1
|
Caccavano AP, Vlachos A, McLean N, Kimmel S, Kim JH, Vargish G, Mahadevan V, Hewitt L, Rossi AM, Spineux I, Wu SJ, Furlanis E, Dai M, Garcia BL, Chittajallu R, London E, Yuan X, Hunt S, Abebe D, Eldridge MAG, Cummins AC, Hines BE, Plotnikova A, Mohanty A, Averbeck BB, Zaghloul K, Dimidschstein J, Fishell G, Pelkey KA, McBain CJ. Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576455. [PMID: 38313283 PMCID: PMC10836073 DOI: 10.1101/2024.01.20.576455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Opioid receptors within the CNS regulate pain sensation and mood and are key targets for drugs of abuse. Within the adult rodent hippocampus (HPC), μ-opioid receptor agonists suppress inhibitory parvalbumin-expressing interneurons (PV-INs), thus disinhibiting the circuit. However, it is uncertain if this disinhibitory motif is conserved in other cortical regions, species, or across development. We observed that PV-IN mediated inhibition is robustly suppressed by opioids in hippocampus proper but not neocortex in mice and nonhuman primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif was established in early development when PV-INs and opioids were found to regulate primordial network rhythmogenesis. Acute opioid-mediated modulation was partially occluded with morphine pretreatment, with implications for the effects of opioids on hippocampal network activity important for learning and memory. Together, these findings demonstrate that PV-INs exhibit a divergence in opioid sensitivity across brain regions that is remarkably conserved across evolution and highlights the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.
Collapse
Affiliation(s)
- Adam P Caccavano
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna Vlachos
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadiya McLean
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Kimmel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - June Hoan Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lauren Hewitt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anthony M Rossi
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ilona Spineux
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elisabetta Furlanis
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Min Dai
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Brenda Leyva Garcia
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Edra London
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Brendan E Hines
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Anya Plotnikova
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Arya Mohanty
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
| | - Kareem Zaghloul
- National Institute of Neurological Disorders and Stroke (NINDS) Intramural Research Program, NIH, Bethesda, MD 20892, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Section on Cellular and Synaptic Physiology, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Won W, Kim D, Shin E, Lee CJ. Mapping Astrocytic and Neuronal μ-opioid Receptor Expression in Various Brain Regions Using MOR-mCherry Reporter Mouse. Exp Neurobiol 2023; 32:395-409. [PMID: 38196135 PMCID: PMC10789176 DOI: 10.5607/en23039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
The μ-opioid receptor (MOR) is a class of opioid receptors characterized by a high affinity for β-endorphin and morphine. MOR is a G protein-coupled receptor (GPCR) that plays a role in reward and analgesic effects. While expression of MOR has been well established in neurons and microglia, astrocytic MOR expression has been less clear. Recently, we have reported that MOR is expressed in hippocampal astrocytes, and its activation has a critical role in the establishment of conditioned place preference. Despite this critical role, the expression and function of astrocytic MOR from other brain regions are still unknown. Here, we report that MOR is significantly expressed in astrocytes and GABAergic neurons from various brain regions including the hippocampus, nucleus accumbens, periaqueductal gray, amygdala, and arcuate nucleus. Using the MOR-mCherry reporter mice and Imaris analysis, we demonstrate that astrocytic MOR expression exceeded 60% in all tested regions. Also, we observed similar MOR expression of GABAergic neurons as shown in the previous distribution studies and it is noteworthy that MOR expression is particularly in parvalbumin (PV)-positive neurons. Furthermore, consistent with the normal MOR function observed in the MOR-mCherry mouse, our study also demonstrates intact MOR functionality in astrocytes through iGluSnFr-mediated glutamate imaging. Finally, we show the sex-difference in the expression pattern of MOR in PV-positive neurons, but not in the GABAergic neurons and astrocytes. Taken together, our findings highlight a substantial astrocytic MOR presence across various brain regions.
Collapse
Affiliation(s)
- Woojin Won
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Daeun Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Eunjin Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
3
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
4
|
Gilfarb RA, Leuner B. GABA System Modifications During Periods of Hormonal Flux Across the Female Lifespan. Front Behav Neurosci 2022; 16:802530. [PMID: 35783228 PMCID: PMC9245048 DOI: 10.3389/fnbeh.2022.802530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
The female lifespan is marked by periods of dramatic hormonal fluctuation. Changes in the ovarian hormones estradiol and progesterone, in addition to the progesterone metabolite allopregnanolone, are among the most significant and have been shown to have widespread effects on the brain. This review summarizes current understanding of alterations that occur within the GABA system during the major hormonal transition periods of puberty, the ovarian cycle, pregnancy and the postpartum period, as well as reproductive aging. The functional impacts of altered inhibitory activity during these times are also discussed. Lastly, avenues for future research are identified, which, if pursued, can broaden understanding of the GABA system in the female brain and potentially lead to better treatments for women experiencing changes in brain function at each of these hormonal transition periods.
Collapse
Affiliation(s)
- Rachel A. Gilfarb
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
- *Correspondence: Benedetta Leuner,
| |
Collapse
|
5
|
Sex differences in the rodent hippocampal opioid system following stress and oxycodone associated learning processes. Pharmacol Biochem Behav 2022; 212:173294. [PMID: 34752798 PMCID: PMC8748406 DOI: 10.1016/j.pbb.2021.173294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, opioid abuse has risen especially among women. In both sexes hippocampal neural circuits involved in associative memory formation and encoding of motivational incentives are critically important in the transition from initial drug use to drug abuse/dependence. Opioid circuits, particularly the mossy fiber pathway, are crucial for associative memory processes important for addiction. Our anatomical studies, especially those utilizing electron microscopic immunocytochemistry, have provided unique insight into sex differences in the distribution of opioid peptides and receptors in specific hippocampal circuits and how these distributions are altered following stress and oxycodone-associative learning processes. Here we review the hippocampal opioid system in rodents with respect to ovarian hormones effects and baseline sex differences then sex differences following acute and chronic stress. Next, we review sex differences in the hippocampal opioid system in unstressed and chronically stressed rats following oxycodone conditioned place preference. We show that opioid peptides and receptors are distributed within hippocampal circuits in females with elevated estrogen states in a manner that would enhance sensitivity to endogenous and exogenous opioids. Moreover, chronic stress primes the opioid system in females in a manner that would promote opioid-associative learning processes. In contrast, chronic stress has limited effects on the opioid system in males and reduces its capacity to support opioid-mediated learning processes. Interestingly, acute stress appears to prime males for opioid associative learning. On a broader scale the findings highlighted in this review have important implications in understanding sex differences in opioid drug use and abuse.
Collapse
|
6
|
Cattani D, Struyf N, Steffensen V, Bergquist J, Zamoner A, Brittebo E, Andersson M. Perinatal exposure to a glyphosate-based herbicide causes dysregulation of dynorphins and an increase of neural precursor cells in the brain of adult male rats. Toxicology 2021; 461:152922. [PMID: 34474092 DOI: 10.1016/j.tox.2021.152922] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023]
Abstract
Glyphosate, the most used herbicide worldwide, has been suggested to induce neurotoxicity and behavioral changes in rats after developmental exposure. Studies of human glyphosate intoxication have reported adverse effects on the nervous system, particularly in substantia nigra (SN). Here we used matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) to study persistent changes in peptide expression in the SN of 90-day-old adult male Wistar rats. The animals were perinatally exposed to 3 % GBH (glyphosate-based herbicide) in drinking water (corresponding to 0.36 % of glyphosate) starting at gestational day 5 and continued up to postnatal day 15 (PND15). Peptides are present in the central nervous system before birth and play a critical role in the development and survival of neurons, therefore, observed neuropeptide changes could provide better understanding of the GBH-induced long term effects on SN. The results revealed 188 significantly altered mass peaks in SN of animals perinatally exposed to GBH. A significant reduction of the peak intensity (P < 0.05) of several peptides from the opioid-related dynorphin family such as dynorphin B (57 %), alpha-neoendorphin (50 %), and its endogenous metabolite des-tyrosine alpha-neoendorphin (39 %) was detected in the GBH group. Immunohistochemical analysis confirmed a decreased dynorphin expression and showed a reduction of the total area of dynorphin immunoreactive fibers in the SN of the GBH group. In addition, a small reduction of dynorphin immunoreactivity associated with non-neuronal cells was seen in the hilus of the hippocampal dentate gyrus. Perinatal exposure to GBH also induced an increase in the number of nestin-positive cells in the subgranular zone of the dentate gyrus. In conclusion, the results demonstrate long-term changes in the adult male rat SN and hippocampus following a perinatal GBH exposure suggesting that this glyphosate-based formulation may perturb critical neurodevelopmental processes.
