressed patients and 2,415 controls were included. Depressed patients had significantly higher NLR and PLR compared with controls (SMD = 0.33, 95% CI: 0.15-0.52, p < 0.001 and SMD = 0.24, 95% CI: 0.02-0.46, p < 0.05, respectively). MLR was slightly higher in depressed individuals compared to controls (SMD = 0.15, 95% CI: -0.26 to 0.55, p > 0.05), despite the absence of significance. Sensitivity analysis removing one study responsible for heterogeneity showed a higher and significant effect (SMD = 0.32, 95% CI: 0.20-0.44) of MLR. Three subgroup analyses of NLR, PLR, MLR, and depression revealed obvious differences in the inflammatory ratios between depressed patients and controls in China and the matched age and gender subgroup. Individuals with post-stroke depression (PSD) had higher NLR and MLR values as compared to non-PSD patients (SMD = 0.51, 95% CI: 0.36-0.67, p < 0.001 and SMD = 0.46, 95% CI: 0.12-0.79, p < 0.01, respectively). Meta-regression analyses showed that male proportion in the case group influenced the heterogeneity among studies that measured NLR values (p < 0.05). CONCLUSIONS Higher inflammatory ratios, especially NLR, were significantly associated with an increased risk of depression. In the subgroup of China and matched age and gender, NLR, PLR, and MLR were all elevated in depressed patients vs. controls. Individuals with PSD had higher NLR and MLR values as compared to non-PSD patients. Gender differences may have an effect on NLR values in patients with depression.
Collapse
Affiliation(s)
- Yanwei Cheng
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Yiwen Wang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Xiangyi Wang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Zhuoya Jiang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Lijun Zhu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokuan Fang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Lin A, Forsyth JK, Hoftman GD, Kushan-Wells L, Jalbrzikowski M, Dokuru D, Coppola G, Fiksinski A, Zinkstok J, Vorstman J, Nachun D, Bearden CE. Transcriptomic profiling of whole blood in 22q11.2 reciprocal copy number variants reveals that cell proportion highly impacts gene expression. Brain Behav Immun Health 2021; 18:100386. [PMID: 34841284 PMCID: PMC8607166 DOI: 10.1016/j.bbih.2021.100386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022] Open
Abstract
22q11.2 reciprocal copy number variants (CNVs) offer a powerful quasi-experimental "reverse-genetics" paradigm to elucidate how gene dosage (i.e., deletions and duplications) disrupts the transcriptome to cause further downstream effects. Clinical profiles of 22q11.2 CNV carriers indicate that disrupted gene expression causes alterations in neuroanatomy, cognitive function, and psychiatric disease risk. However, interpreting transcriptomic signal in bulk tissue requires careful consideration of potential changes in cell composition. We first characterized transcriptomic dysregulation in peripheral blood from reciprocal 22q11.2 CNV carriers using differential expression analysis and weighted gene co-expression network analysis (WGCNA) to identify modules of co-expressed genes. We also assessed for group differences in cell composition and re-characterized transcriptomic differences after accounting for cell type proportions and medication usage. Finally, to explore whether CNV-related transcriptomic changes relate to downstream phenotypes associated with 22q11.2 CNVs, we tested for associations of gene expression with neuroimaging measures and behavioral traits, including IQ and psychosis or ASD diagnosis. 22q11.2 deletion carriers (22qDel) showed widespread expression changes at the individual gene as well as module eigengene level compared to 22q11.2 duplication carriers (22qDup) and controls. 22qDup showed increased expression of 5 genes within the 22q11.2 locus, and CDH6 located outside of the locus. Downregulated modules in 22qDel implicated altered immune and inflammatory processes. Celltype deconvolution analyses revealed significant differences between CNV and control groups in T-cell, mast cell, and macrophage proportions; differential expression of individual genes between groups was substantially attenuated after adjusting for cell composition. Individual gene, module eigengene, and cell proportions were not significantly associated with psychiatric or neuroanatomic traits. Our findings suggest broad immune-related dysfunction in 22qDel and highlight the importance of understanding differences in cell composition when interpreting transcriptomic changes in clinical populations. Results also suggest novel directions for future investigation to test whether 22q11.2 CNV effects on macrophages have implications for brain-related microglial function that may contribute to psychiatric phenotypes in 22q11.2 CNV carriers.
Collapse
Affiliation(s)
- Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jennifer K. Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of Washington, WA, USA
| | - Gil D. Hoftman
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leila Kushan-Wells
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Deepika Dokuru
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ania Fiksinski
- Wilhelmina Children's Hospital & University Medical Center Utrecht, Brain Center, the Netherlands
- Maastricht University, Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNS, the Netherlands
| | - Janneke Zinkstok
- Department of Psychiatry and Brain Center, University Medical Center Utrecht, the Netherlands
| | - Jacob Vorstman
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel Nachun
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int J Mol Sci 2021; 22:ijms22157894. [PMID: 34360659 PMCID: PMC8347377 DOI: 10.3390/ijms22157894] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Théo Ebermeyer
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Fabrice Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 25 bd Pasteur, F-42100 Saint-Étienne, France
| | - Philippe Berthelot
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, U1111, UMR5308, F-69007 Lyon, France;
- Infectious Diseases Department, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Patrick Mismetti
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Department of Vascular Medicine and Therapeutics, INNOVTE, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Olivier Garraud
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Hind Hamzeh-Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Correspondence:
| |
Collapse
|
23
|
Abstract
The current, global situation regarding the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic and its potentially devastating clinical manifestations, i.e. coronavirus disease 2019 (COVID-19), took the world by storm, as millions of people have been infected worldwide and more than 1,600,000 patients have succumbed. Infection induced by various respiratory viruses may lead to thrombotic complications. Infection-elicited thrombosis may involve a repertoire of distinct, yet interconnected pathophysiological mechanisms, implicating a hyperinflammatory response, platelet activation and triggering of the coagulation cascade. In the present review, we present current knowledge on the pathophysiological mechanisms that may underlie thrombotic complications in SARS-CoV-2 infection. Furthermore, we provide clinical data regarding the incidence rate of thrombotic events in several viral respiratory infections that cause acute respiratory distress syndrome, including SARS-CoV-2 infection and finally we summarize current recommendations concerning thromboprophylaxis and antithrombotic therapy in patients with thrombotic complications related to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iraklis C Moschonas
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
24
|
Zamora C, Cantó E, Vidal S. The Dual Role of Platelets in the Cardiovascular Risk of Chronic Inflammation. Front Immunol 2021; 12:625181. [PMID: 33868242 PMCID: PMC8046936 DOI: 10.3389/fimmu.2021.625181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Patients with chronic inflammatory diseases often exhibit cardiovascular risk. This risk is associated with the systemic inflammation that persists in these patients, causing a sustained endothelial activation. Different mechanisms have been considered responsible for this systemic inflammation, among which activated platelets have been regarded as a major player. However, in recent years, the role of platelets has become controversial. Not only can this subcellular component release pro- and anti-inflammatory mediators, but it can also bind to different subsets of circulating lymphocytes, monocytes and neutrophils modulating their function in either direction. How platelets exert this dual role is not yet fully understood.
