1
|
Bian Y, Qiao N, Han S, Gao J, Lv X, Yuan L, Zhang L, Wei Z. Anti-Neuroinflammatory Effect of Ombuin from Rhamnus erythroxylon Pall. Leaves in LPS-Induced BV-2 Microglia by Targeting Src and Suppressing the PI3K-AKT/NF-κB Signaling Pathway. Int J Mol Sci 2024; 25:8789. [PMID: 39201475 PMCID: PMC11354356 DOI: 10.3390/ijms25168789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The leaves of Rhamnus erythroxylon Pall. are widely used as tea substitutes in northwest China for their fragrant aroma, anti-irritability, and digestion-enhancing properties. Ombuin, a main flavonoid compound found in the leaves, exhibited notable anti-inflammatory and antioxidant effects. However, its potential role in treating neuroinflammatory-related diseases remains unexplored. Thus, this study aims to evaluate the anti-neuroinflammatory effects of ombuin and to explore the underlying molecular mechanisms. According to our findings, ombuin dramatically reduced the release of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), IL-1β, nitric oxide (NO), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further analysis, including transcriptomics, network pharmacology, molecular docking, and cellular heat transfer assays, revealed that Src was a direct target of ombuin. Western blot analysis showed that ombuin effectively suppressed Src phosphorylation and inhibited the downstream expressions of p-PI3K p85, p-AKT1, p-IKKα/β, p-IκBα, and nuclear factor κB (NF-κB). Meanwhile, the repression of Src significantly reversed the anti-neuroinflammatory activity of ombuin. Our results identified Src as a direct target of ombuin and implied that ombuin exerted an anti-neuroinflammatory effect by inhibiting Src phosphorylation and suppressing the activation of the PI3K-AKT and NF-κB pathways, which might provide an alternative therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linjing Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| | - Zuofu Wei
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| |
Collapse
|
2
|
Saponjic J, Mejías R, Nikolovski N, Dragic M, Canak A, Papoutsopoulou S, Gürsoy-Özdemir Y, Fladmark KE, Ntavaroukas P, Bayar Muluk N, Zeljkovic Jovanovic M, Fontán-Lozano Á, Comi C, Marino F. Experimental Models to Study Immune Dysfunction in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2024; 25:4330. [PMID: 38673915 PMCID: PMC11050170 DOI: 10.3390/ijms25084330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.
Collapse
Affiliation(s)
- Jasna Saponjic
- Department of Neurobiology, Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia
| | - Rebeca Mejías
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Neda Nikolovski
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Milorad Dragic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
- Department of Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences–National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Asuman Canak
- Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkey;
| | - Stamatia Papoutsopoulou
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | | | - Kari E. Fladmark
- Department of Biological Science, University of Bergen, 5020 Bergen, Norway;
| | - Panagiotis Ntavaroukas
- Department of Biochemistry and Biotechnology, Faculty of Health Sciences, University of Thessaly, Biopolis, 41500 Larisa, Greece; (S.P.); (P.N.)
| | - Nuray Bayar Muluk
- Department of Otorhinolaryngology, Faculty of Medicine, Kirikkale University, Kirikkale 71450, Turkey;
| | - Milica Zeljkovic Jovanovic
- Laboratory for Neurobiology, Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.D.); (M.Z.J.)
| | - Ángela Fontán-Lozano
- Department of Physiology, School of Biology, University of Seville, 41012 Seville, Spain; (R.M.); (Á.F.-L.)
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy;
| | - Franca Marino
- Center for Research in Medical Pharmacology, School of Medicine, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
3
|
Sanfeliu C, Bartra C, Suñol C, Rodríguez-Farré E. New insights in animal models of neurotoxicity-induced neurodegeneration. Front Neurosci 2024; 17:1248727. [PMID: 38260026 PMCID: PMC10800989 DOI: 10.3389/fnins.2023.1248727] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The high prevalence of neurodegenerative diseases is an unintended consequence of the high longevity of the population, together with the lack of effective preventive and therapeutic options. There is great pressure on preclinical research, and both old and new models of neurodegenerative diseases are required to increase the pipeline of new drugs for clinical testing. We review here the main models of neurotoxicity-based animal models leading to central neurodegeneration. Our main focus was on studying how changes in neurotransmission and neuroinflammation, mainly in rodent models, contribute to harmful processes linked to neurodegeneration. The majority of the models currently in use mimic Parkinson's disease (PD) and Alzheimer's disease (AD), which are the most common neurodegenerative conditions in older adults. AD is the most common age-related dementia, whereas PD is the most common movement disorder with also cases of dementia. Several natural toxins and xenobiotic agents induce dopaminergic neurodegeneration and can reproduce neuropathological traits of PD. The literature analysis of MPTP, 6-OH-dopamine, and rotenone models suggested the latter as a useful model when specific doses of rotenone were administrated systemically to C57BL/6 mice. Cholinergic neurodegeneration is mainly modelled with the toxin scopolamine, which is a useful rodent model for the screening of protective drugs against cognitive decline and AD. Several agents have been used to model neuroinflammation-based neurodegeneration and dementia in AD, including lipopolysaccharide (LPS), streptozotocin, and monomeric C-reactive protein. The bacterial agent LPS makes a useful rodent model for testing anti-inflammatory therapies to halt the development and severity of AD. However, neurotoxin models might be more useful than genetic models for drug discovery in PD but that is not the case in AD where they cannot beat the new developments in transgenic mouse models. Overall, we should work using all available models, either in vivo, in vitro, or in silico, considering the seriousness of the moment and urgency of developing effective drugs.
Collapse
Affiliation(s)
- Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Clara Bartra
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- PhD Program in Biotechnology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Suñol
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Rodríguez-Farré
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Khish NS, Ghiasizadeh P, Rasti A, Moghimi O, Zadeh AZ, Bahiraee A, Ebrahimi R. Regulatory Non-coding RNAs Involved in Oxidative Stress and Neuroinflammation: An Intriguing Crosstalk in Parkinson's Disease. Curr Med Chem 2024; 31:5576-5597. [PMID: 37592769 DOI: 10.2174/0929867331666230817102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the accumulation of α-synuclein and the degeneration of dopaminergic neurons in the substantia nigra. Although the molecular bases for PD development are not fully recognized, extensive evidence has suggested that the development of PD is strongly associated with neuroinflammation. It is noteworthy that while neuroinflammation might not be a primary factor in all patients with PD, it seems to be a driving force for disease progression, and therefore, exploring the role of pathways involved in neuroinflammation is of great importance. Besides, the importance of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and competing endogenous RNAs (ceRNAs), has been widely studied with a focus on the pathogenesis of PD. However, there is no comprehensive review regarding the role of neuroinflammation- related ncRNAs as prospective biomarkers and therapeutic targets involved in the pathogenesis of PD, even though the number of studies connecting ncRNAs to neuroinflammatory pathways and oxidative stress has markedly increased in the last few years. Hence, the present narrative review intended to describe the crosstalk between regulatory ncRNAs and neuroinflammatory targets with respect to PD to find and propose novel combining biomarkers or therapeutic targets in clinical settings.
Collapse
Affiliation(s)
- Naser Salari Khish
- Department of Biology, Payam Noor University International, Center of Gheshm, Hormozgan, Iran
| | - Pooran Ghiasizadeh
- Student Research Committee, Arak University of Medical Science, Arak, Iran
| | - Abolhasan Rasti
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Moghimi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arash Zeynali Zadeh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reyhane Ebrahimi
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
5
|
Zhang H, D'Agostino C, Tulisiak C, Thorwald MA, Bergkvist L, Lindquist A, Meyerdirk L, Schulz E, Becker K, Steiner JA, Cacciottolo M, Kwatra M, Rey NL, Escobar Galvis ML, Ma J, Sioutas C, Morgan TE, Finch CE, Brundin P. Air pollution nanoparticle and alpha-synuclein fibrils synergistically decrease glutamate receptor A1, depending upon nPM batch activity. Heliyon 2023; 9:e15622. [PMID: 37128335 PMCID: PMC10148131 DOI: 10.1016/j.heliyon.2023.e15622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Background Epidemiological studies have variably linked air pollution to increased risk of Parkinson's disease (PD). However, there is little experimental evidence for this association. Alpha-synuclein (α-syn) propagation plays central roles in PD and glutamate receptor A1 (GluA1) is involved in memory and olfaction function. Methods Each mouse was exposed to one of three different batches of nano-particulate matter (nPM) (300 μg/m3, 5 h/d, 3 d/week), collected at different dates, 2017-2019, in the same urban site. After these experiments, these nPM batches were found to vary in activity. C57BL/6 female mice (3 mo) were injected with pre-formed murine α-synuclein fibrils (PFFs) (0.4 μg), which act as seeds for α-syn aggregation. Two exposure paradigms were used: in Paradigm 1, PFFs were injected into olfactory bulb (OB) prior to 4-week nPM (Batch 5b) exposure and in Paradigm 2, PFFs were injected at 4th week during 10-week nPM exposure (Batches 7 and 9). α-syn pSer129, microglia Iba1, inflammatory cytokines, and Gria1 expression were measured by immunohistochemistry or qPCR assays. Results As expected, α-syn pSer129 was detected in ipsilateral OB, anterior olfactory nucleus, amygdala and piriform cortex. One of the three batches of nPM caused a trend for elevated α-syn pSer129 in Paradigm 1, but two other batches showed no effect in Paradigm 2. However, the combination of nPM and PFF significantly decreased Gria1 mRNA in both the ipsi- and contra-lateral OB and frontal cortex for the most active two nPM batches. Neither nPM nor PFFs alone induced responses of microglia Iba1 and expression of Gria1 in the OB and cortex. Conclusion Exposures to ambient nPM had weak effect on α-syn propagation in the brain in current experimental paradigms; however, nPM and α-syn synergistically downregulated the expression of Gria1 in both OB and cortex.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, USA
- Corresponding author.