Collapse
Affiliation(s)
- Daiane Cattani
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden; Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-970, Brazil.
| | - Nona Struyf
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Vivien Steffensen
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry - BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Box 559, 75124, Uppsala, Sweden
| | - Ariane Zamoner
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, 88040-970, Brazil
| | - Eva Brittebo
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| | - Malin Andersson
- Department of Pharmaceutical Biosciences - BMC, Uppsala University, Box 591, 75124, Uppsala, Sweden
| |
Collapse
|
7
|
Windisch KA, Mazid S, Johnson MA, Ashirova E, Zhou Y, Gergoire L, Warwick S, McEwen BS, Kreek MJ, Milner TA. Acute Delta 9-tetrahydrocannabinol administration differentially alters the hippocampal opioid system in adult female and male rats. Synapse 2021; 75:e22218. [PMID: 34255372 DOI: 10.1002/syn.22218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/22/2022]
Abstract
Our prior studies demonstrated that the rat hippocampal opioid system can undergo sex-specific adaptations to external stimuli that can influence opioid-associated learning processes. This opioid system extensively overlaps with the cannabinoid system. Moreover, acute administration of Δ9 Tetrahydrocannabinoid (THC), the primary psychoactive constituent of cannabis, can alter cognitive behaviors that involve the hippocampus. Here, we use light and electron microscopic immunocytochemical methods to examine the effects of acute THC (5 mg/kg, i.p., 1 h) on mossy fiber Leu-Enkephalin (LEnk) levels and the distribution and phosphorylation levels of delta and mu opioid receptors (DORs and MORs, respectively) in CA3 pyramidal cells and parvalbumin dentate hilar interneurons of adult female and male Sprague-Dawley rats. In females with elevated estrogen states (proestrus/estrus stage), acute THC altered the opioid system so that it resembled that seen in vehicle-injected females with low estrogen states (diestrus) and males: (1) mossy fiber LEnk levels in CA2/3a decreased; (2) phosphorylated-DOR levels in CA2/3a pyramidal cells increased; and (3) phosphorylated-MOR levels increased in most CA3b laminae. In males, acute THC resulted in the internalization of MORs in parvalbumin-containing interneuron dendrites which would decrease disinhibition of granule cells. In both sexes, acute THC redistributed DORs to the near plasma membrane of CA3 pyramidal cell dendrites, however, the dendritic region varied with sex. Additionally, acute THC also resulted in a sex-specific redistribution of DORs within CA3 pyramidal cell dendrites which could differentially promote synaptic plasticity and/or opioid-associated learning processes in both females and males.
Collapse
Affiliation(s)
- Kyle A Windisch
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Elina Ashirova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Lennox Gergoire
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Sydney Warwick
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Teresa A Milner
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York.,Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| |
Collapse
|
8
|
Figueroa C, Yang H, DiSpirito J, Bourgeois JR, Kalyanasundaram G, Doshi I, Bilbo SD, Kopec AM. Morphine exposure alters Fos expression in a sex-, age-, and brain region-specific manner during adolescence. Dev Psychobiol 2021; 63:e22186. [PMID: 34423851 DOI: 10.1002/dev.22186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/17/2021] [Accepted: 08/08/2021] [Indexed: 11/06/2022]
Abstract
Data in both humans and preclinical animal models clearly indicate drug exposure during adolescence, when the "reward" circuitry of the brain develops, increases the risk of substance use and other mental health disorders later in life. Human data indicate that different neural and behavioral sequelae can be observed in early versus late adolescence. However, most studies with rodent models examine a single adolescent age compared to a mature adult age, and often only in males. Herein, we sought to determine whether the acute response to the opioid morphine would also differ across adolescence, and by sex. By quantifying Fos positive cells, a proxy for neural activity, at different stages during adolescence (pre-, early, mid-, and late adolescence) and in multiple reward regions (prefrontal cortex, nucleus accumbens, caudate/putamen), we determined that the neural response to acute morphine is highly dependent on adolescent age, sex, and brain region. These data suggest that heterogeneity in the consequences of adolescent opioid exposure may be due to age- and sex-specific developmental profiles in individual reward processing regions. In future studies, it will be important to add age within adolescence as an independent variable for a holistic view of healthy or abnormal reward-related neural development.
Collapse
Affiliation(s)
- C Figueroa
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - H Yang
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Northeastern University, Boston, MA, USA
| | - J DiSpirito
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Rensselaer Polytechnic Institute, Troy, NY, USA
| | - J R Bourgeois
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - G Kalyanasundaram
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - I Doshi
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - S D Bilbo
- Deptartment of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Deptartment of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Lurie Center for Autism, Harvard Medical School, Boston, MA, USA
| | - A M Kopec
- Deptartment of Neuroscience & Experimental Therapeutics, Albany Medical College, Albany, NY, USA.,Deptartment of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.,Lurie Center for Autism, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Xu JJ, Gao P, Wu Y, Yin SQ, Zhu L, Xu SH, Tang D, Cheung CW, Jiao YF, Yu WF, Li YH, Yang LQ. G protein-coupled estrogen receptor in the rostral ventromedial medulla contributes to the chronification of postoperative pain. CNS Neurosci Ther 2021; 27:1313-1326. [PMID: 34255932 PMCID: PMC8504531 DOI: 10.1111/cns.13704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Aims Chronification of postoperative pain is a common clinical phenomenon following surgical operation, and it perplexes a great number of patients. Estrogen and its membrane receptor (G protein‐coupled estrogen receptor, GPER) play a crucial role in pain regulation. Here, we explored the role of GPER in the rostral ventromedial medulla (RVM) during chronic postoperative pain and search for the possible mechanism. Methods and Results Postoperative pain was induced in mice or rats via a plantar incision surgery. Behavioral tests were conducted to detect both thermal and mechanical pain, showing a small part (16.2%) of mice developed into pain persisting state with consistent low pain threshold on 14 days after incision surgery compared with the pain recovery mice. Immunofluorescent staining assay revealed that the GPER‐positive neurons in the RVM were significantly activated in pain persisting rats. In addition, RT‐PCR and immunoblot analyses showed that the levels of GPER and phosphorylated μ‐type opioid receptor (p‐MOR) in the RVM of pain persisting mice were apparently increased on 14 days after incision surgery. Furthermore, chemogenetic activation of GPER‐positive neurons in the RVM of Gper‐Cre mice could reverse the pain threshold of pain recovery mice. Conversely, chemogenetic inhibition of GPER‐positive neurons in the RVM could prevent mice from being in the pain persistent state. Conclusion Our findings demonstrated that the GPER in the RVM was responsible for the chronification of postoperative pain and the downstream pathway might be involved in MOR phosphorylation.
Collapse
Affiliation(s)
- Jia-Jia Xu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying Wu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Su-Qing Yin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sai-Hong Xu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chi-Wai Cheung
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Ying-Fu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuan-Hai Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
10
|
Nam MH, Won W, Han KS, Lee CJ. Signaling mechanisms of μ-opioid receptor (MOR) in the hippocampus: disinhibition versus astrocytic glutamate regulation. Cell Mol Life Sci 2021; 78:415-426. [PMID: 32671427 PMCID: PMC11073310 DOI: 10.1007/s00018-020-03595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
μ-opioid receptor (MOR) is a class of opioid receptors that is critical for analgesia, reward, and euphoria. MOR is distributed in various brain regions, including the hippocampus, where traditionally, it is believed to be localized mainly at the presynaptic terminals of the GABAergic inhibitory interneurons to exert a strong disinhibitory effect on excitatory pyramidal neurons. However, recent intensive research has uncovered the existence of MOR in hippocampal astrocytes, shedding light on how astrocytic MOR participates in opioid signaling via glia-neuron interaction in the hippocampus. Activation of astrocytic MOR has shown to cause glutamate release from hippocampal astrocytes and increase the excitability of presynaptic axon fibers to enhance the release of glutamate at the Schaffer Collateral-CA1 synapses, thereby, intensifying the synaptic strength and plasticity. This novel mechanism involving astrocytic MOR has been shown to participate in hippocampus-dependent conditioned place preference. Furthermore, the signaling of hippocampal MOR, whose action is sexually dimorphic, is engaged in adult neurogenesis, seizure, and stress-induced memory impairment. In this review, we focus on the two profoundly different hippocampal opioid signaling pathways through either GABAergic interneuronal or astrocytic MOR. We further compare and contrast their molecular and cellular mechanisms and their possible roles in opioid-associated conditioned place preference and other hippocampus-dependent behaviors.