Collapse
Affiliation(s)
- Carlos Zamora
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Elisabet Cantó
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sílvia Vidal
- Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| |
Collapse
|
25
|
Anka Idrissi D, Senhaji N, Aouiss A, Khalki L, Tijani Y, Zaid N, Marhoume FZ, Naya A, Oudghiri M, Kabine M, Zaid Y. IL-1 and CD40/CD40L platelet complex: elements of induction of Crohn's disease and new therapeutic targets. Arch Pharm Res 2021; 44:117-132. [PMID: 33394309 DOI: 10.1007/s12272-020-01296-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are chronic and multifactorial diseases that affect the intestinal tract, both characterized by recurrent inflammation of the intestinal mucosa, resulting in abdominal pain, diarrhea, vomiting and, rectal bleeding. Inflammatory bowel diseases (IBD) regroup these two disorders. The exact pathological mechanism of IBD remains ambiguous and poorly known. In genetically predisposed patients, defects in intestinal mucosal barrier are due to an uncontrolled inflammatory response to normal flora. In addition to the genetic predisposition, these defects could be triggered by environmental factors or by a specific lifestyle which is widely accepted as etiological hypothesis. The involvement of the CD40/CD40L platelet complex in the development of IBD has been overwhelmingly demonstrated. CD40L is climacteric in cell signalling in innate and adaptive immunity, the CD40L expression on the platelet cell surface gives them an immunological competence. The IL-1, a major inflammation mediator could be involved in different ways in the development of IBD. Here, we provide a comprehensive review regarding the role of platelet CD40/CD40L in the pathophysiological effect of IL-1 in the development of Crohn's disease (CD). This review could potentially help future approaches aiming to target these two pathways for therapeutic purposes and elucidate the immunological mechanisms driving gut inflammation.
Collapse
Affiliation(s)
- Doha Anka Idrissi
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Nezha Senhaji
- Laboratory of Genetic and Molecular Pathology, Faculty of Medicine, Hassan II University, Casablanca, Morocco
| | - Asmae Aouiss
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Loubna Khalki
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Youssef Tijani
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Nabil Zaid
- Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Morocco
| | - Fatima Zahra Marhoume
- Faculty of Sciences and Technology, Laboratory of Biochemistry and Neuroscience, Integrative and Computational Neuroscience Team, Hassan First University, Settat, Morocco
| | - Abdallah Naya
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Mounia Oudghiri
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Mostafa Kabine
- Department of Biology, Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Younes Zaid
- Faculty of Sciences, Department of Biology, Mohammed V University, Rabat, Morocco. .,Research Center of Abulcasis, University of Health Sciences, Rabat, Morocco.
| |
Collapse
|
26
|
Pathogen-reduced PRP blocks T-cell activation, induces Treg cells, and promotes TGF-β expression by cDCs and monocytes in mice. Blood Adv 2020; 4:5547-5561. [PMID: 33166410 DOI: 10.1182/bloodadvances.2020002867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alloimmunization against platelet-rich plasma (PRP) transfusions can lead to complications such as platelet refractoriness or rejection of subsequent transfusions and transplants. In mice, pathogen reduction treatment of PRP with UVB light and riboflavin (UV+R) prevents alloimmunization and appears to induce partial antigen-specific tolerance to subsequent transfusions. Herein, the in vivo responses of antigen-presenting cells and T cells to transfusion with UV+R-treated allogeneic PRP were evaluated to understand the cellular immune responses leading to antigen-specific tolerance. Mice that received UV+R-treated PRP had significantly increased transforming growth factor β (TGF-β) expression by CD11b+ CD4+ CD11cHi conventional dendritic cells (cDCs) and CD11bHi monocytes (P < .05). While robust T-cell responses to transfusions with untreated allogeneic PRP were observed (P < .05), these were blocked by UV+R treatment. Mice given UV+R-treated PRP followed by untreated PRP showed an early significant (P < .01) enrichment in regulatory T (Treg) cells and associated TGF-β production as well as diminished effector T-cell responses. Adoptive transfer of T-cell-enriched splenocytes from mice given UV+R-treated PRP into naive recipients led to a small but significant reduction of CD8+ T-cell responses to subsequent allogeneic transfusion. These data demonstrate that pathogen reduction with UV+R induces a tolerogenic profile by way of CD11b+ CD4+ cDCs, monocytes, and induction of Treg cells, blocking T-cell activation and reducing secondary T-cell responses to untreated platelets in vivo.
Collapse
|
27
|
Rawish E, Nording H, Münte T, Langer HF. Platelets as Mediators of Neuroinflammation and Thrombosis. Front Immunol 2020; 11:548631. [PMID: 33123127 PMCID: PMC7572851 DOI: 10.3389/fimmu.2020.548631] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond platelets function in hemostasis, there is emerging evidence to suggest that platelets contribute crucially to inflammation and immune responses. Therefore, considering the detrimental role of inflammatory conditions in severe neurological disorders such as multiple sclerosis or stroke, this review outlines platelets involvement in neuroinflammation. For this, distinct mechanisms of platelet-mediated thrombosis and inflammation are portrayed, focusing on the interaction of platelet receptors with other immune cells as well as brain endothelial cells. Furthermore, we draw attention to the intimate interplay between platelets and the complement system as well as between platelets and plasmatic coagulation factors in the course of neuroinflammation. Following the thorough exposition of preclinical approaches which aim at ameliorating disease severity after inducing experimental autoimmune encephalomyelitis (a counterpart of multiple sclerosis in mice) or brain ischemia-reperfusion injury, the clinical relevance of platelet-mediated neuroinflammation is addressed. Thus, current as well as future propitious translational and clinical strategies for the treatment of neuro-inflammatory diseases by affecting platelet function are illustrated, emphasizing that targeting platelet-mediated neuroinflammation could become an efficient adjunct therapy to mitigate disease severity of multiple sclerosis or stroke associated brain injury.