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | | - Max A. Thorwald
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | | | | | | - Emily Schulz
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | | | | | - Mohit Kwatra
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | | | - Jiyan Ma
- Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Todd E. Morgan
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, USA
| | | |
Collapse
|
6
|
Brandi E, Torres-Garcia L, Svanbergsson A, Haikal C, Liu D, Li W, Li JY. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front Aging Neurosci 2022; 14:910988. [PMID: 36092814 PMCID: PMC9459169 DOI: 10.3389/fnagi.2022.910988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia cells are the macrophage population within the central nervous system, which acts as the first line of the immune defense. These cells present a high level of heterogeneity among different brain regions regarding morphology, cell density, transcriptomes, and expression of different inflammatory mediators. This region-specific heterogeneity may lead to different neuroinflammatory responses, influencing the regional involvement in several neurodegenerative diseases. In this study, we aimed to evaluate microglial response in 16 brain regions. We compared different aspects of the microglial response, such as the extension of their morphological changes, sensitivity, and ability to convert an acute inflammatory response to a chronic one. Then, we investigated the synaptic alterations followed by acute and chronic inflammation in substantia nigra. Moreover, we estimated the effect of partial ablation of fractalkine CX3C receptor 1 (CX3CR1) on microglial response. In the end, we briefly investigated astrocytic heterogeneity and activation. To evaluate microglial response in different brain regions and under the same stimulus, we induced a systemic inflammatory reaction through a single intraperitoneal (i.p.) injection of lipopolysaccharides (LPS). We performed our study using C57BL6 and CX3CR1+/GFP mice to investigate microglial response in different regions and the impact of CX3CR1 partial ablation. We conducted a topographic study quantifying microglia alterations in 16 brain regions through immunohistochemical examination and computational image analysis. Assessing Iba1-immunopositive profiles and the density of the microglia cells, we have observed significant differences in region-specific responses of microglia populations in all parameters considered. Our results underline the peculiar microglial inflammation in the substantia nigra pars reticulata (SNpr). Here and in concomitance with the acute inflammatory response, we observed a transient decrease of dopaminergic dendrites and an alteration of the striato-nigral projections. Additionally, we found a significant decrease in microglia response and the absence of chronic inflammation in CX3CR1+/GFP mice compared to the wild-type ones, suggesting the CX3C axis as a possible pharmacological target against neuroinflammation induced by an increase of systemic tumor necrosis factor-alpha (TNFα) or/and LPS. Finally, we investigated astrocytic heterogeneity in this model. We observed different distribution and morphology of GFAP-positive astrocytes, a heterogeneous response under inflammatory conditions, and a decrease in their activation in CX3CR1 partially ablated mice compared with C57BL6 mice. Altogether, our data confirm that microglia and astrocytes heterogeneity lead to a region-specific inflammatory response in presence of a systemic TNFα or/and LPS treatment.
Collapse
Affiliation(s)
- Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Di Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
- *Correspondence: Jia-Yi Li, ,
| |
Collapse
|
7
|
Huang Y, Cai Q, Liu H, Wang Y, Ma W. Remifentanil inhibits the inflammatory response of BV2 microglia and protects PC12 cells from damage caused by microglia activation. Bioengineered 2022; 13:13944-13955. [PMID: 35726401 PMCID: PMC9275917 DOI: 10.1080/21655979.2022.2080421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microglia acts as a critical player in neuroinflammation and neuronal injury. Remifentanil (Rem) has been reported to exert anti-inflammatory activity in several types of diseases. However, the role of Rem in microglia-mediated neuroinflammation is unclear. The present study was designed to investigate the effects of Rem against lipopolysaccharide (LPS)-activated BV2 microglial and PC12 cell induced by activated BV2 microglia. Cell proliferative ability was assessed with cell counting kit-8 assay and cellular morphology was observed. ELISA assay was used to measure the expressions of PGE2 and inflammatory factors. The contents of p-NF-KB p65, p-IKKα/β, and COX2 were evaluated with the aid of western blot. The levels of NO and iNOS were assessed with Griess assay, qRT-PCR, and western blot. In addition, Tunel assay and western blot were performed to assess cell apoptosis. The data revealed that Rem alleviated BV2 microglial morphological injury induced by LPS. Furthermore, Rem suppressed inflammatory releases, iNOS, NO and PGE2 stimulated by LPS in activated BV2 cells. Moreover, Rem suppressed PC12 cell injury, the generations of inflammatory factors and cell apoptosis triggered by inflammatory mediators secreted from activated BV2 cells. These results suggest that Rem exhibited anti-neuroinflammatory activity in protecting PC12 cells against injury derived from LPS-stimulated BV2 microglia.
Collapse
Affiliation(s)
- Yankui Huang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Qingxiang Cai
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Huihui Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Wuhua Ma
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
8
|
Kara SP, Altunan B, Unal A. Investigation of the peripheral inflammation (neutrophil-lymphocyte ratio) in two neurodegenerative diseases of the central nervous system. Neurol Sci 2022; 43:1799-1807. [PMID: 34331157 PMCID: PMC8324446 DOI: 10.1007/s10072-021-05507-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), and idiopathic Parkinson's disease (IPD) are the neurodegenerative diseases of the central nervous system (CNS). Cognitive impairment is on the forefront in AD. However, IPD is a movement disorder. Inflammation was suggested to have an effect in the pathophysiology of these two diseases. Neutrophil-lymphocyte ratio (NLR) was shown to be a possible marker showing the peripheral inflammation. We aimed to investigate the NLR of patiens with the diagnosis of AD, and IPD, and individuals with no neurodegenerative disease. MATERIALS AND METHODS A total of 100 patients with the diagnosis of IPD, and 94 with diagnosis of AD, and 61 healthy controls were included into the study. All the demographic, clinical, and laboratory data were retrospectively obtained from the hospital automated database system. RESULTS The NLR in the IPD group was found statistically significantly higher compared with the control group and the AD group (p < 0.001, p = 0.04, respectively). The age-adjusted values were statistically analyzed because of age difference. No statistically significant difference was detected between AD and control groups in terms of NLR (p = 0.6). The age-adjusted NLR value in the Parkinson's group was found significantly higher compared to the control group (p = 0.02) and Alzheimer's group (p = 0.03). DISCUSSION Chronic inflammation has an important role in the emergence and progression of the chronic neurodegenerative diseases of the CNS. Our results show that the inflammation in the peripheral blood in IPD was more significant compared with the inflammation in AD.
Collapse
Affiliation(s)
- Sonat Pınar Kara
- Faculty of Medicine, Department of Internal Medicine, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Bengü Altunan
- Faculty of Medicine, Department of Neurology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Aysun Unal
- Faculty of Medicine, Department of Neurology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
9
|
牟 斐, 陈 曦, 杜 希, 焦 倩, 毕 明, 姜 宏. [Regulatory mechanism of interferon regulatory factor 1 by α-synuclein in mouse Parkinson's disease model]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1641-1648. [PMID: 34916189 PMCID: PMC8685704 DOI: 10.12122/j.issn.1673-4254.2021.11.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the molecular mechanism by which α-synuclein (α-Syn) regulates interferon regulatory factor 1 (IRF-1) expression. METHODS SH-SY5Y cells overexpressing α-Syn and transgenic mouse model carrying human α-Syn gene with A53T mutation (3 and 6 months old) were examined for IRF-1 mRNA and protein expressions using real-time PCR and Western blotting, respectively. The subcellular localization of IRF-1 was determined with immunofluorescence staining and cytoplasmic/nuclear protein isolation. The optimal concentrations of the proteasome inhibitor MG132 (0.01-2.0 μmol/L) and lysosomal inhibitor chloroquine (5-200 μmol/L) for treatment of SH-SY5Y cells for 24 h were determined by examining the cell viability. SH-SY5Y cells were treated with 0.2 μmol/L MG132 and 30 μmol/L chloroquine for 24 h (the maximum dose that did not cause cell damage), and the changes of IRF-1 protein expressions was analyzed. The effects of α-Syn on MDM2 protein expression and IRF-1 ubiquitylation were analyzed using Western blotting and ubiquitylation assay. RESULTS α-Syn overexpression did not affect the mRNA level of IRF-1 but significantly increased its protein level (P < 0.01). In α-Synoverexpressing SH-SY5Y cells, IRF-1 translocation was observed from the cytoplasm to the nucleus (P < 0.001). Treatment of the cells with 0.2 μmol/L MG132 significantly aggravated α-Syn-induced increase of IRF-1 protein expression (P < 0.01) while 30 μmol/L chloroquine produced no significant changes in IRF-1 level. α-Syn overexpression caused an obvious decrease of MDM2 protein level and further inhibited the ubiquitylation of IRF-1 (P < 0.01). CONCLUSION α-Syn blocks MDM2-mediated ubiquitylation of IRF-1 through ubiquitin proteasome pathway, thereby enhancing IRF-1 protein expression.