Collapse
Affiliation(s)
- Min-Ho Nam
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Woojin Won
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Kyung-Seok Han
- Department of Medical Biotechnology, Dongguk University-Gyeongju, 123 Dongdae-ro, Gyeongju, Gyeongbuk, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
11
|
Ashirova E, Contoreggi NH, Johnson MA, Al-Khayat FJ, Calcano GA, Rubin BR, O'Cinneide EM, Zhang Y, Zhou Y, Gregoire L, McEwen BS, Kreek MJ, Milner TA. Oxycodone injections not paired with conditioned place preference have little effect on the hippocampal opioid system in female and male rats. Synapse 2020; 75:e22182. [PMID: 32654187 DOI: 10.1002/syn.22182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Oxycodone (Oxy) conditioned place preference (CPP) in Sprague Dawley rats results in sex-specific alterations in hippocampal opioid circuits in a manner that facilitates opioid-associative learning processes, particularly in females. Here, we examined if Oxy (3 mg/kg, I.P.) or saline (Sal) injections not paired with behavioral testing similarly affect the hippocampal opioid system. Sal-injected females compared to Sal-injected males had: (1) higher densities of cytoplasmic delta opioid receptors (DOR) in GABAergic hilar dendrites suggesting higher baseline reserve DOR pools and (2) elevated phosphorylated DOR levels, but lower phosphorylated mu opioid receptor (MOR) levels in CA3a suggesting that the baseline pools of activated opioid receptors vary in females and males. In contrast to CPP studies, Oxy-injections in the absence of behavioral tests resulted in few changes in the hippocampal opioid system in either females or males. Specifically, Oxy-injected males compared to Sal-injected males had fewer DORs near the plasma membrane of CA3 pyramidal cell dendrites and in CA3 dendritic spines contacted by mossy fibers, and lower pMOR levels in CA3a. Oxy-injected females compared to Sal-injected females had higher total DORs in GABAergic dendrites and lower total MORs in parvalbumin-containing dendrites. Thus, unlike Oxy CPP, Oxy-injections redistributed opioid receptors in hippocampal neurons in a manner that would either decrease (males) or not alter (females) excitability and plasticity processes. These results indicate that the majority of changes within hippocampal opioid circuits that would promote opioid-associative learning processes in both females and males do not occur with Oxy administration alone, and instead must be paired with CPP.
Collapse
Affiliation(s)
- Elina Ashirova
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fatima J Al-Khayat
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, Doha, Qatar
| | - Gabriela A Calcano
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Emma M O'Cinneide
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Lennox Gregoire
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
12
|
Gildawie KR, Honeycutt JA, Brenhouse HC. Region-specific Effects of Maternal Separation on Perineuronal Net and Parvalbumin-expressing Interneuron Formation in Male and Female Rats. Neuroscience 2019; 428:23-37. [PMID: 31887358 DOI: 10.1016/j.neuroscience.2019.12.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022]
Abstract
Early life experiences play a vital role in contributing to healthy brain development. Adverse experiences have a lasting impact on the prefrontal cortex (PFC) and basolateral amygdala (BLA), brain regions associated with emotion regulation. Early life adversity via maternal separation (MS) has sex-specific effects on expression of parvalbumin (PV), which is expressed in fast-spiking GABAergic interneurons that are preferentially enwrapped by perineuronal nets (PNNs). Importantly, PNN formation coincides with the closure of developmental critical periods and regulates PV-expressing interneuron activity. Since aberrant PNN organization has been reported following adverse experiences in adolescent and adult rats, we investigated the impact of adversity early in life in the form of MS on the developing brain. Rat pups were separated from their dams for 4 h per day from postnatal day (P) 2-20. Tissue sections from juvenile (P20), adolescent (P40), and early adult (P70) animals containing the PFC and BLA were fluorescently stained to visualize Wisteria floribunda agglutinin+ PNNs and PV-expressing interneurons, and density and intensity was quantified. Our results confirm past reports that PFC PNNs form gradually throughout development; however, PNN density plateaus in adolescence, while intensity continues to increase into adulthood. Importantly, MS delays PNN formation in the prelimbic PFC and results in sex-specific aberrations in PNN structural integrity that do not appear until adulthood. The present findings reveal sex-, age-, and region-specific effects of early life adversity on PNN and PV maturation, implicating neuroplastic alterations following early life adversity that may be associated with sex differences in psychopathology and resilience.
Collapse
Affiliation(s)
- Kelsea R Gildawie
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Jennifer A Honeycutt
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA
| | - Heather C Brenhouse
- Department of Psychology, Developmental Neuropsychobiology Laboratory, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Doreste-Mendez R, Ríos-Ruiz EJ, Rivera-López LL, Gutierrez A, Torres-Reveron A. Effects of Environmental Enrichment in Maternally Separated Rats: Age and Sex-Specific Outcomes. Front Behav Neurosci 2019; 13:198. [PMID: 31555107 PMCID: PMC6727005 DOI: 10.3389/fnbeh.2019.00198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/13/2019] [Indexed: 01/10/2023] Open
Abstract
Maternal separation (MS) early in life is related to an increase in anxiety and depressive-like behaviors and neurobiological alterations mostly related to alterations in hypothalamic pituitary adrenal (HPA) axis reactivity. Environmental enrichment (EE) has been used to ameliorate the effects of MS. However, the outcomes of this intervention at different developmental periods after MS have not been studied. We subjected male and female Sprague–Dawley pups to MS and subsequently compared the effects of EE started either in the pre-pubertal period [postnatal day (PND) 22] or adulthood (PND 78). Anxiety and depressive-like behaviors as well as in hippocampal synaptic density and basal corticosterone, oxytocin, and vasopressin levels were measured. Our results support the beneficial effects of adulthood EE in decreasing anxiety in males as well as promoting synaptic density in ventral hippocampal CA3. Males displayed higher levels of vasopressin while females displayed higher oxytocin, with no changes in basal corticosterone for any group after EE.
Collapse
Affiliation(s)
- Raura Doreste-Mendez
- Department of Basic Sciences, Physiology and Pharmacology, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, United States.,School of Brain and Behavioral Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, United States
| | - Efraín J Ríos-Ruiz
- School of Brain and Behavioral Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, United States.,Institute of Translational Research in Behavioral Sciences, University of Puerto Rico-Ponce Campus, Ponce, PR, United States
| | - Leslie L Rivera-López
- Department of Neuroscience, University of Texas at Rio Grande Valley School of Medicine, Edinburg, TX, United States
| | - Alfredo Gutierrez
- Department of Community Health, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Annelyn Torres-Reveron
- Department of Neuroscience, University of Texas at Rio Grande Valley School of Medicine, Edinburg, TX, United States.,Department of Human Genetics, University of Texas at Rio Grande Valley School of Medicine, Edinburg, TX, United States
| |
Collapse
|
14
|
Reich B, Zhou Y, Goldstein E, Srivats SS, Contoreggi NH, Kogan JF, McEwen BS, Kreek MJ, Milner TA, Gray JD. Chronic immobilization stress primes the hippocampal opioid system for oxycodone-associated learning in female but not male rats. Synapse 2019; 73:e22088. [PMID: 30632204 PMCID: PMC11548942 DOI: 10.1002/syn.22088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/27/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022]
Abstract
In adult female, but not male, Sprague Dawley rats, chronic immobilization stress (CIS) increases mossy fiber (MF) Leu-Enkephalin levels and redistributes delta- and mu-opioid receptors (DORs and MORs) in hippocampal CA3 pyramidal cells and GABAergic interneurons to promote excitation and learning processes following subsequent opioid exposure. Here, we demonstrate that CIS females, but not males, acquire conditioned place preference (CPP) to oxycodone and that CIS "primes" the hippocampal opioid system in females for oxycodone-associated learning. In CA3b, oxycodone-injected (Oxy) CIS females relative to saline-injected (Sal) CIS females exhibited an increase in the cytoplasmic and total densities of DORs in pyramidal cell dendrites so that they were similar to Sal- and Oxy-CIS males. Consistent with our earlier studies, Sal- and Oxy-CIS females but not CIS males had elevated DOR densities in MF-CA3 dendritic spines, which we have previously shown are important for opioid-mediated long-term potentiation. In the dentate gyrus, Oxy-CIS females had more DOR-labeled interneurons than Sal-CIS females. Moreover, Sal- and Oxy-CIS females compared to both groups of CIS males had elevated levels of DORs and MORs in GABAergic interneuron dendrites, suggesting capacity for greater synthesis or storage of these receptors in circuits important for opioid-mediated disinhibition. However, more plasmalemmal MORs were on large parvalbumin-containing dendrites of Oxy-CIS males compared to Sal-CIS males, suggesting a limited ability for increased granule cell disinhibition. These results suggest that low levels of DORs in MF-CA3 synapses and hilar GABAergic interneurons may contribute to the attenuation of oxycodone CPP in males exposed to CIS.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/metabolism
- Conditioning, Classical
- Dendrites/metabolism
- Dentate Gyrus/cytology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Female
- Interneurons/metabolism
- Male
- Oxycodone/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/metabolism
- Repetition Priming
- Restraint, Physical
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Batsheva Reich
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Ellen Goldstein
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Sudarshan S. Srivats
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, P.O. Box 24144 - Doha, Qatar
| | - Natalina H. Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
| | - Joshua F. Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
15
|
Ryan JD, Zhou Y, Contoreggi NH, Bshesh FK, Gray JD, Kogan JF, Ben KT, McEwen BS, Jeanne Kreek M, Milner TA. Sex Differences in the Rat Hippocampal Opioid System After Oxycodone Conditioned Place Preference. Neuroscience 2018; 393:236-257. [PMID: 30316908 PMCID: PMC6246823 DOI: 10.1016/j.neuroscience.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Although opioid addiction has risen dramatically, the role of gender in addiction has been difficult to elucidate. We previously found sex-dependent differences in the hippocampal opioid system of Sprague-Dawley rats that may promote associative learning relevant to drug abuse. The present studies show that although female and male rats acquired conditioned place preference (CPP) to the mu-opioid receptor (MOR) agonist oxycodone (3 mg/kg, I.P.), hippocampal opioid circuits were differentially altered. In CA3, Leu-Enkephalin-containing mossy fibers had elevated levels in oxycodone CPP (Oxy) males comparable to those in females and sprouted in Oxy-females, suggesting different mechanisms for enhancing opioid sensitivity. Electron microscopy revealed that in Oxy-males delta opioid receptors (DORs) redistributed to mossy fiber-CA3 synapses in a manner resembling females that we previously showed is important for opioid-mediated long-term potentiation. Moreover, in Oxy-females DORs redistributed to CA3 pyramidal cell spines, suggesting the potential for enhanced plasticity processes. In Saline-injected (Sal) females, dentate hilar parvalbumin-containing basket interneuron dendrites had fewer MORs, however plasmalemmal and total MORs increased in Oxy-females. In dentate hilar GABAergic dendrites that contain neuropeptide Y, Sal-females compared to Sal-males had higher plasmalemmal DORs, and near-plasmalemmal DORs increased in Oxy-females. This redistribution of MORs and DORs within hilar interneurons in Oxy-females would potentially enhance disinhibition of granule cells via two different circuits. Together, these results indicate that oxycodone CPP induces sex-dependent redistributions of opioid receptors in hippocampal circuits in a manner facilitating opioid-associative learning processes and may help explain the increased susceptibility of females to opioid addiction acquisition and relapse.