Collapse
Affiliation(s)
- Elias Rawish
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Henry Nording
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Thomas Münte
- University Hospital Schleswig-Holstein, Clinic for Neurology, Lübeck, Germany
| | - Harald F. Langer
- University Hospital Schleswig-Holstein, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
28
|
Abstract
The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing global pandemic has presented a health emergency of unprecedented magnitude. Recent clinical data has highlighted that coronavirus disease 2019 (COVID-19) is associated with a significant risk of thrombotic complications ranging from microvascular thrombosis, venous thromboembolic disease, and stroke. Importantly, thrombotic complications are markers of severe COVID-19 and are associated with multiorgan failure and increased mortality. The evidence to date supports the concept that the thrombotic manifestations of severe COVID-19 are due to the ability of SARS-CoV-2 to invade endothelial cells via ACE-2 (angiotensin-converting enzyme 2), which is expressed on the endothelial cell surface. However, in patients with COVID-19 the subsequent endothelial inflammation, complement activation, thrombin generation, platelet, and leukocyte recruitment, and the initiation of innate and adaptive immune responses culminate in immunothrombosis, ultimately causing (micro)thrombotic complications, such as deep vein thrombosis, pulmonary embolism, and stroke. Accordingly, the activation of coagulation (eg, as measured with plasma D-dimer) and thrombocytopenia have emerged as prognostic markers in COVID-19. Given thrombotic complications are central determinants of the high mortality rate in COVID-19, strategies to prevent thrombosis are of critical importance. Several antithrombotic drugs have been proposed as potential therapies to prevent COVID-19-associated thrombosis, including heparin, FXII inhibitors, fibrinolytic drugs, nafamostat, and dipyridamole, many of which also possess pleiotropic anti-inflammatory or antiviral effects. The growing awareness and mechanistic understanding of the prothrombotic state of COVID-19 patients are driving efforts to more stringent diagnostic screening for thrombotic complications and to the early institution of antithrombotic drugs, for both the prevention and therapy of thrombotic complications. The shifting paradigm of diagnostic and treatment strategies holds significant promise to reduce the burden of thrombotic complications and ultimately improve the prognosis for patients with COVID-19.
Collapse
Affiliation(s)
- James D. McFadyen
- From the Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
- Clinical Hematology Department (J.D.M., H.S.), Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
| | - Hannah Stevens
- From the Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
- Clinical Hematology Department (J.D.M., H.S.), Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
| | - Karlheinz Peter
- Department of Cardiology (K.P.), Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Melbourne, Victoria, Australia (J.D.M., H.S., K.P.)
| |
Collapse
|
29
|
Affiliation(s)
- John W. Semple
- Division of Hematology and Transfusion Medicine Lund University Lund Sweden
| | - Rick Kapur
- Department of Experimental Immunohematology Sanquin Research Amsterdam The Netherlands
- Landsteiner Laboratory Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
30
|
Nagayama‐Hasegawa Y, Honda S, Shibuya A, Shibuya K. Expression and function of DNAM‐1 on human B‐lineage cells. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:368-374. [DOI: 10.1002/cyto.b.21859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Yuko Nagayama‐Hasegawa
- Department of Immunology, Faculty of MedicineUniversity of Tsukuba Tsukuba Ibaraki Japan
| | - Shin‐ichiro Honda
- Department of Immunology, Faculty of MedicineUniversity of Tsukuba Tsukuba Ibaraki Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of Tsukuba Tsukuba Ibaraki Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of MedicineUniversity of Tsukuba Tsukuba Ibaraki Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)University of Tsukuba Tsukuba Ibaraki Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of MedicineUniversity of Tsukuba Tsukuba Ibaraki Japan
| |
Collapse
|
31
|
Gusdon AM, Nyquist PA, Torres-Lopez VM, Leasure AC, Falcone GJ, Sheth KN, Sansing LH, Hanley DF, Malani R. Perihematomal Edema After Intracerebral Hemorrhage in Patients With Active Malignancy. Stroke 2019; 51:129-136. [PMID: 31744426 DOI: 10.1161/strokeaha.119.027085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background and Purpose- Patients with active malignancy are at risk for intracerebral hemorrhage (ICH). We aimed to characterize perihematomal edema (PHE) and hematoma volumes after spontaneous nontraumatic ICH in patients with cancer without central nervous system involvement. Methods- Patients with active malignancy who developed ICH were retrospectively identified through automated searches of institutional databases. Control patients were identified with ICH and without active cancer. Demographic and cancer-specific data were obtained by chart review. Hematoma and PHE volumes were determined using semiautomated methodology. Univariate and multivariate linear regression models were created to assess which variables were associated with hematoma and PHE expansion. Results- Patients with cancer (N=80) and controls (N=136) had similar demographics (all P>0.20), although hypertension was more prevalent among controls (P=0.004). Most patients with cancer had received recent chemotherapy (n=45, 56%) and had recurrence of malignancy (n=43, 54%). Patients with cancer were thrombocytopenic (median platelet count 90 000 [interquartile range, 17 500-211 500]), and most had undergone blood product transfusion (n=41, 51%), predominantly platelets (n=38, 48%). Thirty-day mortality was 36% (n=29). Patients with cancer had significantly increased PHE volumes (23.67 versus 8.61 mL; P=1.88×10-9) and PHE-to-ICH volume ratios (2.26 versus 0.99; P=2.20×10-16). In multivariate analyses, variables associated with PHE growth among patients with cancer were ICH volume (β=1.29 [95% CI, 1.58-1.30] P=1.30×10-5) and platelet transfusion (β=15.67 [95% CI, 3.61-27.74] P=0.014). Variables associated with 30-day mortality were ICH volume (odds ratio, 1.06 [95% CI, 1.03-1.10] P=6.76×10-5), PHE volume (odds ratio, 1.07 [95% CI, 1.04-1.09] P=7.40×10-6), PHE growth (odds ratio, 1.05 [95% CI, 1.01-1.10] P=0.01), and platelet transfusion (odds ratio, 1.48 [95% CI, 1.22-1.79] P=0.0001). Conclusions- Patients with active cancer who develop ICH have increased PHE volumes. PHE growth was independent of thrombocytopenia but associated with blood product transfusion. Thirty-day mortality was associated with PHE and ICH volumes and blood product transfusion.