Collapse
Affiliation(s)
- 斐斐 牟
- />青岛大学国家生理学重点(培育)学科,山东 青岛 266071State Key Disciplines of Physiology (Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China
| | - 曦 陈
- />青岛大学国家生理学重点(培育)学科,山东 青岛 266071State Key Disciplines of Physiology (Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China
| | - 希恂 杜
- />青岛大学国家生理学重点(培育)学科,山东 青岛 266071State Key Disciplines of Physiology (Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China
| | - 倩 焦
- />青岛大学国家生理学重点(培育)学科,山东 青岛 266071State Key Disciplines of Physiology (Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China
| | - 明霞 毕
- />青岛大学国家生理学重点(培育)学科,山东 青岛 266071State Key Disciplines of Physiology (Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China
| | - 宏 姜
- />青岛大学国家生理学重点(培育)学科,山东 青岛 266071State Key Disciplines of Physiology (Incubation), Department of Physiology, Qingdao University, Qingdao 266071, China
| |
Collapse
|
10
|
Edler MK, Mhatre-Winters I, Richardson JR. Microglia in Aging and Alzheimer's Disease: A Comparative Species Review. Cells 2021; 10:1138. [PMID: 34066847 PMCID: PMC8150617 DOI: 10.3390/cells10051138] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells of the central nervous system that help nourish and support neurons, clear debris, and respond to foreign stimuli. Greatly impacted by their environment, microglia go through rapid changes in cell shape, gene expression, and functional behavior during states of infection, trauma, and neurodegeneration. Aging also has a profound effect on microglia, leading to chronic inflammation and an increase in the brain's susceptibility to neurodegenerative processes that occur in Alzheimer's disease. Despite the scientific community's growing knowledge in the field of neuroinflammation, the overall success rate of drug treatment for age-related and neurodegenerative diseases remains incredibly low. Potential reasons for the lack of translation from animal models to the clinic include the use of a single species model, an assumption of similarity in humans, and ignoring contradictory data or information from other species. To aid in the selection of validated and predictive animal models and to bridge the translational gap, this review evaluates similarities and differences among species in microglial activation and density, morphology and phenotype, cytokine expression, phagocytosis, and production of oxidative species in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa K. Edler
- Department of Anthropology, School of Biomedical Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44240, USA;
| | - Isha Mhatre-Winters
- School of Biomedical Sciences, College of Arts and Sciences, Kent State University, Kent, OH 44240, USA;
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jason R. Richardson
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
11
|
Pathomechanism Characterization and Potential Therapeutics Identification for Parkinson's Disease Targeting Neuroinflammation. Int J Mol Sci 2021; 22:ijms22031062. [PMID: 33494411 PMCID: PMC7865530 DOI: 10.3390/ijms22031062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons and the presence of α-synuclein-containing Lewy bodies. The unstructured α-synuclein forms insoluble fibrils and aggregates that result in increased reactive oxygen species (ROS) and cellular toxicity in PD. Neuroinflammation engaged by microglia actively contributes to the pathogenesis of PD. In this study, we showed that VB-037 (a quinoline compound), glycyrrhetic acid (a pentacyclic triterpenoid), Glycyrrhiza inflata (G. inflata, a Chinese herbal medicine), and Shaoyao Gancao Tang (SG-Tang, a formulated Chinese medicine) suppressed the nitric oxide (NO) production and interleukin (IL)-1β maturation in α-synuclein-stimulated BV-2 cells. Mouse inflammation antibody array further revealed increased IL-1α, IL-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) expression in α-synuclein-inflamed BV-2 cells and compound pretreatment effectively reduced the expression and release of these pro-inflammatory mediators. The test compounds and herbal medicines further reduced α-synuclein aggregation and associated oxidative stress, and protected cells against α-synuclein-induced neurotoxicity by downregulating NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), caspase 1, IL-1β, IL-6, and associated nuclear factor (NF)-κB inhibitor alpha (IκBα)/NF-κB P65 subunit (P65), c-Jun N-terminal kinase (JNK)/proto-oncogene c-Jun (JUN), mitogen-activated protein kinase 14 (P38)/signal transducer and activator of transcription 1 (STAT1) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathways in dopaminergic neurons derived from α-synuclein-expressing SH-SY5Y cells. Our findings indicate the potential of VB-037, glycyrrhetic acid, G. inflata, and SG-Tang through mitigating α-synuclein-stimulated neuroinflammation in PD, as new drug candidates for PD treatment.
Collapse
|
12
|
Song SY, Kim IS, Koppula S, Park JY, Kim BW, Yoon SH, Choi DK. 2-Hydroxy-4-Methylbenzoic Anhydride Inhibits Neuroinflammation in Cellular and Experimental Animal Models of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21218195. [PMID: 33147699 PMCID: PMC7662568 DOI: 10.3390/ijms21218195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia-mediated neuroinflammation is one of the key mechanisms involved in acute brain injury and chronic neurodegeneration. This study investigated the inhibitory effects of 2-hydroxy-4-methylbenzoic anhydride (HMA), a novel synthetic derivative of HTB (3-hydroxy-4-trifluoromethylbenzoic acid) on neuroinflammation and underlying mechanisms in activated microglia in vitro and an in vivo mouse model of Parkinson’s disease (PD). In vitro studies revealed that HMA significantly inhibited lipopolysaccharide (LPS)-stimulated excessive release of nitric oxide (NO) in a concentration dependent manner. In addition, HMA significantly suppressed both inducible NO synthase and cyclooxygenase-2 (COX-2) at the mRNA and protein levels in LPS-stimulated BV-2 microglia cells. Moreover, HMA significantly inhibited the proinflammatory cytokines such as interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha in LPS-stimulated BV-2 microglial cells. Furthermore, mechanistic studies ensured that the potent anti-neuroinflammatory effects of HMA (0.1, 1.0, and 10 μM) were mediated by phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) in LPS-stimulated BV-2 cells. In vivo evaluations revealed that intraperitoneal administration of potent neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg, four times a 1 day) in mice resulted in activation of microglia in the brain in association with severe behavioral deficits as assessed using a pole test. However, prevention of microglial activation and attenuation of Parkinson’s disease (PD)-like behavioral changes was obtained by oral administration of HMA (30 mg/kg) for 14 days. Considering the overall results, our study showed that HMA exhibited strong anti-neuroinflammatory effects at lower concentrations than its parent compound. Further work is warranted in other animal and genetic models of PD for evaluating the efficacy of HMA to develop a potential therapeutic agent in the treatment of microglia-mediated neuroinflammatory disorders, including PD.
Collapse
Affiliation(s)
- Soo-Yeol Song
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
| | - In-Su Kim
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
| | - Sushruta Koppula
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
| | - Ju-Young Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (J.-Y.P.); (S.-H.Y.)
| | - Byung-Wook Kim
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
| | - Sung-Hwa Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (J.-Y.P.); (S.-H.Y.)
| | - Dong-Kug Choi
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea; (S.-Y.S.); (I.-S.K.); (S.K.); (B.-W.K.)
- Correspondence: ; Tel.: +82-43-840-3616
| |
Collapse
|
13
|
Pawelec P, Ziemka-Nalecz M, Sypecka J, Zalewska T. The Impact of the CX3CL1/CX3CR1 Axis in Neurological Disorders. Cells 2020; 9:cells9102277. [PMID: 33065974 PMCID: PMC7600611 DOI: 10.3390/cells9102277] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Fractalkine (FKN, CX3CL1) is a transmembrane chemokine expressed by neurons in the central nervous system (CNS). CX3CL1 signals through its unique receptor, CX3CR1, that is expressed in microglia. Within the CNS, fractalkine acts as a regulator of microglia activation in response to brain injury or inflammation. During the last decade, there has been a growing interest in the roles that the CX3CL1/CX3CR1 signaling pathway plays in the neuropathology of a diverse array of brain disorders. However, the reported results have proven controversial, indicating that a disruption of the CX3CL1 axis induces a disease-specific microglial response that may have either beneficial or detrimental effects. Therefore, it has become clear that the understanding of neuron-to-glia signals mediated by CX3CL1/CX3CR1 at different stages of diseases could provide new insight into potential therapeutic targets. Hence, the aim of this review is to provide a summary of the literature on the emerging role of CX3CL1 in animal models of some brain disorders.
Collapse
|
14
|
Modulation of neuroinflammation by cysteinyl leukotriene 1 and 2 receptors: implications for cerebral ischemia and neurodegenerative diseases. Neurobiol Aging 2019; 87:1-10. [PMID: 31986345 DOI: 10.1016/j.neurobiolaging.2019.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is a complex biological process and has been known to play an important role in age-related cerebrovascular and neurodegenerative disorders, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Cysteinyl leukotrienes (CysLTs) are potent inflammatory lipid mediators that exhibit actions mainly through activating type 1 and type 2 CysLT receptors (CysLT1 and CysLT2). Accumulating evidence shows that CysLT1 and CysLT2 are activated at different stages of pathological process in various cell types in the brain such as vascular endothelial cells, astrocytes, microglia, and neurons in response to insults. However, the precise roles and mechanisms of CysLT1 and CysLT2 in regulating the pathogenesis of cerebral ischemia, Alzheimer's disease, and Parkinson's disease are not fully understood. In this article, we focus on current advances that link activation of CysLT1 and CysLT2 to the pathological process during brain ischemia and neurodegeneration and discuss mechanisms by which CysLT1 and CysLT2 mediate inflammatory process and brain injury. Multitarget anti-inflammatory potentials of CysLT1 and CysLT2 antagonism for neuroinflammation and brain injury will also be reviewed.
Collapse
|
15
|
Zhao R, Ying M, Gu S, Yin W, Li Y, Yuan H, Fang S, Li M. Cysteinyl Leukotriene Receptor 2 is Involved in Inflammation and Neuronal Damage by Mediating Microglia M1/M2 Polarization through NF-κB Pathway. Neuroscience 2019; 422:99-118. [PMID: 31726033 DOI: 10.1016/j.neuroscience.2019.10.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Microglia activation plays a key role in regulating inflammatory and immune reaction during cerebral ischemia and it exerts pro-inflammatory or anti-inflammatory effect depending on M1/M2 polarization phenotype. Cysteinyl leukotriene 2 receptor (CysLT2R) is a potent inflammatory mediator receptor, and involved in cerebral ischemic injury, but the mechanism of CysLT2R regulating inflammation and neuron damage remains unclear. Here, we found that LPS and CysLT2R agonist NMLTC4 significantly increased microglia proliferation and phagocytosis, up-regulated the mRNA expression of M1 polarization markers (IL-1β, TNF-α, IFN-γ, CD86 and iNOS), down-regulated the expression of M2 polarization markers (Arg-1, CD206, TGF-β, IL-10, Ym-1) and increased the release of IL-1β and TNF-α. CysLT2R selective antagonist HAMI3379 could antagonize these effects. IL-4 significantly up-regulated the mRNA expression of M2 polarization markers, and HAMI3379 further increased IL-4-induced up-regulation of M2 polarization markers expression. Additionally, LPS and NMLTC4 stimulated NF-κB p50 and p65 proteins expression, and promoted p50 transfer to the nucleus. Pre-treatment with HAMI3379 and NF-κB signaling inhibitor Bay 11-7082 could reverse the up-regulation of p50 and p65 proteins expression, and inhibited p50 transfer to the nucleus. The conditional medium of BV-2 cells contained HAMI3379 could inhibit SH-SY5Y cells apoptosis induced by LPS and NMLTC4. These results were further confirmed in primary microglia. The findings indicate that CysLT2R was involved in inflammation and neuronal damage by inducing the activation of microglia M1 polarization and NF-κB pathway, inhibiting microglia M1 polarization and promoting microglia polarization toward M2 phenotype which may exerts neuroprotective effects, and targeting CysLT2R may be a new therapeutic strategy against cerebral ischemia stroke.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou 310016, China
| | - Miaofa Ying
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou 310016, China
| | - Shenglong Gu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou 310016, China
| | - Wei Yin
- Core Facilities, School of Medicine, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, China
| | - Yanwei Li
- Core Facilities, School of Medicine, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, China.