Collapse
Affiliation(s)
- James D Ryan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States.
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Farah K Bshesh
- Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, P.O. Box 24144 Doha, Qatar
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Joshua F Kogan
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Konrad T Ben
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
16
|
Enman NM, Reyes BAS, Shi Y, Valentino RJ, Van Bockstaele EJ. Sex differences in morphine-induced trafficking of mu-opioid and corticotropin-releasing factor receptors in locus coeruleus neurons. Brain Res 2018; 1706:75-85. [PMID: 30391476 DOI: 10.1016/j.brainres.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023]
Abstract
The locus coeruleus (LC)-norepinephrine (NE) system is a key nucleus in which endogenous opioid and stress systems intersect to regulate the stress response. LC neurons of male rats become sensitized to stress following chronic morphine administration. Whether sex dictates this pattern of opioid-induced plasticity has not been demonstrated. Delineating the neurobiological adaptations produced by chronic opioids will enhance our understanding of stress vulnerability in opioid-dependent individuals, and may reveal how stress negatively impacts addiction recovery. In the present study, the effect of chronic morphine on the subcellular distribution of mu-opioid (MOR) and CRF receptors (CRFR) was investigated in the LC of male and female rats using immunoelectron microscopy. Results showed that placebo-treated females exhibited higher MOR and CRFR cytoplasmic distribution ratio when compared to placebo-treated males. Chronic morphine exposure induced a shift in the distribution of MOR immunogold-silver particles from the plasma membrane to the cytoplasm selectively in male LC neurons. Interestingly, chronic morphine exposure induced CRFR recruitment to the plasma membrane of both male and female LC neurons. These findings provide a potential mechanism by which chronic opioid administration increases stress vulnerability in males and females via an increase in surface availability of CRFR in LC neurons. However, our results also support the notion that cellular adaptations to chronic opioids differ across the sexes as redistribution of MOR following morphine exposure was only observed in male LC neurons.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| | - Yufan Shi
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| |
Collapse
|
17
|
Randesi M, Zhou Y, Mazid S, Odell SC, Gray JD, Correa da Rosa J, McEwen BS, Milner TA, Kreek MJ. Sex differences after chronic stress in the expression of opioid-, stress- and neuroplasticity-related genes in the rat hippocampus. Neurobiol Stress 2018; 8:33-41. [PMID: 29888302 PMCID: PMC5991341 DOI: 10.1016/j.ynstr.2018.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/22/2022] Open
Abstract
Opioid peptides and their receptors re-organize within hippocampal neurons of female, but not male, rats following chronic immobilization stress (CIS) in a manner that promotes drug-related learning. This study was conducted to determine if there are also sex differences in gene expression in the hippocampus following CIS. Adult female and male rats were subjected to CIS (30 min/day) for 10 days. Twenty-four hours after the last stressor, the rats were euthanized, the brains were harvested and the medial (dentate gyrus/CA1) and lateral (CA2/CA3) dorsal hippocampus were isolated. Following total RNA isolation, cDNA was prepared for gene expression analysis using a RT2 Profiler PCR expression array. This custom designed qPCR expression array contained genes for opioid peptides and receptors, as well as genes involved in stress-responses and candidate genes involved in synaptic plasticity, including those upregulated following oxycodone self-administration in mice. Few sex differences are seen in hippocampal gene expression in control (unstressed) rats. In response to CIS, gene expression in the hippocampus was altered in males but not females. In males, opioid, stress, plasticity and kinase/signaling genes were all down-regulated following CIS, except for the gene that codes for corticotropin releasing hormone, which was upregulated. Changes in opioid gene expression following chronic stress were limited to the CA2 and CA3 regions (lateral sample). In conclusion, modest sex- and regional-differences are seen in expression of the opioid receptor genes, as well as genes involved in stress and plasticity responses in the hippocampus following CIS. Unstressed female rats have less Arc expression in hippocampus than males. Chronic immobilization stress (CIS) down-regulates opioid gene expression in males. CIS up-regulates Crh but down-regulates other stress genes in male hippocampi. CIS down-regulates Arc and other plasticity genes in male hippocampi. CIS down-regulates select kinases and signaling molecules in male hippocampi.
Collapse
Affiliation(s)
- Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States
| | - Shannon C Odell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, United States
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - J Correa da Rosa
- Center for Clinical and Translational Science, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States.,Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, United States.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States
| |
Collapse
|
18
|
Gao P, Ding XW, Dong L, Luo P, Zhang GH, Rong WF. Expression of aromatase in the rostral ventromedial medulla and its role in the regulation of visceral pain. CNS Neurosci Ther 2017; 23:980-989. [PMID: 29047208 DOI: 10.1111/cns.12769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022] Open
Abstract
AIMS Estrogens are known to exert a wide spectrum of actions on brain functions including modulation of pain. Besides the circulating estrogens produced mainly by the ovaries, many brain regions are also capable of de novo synthesizing estrogens, which may exert important modulatory effects on neuronal functions. This study was aimed to test the hypothesis that aromatase, the enzyme that catalyzes the conversion of testosterone to estradiols, may be distributed in the rostral ventromedial medulla (RVM), where it may impact on visceral pain. METHODS AND RESULTS Adult female rats were treated with cyclophosphamide (CPM, 50 mg/kg, ip, once every 3 days) or saline. At approximately day 10 following the 3rd injection, CPM-treated rats exhibited colorectal hyperalgesia as they showed significantly greater abdominal withdrawal responses (AWR) to graded colorectal distension (CRD, 0-100 mm Hg) than the saline group. Immunofluorescent staining and Western blot assay revealed that CPM-induced colorectal hyperalgesia was associated with significantly increased expression of aromatase and phosphorylated μ-type opioid receptor (pMOR) and decreased expression of total MOR in the RVM. Intracisternal application of aromatase inhibitors, fadrozole, and letrozole reversed CPM-induced colorectal hyperalgesia and restored pMOR and MOR expression in the RVM. CONCLUSIONS Our observations confirmed the expression of aromatase in the RVM, a pivotal brain region in descending modulation of pain and opioid analgesia. The results support the hypothesis that locally produced estrogens in the RVM may be involved in the maintenance of chronic visceral hyperalgesia and the downstream signaling may involve phosphorylation of MOR.