Collapse
Affiliation(s)
- Aaron M Gusdon
- From the Division of Neurocritical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (A.M.G., P.A.N.)
| | - Paul A Nyquist
- From the Division of Neurocritical Care, Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (A.M.G., P.A.N.).,Division of Brain Injury Outcomes (BIOS), Johns Hopkins University School of Medicine, Baltimore, MD (P.A.N., D.F.H.)
| | - Victor M Torres-Lopez
- Department of Neurology, Yale University School of Medicine, New Haven, CT (V.M.T.-L., A.C.L., G.J.F., K.N.S., L.H.S.)
| | - Audrey C Leasure
- Department of Neurology, Yale University School of Medicine, New Haven, CT (V.M.T.-L., A.C.L., G.J.F., K.N.S., L.H.S.)
| | - Guido J Falcone
- Department of Neurology, Yale University School of Medicine, New Haven, CT (V.M.T.-L., A.C.L., G.J.F., K.N.S., L.H.S.)
| | - Kevin N Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, CT (V.M.T.-L., A.C.L., G.J.F., K.N.S., L.H.S.)
| | - Lauren H Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT (V.M.T.-L., A.C.L., G.J.F., K.N.S., L.H.S.)
| | - Daniel F Hanley
- Division of Brain Injury Outcomes (BIOS), Johns Hopkins University School of Medicine, Baltimore, MD (P.A.N., D.F.H.)
| | - Rachna Malani
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY (R.M.)
| |
Collapse
|
32
|
Abstract
Dysregulation of lymphocyte function, accumulation of autoantibodies and defective clearance of circulating immune complexes and apoptotic cells are hallmarks of systemic lupus erythematosus (SLE). Moreover, it is now evident that an intricate interplay between the adaptive and innate immune systems contributes to the pathogenesis of SLE, ultimately resulting in chronic inflammation and organ damage. Platelets circulate in the blood and are chiefly recognized for their role in the prevention of bleeding and promotion of haemostasis; however, accumulating evidence points to a role for platelets in both adaptive and innate immunity. Through a broad repertoire of receptors, platelets respond promptly to immune complexes, complement and damage-associated molecular patterns, and represent a major reservoir of immunomodulatory molecules in the circulation. Furthermore, evidence suggests that platelets are activated in patients with SLE, and that they could contribute to the circulatory autoantigenic load through the release of microparticles and mitochondrial antigens. Herein, we highlight how platelets contribute to the immune response and review evidence implicating platelets in the pathogenesis of SLE.
Collapse
|
33
|
Liu X, Gorzelanny C, Schneider SW. Platelets in Skin Autoimmune Diseases. Front Immunol 2019; 10:1453. [PMID: 31333641 PMCID: PMC6620619 DOI: 10.3389/fimmu.2019.01453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and small vessel vasculitis are three autoimmune diseases frequently manifested in the skin. They share common pathogenic features, including production of autoantibodies, loss of tolerance to self-antigens, tissue necrosis and fibrosis, vasculopathy and activation of the coagulation system. Platelets occupy a central part within the coagulation cascade and are well-recognized for their hemostatic role. However, recent cumulative evidence implicates their additional and multifaceted immunoregulatory functions. Platelets express immune receptors and they store growth factors, cytokines, and chemokines in their granules enabling a significant contribution to inflammation. A plethora of activating triggers such as damage associated molecular patterns (DAMPs) released from damaged endothelial cells, immune complexes, or complement effector molecules can mediate platelet activation. Activated platelets further foster an inflammatory environment and the crosstalk with the endothelium and leukocytes by the release of immunoactive molecules and microparticles. Further insight into the pathogenic implications of platelet activation will pave the way for new therapeutic strategies targeting autoimmune diseases. In this review, we discuss the inflammatory functions of platelets and their mechanistic contribution to the pathophysiology of SSc, ANCA associated small vessel vasculitis and other autoimmune diseases affecting the skin.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Cognasse F, Laradi S, Berthelot P, Bourlet T, Marotte H, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Inflammatory Response to Stress. Front Immunol 2019; 10:1478. [PMID: 31316518 PMCID: PMC6611140 DOI: 10.3389/fimmu.2019.01478] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 12/02/2022] Open
Abstract
Blood platelets play a central hemostatic role, (i) as they repair vascular epithelial damage, and (ii) they play immune defense roles, as they have the capacity to produce and secrete various cytokines, chemokines, and related products. Platelets sense and respond to local dangers (infectious or not). Platelets, therefore, mediate inflammation, express and use receptors to bind infectious pathogen moieties and endogenous ligands, among other components. Platelets contribute to effective pathogen clearance. Damage-associated molecular patterns (DAMPs) are danger signals released during inflammatory stress, such as burns, trauma and infection. Each pathogen is recognized by its specific molecular signature or pathogen-associated molecular pattern (PAMP). Recent data demonstrate that platelets have the capacity to sense external danger signals (DAMPs or PAMPs) differentially through a distinct type of pathogen recognition receptor (such as Toll-like receptors). Platelets regulate the innate immune response to pathogens and/or endogenous molecules, presenting several types of “danger” signals using a complete signalosome. Platelets, therefore, use complex tools to mediate a wide range of functions from danger sensing to tissue repair. Moreover, we noted that the secretory capacity of stored platelets over time and the development of stress lesions by platelets upon collection, processing, and storage are considered stress signals. The key message of this review is the “inflammatory response to stress” function of platelets in an infectious or non-infectious context.