| | - Sanhua Fang
- Core Facilities, School of Medicine, Zhejiang University, 866 Yuhang Tang Road, Hangzhou 310058, China.
| | - Mingxing Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou 310016, China.
| |
Collapse
|
16
|
Influence of intranasal exposure of MPTP in multiple doses on liver functions and transition from non-motor to motor symptoms in a rat PD model. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:147-165. [PMID: 31468077 DOI: 10.1007/s00210-019-01715-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Besides the effects on the striatum, the impairment of visceral organs including liver functions has been reported in Parkinson's disease (PD) patients. However, it is yet unclear if liver functions are affected in the early stage of the disease before the motor phase has appeared. The aim of our present study was thus to assess the effect of intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in different doses on striatum and liver functions. Deterioration of non-motor activities appeared on single exposure to MPTP along with rise in striatum oxidative stress and decline in antioxidant levels. Decreases in dopamine, noradrenaline, and GABA and increase in serotonin were detected in striatum. Motor coordination was impaired with a single dose of MPTP, and with repeated MPTP exposure, there was further significant impairment. Locomotor activity was affected from second exposure of MPTP, and the impairment increased with third MPTP exposure. Impairment of liver function through increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels was observed after first MPTP insult, and it worsened with second and third administrations. First administration of MPTP triggered systemic inflammation showing significant increase in inflammatory markers in the liver. Our data shows for the first time that an intranasal route of entry of MPTP affects liver from the non-motor phase of PD itself, occurring concomitantly with the reduction of striatal dopamine. It also suggests that a single dose is not enough to bring about progression of the disease from non-motor to locomotor deficiency, and a repeated dose is needed to establish the motor severity phase in the rat intranasal MPTP model.
Collapse
|
17
|
Antonazzo M, Botta M, Bengoetxea H, Ruiz-Ortega JÁ, Morera-Herreras T. Therapeutic potential of cannabinoids as neuroprotective agents for damaged cells conducing to movement disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:229-257. [PMID: 31349929 DOI: 10.1016/bs.irn.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The basal ganglia (BG), an organized network of nuclei that integrates cortical information, play a crucial role in controlling motor function. In fact, movement disorders such as Parkinson's disease (PD) and Huntington's disease (HD) are caused by the degeneration of specific structures within the BG. There is substantial evidence supporting the idea that cannabinoids may constitute novel promising compounds for the treatment of movement disorders as neuroprotective and anti-inflammatory agents. This potential therapeutic role of cannabinoids is based, among other qualities, on their capacity to reduce oxidative injury and excitotoxicity, control calcium influx and limit the toxicity of reactive microglia. The mechanisms involved in these effects are related to CB1 and CB2 receptor activation, although some of the effects are CB receptor independent. Thus, taking into account the aforementioned properties, compounds that act on the endocannabinoid system could be useful as a basis for developing disease-modifying therapies for PD and HD.
Collapse
Affiliation(s)
- Mario Antonazzo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - María Botta
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José Ángel Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
18
|
Sarni AR, Baroni L. Milk and Parkinson disease: Could galactose be the missing link. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
19
|
Lee Y, Cho JH, Lee S, Lee W, Chang SC, Chung HY, Moon HR, Lee J. Neuroprotective effects of MHY908, a PPAR α/γ dual agonist, in a MPTP-induced Parkinson’s disease model. Brain Res 2019; 1704:47-58. [DOI: 10.1016/j.brainres.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 01/21/2023]
|
20
|
Liu L, Qu Y, Liu Y, Zhao H, Ma HC, Noor AF, Ji CJ, Nie L, Si M, Cheng L. Atsttrin reduces lipopolysaccharide-induced neuroinflammation by inhibiting the nuclear factor kappa B signaling pathway. Neural Regen Res 2019; 14:1994-2002. [PMID: 31290458 PMCID: PMC6676886 DOI: 10.4103/1673-5374.259623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Progranulin is closely related to neuronal survival in a neuroinflammatory mouse model and attenuates inflammatory reactions. Atsttrin is an engineered protein composed of three progranulin fragments and has been shown to have an effect similar to that of progranulin. Atsttrin has anti-inflammatory actions in multiple arthritis mouse models, and it protects against further arthritis development. However, whether Atsttrin has a role in neuroinflammation remains to be elucidated. In this study, we produced a neuroinflammatory mouse model by intracerebroventricular injection of 1 μL lipopolysaccharide (10 μg/μL). Atsttrin (2.5 mg/kg) was administered via intraperitoneal injection every 3 days over a period of 7 days before intracerebroventricular injection of 1 μL lipopolysaccharide (10 μg/μL). In addition, astrocyte cultures were treated with 0, 100 or 300 ng/mL lipopolysaccharide, with 200 ng/mL Atsttrin simultaneously. Immunohistochemistry, enzyme-linked immunosorbent assay and real-time reverse transcription-polymerase chain reaction were performed to examine the protein and mRNA levels of inflammatory mediators and to assess activation of the nuclear factor kappa B signaling pathway. Progranulin expression in the brain of wild-type mice and in astrocyte cultures was increased after lipopolysaccharide administration. The protein and mRNA expression levels of tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were increased in the brain of progranulin knockout mice after lipopolysaccharide administration. Atsttrin treatment reduced the lipopolysaccharide-induced increase in the protein and mRNA levels of tumor necrosis factor-α, interleukin-1β, matrix metalloproteinase-3 and inducible nitric oxide synthase in the brain of progranulin knockout mice. Atsttrin also reduced the expression of cyclooxygenase-2, inducible nitric oxide synthase and matrix metalloproteinase 3 mRNA in lipopolysaccharide-treated astrocytes in vitro, and decreased the concentration of tumor necrosis factor a and interleukin-1β in the supernatant. Furthermore, Atsttrin significantly reduced the levels of phospho-nuclear factor kappa B inhibitor a in the brain of lipopolysaccharide-treated progranulin knockout mice and astrocytes, and it decreased the expression of nuclear factor kappa B2 in astrocytes. Collectively, our findings show that the anti-neuroinflammatory effect of Atsttrin involves inhibiton of the nuclear factor kappa B signaling pathway, and they suggest that Atsttrin may have clinical potential in neuroinflammatory therapy. The study was approved by the Animal Ethics Committee of Qilu Hospital of Shandong University, China (approval No. KYLL-2015(KS)-088) on February 10, 2015.
Collapse
Affiliation(s)
- Lian Liu
- Department of Orthopedics, Qilu Hospital of Shandong University; Department of Orthopedics, Qilu Children's Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yuan Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hua Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - He-Cheng Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Ahmed Fayyaz Noor
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Chang-Jiao Ji
- Department of Orthopedics, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Lin Nie
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Meng Si
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
21
|
Low-Grade Inflammation Aggravates Rotenone Neurotoxicity and Disrupts Circadian Clock Gene Expression in Rats. Neurotox Res 2018; 35:421-431. [PMID: 30328585 DOI: 10.1007/s12640-018-9968-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/08/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
A single injection of LPS produced low-grade neuroinflammation leading to Parkinson's disease (PD) in mice several months later. Whether such a phenomenon occurs in rats and whether such low-grade neuroinflammation would aggravate rotenone (ROT) neurotoxicity and disrupts circadian clock gene/protein expressions were examined in this study. Male rats were given two injections of LPS (2.5-7.5 mg/kg), and neuroinflammation and dopamine neuron loss were evident 3 months later. Seven months after a single LPS (5 mg/kg) injection, rats received low doses of ROT (0.5 mg/kg, sc, 5 times/week for 4 weeks) to examine low-grade neuroinflammation on ROT toxicity. LPS plus ROT produced more pronounced non-motor and motor dysfunctions than LPS or ROT alone in behavioral tests, and decreased mitochondrial complex 1 activity, together with aggravated neuroinflammation and neuron loss. The expressions of clock core genes brain and muscle Arnt-like protein-1 (Bmal1), locomotor output cycles kaput (Clock), and neuronal PAS domain protein-2 (Npas2) were decreased in LPS, ROT, and LPS plus ROT groups. The expressions of circadian feedback genes Periods (Per1 and Per2) were also decreased, but Cryptochromes (Cry1 and Cry2) were unaltered. The circadian clock target genes nuclear receptor Rev-Erbα (Nr1d1), and D-box-binding protein (Dbp) expressions were also decreased. Consistent with the transcript levels, circadian clock protein BMAL1, CLOCK, NR1D1, and DBP were also decreased. Thus, LPS-induced chronic low-grade neuroinflammation potentiated ROT neurotoxicity and disrupted circadian clock gene/protein expression, suggesting a role of disrupted circadian in PD development and progression. Graphical Abstract ᅟ.