Collapse
Affiliation(s)
- Po Gao
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Wei Ding
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Dong
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Luo
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guo-Hua Zhang
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Fang Rong
- Hongqiao International Institute of Medical Research, Tongren Hospital and Department of Physiology, Faculty of Basic Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
19
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 540] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
20
|
McEwen BS, Milner TA. Understanding the broad influence of sex hormones and sex differences in the brain. J Neurosci Res 2017; 95:24-39. [PMID: 27870427 PMCID: PMC5120618 DOI: 10.1002/jnr.23809] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
Abstract
Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Teresa A. Milner
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
- Feil Family Brain and Mind Research Institute, Weill Cornell School of Medicine, 407 East 61st Street, New York, NY 10065
| |
Collapse
|
21
|
Mazid S, Hall BS, Odell SC, Stafford K, Dyer AD, Van Kempen TA, Selegean J, McEwen BS, Waters EM, Milner TA. Sex differences in subcellular distribution of delta opioid receptors in the rat hippocampus in response to acute and chronic stress. Neurobiol Stress 2016; 5:37-53. [PMID: 27981195 PMCID: PMC5145913 DOI: 10.1016/j.ynstr.2016.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/18/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs). Immediately after acute immobilization stress (AIS) or one-day after chronic immobilization stress (CIS), the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG) and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar interneuron dendrites one-hour after oxycodone (3 mg/kg, I.P.) administration compared to saline administration in CIS females. These data indicate that DORs redistribute within CA3 pyramidal cells and dentate hilar GABAergic interneurons in a sexually dimorphic manner that would promote activation and drug related learning in males after AIS and in females after CIS. Females have more near-plasmalemmal DORs in pyramidal CA3 dendrites than males. Acute stress in males relocates DORs in CA3 & GABA dendrites to promote activation. Chronic stress in females relocates DORs in GABA dendrites in females to promote activation. Chronic stress in males relocates DORs in GABA dendrites opposite of females. DOR-stress relocation may contribute to sexually dimorphic effects on drug related learning.
Collapse
Affiliation(s)
- Sanoara Mazid
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Baila S Hall
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Shannon C Odell
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Khalifa Stafford
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Andreina D Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Tracey A Van Kempen
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States
| | - Jane Selegean
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, United States; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
22
|
Torres-Reverón A, Palermo K, Hernández-López A, Hernández S, Cruz ML, Thompson KJ, Flores I, Appleyard CB. Endometriosis Is Associated With a Shift in MU Opioid and NMDA Receptor Expression in the Brain Periaqueductal Gray. Reprod Sci 2016; 23:1158-67. [PMID: 27089914 PMCID: PMC5933161 DOI: 10.1177/1933719116630410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Studies have examined how endometriosis interacts with the nervous system, but little attention has been paid to opioidergic systems, which are relevant to pain signaling. We used the autotransplantation rat model of endometriosis and allowed to progress for 60 days. The brain was collected and examined for changes in endogenous opioid peptides, mu opioid receptors (MORs), and the N-methyl-d-aspartate subunit receptor (NR1) in the periaqueductal gray (PAG), since both of these receptors can regulate PAG activity. No changes in endogenous opioid peptides in met- and leu-enkephalin or β-endorphin levels were observed within the PAG. However, MOR immunoreactivity was significantly decreased in the ventral PAG in the endometriosis group. Endometriosis reduced by 20% the number of neuronal profiles expressing MOR and reduced by 40% the NR1 profiles. Our results suggest that endometriosis is associated with subtle variations in opioidergic and glutamatergic activity within the PAG, which may have implications for pain processing.
Collapse
Affiliation(s)
- Annelyn Torres-Reverón
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA Department of Clinical Psychology, Ponce Health Sciences University/Ponce Research Institute, Ponce, PR, USA
| | - Karylane Palermo
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Anixa Hernández-López
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Siomara Hernández
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Myrella L Cruz
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Kenira J Thompson
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Idhaliz Flores
- Department of Microbiology, Ponce Health Sciences University, Ponce, PR, USA
| | - Caroline B Appleyard
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| |
Collapse
|
23
|
Mague SD, Port RG, McMullen ME, Carlson GC, Turner JR. Mouse model of OPRM1 (A118G) polymorphism has altered hippocampal function. Neuropharmacology 2015; 97:426-35. [PMID: 25986698 DOI: 10.1016/j.neuropharm.2015.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 01/08/2023]
Abstract
A single nucleotide polymorphism (SNP) in the human μ-opioid receptor gene (OPRM1 A118G) has been widely studied for its association in a variety of drug addiction and pain sensitivity phenotypes; however, the extent of these adaptations and the mechanisms underlying these associations remain elusive. To clarify the functional mechanisms linking the OPRM1 A118G SNP to altered phenotypes, we used a mouse model possessing the equivalent nucleotide/amino acid substitution in the Oprm1 gene. In order to investigate the impact of this SNP on circuit function, we used voltage-sensitive dye imaging in hippocampal slices and in vivo electroencephalogram recordings of the hippocampus following MOPR activation. As the hippocampus contains excitatory pyramidal cells whose activity is highly regulated by a dense network of inhibitory neurons, it serves as an ideal structure to evaluate how putative receptor function abnormalities may influence circuit activity. We found that MOPR activation increased excitatory responses in wild-type animals, an effect that was significantly reduced in animals possessing the Oprm1 SNP. Furthermore, in order to assess the in vivo effects of this SNP during MOPR activation, EEG recordings of hippocampal activity following morphine administration corroborated a loss-of-function phenotype. In conclusion, as these mice have been shown to have similar MOPR expression in the hippocampus between genotypes, these data suggest that the MOPR A118G SNP results in a loss of receptor function.
Collapse
Affiliation(s)
- Stephen D Mague
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Russell G Port
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Michael E McMullen
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Greg C Carlson
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jill R Turner
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29036, USA.
| |
Collapse
|
24
|
Opioid receptor-dependent sex differences in synaptic plasticity in the hippocampal mossy fiber pathway of the adult rat. J Neurosci 2015; 35:1723-38. [PMID: 25632146 DOI: 10.1523/jneurosci.0820-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus.
Collapse
|
25
|
Abstract
Our dynamic environment regularly exposes us to potentially life-threatening challenges or stressors. To answer these challenges and maintain homeostasis, the stress response, an innate coordinated engagement of central and peripheral neural systems is initiated. Although essential for survival, the inappropriate initiation of the stress response or its continuation after the stressor is terminated has pathological consequences that have been linked to diverse neuropsychiatric and medical diseases. Substantial individual variability exists in the pathological consequences of stressors. A theme of this Special Issue is that elucidating the basis of individual differences in resilience or its flipside, vulnerability, will greatly advance our ability to prevent and treat stress-related diseases. This can be approached by studying individual differences in "pro-stress" mediators such as corticosteroids or the hypothalamic orchestrator of the stress response, corticotropin-releasing factor. More recently, the recognition of endogenous neuromodulators with "anti-stress" activity that have opposing actions or that restrain stress-response systems suggests additional bases for individual differences in stress pathology. These "anti-stress" neuromodulators offer alternative strategies for manipulating the stress response and its pathological consequences. This review uses the major brain norepinephrine system as a model stress-response system to demonstrate how co-regulation by opposing pro-stress (corticotropin-releasing factor) and anti-stress (enkephalin) neuromodulators must be fine-tuned to produce an adaptive response to stress. The clinical consequences of tipping this fine-tuned balance in the direction of either the pro- or anti-stress systems are emphasized. Finally, that each system provides multiple points at which individual differences could confer stress vulnerability or resilience is discussed.
Collapse
Affiliation(s)
- Rita J. Valentino
- Department of Anesthesia and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author. Department of Anesthesia and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
26
|
Reyes BAS, Bangasser DA, Valentino RJ, Van Bockstaele EJ. Using high resolution imaging to determine trafficking of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Life Sci 2014; 112:2-9. [PMID: 25058917 DOI: 10.1016/j.lfs.2014.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/01/2014] [Accepted: 07/09/2014] [Indexed: 12/01/2022]
Abstract
Trafficking of G protein-coupled receptors (GPCRs) is a critical determinant of cellular sensitivity of neurons. To understand how endogenous or exogenous ligands impact cell surface expression of GPCRs, it is essential to employ approaches that achieve superior anatomical resolution at the synaptic level. In situations in which light and fluorescence microscopy techniques may provide only limited resolution, electron microscopy provides enhanced subcellular precision. Dual labeling immunohistochemistry employing visually distinct immunoperoxidase and immunogold markers has been an effective approach for elucidating complex receptor profiles at the synapse and to definitively establish the localization of individual receptors and neuromodulators to common cellular profiles. The immuno-electron microscopy approach offers the potential for determining membrane versus intracellular protein localization, as well as the association with various identifiable cellular organelles. Corticotropin-releasing factor (CRF) is an important regulator of endocrine, autonomic, immunological, behavioral and cognitive limbs of the stress response. Dysfunction of this neuropeptide system has been associated with several psychiatric disorders. This review summarizes findings from neuroanatomical studies, with superior spatial resolution, that indicate that the distribution of CRF receptors is a highly dynamic process that, in addition to being sexually dimorphic, involves complex regulation of receptor trafficking within extrasynaptic sites that have significant consequences for adaptations to stress, particularly within the locus coeruleus (LC), the major brain norepinephrine-containing nucleus.