Collapse
Affiliation(s)
- Fabrice Cognasse
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,GIMAP-EA3064, Université de Lyon, Saint-Étienne, France
| | - Sandrine Laradi
- Etablissement Français du Sang Auvergne-Rhône-Alpes, Saint-Étienne, France.,GIMAP-EA3064, Université de Lyon, Saint-Étienne, France
| | - Philippe Berthelot
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Laboratoire des Agents Infectieux et d'Hygiène, CHU de Saint-Etienne, Saint-Étienne, France
| | - Thomas Bourlet
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Laboratoire des Agents Infectieux et d'Hygiène, CHU de Saint-Etienne, Saint-Étienne, France
| | - Hubert Marotte
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Étienne, France.,Department of Rheumatology, University Hospital of Saint-Etienne, Saint-Étienne, France
| | - Patrick Mismetti
- SAINBIOSE, INSERM U1059, University of Lyon, Saint-Étienne, France.,Vascular and Therapeutic Medicine Department, Saint-Etienne University Hospital Center, Saint-Étienne, France
| | - Olivier Garraud
- GIMAP-EA3064, Université de Lyon, Saint-Étienne, France.,Institut National de Transfusion Sanguine, Paris, France
| | | |
Collapse
|
35
|
Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ Res 2019; 122:337-351. [PMID: 29348254 DOI: 10.1161/circresaha.117.310795] [Citation(s) in RCA: 573] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Platelets, non-nucleated blood components first described over 130 years ago, are recognized as the primary cell regulating hemostasis and thrombosis. The vascular importance of platelets has been attributed to their essential role in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism. Increasing knowledge on the platelets' role in the vasculature has led to many advances in understanding not only how platelets interact with the vessel wall but also how they convey changes in the environment to other circulating cells. In addition to their well-described hemostatic function, platelets are active participants in the immune response to microbial organisms and foreign substances. Although incompletely understood, the immune role of platelets is a delicate balance between its pathogenic response and its regulation of thrombotic and hemostatic functions. Platelets mediate complex vascular homeostasis via specific receptors and granule release, RNA transfer, and mitochondrial secretion that subsequently regulates hemostasis and thrombosis, infection, and innate and adaptive immunity.
Collapse
Affiliation(s)
- Milka Koupenova
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester.
| | - Lauren Clancy
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Heather A Corkrey
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Jane E Freedman
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| |
Collapse
|
36
|
Gasparyan AY, Ayvazyan L, Mukanova U, Yessirkepov M, Kitas GD. The Platelet-to-Lymphocyte Ratio as an Inflammatory Marker in Rheumatic Diseases. Ann Lab Med 2019; 39:345-357. [PMID: 30809980 PMCID: PMC6400713 DOI: 10.3343/alm.2019.39.4.345] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/12/2018] [Accepted: 02/07/2019] [Indexed: 12/29/2022] Open
Abstract
The platelet-to-lymphocyte ratio (PLR) has emerged as an informative marker revealing shifts in platelet and lymphocyte counts due to acute inflammatory and prothrombotic states. PLR has been extensively examined in neoplastic diseases accompanied by immune suppression and thrombosis, which can be predicted by combined blood cell counts and their ratios. Several large observational studies have demonstrated the value of shifts in PLR in evaluating the severity of systemic inflammation and predicting infections and other comorbidities, in inflammatory rheumatic diseases. The value of PLR as an inflammatory marker increases when its fluctuations are interpreted along with other complementary hematologic indices, particularly the neutrophil-to-lymphocyte ratio (NLR), which provides additional information about the disease activity, presence of neutrophilic inflammation, infectious complications, and severe organ damage in systemic lupus erythematosus. PLR and NLR have high predictive value in rheumatic diseases with predominantly neutrophilic inflammation (e.g., Behçet disease and familial Mediterranean fever). High PLR, along with elevated platelet count, is potentially useful in diagnosing some systemic vasculitides, particularly giant-cell arteritis. A few longitudinal studies on rheumatic diseases have demonstrated a decrease in PLR in response to anti-inflammatory therapies. The main limitations of PLR studies are preanalytical faults, inadequate standardization of laboratory measurements, and inappropriate subject selection. Nonetheless, accumulating evidence suggests that PLR can provide valuable information to clinicians who encounter multisystem manifestations of rheumatic diseases, which are reflected in shifts in platelet, lymphocyte, neutrophil, or monocyte counts. Interpretation of PLR combined with complementary hematologic indices is advisable to more accurately diagnose inflammatory rheumatic diseases and predict related comorbidities.
Collapse
Affiliation(s)
- Armen Yuri Gasparyan
- Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK.
| | - Lilit Ayvazyan
- Department of Medical Chemistry, Yerevan State Medical University, Yerevan, Armenia
| | - Ulzhan Mukanova
- Department of Surgical Disciplines, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - Marlen Yessirkepov
- Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan
| | - George D Kitas
- Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK.,Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Platelets in Systemic Sclerosis: the Missing Link Connecting Vasculopathy, Autoimmunity, and Fibrosis? Curr Rheumatol Rep 2019; 21:15. [PMID: 30830444 DOI: 10.1007/s11926-019-0815-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Platelets are no longer recognized solely as cell fragments regulating hemostasis. They have pleiotropic functions and they are linked directly or indirectly with the three cornerstones of systemic sclerosis (SSc): vasculopathy, autoimmunity, and fibrosis. In this review, we summarize the current knowledge on the potential role of platelets in the pathogenesis of SSc. RECENT FINDINGS Experimental evidence suggests that vasculopathy, a universal and early finding in SSc, may activate platelets which subsequently release several profibrotic mediators such as serotonin and transforming growth factor β (TGFβ). Platelets may also cross-react with the endothelium leading to the release of molecules, such as thymic stromal lymphopoietin (TSLP), that may trigger fibrosis or sustain vascular damage. Finally, activated platelets express CD40L and provide costimulatory help to B cells, something that may facilitate the breach in immune tolerance. Preclinical studies point to the direction that platelets are actively involved in SSc pathogenesis. Targeting platelets may be an attractive therapeutic approach in SSc.
Collapse
|
38
|
Association of Platelet Binding to Lymphocytes with B Cell Abnormalities and Clinical Manifestations in Systemic Lupus Erythematosus. Mediators Inflamm 2019; 2019:2473164. [PMID: 30944545 PMCID: PMC6421767 DOI: 10.1155/2019/2473164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/28/2018] [Accepted: 01/06/2019] [Indexed: 01/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with the polyclonal activation of B lymphocytes and the production of autoantibodies that cause immune complex-related inflammation. Immunological factors derived from platelets modulate B cell function in SLE disease. However, platelets do not only modify the immune system by soluble factors. The binding of platelets to lymphocytes can modulate immune response. Thus, we speculate that the binding of platelets to lymphocytes in SLE patients may play a role in abnormal B lymphocyte response and the pathogenesis of SLE. We observed that levels of lymphocytes with bound platelets were higher in SLE patients than in healthy donors (HD). In SLE patients, the percentage of B lymphocytes with bound platelets positively correlated with plasmatic levels of IgG, IgA, IL-10, and soluble CD40L and negatively correlated with IgM levels, though not in HD. Preswitched memory B lymphocytes were the subpopulation with more bound platelets. Lymphocytes with bound platelets from both HD and SLE patients had major levels of CD86 and BAFFR and a greater production of IL-10 than lymphocytes without bound platelets. However, only B lymphocytes with bound platelets from SLE patients had increased levels of IgG and IgA on their surface. SLE patients with a suggestive renal manifestation had the highest levels of B and T lymphocytes with bound platelets. These results suggest that the binding of platelets to lymphocytes plays a role in SLE disease and that controlling this binding may be a promising therapeutic approach.