Collapse
|
22
|
Corwin C, Nikolopoulou A, Pan AL, Nunez-Santos M, Vallabhajosula S, Serrano P, Babich J, Figueiredo-Pereira ME. Prostaglandin D2/J2 signaling pathway in a rat model of neuroinflammation displaying progressive parkinsonian-like pathology: potential novel therapeutic targets. J Neuroinflammation 2018; 15:272. [PMID: 30236122 PMCID: PMC6146649 DOI: 10.1186/s12974-018-1305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prostaglandins are products of the cyclooxygenase pathway, which is implicated in Parkinson's disease (PD). Limited knowledge is available on mechanisms by which prostaglandins contribute to PD neurodegeneration. To address this gap, we focused on the prostaglandin PGD2/J2 signaling pathway, because PGD2 is the most abundant prostaglandin in the brain, and the one that increases the most under pathological conditions. Moreover, PGJ2 is spontaneously derived from PGD2. METHODS In this study, we determined in rats the impact of unilateral nigral PGJ2-microinfusions on COX-2, lipocalin-type PGD2 synthase (L-PGDS), PGD2/J2 receptor 2 (DP2), and 15 hydroxyprostaglandin dehydrogenase (15-PGDH). Nigral dopaminergic (DA) and microglial distribution and expression levels of these key factors of the prostaglandin D2/J2 pathway were evaluated by immunohistochemistry. PGJ2-induced motor deficits were assessed with the cylinder test. We also determined whether oral treatment with ibuprofen improved the PD-like pathology induced by PGJ2. RESULTS PGJ2 treatment induced progressive PD-like pathology in the rats. Concomitant with DA neuronal loss in the substantia nigra pars compacta (SNpc), PGJ2-treated rats exhibited microglia and astrocyte activation and motor deficits. In DA neurons, COX-2, L-PGDS, and 15-PGDH levels increased significantly in PGJ2-treated rats compared to controls, while DP2 receptor levels were unchanged. In microglia, DP2 receptors were basically non-detectable, while COX-2 and L-PGDS levels increased upon PGJ2-treatment, and 15-PGDH remained unchanged. 15-PGDH was also detected in oligodendrocytes. Notably, ibuprofen prevented most PGJ2-induced PD-like pathology. CONCLUSIONS The PGJ2-induced rat model develops progressive PD pathology, which is a hard-to-mimic aspect of this disorder. Moreover, prevention of most PGJ2-induced PD-like pathology with ibuprofen suggests a positive feedback mechanism between PGJ2 and COX-2 that could lead to chronic neuroinflammation. Notably, this is the first study that analyzes the nigral dopaminergic and microglial distribution and levels of factors of the PGD2/J2 signaling pathway in rodents. Our findings support the notions that upregulation of COX-2 and L-PGDS may be important in the PGJ2 evoked PD-like pathology, and that neuronal DP2 receptor antagonists and L-PGDS inhibitors may be novel pharmacotherapeutics to relieve neuroinflammation-mediated neurodegeneration in PD, circumventing the adverse side effects of cyclooxygenase inhibitors.
Collapse
Affiliation(s)
- Chuhyon Corwin
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Allen L Pan
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | - Mariela Nunez-Santos
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Peter Serrano
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
| | - John Babich
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA.
| |
Collapse
|
23
|
Hammond SL, Popichak KA, Li X, Hunt LG, Richman EH, Damale PU, Chong EKP, Backos DS, Safe S, Tjalkens RB. The Nurr1 Ligand,1,1-bis(3'-Indolyl)-1-( p-Chlorophenyl)Methane, Modulates Glial Reactivity and Is Neuroprotective in MPTP-Induced Parkinsonism. J Pharmacol Exp Ther 2018; 365:636-651. [PMID: 29626009 PMCID: PMC5941193 DOI: 10.1124/jpet.117.246389] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/04/2018] [Indexed: 11/22/2022] Open
Abstract
The orphan nuclear receptor Nurr1 (also called nuclear receptor-4A2) regulates inflammatory gene expression in glial cells, as well as genes associated with homeostatic and trophic function in dopaminergic neurons. Despite these known functions of Nurr1, an endogenous ligand has not been discovered. We postulated that the activation of Nurr1 would suppress the activation of glia and thereby protect against loss of dopamine (DA) neurons after subacute lesioning with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our previous studies have shown that a synthetic Nurr1 ligand, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12), suppresses inflammatory gene expression in primary astrocytes and induces a dopaminergic phenotype in neurons. Pharmacokinetic analysis of C-DIM12 in mice by liquid chromatography-mass spectrometry demonstrated that approximately three times more compound concentrated in the brain than in plasma. Mice treated with four doses of MPTP + probenecid over 14 days were monitored for neurobehavioral function, loss of dopaminergic neurons, and glial activation. C-DIM12 protected against the loss of DA neurons in the substantia nigra pars compacta and DA terminals in the striatum, maintained a ramified phenotype in microglia, and suppressed activation of astrocytes. In vitro reporter assays demonstrated that C-DIM12 was an effective activator of Nurr1 transcription in neuronal cell lines. Computational modeling of C-DIM12 binding to the three-dimensional structure of human Nurr1 identified a high-affinity binding interaction with Nurr1 at the coactivator domain. Taken together, these data suggest that C-DIM12 is an activator of Nurr1 that suppresses glial activation and neuronal loss in vivo after treatment with MPTP, and that this receptor could be an efficacious target for disease modification in individuals with Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Sean L Hammond
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Katriana A Popichak
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Xi Li
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Lindsay G Hunt
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Evan H Richman
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Pranav U Damale
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Edwin K P Chong
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Donald S Backos
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Stephen Safe
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| |
Collapse
|
24
|
Wen L, Zhang QS, Heng Y, Chen Y, Wang S, Yuan YH, Chen NH. NLRP3 inflammasome activation in the thymus of MPTP-induced Parkinsonian mouse model. Toxicol Lett 2018; 288:1-8. [PMID: 29421335 DOI: 10.1016/j.toxlet.2018.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Ample evidence shows that Parkinson's disease (PD) is more than simply a central nervous system (CNS) disorder: the immune system appears to participate in PD pathogenesis. Extracellular misfolded α-synuclein (α-syn) may trigger an inflammatory response in the brain. Abnormal immune responses are involved in the development of PD, but little is known about the relationship between the thymus malfunction and the pathogenesis of PD. The present study investigated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced impairment in thymus and explored possible mechanisms involved in PD pathogenesis. After subcutaneous injection of MPTP (25 mg/kg) every 4 days for 40-days, immune responses became unbalanced, with increased IL-1β concentrations. On histopathology, mice treated with MPTP displayed pathological involution and damaged ultrastructure of the thymus. Both the PD-related oligomeric α-synuclein and oxidative stress related nitrated-α-synuclein (Tyr125, Tyr133) in mice treated with MPTP were elevated. Correspondingly, oxidative stress damage was detected in the form of increased 8-hydroxyguanosine staining. Moreover, MPTP significantly increased expression of caspase-8, NF-κB, NLPR3, and caspase-1 in the thymus. These results suggested that MPTP was toxic to mouse thymus via a mechanism involving the NF-κB and NLRP3 inflammasome pathway. These results suggested that environmental factors may lead to pathological changes in the thymus that are similar to those in the central nervous system. A disordered thymus might take part in the development of PD, and its enhanced immune response might promote the degenerative changes in the brain.
Collapse
Affiliation(s)
- Lu Wen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiu-Shuang Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Heng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuo Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
25
|
Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep 2018; 8:383. [PMID: 29321620 PMCID: PMC5762685 DOI: 10.1038/s41598-017-18786-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of Parkinson’s disease (PD) and other neurodegenerative disorders. We show that lack of PINK1- a mitochondrial kinase linked to recessive familial PD – leads to glia type-specific abnormalities of innate immunity. PINK1 loss enhances LPS/IFN-γ stimulated pro-inflammatory phenotypes of mixed astrocytes/microglia (increased iNOS, nitric oxide and COX-2, reduced IL-10) and pure astrocytes (increased iNOS, nitric oxide, TNF-α and IL-1β), while attenuating expression of both pro-inflammatory (TNF-α, IL-1β) and anti-inflammatory (IL-10) cytokines in microglia. These abnormalities are associated with increased inflammation-induced NF-κB signaling in astrocytes, and cause enhanced death of neurons co-cultured with inflamed PINK1−/− mixed glia and neuroblastoma cells exposed to conditioned medium from LPS/IFN-γ treated PINK1−/− mixed glia. Neuroblastoma cell death is prevented with an iNOS inhibitor, implicating increased nitric oxide production as the cause for enhanced death. Finally, we show for the first time that lack of a recessive PD gene (PINK1) increases α-Synuclein-induced nitric oxide production in all glia types (mixed glia, astrocytes and microglia). Our results describe a novel pathogenic mechanism in recessive PD, where PINK1 deficiency may increase neuron death via exacerbation of inflammatory stimuli-induced nitric oxide production and abnormal innate immune responses in glia cells.
Collapse
|
26
|
Song N, Wang J, Jiang H, Xie J. Astroglial and microglial contributions to iron metabolism disturbance in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:967-973. [PMID: 29317336 DOI: 10.1016/j.bbadis.2018.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/24/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Understandings of the disturbed iron metabolism in Parkinson's disease (PD) are largely from the perspectives of neurons. Neurodegenerative processes in PD trigger universal and conserved astroglial dysfunction and microglial activation. In this review, we start with astroglia and microglia in PD with an emphasis on their roles in spreading α-synuclein pathology, and then focus on their contributions in iron metabolism under normal conditions and the diseased state of PD. Elevated iron in the brain regions affects glial features, meanwhile, glial effects on neuronal iron metabolism are largely dependent on their releasing factors. These advances might be valuable for better understanding and modulating iron metabolism disturbance in PD.
Collapse
Affiliation(s)
- Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China.