Collapse
Affiliation(s)
- B A S Reyes
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - D A Bangasser
- Psychology Department and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - R J Valentino
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - E J Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
27
|
Pierce JP, Kelter DT, McEwen BS, Waters EM, Milner TA. Hippocampal mossy fiber leu-enkephalin immunoreactivity in female rats is significantly altered following both acute and chronic stress. J Chem Neuroanat 2013; 55:9-17. [PMID: 24275289 DOI: 10.1016/j.jchemneu.2013.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/25/2013] [Accepted: 10/27/2013] [Indexed: 10/26/2022]
Abstract
Research indicates that responses to stress are sexually dimorphic, particularly in regard to learning and memory processes: while males display impaired cognitive performance and hippocampal CA3 pyramidal cell dendritic remodeling following chronic stress, females exhibit enhanced performance and no remodeling. Leu-enkephalin, an endogenous opioid peptide found in the hippocampal mossy fiber pathway, plays a critical role in mediating synaptic plasticity at the mossy fiber-CA3 pyramidal cell synapse. Estrogen is known to influence the expression of leu-enkephalin in the mossy fibers of females, with leu-enkephalin levels being highest at proestrus and estrus, when estrogen levels are elevated. Since stress is also known to alter the expression of leu-enkephalin in various brain regions, this study was designed to determine whether acute or chronic stress had an effect on mossy fiber leu-enkephalin levels in females or males, through the application of correlated quantitative light and electron microscopic immunocytochemistry. Both acute and chronic stress eliminated the estrogen-dependence of leu-enkephalin levels across the estrous cycle in females, but had no effect on male levels. However, following acute stress leu-enkephalin levels in females were consistently lowered to values comparable to the lowest control values, while following chronic stress they were consistently elevated to values comparable to the highest control values. Ultrastructural changes in leu-enkephalin labeled dense core vesicles paralleled light microscopic observations, with acute stress inducing a decrease in leu-enkephalin labeled dense core vesicles, and chronic stress inducing an increase in leu-enkephalin labeled dense-core vesicles in females. These findings suggest that alterations in leu-enkephalin levels following stress could play an important role in the sex-specific responses that females display in learning processes, including those important in addiction.
Collapse
Affiliation(s)
- Joseph P Pierce
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, United States
| | - David T Kelter
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Teresa A Milner
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, United States; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
28
|
Milner TA, Burstein SR, Marrone GF, Khalid S, Gonzalez AD, Williams TJ, Schierberl KC, Torres-Reveron A, Gonzales KL, McEwen BS, Waters EM. Stress differentially alters mu opioid receptor density and trafficking in parvalbumin-containing interneurons in the female and male rat hippocampus. Synapse 2013; 67:757-72. [PMID: 23720407 DOI: 10.1002/syn.21683] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022]
Abstract
Stress differentially affects hippocampal-dependent learning relevant to addiction and morphology in male and female rats. Mu opioid receptors (MORs), which are located in parvalbumin (PARV)-containing GABAergic interneurons and are trafficked in response to changes in the hormonal environment, play a critical role in promoting principal cell excitability and long-term potentiation. Here, we compared the effects of acute and chronic immobilization stress (AIS and CIS) on MOR trafficking in PARV-containing neurons in the hilus of the dentate gyrus in female and male rats using dual label immunoelectron microscopy. Following AIS, the density of MOR silver-intensified gold particles (SIGs) in the cytoplasm of PARV-labeled dendrites was significantly reduced in females (estrus stage). Conversely, AIS significantly increased the proportion of cytoplasmic MOR SIGs in PARV-labeled dendrites in male rats. CIS significantly reduced the number of PARV-labeled neurons in the dentate hilus of males but not females. However, MOR/PARV-labeled dendrites and terminals were significantly smaller in CIS females, but not males, compared with controls. Following CIS, the density of cytoplasmic MOR SIGs increased in PARV-labeled dendrites and terminals in females. Moreover, the proportion of near-plasmalemmal MOR SIGs relative to total decreased in large PARV-labeled dendrites in females. After CIS, no changes in the density or trafficking of MOR SIGs were seen in PARV-labeled dendrites or terminals in males. These data show that AIS and CIS differentially affect available MOR pools in PARV-containing interneurons in female and male rats. Furthermore, they suggest that CIS could affect principal cell excitability in a manner that maintains learning processes in females but not males.
Collapse
Affiliation(s)
- Teresa A Milner
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, New York, 10065; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, New York, 10065
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Burstein SR, Williams TJ, Lane DA, Knudsen MG, Pickel VM, McEwen BS, Waters EM, Milner TA. The influences of reproductive status and acute stress on the levels of phosphorylated delta opioid receptor immunoreactivity in rat hippocampus. Brain Res 2013; 1518:71-81. [PMID: 23583481 DOI: 10.1016/j.brainres.2013.03.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/07/2013] [Accepted: 03/31/2013] [Indexed: 12/20/2022]
Abstract
In the hippocampus, ovarian hormones and sex can alter the trafficking of delta opioid receptors (DORs) and the proportion of DORs that colocalize with the stress hormone, corticotropin releasing factor. Here, we assessed the effects of acute immobilization stress (AIS) and sex on the phosphorylation of DORs in the rat hippocampus. We first localized an antibody to phosphorylated DOR (pDOR) at the SER363 carboxy-terminal residue, and demonstrated its response to an opioid agonist. By light microscopy, pDOR-immunoreactivity (ir) was located predominantly in CA2/CA3a pyramidal cell apical dendrites and in interneurons in CA1-3 stratum oriens and the dentate hilus. By electron microscopy, pDOR-ir primarily was located in somata and dendrites, associated with endomembranes, or in dendritic spines. pDOR-ir was less frequently found in mossy fibers terminals. Quantitative light microscopy revealed a significant increase in pDOR-ir in the CA2/CA3a region of male rats 1h following an injection of the opioid agonist morphine (20mg/kg, I.P). To look at the effects of stress on pDOR, we compared pDOR-ir in males and cycling females after AIS. The level of pDOR-ir in stratum radiatum of CA2/CA3a was increased in control estrus (elevated estrogen and progesterone) females compared to proestrus and diestrus females and males. However, immediately following 30min of AIS, no significant differences in pDOR levels were seen across estrous cycle phase or sex. These findings suggest that hippocampal levels of phosphorylated DORs vary with estrous cycle phase and that acute stress may dampen the differential effects of hormones on DOR activation in females.
Collapse
Affiliation(s)
- Suzanne R Burstein
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Neuropsychological Functions of μ- and δ-Opioid Systems. ISRN ADDICTION 2013; 2013:674534. [PMID: 25938117 PMCID: PMC4392981 DOI: 10.1155/2013/674534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/08/2013] [Indexed: 12/19/2022]
Abstract
Brain opioid innervation is involved in many pathophysiological processes related to drug addiction. The main idea of the present review is that μ-/δ-opioid innervation is an intrinsic component of the motor/approach behavior network, which is activated synergetically with dopaminergic mesocorticolimbic network. Contribution of opioid innervation to the motor/approach behavior processing includes generation of positive emotions and inhibition of pain and stress reactions in order that the individual would be able to reach the vital goal. We cite the neuroanatomical data which showed that motor subcortical nuclei contain the most abundant opioid innervation and its activation is an obligatory component of positive emotions. In the majority of life situations, motor/approach behavior network concomitantly activates pain/stress control opioid network. Intensive cognitive activity induces activation of opioid innervation as well, and both enhancing and impairing effects of opioid agonists on cognitive functioning were demonstrated. Overall, the functioning of endogenous opioid networks may be summarized as following: NO physical/cognitive activity = NO positive emotions plus NO pain/stress control. We suppose that contemporary findings concerning neuropsychological functions of endogenous opioid system explain many controversial issues in neuropsychiatric conditions predisposing to drug addiction and neurological mechanisms of opioid addiction.