Collapse
|
39
|
Garraud O, Cognasse F, Moncharmont P. Immunological Features in the Process of Blood Platelet-Induced Alloimmunisation, with a Focus on Platelet Component Transfusion. Diseases 2019; 7:E7. [PMID: 30646515 PMCID: PMC6473846 DOI: 10.3390/diseases7010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
Alloimmunisation to platelet antigens is not uncommon; a large number of females, having had pregnancies, developed antibodies to Human Leukocyte Antigen (HLA) moieties harboured on their foetuses' cells (inherited from the father(s)) that may conflict with further pregnancies and transfused Platelet Components occasionally. This is possible since platelets constitutionally express HLA class I molecules (though in copy numbers that consistently differ among individuals). Platelets also express HPA moieties that are variants of naturally expressed adhesion and aggregation molecules; HPA differences between mothers and foetuses and between donors and recipients explain alloimmune conflicts and consequences. Lastly, platelets express ABO blood group antigens, which are rarely immunising, however transfusion mismatches in ABO groups seem to be related to immunisation in other blood and tissue groups. Transfusion also brings residual leukocytes that may also immunise through their copious copy numbers of HLA class I (rarely class II on activated T lymphocytes, B cells, and dendritic cells). In addition, residual red blood cells in platelet concentrates may induce anti-red blood cell allo-antibodies. This short review aims to present the main mechanisms that are commonly reported in alloimmunisation. It also critically endeavours to examine paths to either dampen alloimmunisation occurrences or to prevent them.
Collapse
Affiliation(s)
- Olivier Garraud
- EA_3064, Faculty of Medicine of Saint-Etienne, University of Lyon, 42023 Saint-Etienne, France.
- Institut National de la Transfusion Sanguine, 75015 Paris, France.
| | - Fabrice Cognasse
- EA_3064, Faculty of Medicine of Saint-Etienne, University of Lyon, 42023 Saint-Etienne, France.
- Établissement Français du Sang Auvergne-Rhône-Alpes, 69150 Décines, France.
| | - Pierre Moncharmont
- Établissement Français du Sang Auvergne-Rhône-Alpes, 69150 Décines, France.
| |
Collapse
|
40
|
Morrell CN, Pariser DN, Hilt ZT, Vega Ocasio D. The Platelet Napoleon Complex-Small Cells, but Big Immune Regulatory Functions. Annu Rev Immunol 2018; 37:125-144. [PMID: 30485751 DOI: 10.1146/annurev-immunol-042718-041607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platelets have dual physiologic roles as both cellular mediators of thrombosis and immune modulatory cells. Historically, the thrombotic function of platelets has received significant research and clinical attention, but emerging research indicates that the immune regulatory roles of platelets may be just as important. We now know that in addition to their role in the acute thrombotic event at the time of myocardial infarction, platelets initiate and accelerate inflammatory processes that are part of the pathogenesis of atherosclerosis and myocardial infarction expansion. Furthermore, it is increasingly apparent from recent studies that platelets impact the pathogenesis of many vascular inflammatory processes such as autoimmune diseases, sepsis, viral infections, and growth and metastasis of many types of tumors. Therefore, we must consider platelets as immune cells that affect all phases of immune responses.
Collapse
Affiliation(s)
- Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Daphne N Pariser
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Zachary T Hilt
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| | - Denisse Vega Ocasio
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Rochester, New York 14642, USA;
| |
Collapse
|
41
|
Transfused platelets enhance alloimmune responses to transfused KEL-expressing red blood cells in a murine model. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 17:368-377. [PMID: 30418129 DOI: 10.2450/2018.0178-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Factors influencing the development of alloantibodies against blood group antigens on transfused red blood cells are poorly defined. We hypothesised that transfused platelets may act as a danger signal to recipients and affect humoral immune responses to transfused red blood cells. MATERIALS AND METHODS Platelet-rich plasma prepared from wild-type C57BL/6 or CD40L knock-out donors was transfused into wild-type or CD40L knock-out recipients. Leucoreduced red blood cells from transgenic donors expressing high levels of the human KEL glycoprotein in an erythrocyte-specific manner (KELhi donors) were transfused after the platelets, and anti-KEL responses were measured longitudinally. In some experiments, recipients were treated with poly (I:C), monoclonal CD40L-blocking antibody, or CD4-depleting antibody prior to transfusion. RESULTS Transfusion of wild-type C57BL/6 platelets or treatment with poly (I:C) prior to KELhi red blood cell transfusion led to an anti-KEL alloimmune response in wild-type recipients. Transfusion of platelets from wild-type but not CD40L knock-out donors prior to KELhi red blood cell transfusion led to an IgG anti-KEL alloimmune response in CD40L knock-out recipients; unexpectedly, transfusion of platelets from CD40L knock-out donors prior to KELhi red blood cell transfusion led to a robust anti-KEL alloimmune response in wild-type recipients. Recipient treatment with MR1 CD40L-blocking antibody or CD4-depleting antibody prevented KEL alloimmunisation altogether. DISCUSSION Transfused platelets serve as an adjuvant in this T-dependent murine model of anti-KEL red blood cell alloimmunisation, with CD40/CD40L interactions being involved to some degree but with additional mechanisms also playing a role. These findings raise questions about the role that transfused or endogenous platelets may play in other innate/adaptive immune responses.
Collapse
|
42
|
Rahman A, Tiwari A, Narula J, Hickling T. Importance of Feedback and Feedforward Loops to Adaptive Immune Response Modeling. CPT Pharmacometrics Syst Pharmacol 2018; 7:621-628. [PMID: 30198637 PMCID: PMC6202469 DOI: 10.1002/psp4.12352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/15/2018] [Indexed: 12/15/2022] Open
Abstract
The human adaptive immune system is a very complex network of different types of cells, cytokines, and signaling molecules. This complex network makes it difficult to understand the system level regulations. To properly explain the immune system, it is necessary to explicitly investigate the presence of different feedback and feedforward loops (FFLs) and their crosstalks. Considering that these loops increase the complexity of the system, the mathematical modeling has been proved to be an important tool to explain such complex biological systems. This review focuses on these regulatory loops and discusses their importance on systems modeling of the immune system.