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China; Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
27
|
Terron A, Bal-Price A, Paini A, Monnet-Tschudi F, Bennekou SH, Leist M, Schildknecht S. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018; 92:41-82. [PMID: 29209747 PMCID: PMC5773657 DOI: 10.1007/s00204-017-2133-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have observed an association between pesticide exposure and the development of Parkinson's disease, but have not established causality. The concept of an adverse outcome pathway (AOP) has been developed as a framework for the organization of available information linking the modulation of a molecular target [molecular initiating event (MIE)], via a sequence of essential biological key events (KEs), with an adverse outcome (AO). Here, we present an AOP covering the toxicological pathways that link the binding of an inhibitor to mitochondrial complex I (i.e., the MIE) with the onset of parkinsonian motor deficits (i.e., the AO). This AOP was developed according to the Organisation for Economic Co-operation and Development guidelines and uploaded to the AOP database. The KEs linking complex I inhibition to parkinsonian motor deficits are mitochondrial dysfunction, impaired proteostasis, neuroinflammation, and the degeneration of dopaminergic neurons of the substantia nigra. These KEs, by convention, were linearly organized. However, there was also evidence of additional feed-forward connections and shortcuts between the KEs, possibly depending on the intensity of the insult and the model system applied. The present AOP demonstrates mechanistic plausibility for epidemiological observations on a relationship between pesticide exposure and an elevated risk for Parkinson's disease development.
Collapse
Affiliation(s)
| | | | - Alicia Paini
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- In Vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstr. 10, PO Box M657, 78457, Konstanz, Germany.
| |
Collapse
|
28
|
Neuroprotective and Neuro-restorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson's Disease. Neuroscience 2017; 367:34-46. [PMID: 29079063 DOI: 10.1016/j.neuroscience.2017.10.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 02/01/2023]
Abstract
Parkinson's disease is a common, debilitating, neurodegenerative disorder for which the current gold standard treatment, levodopa (L-DOPA) is symptomatic. There is an urgent, unmet need for neuroprotective or, ideally, neuro-restorative drugs. We describe a 6-hydroxydopamine (6-OHDA) zebrafish model to screen drugs for neuroprotective and neuro-restorative capacity. Zebrafish larvae at two days post fertilization were exposed to 6-OHDA for three days, with co-administration of test drugs for neuroprotection experiments, or for 32 h, with subsequent treatment with test drugs for neuro-restoration experiments. Locomotor activity was assessed by automated tracking and dopaminergic neurons were visualized by tyrosine hydroxylase immuno-histochemistry. Exposure to 6-OHDA for either 32 h or 3 days induced similar, significant locomotor deficits and neuronal loss in 5-day-old larvae. L-DOPA (1 mM) partially restored locomotor activity, but was neither neuroprotective nor neuro-restorative, mirroring the clinical situation. The calcium channel blocker, isradipine (1 µM) did not prevent or reverse 6-OHDA-induced locomotor deficit or neuronal loss. However, both the tetracycline analog, minocycline (10 µM), and the monoamine oxidase B inhibitor, rasagiline (1 µM), prevented the locomotor deficits and neuronal loss due to three-day 6-OHDA exposure. Importantly, they also reversed the locomotor deficit caused by prior exposure to 6-OHDA; rasagiline also reversed neuronal loss and minocycline partially restored neuronal loss due to prior 6-OHDA, making them candidates for investigation as neuro-restorative treatments for Parkinson's disease. Our findings in zebrafish reflect preliminary clinical findings for rasagiline and minocycline. Thus, we have developed a zebrafish model suitable for high-throughput screening of putative neuroprotective and neuro-restorative therapies for the treatment of Parkinson's disease.
Collapse
|
29
|
Lee Y, Kim MS, Lee J. Neuroprotective strategies to prevent and treat Parkinson’s disease based on its pathophysiological mechanism. Arch Pharm Res 2017; 40:1117-1128. [DOI: 10.1007/s12272-017-0960-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023]
|
30
|
Quiroga-Varela A, Aguilar E, Iglesias E, Obeso JA, Marin C. Short- and long-term effects induced by repeated 6-OHDA intraventricular administration: A new progressive and bilateral rodent model of Parkinson's disease. Neuroscience 2017; 361:144-156. [PMID: 28823819 DOI: 10.1016/j.neuroscience.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 12/26/2022]
Abstract
The pathological hallmark of Parkinson's disease (PD) is the progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and the resulting striatal dopamine deficiency, which are responsible for the classic motor features. Although a diagnosis of PD relies on the clinical effects of dopamine deficiency, this disease is also associated with other neurotransmitter deficits that are recognized as causing various motor and non-motor symptoms. However, the cause of dopaminergic nigral neurodegeneration in PD and the underlying mechanisms remain unknown. While animal models are considered valuable tools with which to investigate dopaminergic cell vulnerability, rodent models usually fail to mimic the neurodegeneration progression that occurs in human PD. To find a convenient rat model for studying the progression of dopaminergic cell degeneration and motor signs, we have developed a progressive rodent model using a repeated daily, intraventricular administration of the neurotoxin 6-hydroxydopamine (6-OHDA) (100µg/day) in awakened rats for 1 to 10 consecutive days. The short- (6-day) and long-term (32-day) progression of motor alterations was studied. This model leads to a bilateral and progressive increase in catalepsy (evident from the 3rd infusion in the short-term groups (p<0.01) and from the 7th infusion in the long-term groups (p<0.01), which was associated with a progressive nigrostriatal dopaminergic deficit. All together this makes the new model an interesting experimental tool to investigate the mechanisms involved in the progression of dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- A Quiroga-Varela
- Movement Disorders Laboratory, Neurosciences Area, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - E Aguilar
- Laboratori de Neurologia Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Iglesias
- Movement Disorders Laboratory, Neurosciences Area, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - J A Obeso
- Movement Disorders Laboratory, Neurosciences Area, CIMA, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - C Marin
- INGENIO, IRCE, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
31
|
Joers V, Tansey MG, Mulas G, Carta AR. Microglial phenotypes in Parkinson's disease and animal models of the disease. Prog Neurobiol 2017; 155:57-75. [PMID: 27107797 PMCID: PMC5073045 DOI: 10.1016/j.pneurobio.2016.04.006] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/19/2022]
Abstract
Over the last decade the important concept has emerged that microglia, similar to other tissue macrophages, assume different phenotypes and serve several effector functions, generating the theory that activated microglia can be organized by their pro-inflammatory or anti-inflammatory and repairing functions. Importantly, microglia exist in a heterogenous population and their phenotypes are not permanently polarized into two categories; they exist along a continuum where they acquire different profiles based on their local environment. In Parkinson's disease (PD), neuroinflammation and microglia activation are considered neuropathological hallmarks, however their precise role in relation to disease progression is not clear, yet represent a critical challenge in the search of disease-modifying strategies. This review will critically address current knowledge on the activation states of microglia as well as microglial phenotypes found in PD and in animal models of PD, focusing on the expression of surface molecules as well as pro-inflammatory and anti-inflammatory cytokine production during the disease process. While human studies have reported an elevation of both pro- or anti-inflammatory markers in the serum and CSF of PD patients, animal models have provided insights on dynamic changes of microglia phenotypes in relation to disease progression especially prior to the development of motor deficits. We also review recent evidence of malfunction at multiple steps of NFκB signaling that may have a causal interrelationship with pathological microglia activation in animal models of PD. Finally, we discuss the immune-modifying strategies that have been explored regarding mechanisms of chronic microglial activation.
Collapse
Affiliation(s)
- Valerie Joers
- Department of Physiology, Emory University, Atlanta, GA, United States; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Malú G Tansey
- Department of Physiology, Emory University, Atlanta, GA, United States.
| | - Giovanna Mulas
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy.
| |
Collapse
|
32
|
Szot P, Franklin A, Figlewicz DP, Beuca TP, Bullock K, Hansen K, Banks WA, Raskind MA, Peskind ER. Multiple lipopolysaccharide (LPS) injections alter interleukin 6 (IL-6), IL-7, IL-10 and IL-6 and IL-7 receptor mRNA in CNS and spleen. Neuroscience 2017; 355:9-21. [PMID: 28456715 DOI: 10.1016/j.neuroscience.2017.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. In the spleen, LPS significantly elevated IL-6 mRNA expression, then IL-10 mRNA, with no effect on IL-7 or IL-7R mRNA, while significantly decreasing IL-6R mRNA expression. In the CNS, LPS administration had the greatest effect on IL-6 and IL-6R mRNA. LPS increased IL-6 mRNA expression only in non-neuronal cells throughout the brain, but significantly elevated IL-6R mRNA in neuronal populations, where observed, except the cerebellum. LPS resulted in variable effects on IL-10 mRNA, and had no effect on IL-7 or IL-7R mRNA expression. These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders.
Collapse
Affiliation(s)
- Patricia Szot
- Mental Illness Research, Education and Clinical Center, Seattle, WA, USA.
| | - Allyn Franklin
- Mental Illness Research, Education and Clinical Center, Seattle, WA, USA
| | - Dianne P Figlewicz
- BSR&D, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Kristin Bullock
- Geriatric Research, Education and Clinical Center and Veterans Affairs Puget Sound Health Care System, and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Kim Hansen
- Geriatric Research, Education and Clinical Center and Veterans Affairs Puget Sound Health Care System, and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - William A Banks
- Geriatric Research, Education and Clinical Center and Veterans Affairs Puget Sound Health Care System, and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Murray A Raskind
- Mental Illness Research, Education and Clinical Center, Seattle, WA, USA
| | - Elaine R Peskind
- Mental Illness Research, Education and Clinical Center, Seattle, WA, USA
| |
Collapse
|
33
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Angeli K, Fritsche E, Hernandez-Jerez AF, Leist M, Mantovani A, Menendez P, Pelkonen O, Price A, Viviani B, Chiusolo A, Ruffo F, Terron A, Bennekou SH. Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemia. EFSA J 2017; 15:e04691. [PMID: 32625422 PMCID: PMC7233269 DOI: 10.2903/j.efsa.2017.4691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2013, EFSA published a literature review on epidemiological studies linking exposure to pesticides and human health outcome. As a follow up, the EFSA Panel on Plant Protection Products and their residues (PPR Panel) was requested to investigate the plausible involvement of pesticide exposure as a risk factor for Parkinson's disease (PD) and childhood leukaemia (CHL). A systematic literature review on PD and CHL and mode of actions for pesticides was published by EFSA in 2016 and used as background documentation. The Panel used the Adverse Outcome Pathway (AOP) conceptual framework to define the biological plausibility in relation to epidemiological studies by means of identification of specific symptoms of the diseases as AO. The AOP combines multiple information and provides knowledge of biological pathways, highlights species differences and similarities, identifies research needs and supports regulatory decisions. In this context, the AOP approach could help in organising the available experimental knowledge to assess biological plausibility by describing the link between a molecular initiating event (MIE) and the AO through a series of biologically plausible and essential key events (KEs). As the AOP is chemically agnostic, tool chemical compounds were selected to empirically support the response and temporal concordance of the key event relationships (KERs). Three qualitative and one putative AOP were developed by the Panel using the results obtained. The Panel supports the use of the AOP framework to scientifically and transparently explore the biological plausibility of the association between pesticide exposure and human health outcomes, identify data gaps, define a tailored testing strategy and suggests an AOP's informed Integrated Approach for Testing and Assessment (IATA).