Collapse
|
31
|
Gintzler AR, Liu NJ. Importance of sex to pain and its amelioration; relevance of spinal estrogens and its membrane receptors. Front Neuroendocrinol 2012; 33:412-24. [PMID: 23036438 PMCID: PMC3778676 DOI: 10.1016/j.yfrne.2012.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/13/2012] [Accepted: 09/18/2012] [Indexed: 12/14/2022]
Abstract
Estrogens have a multitude of effects on opioid systems and are thought to play a key role in sexually dimorphic nociception and opioid antinociception. Heretofore, classical genomic actions of estrogens are largely thought to be responsible for the effects of these steroids on nociception and opioid antinociception. The recent discovery that estrogens can also activate estrogen receptors that are located in the plasma membrane, the effects of which are manifest in seconds to minutes instead of hours to days has revolutionized our thinking concerning the ways in which estrogens are likely to modulate pain responsiveness and the dynamic nature of that modulation. This review summarizes parameters of opioid functionality and nociception that are subject to modulation by estrogens, underscoring the added dimensions of such modulation that accrues from rapid membrane estrogen receptor signaling. Implications of this mode of signaling regarding putative sources of estrogens and its degradation are also discussed.
Collapse
Affiliation(s)
- Alan R Gintzler
- State University of New York, Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA.
| | | |
Collapse
|
32
|
Taherianfard M, Mosavi M. Hippocampal GABA(A) Receptor and Pain Sensitivity during Estrous Cycle in the Rat. IRANIAN JOURNAL OF MEDICAL SCIENCES 2011; 36:289-95. [PMID: 23115414 PMCID: PMC3470277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 05/11/2011] [Accepted: 06/19/2011] [Indexed: 11/16/2022]
Abstract
BACKGROUND Estradiol and progesterone as well as hippocampal GABA(A) receptors are believed to play a role in the modulation of pain. The aim of present study was to investigate the effect of intrahippocampal injections of GABA(A) receptor agonist (muscimol) and GABA(A) receptor antagonist (picrotoxin) on pain sensitivity during estrous cycle. METHODS Pain sensitivity was evaluated in rats by formalin test during all stages of estrous cycle. Animals were divided into five groups including; 1- control (intact animal); 2- sham 1 receiving 0.75 µl artificial cerebrospinal fluids (ACSF); 3- sham 2 receiving 0.75 µl alcoholic ACSF; 4- experimental 1 receiving 250 or 500 µg/rat of muscimol in 0.75 µl vehicle, and 5- experimental 2 receiving 20 or 30 µg/rat picrotoxin in 0.75 µl vehicle. Data were analyzed by Kruskal-Wallis followed by Tucky's test for pairwise comparisons using a P value of ≤0.50 for statistical significance. RESULTS Muscimol significantly (P<0.05) decreased pain sensitivity in all stages of estrous cycle, and the analgesic effect was higher during proestrus and estrus stages of estrous cycle than that during metestrus and diestrus stages. Picrotoxin significantly (P<0.05) increased pain sensitivity in all stages of estrous cycle, and such a hyperalgesic effect was lower during proestrus and estrus stages of estrous cycle than that during metestrus and diestrus stages. CONCLUSION The findings of the present study indicate that the role of hippocampal GABA(A) receptor in the control of the pain sensitivity can be modulated by variation in gonadal steroids during different stages of the estrous cycle.
Collapse
|
33
|
Gonzales KL, Chapleau JD, Pierce JP, Kelter DT, Williams TJ, Torres-Reveron A, McEwen BS, Waters EM, Milner TA. The influences of reproductive status and acute stress on the levels of phosphorylated mu opioid receptor immunoreactivity in rat hippocampus. Front Endocrinol (Lausanne) 2011; 2:00018. [PMID: 22468144 PMCID: PMC3316303 DOI: 10.3389/fendo.2011.00018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/26/2011] [Indexed: 11/25/2022] Open
Abstract
Opioids play a critical role in hippocampally dependent behavior and plasticity. In the hippocampal formation, mu opioid receptors (MOR) are prominent in parvalbumin (PARV) containing interneurons. Previously we found that gonadal hormones modulate the trafficking of MORs in PARV interneurons. Although sex differences in response to stress are well documented, the point at which opioids, sex and stress interact to influence hippocampal function remains elusive. Thus, we used quantitative immunocytochemistry in combination with light and electron microscopy for the phosphorylated MOR at the SER375 carboxy-terminal residue (pMOR) in male and female rats to assess these interactions. In both sexes, pMOR-immunoreactivity (ir) was prominent in axons and terminals and in a few neuronal somata and dendrites, some of which contained PARV in the mossy fiber pathway region of the dentate gyrus (DG) hilus and CA3 stratum lucidum. In unstressed rats, the levels of pMOR-ir in the DG or CA3 were not affected by sex or estrous cycle stage. However, immediately following 30 minutes of acute immobilization stress (AIS), males had higher levels of pMOR-ir whereas females at proestrus and estrus (high estrogen stages) had lower levels of pMOR-ir within the DG. In contrast, the number and types of neuronal profiles with pMOR-ir were not altered by AIS in either males or proestrus females. These data demonstrate that although gonadal steroids do not affect pMOR levels at resting conditions, they are differentially activated both pre- and post-synaptic MORs following stress. These interactions may contribute to the reported sex differences in hippocampally dependent behaviors in stressed animals.
Collapse
Affiliation(s)
- Keith L. Gonzales
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | - Jeanette D. Chapleau
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | - Joseph P. Pierce
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | - David T. Kelter
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
| | - Tanya J. Williams
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD ProgramNew York, NY, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller UniversityNew York, NY, USA
| | | | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller UniversityNew York, NY, USA
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller UniversityNew York, NY, USA
| | - Teresa A. Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical CollegeNew York, NY, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller UniversityNew York, NY, USA
| |
Collapse
|
34
|
Williams TJ, Akama KT, Knudsen MG, McEwen BS, Milner TA. Ovarian hormones influence corticotropin releasing factor receptor colocalization with delta opioid receptors in CA1 pyramidal cell dendrites. Exp Neurol 2011; 230:186-96. [PMID: 21549703 DOI: 10.1016/j.expneurol.2011.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 03/14/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022]
Abstract
Stress interacts with addictive processes to increase drug use, drug seeking, and relapse. The hippocampal formation (HF) is an important site at which stress circuits and endogenous opioid systems intersect and likely plays a critical role in the interaction between stress and drug addiction. Our prior studies demonstrate that the stress-related neuropeptide corticotropin-releasing factor (CRF) and the delta-opioid receptor (DOR) colocalize in interneuron populations in the hilus of the dentate gyrus and stratum oriens of CA1 and CA3. While independent ultrastructural studies of DORs and CRF receptors suggest that each receptor is found in CA1 pyramidal cell dendrites and dendritic spines, whether DORs and CRF receptors colocalize in CA1 neuronal profiles has not been investigated. Here, hippocampal sections of adult male and proestrus female Sprague-Dawley rats were processed for dual label pre-embedding immunoelectron microscopy using well-characterized antisera directed against the DOR for immunoperoxidase and against the CRF receptor for immunogold. DOR-immunoreactivity (-ir) was found presynaptically in axons and axon terminals as well as postsynaptically in somata, dendrites and dendritic spines in stratum radiatum of CA1. In contrast, CRF receptor-ir was predominantly found postsynaptically in CA1 somata, dendrites, and dendritic spines. CRF receptor-ir frequently was observed in DOR-labeled dendritic profiles and primarily was found in the cytoplasm rather than at or near the plasma membrane. Quantitative analysis of CRF receptor-ir colocalization with DOR-ir in pyramidal cell dendrites revealed that proestrus females and males show comparable levels of CRF receptor-ir per dendrite and similar cytoplasmic density of CRF receptor-ir. In contrast, proestrus females display an increased number of dual-labeled dendritic profiles and an increased membrane density of CRF receptor-ir in comparison to males. We further examined the functional consequences of CRF receptor-ir colocalization with DOR-ir in the same neuron using the hormone responsive neuronal cell line NG108-15, which endogenously expresses DORs, and assayed intracellular cAMP production in response to CRF receptor and DOR agonists. Results demonstrated that short-term application of DOR agonist SNC80 inhibited CRF-induced cAMP accumulation in NG108-15 cells transfected with the CRF receptor. These studies provide new insights on opioid-stress system interaction in the hippocampus of both males and females and establish potential mechanisms through which DOR activation may influence CRF receptor activity.