Collapse
|
43
|
From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int 2018; 38:959-974. [PMID: 29492586 PMCID: PMC5954012 DOI: 10.1007/s00296-018-4001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
Abstract
Thrombosis and cardiovascular complications are common manifestations of a variety of pathological conditions, including infections and chronic inflammatory diseases. Hence, there is great interest in determining the hitherto unforeseen immune role of the main blood coagulation executor-the platelet. Platelets store and release a plethora of immunoactive molecules, generate microparticles, and interact with cells classically belonging to the immune system. The observed effects of platelet involvement in immune processes, especially in autoimmune diseases, are conflicting-from inciting inflammation to mediating its resolution. An in-depth understanding of the role of platelets in inflammation and immunity could open new therapeutic pathways for patients with autoimmune disorders. This review aims to summarize the current knowledge on the role of platelets in the patomechanisms of autoimmune disorders and suggests directions for future research.
Collapse
|
44
|
Sonmez O, Sonmez M. Role of platelets in immune system and inflammation. Porto Biomed J 2017; 2:311-314. [PMID: 32258788 DOI: 10.1016/j.pbj.2017.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/31/2017] [Indexed: 10/18/2022] Open
Abstract
Platelets have significant role in modulating clot formation. Additionally, emerging data indicates that platelets have considerable roles in inflammation and immune response. Platelets gather at the damaged cite and adhere to white blood cells. Subsequently, they release cytokines and chemokines which are chemotactic for neutrophils and monocytes. Therefore, platelets are necessary for targeting lymphocytes, neutrophils and monocytes to inflammation site. Those interactions enhance inflammation. Moreover, platelets serve as an immune cell by engulfing microbes. Presence of platelets affect prognosis in some bacterial or viral infection and several other diseases.
Collapse
Affiliation(s)
- Ozge Sonmez
- Istanbul University Cerrahpasa Medicine Faculty, English Medicine Programme, Istanbul, Turkey
| | - Mehmet Sonmez
- Karadeniz Technical University, School of Medicine, Department of Haematology, Trabzon, Turkey
| |
Collapse
|
45
|
Yari F, Motefaker M, Nikougoftar M, Khayati Z. Interaction of Platelet-Derived Microparticles with a Human B-Lymphoblast Cell Line: A Clue for the Immunologic Function of the Microparticles. Transfus Med Hemother 2017; 45:55-61. [PMID: 29593461 DOI: 10.1159/000479072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Background Platelets are blood cells with extensive capabilities in hemostasis. They also play a central role in the development of innate and adaptive immune responses. Little information exists about the immunostimulatory role of platelet-derived microparticles (Plt-MPs). To further elucidate this issue, we conducted this study using the B-lymphoblast cell line 'Daudi' as an available surrogate cell line for peripheral blood B lymphocytes. This cell line does not produce immunoglobulins (Igs) and has low expression of activation markers. Methods Plt-MPs were isolated from platelet concentrate (PC) using a multi-step centrifugation method. Daudi cells were treated with Plt-MPs in the culture medium while no treatment was given to the control cells. During 5-day co-culture, Daudi cells were evaluated for the Ig production and the expression of the cell surface markers CD86, CD27, and IgD. Results An increase was observed for the production of IgG and the expression of CD27 and CD86 on Daudi cells in response to Plt-MPs, whereas the IgD level was decreased. The response of Daudi cells was dependent on the concentration of Plt-MPs and the time of their isolation from PCs during storage. The differences of the variables were significant between the treatment and control groups. Conclusion Plt-MPs could induce the activation and differentiation of immortalized cells of B-cell origin. Thus it is conceivable that Plt-MPs may play a significant role as immortalized cell activators in human monoclonal antibody technology in near future.
Collapse
Affiliation(s)
- Fatemah Yari
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahboubeh Motefaker
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zahra Khayati
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
46
|
Ntelis K, Solomou EE, Sakkas L, Liossis SN, Daoussis D. The role of platelets in autoimmunity, vasculopathy, and fibrosis: Implications for systemic sclerosis. Semin Arthritis Rheum 2017; 47:409-417. [PMID: 28602360 DOI: 10.1016/j.semarthrit.2017.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy, autoimmunity, and widespread dermal and visceral fibrosis. This article summarizes the current knowledge about the potential contribution of platelets in the disease process and the rationale of targeting platelets as an adjunct treatment for SSc. METHODS We performed an electronic search (Medline) using the keywords platelets, systemic sclerosis, autoimmunity, fibrosis, Raynaud, and pulmonary arterial hypertension. RESULTS The link that connects vasculopathy, autoimmunity, and fibrosis in SSc remains obscure. Experimental data suggest that platelets are not solely cell fragments regulating hemostasis but they have a pleiotropic role in several biologic processes including immune regulation, vasculopathy, fibrosis, and all key features of SSc. Platelets interplay with the impaired endothelium, can interact with immune cells, and they are storages of bioactive molecules involved in tissue injury and remodeling. The potential role of platelets in the pathogenesis of SSc is further supported by experimental data in animal models of SSc. Platelet-derived serotonin represents a novel target in SSc and serotonin blockade is currently being tested in clinical trials. CONCLUSION Platelets may be actively involved in the pathogenesis of SSc by activating immune responses and facilitating the fibrotic process. However, definite conclusions cannot be drawn until more data from both basic and clinical research are available.
Collapse
Affiliation(s)
- Konstantinos Ntelis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, Patras, Greece
| | - Lazaros Sakkas
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, University of Patras Medical School, Patras University Hospital, 26504 Rion, Patras, Greece.
| |
Collapse
|
47
|
Ki KK, Faddy HM, Flower RL, Dean MM. Platelet concentrates modulate myeloid dendritic cell immune responses. Platelets 2017; 29:373-382. [DOI: 10.1080/09537104.2017.1306045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Katrina K. Ki
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Helen M. Faddy
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Robert L. Flower
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - Melinda M. Dean
- Research and Development, The Australian Red Cross Blood Service, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Blumberg N, Cholette JM, Schmidt AE, Phipps RP, Spinelli SL, Heal JM, Pietropaoli AP, Refaai MA, Sime PJ. Management of Platelet Disorders and Platelet Transfusions in ICU Patients. Transfus Med Rev 2017; 31:252-257. [PMID: 28501326 DOI: 10.1016/j.tmrv.2017.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 01/04/2023]
Abstract
Thrombocytopenia or receipt of antiplatelet drugs, with or without bleeding, is a common indication for platelet transfusions in the ICU. However, there is almost no evidence base for these practices other than expert opinion. Also common is use of platelet transfusions prior to invasive procedures or surgery in patients with thrombocytopenia. Likewise, there is no high-quality evidence that such practices are efficacious or safe. Recently, it has become clear that, whether causal or not, patients receiving prophylactic platelet transfusions experience high rates of nosocomial infection, thrombosis, organ failure, and mortality, which increase the urgency and need for randomized trials to assess these practices. Investigational methods of improving the safety and efficacy of platelet transfusions include use of alternate strategies such as antifibrinolytics; use of ABO-identical, leukoreduced, and washed platelet transfusions; and improved storage solutions.