Collapse
|
34
|
Liu TY, Yang XY, Zheng LT, Wang GH, Zhen XC. Activation of Nur77 in microglia attenuates proinflammatory mediators production and protects dopaminergic neurons from inflammation-induced cell death. J Neurochem 2016; 140:589-604. [PMID: 27889907 DOI: 10.1111/jnc.13907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 01/16/2023]
Abstract
Microglia-mediated neuroinflammation plays a critical role in the pathological development of Parkinson's disease (PD). Orphan nuclear receptor Nur77 (Nur77) is abundant in neurons, while its role in microglia-mediated neuroinflammation remains unclear. The present data demonstrated that the expression of Nur77 in microglia was reduced accompanied by microglia activation in response to lipopolysaccharide (LPS) in vitro and in experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-PD mouse model. Nur77 over-expression or application of Nur77 agonist cytosporone B suppressed the expression of proinflammatory genes, such as inducible nitric oxide NOS, cyclooxygenase-2, IL-1β, and tumor necrosis factor-α in the activated microglia, while silenced Nur77 exaggerated the inflammatory responses in microglia. Moreover, activation of Nur77 suppressed the LPS-induced NF-κB activation which was partly dependent on p38 MAPK activity, since inhibition of p38 MAPK by SB203580 abolished the LPS-activated NF-κB in microglia. On the other hand, inhibition of p38 MAPK attenuated LPS-induced Nur77 reduction. Furthermore, in a microglia-conditioned cultured media system, Nur77 ameliorated the cytotoxicity to MN9D dopaminergic cells. Lastly, cytosporone B attenuated microglia activation and loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-PD mouse model. Taken together, these findings revealed the first evidence that Nur77 was an important modulator in microglia function that associated with microglia-mediated dopaminergic neurotoxicity, and thus modulation of Nur77 may represent a potential novel target for treatment for neurodegenerative disease.
Collapse
Affiliation(s)
- Tian-Ya Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xiao-Ying Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Long-Tai Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Guang-Hui Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Guo C, Yang L, Wan CX, Xia YZ, Zhang C, Chen MH, Wang ZD, Li ZR, Li XM, Geng YD, Kong LY. Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1629-1637. [PMID: 27823627 DOI: 10.1016/j.phymed.2016.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 09/27/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Neuroinflammation plays a vital role in Alzheimer's disease (AD) and other neurodegenerative conditions. Sophora alopecuroides is widely used in traditional Uighur's medicine for the treatment of inflammation. Sophoraflavanone G (SG), a major flavonoid found in the S. alopecuroides, has also been reported to exhibit anti-inflammatory activity both in vitro and in vivo. However, the effect of S. alopecuroides and SG on microglia-mediated neuroinflammation has not been investigated. PURPOSE The present study was designed to evaluate the anti-neuroinflammatory effect of S. alopecuroides and SG against lipopolysaccharide (LPS)-activated BV2 microglial cells and to explore the underlying mechanisms. METHODS We measured the production of pro-inflammatory mediators and cytokines, and analyzed relevant mRNA and protein expressions by qRT-PCR and Western Blot. RESULTS S. alopecuroides extract (SAE) and SG inhibited the LPS-induced release of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Additionally, SG reduced gene expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, IL-6 and IL-1β, and further decreased the protein expressions of iNOS and COX-2. Mechanism studies found that SG down-regulated phosphorylated mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/AKT and Janus kinase/signal transducer and activator of transcription (JAK/STAT), and up-regulated heme oxygenase-1 (HO-1) expression via nuclear translocation of nuclear factor E2-related factor 2 (Nrf2). In addition, SG inhibited the cytotoxicity of conditioned medium prepared by LPS-activated BV2 microglia to neuronal PC12 cells and improved cell viability. CONCLUSION S. alopecuroides and SG displayed anti-neuroinflammatory activity in LPS-activated BV2 microglia. SG was able to inhibit the neuroinflammation by MAPKs, PI3K/AKT, JAK/STAT and Nrf2/HO-1 signaling pathways and might act as a natural therapeutic agent to be further developed for the treatment of various neuroinflammatory conditions.
Collapse
Affiliation(s)
- Chao Guo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chuan-Xing Wan
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Han Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Dong Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhong-Rui Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xue-Mei Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Di Geng
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
36
|
Transient glutathione depletion in the substantia nigra compacta is associated with neuroinflammation in rats. Neuroscience 2016; 335:207-20. [DOI: 10.1016/j.neuroscience.2016.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/21/2023]
|
37
|
microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. J Neurosci 2016; 36:2383-90. [PMID: 26911687 DOI: 10.1523/jneurosci.3900-15.2016] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence points to inflammation as a chief mediator of Parkinson's disease (PD), a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein α-synuclein (α-syn). Recently, microRNAs, small, noncoding RNAs involved in regulating gene expression at the posttranscriptional level, have been recognized as important regulators of the inflammatory environment. Using an array approach, we found significant upregulation of microRNA-155 (miR-155) in an in vivo model of PD produced by adeno-associated-virus-mediated expression of α-syn. Using a mouse with a complete deletion of miR-155, we found that loss of miR-155 reduced proinflammatory responses to α-syn and blocked α-syn-induced neurodegeneration. In primary microglia from miR-155(-/-) mice, we observed a markedly reduced inflammatory response to α-syn fibrils, with attenuation of major histocompatibility complex class II (MHCII) and proinflammatory inducible nitric oxide synthase expression. Treatment of these microglia with a synthetic mimic of miR-155 restored the inflammatory response to α-syn fibrils. Our results suggest that miR-155 has a central role in the inflammatory response to α-syn in the brain and in α-syn-related neurodegeneration. These effects are at least in part due to a direct role of miR-155 on the microglial response to α-syn. These data implicate miR-155 as a potential therapeutic target for regulating the inflammatory response in PD.
Collapse
|
38
|
Giacoppo S, Rajan TS, De Nicola GR, Iori R, Rollin P, Bramanti P, Mazzon E. The Isothiocyanate Isolated from Moringa oleifera Shows Potent Anti-Inflammatory Activity in the Treatment of Murine Subacute Parkinson's Disease. Rejuvenation Res 2016; 20:50-63. [PMID: 27245199 DOI: 10.1089/rej.2016.1828] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present study was aimed at estimating a possible neuroprotective effect of glucomoringin (GMG) [4-(α-L-rhamnopyranosyloxy)benzyl glucosinolate] bioactivated with the enzyme myrosinase to form the corresponding isothiocyanate [4-(α-L-rhamnopyranosyloxy)benzyl C; moringin] in the treatment or prevention of Parkinson's disease (PD). In this study, the beneficial effects of moringin were compared with those of pure GMG, not enzymatically activated, in an in vivo experimental mouse model of subacute PD. Subacute PD was induced in C57BL/6 mice by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice were pretreated daily for 1 week with moringin (10 mg/kg +5 μL myrosinase/mouse) and with GMG (10 mg/kg). Behavioral evaluations were also performed to assess motor deficits and bradykinesia in MPTP mice. Besides, assuming that pretreatment with moringin could modulate the triggering of inflammatory cascade with a correlated response, we tested its in vitro anti-inflammatory activity by using a model of RAW 264.7 macrophages stimulated with lipopolysaccharide. Achieved results in vivo showed a higher efficacy of moringin compared with GMG not only to modulate the inflammatory pathway but also oxidative stress and apoptotic pathways. In addition, the greater effectiveness of moringin in countering mainly the inflammatory pathway has been corroborated by the results obtained in vitro. The relevance and innovation of the present study lie in the possible use of a safe formulation of a bioactive compound, resulting from exogenous myrosinase hydrolysis of the natural phytochemical GMG, which can be used in clinical practice as a useful drug for the treatment or prevention of PD.
Collapse
Affiliation(s)
| | | | - Gina Rosalinda De Nicola
- 2 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN) , Bologna, Italy
| | - Renato Iori
- 2 Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per le colture industriali (CREA-CIN) , Bologna, Italy
| | - Patrick Rollin
- 3 Université d'Orléans et CNRS , ICOA, UMR 7311, Orléans, France
| | | | | |
Collapse
|
39
|
Fractalkine Signaling Regulates the Inflammatory Response in an α-Synuclein Model of Parkinson Disease. PLoS One 2015; 10:e0140566. [PMID: 26469270 PMCID: PMC4607155 DOI: 10.1371/journal.pone.0140566] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/28/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Parkinson disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopamine neurons in the substantia nigra pars compacta (SNpc) and widespread aggregates of the protein alpha-synuclein (α-syn). Increasing evidence points to inflammation as a chief mediator; however, the role of α-syn in triggering and sustaining inflammation remains unclear. In models of Alzheimer's disease (AD), multiple sclerosis (MS) and neurotoxin models of PD, the chemokine CX3CL1 (fractalkine) and its receptor (CX3CR1) have important roles in modulating neuroinflammation. METHODS To examine the role of fractalkine signaling in α-syn-induced-neuroinflammation and neurodegeneration, we used an in vivo mouse model in which human α-syn is overexpressed by an adeno associated viral vector serotype 2 (AAV2) and in vitro phagocytosis and protein internalization assays with primary microglia treated with aggregated α-syn. RESULTS We observed that loss of CX3CR1 expression led to a reduced inflammatory response, with reduced IgG deposition and expression of MHCII 4 weeks post-transduction. Six months post transduction, AAV2 mediated overexpression of α-syn leads to loss of dopaminergic neurons, and this loss was not exacerbated in animals with deletion of CX3CR1. To determine the mechanism by which CX3CR1affects inflammatory responses in α-syn-induced inflammation, phagocytosis was assessed using a fluorescent microsphere assay as well as by microglial uptake of aggregated α-syn. CX3CR1-/- microglia showed reduced uptake of fluorescent beads and aggregated α-syn. CONCLUSION Our results suggest that one mechanism by which CX3CR1-/- attenuates inflammation is at the level of phagocytosis of aggregated α-syn by microglia. These data implicate fractalkine signaling as a potential therapeutic target for regulating inflammatory response in α-syn models PD.