Collapse
Affiliation(s)
- Tanya J Williams
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | | | |
Collapse
|
35
|
Williams TJ, Milner TA. Delta opioid receptors colocalize with corticotropin releasing factor in hippocampal interneurons. Neuroscience 2011; 179:9-22. [PMID: 21277946 PMCID: PMC3059386 DOI: 10.1016/j.neuroscience.2011.01.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/08/2011] [Accepted: 01/20/2011] [Indexed: 01/12/2023]
Abstract
The hippocampal formation (HF) is an important site at which stress circuits and endogenous opioid systems intersect, likely playing a critical role in the interaction between stress and drug addiction. Prior study findings suggest that the stress-related neuropeptide corticotropin releasing factor (CRF) and the delta opioid receptor (DOR) may localize to similar neuronal populations within HF lamina. Here, hippocampal sections of male and cycling female adult Sprague-Dawley rats were processed for immunolabeling using antisera directed against the DOR and CRF peptide, as well as interneuron subtype markers somatostatin or parvalbumin, and analyzed by fluorescence and electron microscopy. Both DOR- and CRF-labeling was observed in interneurons in the CA1, CA3, and dentate hilus. Males and normal cycling females displayed a similar number of CRF immunoreactive neurons co-labeled with DOR and a similar average number of CRF-labeled neurons in the dentate hilus and stratum oriens of CA1 and CA3. In addition, 70% of DOR/CRF dual-labeled neurons in the hilar region co-labeled with somatostatin, suggesting a role for these interneurons in regulating perforant path input to dentate granule cells. Ultrastructural analysis of CRF-labeled axon terminals within the hilar region revealed that proestrus females have a similar number of CRF-labeled axon terminals that contain DORs compared to males but an increased number of CRF-labeled axon terminals without DORs. Taken together, these findings suggest that while DORs are anatomically positioned to modulate CRF immunoreactive interneuron activity and CRF peptide release, their ability to exert such regulatory activity may be compromised in females when estrogen levels are high.
Collapse
Affiliation(s)
- T J Williams
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | |
Collapse
|
36
|
Williams TJ, Torres-Reveron A, Chapleau JD, Milner TA. Hormonal regulation of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus. Neurobiol Learn Mem 2011; 95:206-20. [PMID: 21224009 DOI: 10.1016/j.nlm.2011.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Clinical and preclinical studies indicate that women and men differ in relapse vulnerability to drug-seeking behavior during abstinence periods. As relapse is frequently triggered by exposure of the recovered addict to objects previously associated with drug use and the formation of these associations requires memory systems engaged by the hippocampal formation (HF), studies exploring ovarian hormone modulation of hippocampal function are warranted. Previous studies revealed that ovarian steroids alter endogenous opioid peptide levels and trafficking of mu opioid receptors in the HF, suggesting cooperative interaction between opioids and estrogens in modulating hippocampal excitability. However, whether ovarian steroids affect the levels or trafficking of delta opioid receptors (DORs) in the HF is unknown. Here, hippocampal sections of adult male and normal cycling female Sprague-Dawley rats were processed for quantitative immunoperoxidase light microscopy and dual label fluorescence or immunoelectron microscopy using antisera directed against the DOR and neuropeptide Y (NPY). Consistent with previous studies in males, DOR-immunoreactivity (-ir) localized to select interneurons and principal cells in the female HF. In comparison to males, females, regardless of estrous cycle phase, show reduced DOR-ir in the granule cell layer of the dentate gyrus and proestrus (high estrogen) females, in particular, display reduced DOR-ir in the CA1 pyramidal cell layer. Ultrastructural analysis of DOR-labeled profiles in CA1 revealed that while females generally show fewer DORs in the distal apical dendrites of pyramidal cells, proestrus females, in particular, exhibit DOR internalization and trafficking towards the soma. Dual label studies revealed that DORs are found in NPY-labeled interneurons in the hilus, CA3, and CA1. While DOR colocalization frequency in NPY-labeled neuron somata was similar between animals in the hilus, proestrus females had fewer NPY-labeled neurons that co-labeled with DOR in stratum oriens of CA1 and CA3 when compared to males. Ultrastructural analysis of NPY-labeled axon terminals within stratum radiatum of CA1 revealed that NPY-labeled axon terminals contain DORs that are frequently found at or near the plasma membrane. As no differences were noted by sex or estrous cycle phase, DOR activation on NPY-labeled axon terminals would inhibit GABA release probability equally in males and females. Taken together, these findings suggest that ovarian steroids can impact hippocampal function through direct effects on DOR levels and trafficking in principal cells and broad indirect effects through reductions in DOR-ir in NPY-labeled interneurons, particularly in CA1.
Collapse
Affiliation(s)
- Tanya J Williams
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
The application of electron microscopic immunolabeling techniques to the identification and analysis of degenerating processes in neural tissue has greatly enhanced the ability of researchers to examine apoptosis and other degenerative disease mechanisms. This is particularly true for the early stages of such mechanisms. Traditionally, degenerating processes could only be identified at the ultrastructural level after significant cellular atrophy had occurred, when subcellular detail was obscured and synaptic relationships altered. Using immunocytochemical labeling procedures, degenerating neural and glial processes are first identified through the use of antibodies directed against a variety of degenerative markers, such as proapoptotic effectors (i.e., cytoplasmic cytochrome c), pathological components (i.e., beta amyloid deposits), or inflammatory agents (i.e., Iba1). Both the subcellular distribution of the marker within the process and the relationship of the labeled process to surrounding elements can then be carefully characterized. The information obtained can be further refined through the use of dual immunolabeling, which can provide additional data on the phenotype of the degenerating process and inputs to the process.
Collapse
|
38
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
39
|
Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM. Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010; 151:4756-64. [PMID: 20685869 PMCID: PMC2946145 DOI: 10.1210/en.2010-0505] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Maternal obesity during pregnancy increases the risk of obesity in the offspring. Obesity, arising from an imbalance of energy intake and expenditure, can be driven by the ingestion of palatable [high fat (HF), high sugar], energy-dense foods. Dopamine and opioid circuitry are neural substrates associated with reward that can affect animals' preference for palatable foods. Using a mouse model, the long-term effect of maternal consumption of a HF diet on dopamine and opioid gene expression within the mesocorticolimbic reward circuitry and hypothalamus of the offspring was investigated. Mice from dams fed a HF diet during pregnancy and lactation showed an increased preference for sucrose and fat. Gene expression, measured using quantitative real-time PCR, revealed a significant approximately 3- to 10-fold up-regulation of dopamine reuptake transporter (DAT) in the ventral tegmental area, nucleus accumbens, and prefrontal cortex and a down-regulation of DAT in the hypothalamus. Additionally, expression of both μ-opioid receptor (MOR) and preproenkephalin (PENK) was increased in nucleus accumbens, prefrontal cortex, and hypothalamus of mice from dams that consumed the HF diet. Epigenetic mechanisms have been associated with long-term programming of gene expression after various in utero insults. We observed global and gene-specific (DAT, MOR, and PENK) promoter DNA hypomethylation in the brains of offspring from dams that consumed the HF diet. These data demonstrate that maternal consumption of a HF diet can change the offsprings' epigenetic marks (DNA hypomethylation) in association with long-term alterations in gene expression (dopamine and opioids) and behavior (preference for palatable foods).
Collapse
Affiliation(s)
- Zivjena Vucetic
- University of Pennsylvania School of Medicine, Department of Pharmacology, Institute for Translational Medicine and Therapeutics, School of Medicine, 805 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | |
Collapse
|
40
|
Remage-Healey L, Bass AH. Estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal pattern generator. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 196:137-46. [PMID: 20035335 PMCID: PMC2809949 DOI: 10.1007/s00359-009-0500-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 12/12/2022]
Abstract
Estrogens rapidly regulate neuronal activity within seconds-to-minutes, yet it is unclear how estrogens interact with neural circuits to rapidly coordinate behavior. This study examines whether 17-beta-estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal control circuit. Adult plainfin midshipman fish emit vocalizations that mainly differ in duration, and rhythmic activity of a hindbrain–spinal vocal pattern generator (VPG) directly establishes the temporal features of midshipman vocalizations. VPG activity is therefore predictive of natural calls, and ‘fictive calls’ can be elicited by electrical microstimulation of the VPG. Prior studies show that intramuscular estradiol injection rapidly (within 5 min) increases fictive call duration in midshipman. Here, we delivered opioid antagonists near the VPG prior to estradiol injection. Rapid estradiol actions on fictive calling were completely suppressed by the broad-spectrum opioid antagonist naloxone and the mu-opioid antagonist beta-funaltrexamine, but were unaffected by the kappa-opioid antagonist nor-binaltorphimine. Unexpectedly, prior to estradiol administration, all three opioid antagonists caused immediate, transient reductions in fictive call duration. Together, our results indicate that: (1) vocal activity is modulated by opioidergic networks, confirming hypotheses from birds and mammals, and (2) the rapid actions of estradiol on vocal patterning depend on interactions with a mu-opioid modulatory network.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|