Collapse
Affiliation(s)
- Neil Blumberg
- Transfusion Medicine, Department of Pathology and Laboratory, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY.
| | - Jill M Cholette
- Critical Care and Cardiology, Department of Pediatrics, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Amy E Schmidt
- Transfusion Medicine, Department of Pathology and Laboratory, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Richard P Phipps
- Transfusion Medicine, Department of Pathology and Laboratory, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY; Department of Environmental Medicine, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY; Department of Microbiology and Immunology, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Sherry L Spinelli
- Transfusion Medicine, Department of Pathology and Laboratory, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Joanna M Heal
- Transfusion Medicine, Department of Pathology and Laboratory, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Anthony P Pietropaoli
- Pulmonary and Critical Care, Department of Medicine, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Majed A Refaai
- Transfusion Medicine, Department of Pathology and Laboratory, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| | - Patricia J Sime
- Pulmonary and Critical Care, Department of Medicine, Strong Memorial Hospital and Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
49
|
Leucocyte cytokines dominate platelet cytokines overtime in non-leucoreduced platelet components. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 16:63-72. [PMID: 27643752 DOI: 10.2450/2016.0076-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Leucoreduction of blood components, including platelet components, is strongly encouraged but not yet universal, especially outside high income countries. As both leucocytes and platelets secrete copious amounts of pro-inflammatory cytokines/chemokines under various conditions and during storage, we investigated the potential of the respective secretory programmes of these cells in order to evaluate their subsequent pathophysiological effects. MATERIAL AND METHODS A total of 158 individual non-leucoreduced platelet components were obtained from Tunisian donors and tested for characteristic biological response modifiers (BRM) of leukocytes (IL-1β, IL-8), platelets (sCD62P, sCD40L) and both cell types (TNF-α, RANTES) in the presence or absence of thrombin stimulation and after different periods of storage (up to 5 days). BRM levels were determined using enzyme-linked immunosorbent assays and Luminex technology. Platelet-leucocyte aggregate formation during storage was analysed using flow cytometry. RESULTS Leucocyte- and platelet-associated BRM had clearly distinct profiles both at the onset (day 0) and termination (day 5) of the observation period but altered during the intermediate period so that their respective importance was inverted; in fact, the profiles were merged and indistinguishable on days 2-3. The leucocyte-derived BRM largely dominated over platelet-derived ones and further altered the BRM platelet secretion programme. DISCUSSION This study contributes substantial, new information on leucocyte/platelet interactions and their likely role in transfusion when leucodepletion cannot be performed or is only partially achieved.
Collapse
|
50
|
Piepenbrink MS, Samuel M, Zheng B, Carter B, Fucile C, Bunce C, Kiebala M, Khan AA, Thakar J, Maggirwar SB, Morse D, Rosenberg AF, Haughey NJ, Valenti W, Keefer MC, Kobie JJ. Humoral Dysregulation Associated with Increased Systemic Inflammation among Injection Heroin Users. PLoS One 2016; 11:e0158641. [PMID: 27379802 PMCID: PMC4933366 DOI: 10.1371/journal.pone.0158641] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
Background Injection drug use is a growing major public health concern. Injection drug users (IDUs) have a higher incidence of co-morbidities including HIV, Hepatitis, and other infections. An effective humoral response is critical for optimal homeostasis and protection from infection; however, the impact of injection heroin use on humoral immunity is poorly understood. We hypothesized that IDUs have altered B cell and antibody profiles. Methods and Findings A comprehensive systems biology-based cross-sectional assessment of 130 peripheral blood B cell flow cytometry- and plasma- based features was performed on HIV-/Hepatitis C-, active heroin IDUs who participated in a syringe exchange program (n = 19) and healthy control subjects (n = 19). The IDU group had substantial polydrug use, with 89% reporting cocaine injection within the preceding month. IDUs exhibited a significant, 2-fold increase in total B cells compared to healthy subjects, which was associated with increased activated B cell subsets. Although plasma total IgG titers were similar between groups, IDUs had significantly higher IgG3 and IgG4, suggestive of chronic B cell activation. Total IgM was also increased in IDUs, as well as HIV Envelope-specific IgM, suggestive of increased HIV exposure. IDUs exhibited numerous features suggestive of systemic inflammation, including significantly increased plasma sCD40L, TNF-α, TGF-α, IL-8, and ceramide metabolites. Machine learning multivariate analysis distilled a set of 10 features that classified samples based on group with absolute accuracy. Conclusions These results demonstrate broad alterations in the steady-state humoral profile of IDUs that are associated with increased systemic inflammation. Such dysregulation may impact the ability of IDUs to generate optimal responses to vaccination and infection, or lead to increased risk for inflammation-related co-morbidities, and should be considered when developing immune-based interventions for this growing population.
Collapse
Affiliation(s)
- Michael S. Piepenbrink
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, NY, United States of America
| | - Memorie Samuel
- School of Medicine, Howard University, Washington, DC, United States of America
| | - Bo Zheng
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, NY, United States of America
| | - Brittany Carter
- School of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Christopher Fucile
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, United States of America
| | - Catherine Bunce
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, NY, United States of America
| | - Michelle Kiebala
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States of America
| | - Atif A. Khan
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States of America
| | - Juilee Thakar
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States of America
| | - Sanjay B. Maggirwar
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States of America
| | - Diane Morse
- Departments of Psychiatry and Medicine, University of Rochester, Rochester, NY, United States of America
| | - Alexander F. Rosenberg
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, United States of America
| | - Norman J. Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States of America
| | - William Valenti
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, NY, United States of America
- Trillium Health, Rochester, NY, United States of America
| | - Michael C. Keefer
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, NY, United States of America
| | - James J. Kobie
- Infectious Diseases Division, Department of Medicine, University of Rochester, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|