Collapse
|
40
|
CysLT 2 receptor mediates lipopolysaccharide-induced microglial inflammation and consequent neurotoxicity in vitro. Brain Res 2015; 1624:433-445. [DOI: 10.1016/j.brainres.2015.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023]
|
41
|
Taka E, Mazzio EA, Goodman CB, Redmon N, Flores-Rozas H, Reams R, Darling-Reed S, Soliman KFA. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells. J Neuroimmunol 2015; 286:5-12. [PMID: 26298318 DOI: 10.1016/j.jneuroim.2015.06.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 01/30/2023]
Abstract
Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicate that TQ was effective in reducing NO2(-) with an IC50 of 5.04μM, relative to selective iNOS inhibitor LNIL-l-N6-(1-iminoethyl)lysine (IC50 4.09μM). TQ mediated reduction in NO2(-) was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In addition, we evaluated the anti-inflammatory effects of TQ on ninety-six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin>MIP-1alpha>MIP-1g>IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokine's IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2/MCP-1, and G-CSF which were attenuated by the addition of TQ (10μM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA. Moreover, the data obtained from the RT(2) PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12/MCP-5, CCL2/MCP-1 were significantly attenuated by TQ (10μM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of TQ in LPS activated microglial cells. Therefore, the obtained results might indicate the usefulness of TQ in delaying the onset of inflammation-mediated neurodegenerative disorders involving activated microglia cells.
Collapse
Affiliation(s)
- Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Carl B Goodman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Natalie Redmon
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Hernan Flores-Rozas
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Renee Reams
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Selina Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.
| |
Collapse
|
42
|
Lecca D, Nevin DK, Mulas G, Casu MA, Diana A, Rossi D, Sacchetti G, Fayne D, Carta AR. Neuroprotective and anti-inflammatory properties of a novel non-thiazolidinedione PPARγ agonist in vitro and in MPTP-treated mice. Neuroscience 2015; 302:23-35. [PMID: 25907448 DOI: 10.1016/j.neuroscience.2015.04.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/12/2015] [Accepted: 04/11/2015] [Indexed: 11/29/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)γ is a potential pharmacological target for disease-modification in Parkinson's disease (PD), mainly acting by modulating the neuroinflammatory response. However, currently available agonists thiazolidinediones (TZDs) present limitations due to safety concerns. We evaluated a novel thiobarbituric-like compound MDG548, which acts as a functional PPARγ agonist displaying higher and selective binding affinity as compared to TZDs. Neuroprotection by MDG548 was tested in vitro and in a mouse MPTP model of PD, and neuroinflammation was investigated as a putative underlying mechanism. Viability assay on rat cortical neurons showed lack of cytotoxic effect in the dose-range of 100 nM-10 μM, which was therefore used for testing in vitro protection against H2O2 and MPP+ neurotoxicity. MDG548 dose-dependently increased cell viability of rat cortical neurons co-treated with H2O2 or pre-exposed to MDG548 prior to H2O2. Moreover, MDG548 induced neuroprotection in MPP+-treated PC12 cells. NF-kB activation was investigated to assess anti-inflammatory activity. MDG548 dose-dependently decreased NF-kB activation induced by LPS (100 ng/100ml) in HEK-Blue-hTLR4 cells. Given the supposed cancer risk of other PPARγ agonists, Ames test for genotoxicity was performed in Salmonella typhimurium TA100 and TA98 strains, showing that MDG548 was not genotoxic. In vivo, BL/6J mice were treated with MPTP (20mg/kg i.p. once/day for 4 days) in association with saline or MDG548 (2, 5, 10 mg/kg i.p.). Stereological counting showed that MDG548 prevented the MPTP-induced reduction in TH-positive cells in the substantia nigra compacta (SNc) at all doses tested. Moreover, MDG548 reduced reactive microglia and iNOS induction in the SNc. MDG548, being a non-TZD compound with high PPARγ affinity, void of genotoxicity, and with in vitro as well as in vivo neuroprotective properties, provides a promising alternative in the search for safer PPARγ agonists to be tested as potential disease-modifying drugs in PD.
Collapse
Affiliation(s)
- D Lecca
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - D K Nevin
- School of Biochemistry & Immunology, Trinity College, Dublin, Ireland
| | - G Mulas
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M A Casu
- CNR-Institute of Translational Pharmacology, U.O.S. of Cagliari, Italy
| | - A Diana
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - D Rossi
- Department of Life Science and Biotechnology, University of Ferrara, Italy
| | - G Sacchetti
- Department of Life Science and Biotechnology, University of Ferrara, Italy
| | | | - A R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
43
|
Stojkovska I, Wagner BM, Morrison BE. Parkinson's disease and enhanced inflammatory response. Exp Biol Med (Maywood) 2015; 240:1387-95. [PMID: 25769314 DOI: 10.1177/1535370215576313] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/21/2015] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is the first and second most prevalent motor and neurodegenerative disease, respectively. The clinical symptoms of PD result from a loss of midbrain dopaminergic (DA) neurons. However, the molecular cause of DA neuron loss remains elusive. Mounting evidence implicates enhanced inflammatory response in the development and progression of PD pathology. This review examines current research connecting PD and inflammatory response.
Collapse
Affiliation(s)
- Iva Stojkovska
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Brandon M Wagner
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| | - Brad E Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, USA
| |
Collapse
|
44
|
Chen YM, Liu SP, Lin HL, Chan MC, Chen YC, Huang YL, Tsai MC, Fu RH. Irisflorentin improves α-synuclein accumulation and attenuates 6-OHDA-induced dopaminergic neuron degeneration, implication for Parkinson's disease therapy. Biomedicine (Taipei) 2015; 5:4. [PMID: 25705584 PMCID: PMC4326644 DOI: 10.7603/s40681-015-0004-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
Parkinson’s disease (PD) is a degenerative disorder of the central nervous system that is characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta as well as motor impairment. Aggregation of α-synuclein in neuronal cells plays a key role in this disease. At present, therapeutics for PD provides moderate symptomatic benefits, but it is not able to delay the development of the disease. Current efforts toward the treatment of PD are to identify new drugs that slow or arrest the progressive course of PD by interfering with a disease-specific pathogenetic process in PD patients. Irisflorentin derived from the roots of Belamcanda chinensis (L.) DC. is an herb which has been used for the treatment of inflammatory disorders in traditional Chinese medicine. The purpose of the present study was to assess the potential for irisflorentin to ameliorate PD in Caenorhabditis elegans models. Our data reveal that irisflorentin prevents α-synuclein accumulation in the transgenic Caenorhabditis elegans model and also improves dopaminergic neuron degeneration, food-sensing behavior, and life-span in a 6-hydroxydopamine-induced Caenorhabditis elegans model, thus indicating its potential as a anti-parkinsonian drug candidate. Irisflorentin may exert its effects by promoting rpn-3 expression to enhance the activity of proteasomes and down-regulating egl-1 expression to block apoptosis pathways. These findings encourage further investigation on irisflorentin as a possible potent agent for PD treatment.
Collapse
Affiliation(s)
- Yue-Mi Chen
- Graduate Institute of Immunology, China Medical University, 404 Taichung, Taiwan
| | - Shih-Ping Liu
- Graduate Institute of Immunology, China Medical University, 404 Taichung, Taiwan ; Center for Neuropsychiatry, China Medical University Hospital, 404 No. 91, Hsueh-shih Road, Taichung, Taiwan
| | - Hsin-Lien Lin
- Graduate Institute of Immunology, China Medical University, 404 Taichung, Taiwan
| | - Ming-Chia Chan
- Graduate Institute of Immunology, China Medical University, 404 Taichung, Taiwan
| | - Yen-Chuan Chen
- Graduate Institute of Immunology, China Medical University, 404 Taichung, Taiwan
| | - Yu-Ling Huang
- Graduate Institute of Immunology, China Medical University, 404 Taichung, Taiwan
| | - Min-Chen Tsai
- Graduate Institute of Immunology, China Medical University, 404 Taichung, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University, 404 Taichung, Taiwan ; Center for Neuropsychiatry, China Medical University Hospital, 404 No. 91, Hsueh-shih Road, Taichung, Taiwan
| |
Collapse
|
45
|
Moehle MS, West AB. M1 and M2 immune activation in Parkinson's Disease: Foe and ally? Neuroscience 2014; 302:59-73. [PMID: 25463515 DOI: 10.1016/j.neuroscience.2014.11.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/03/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022]
Abstract
Parkinson's Disease (PD) is a chronic and progressive neurodegenerative disorder of unknown etiology. Autopsy findings, genetics, retrospective studies, and molecular imaging all suggest a role for inflammation in the neurodegenerative process. However, relatively little is understood about the causes and implications of neuroinflammation in PD. Understanding how inflammation arises in PD, in particular the activation state of cells of the innate immune system, may provide an exciting opportunity for novel neuroprotective therapeutics. We analyze the evidence of immune system involvement in PD susceptibility, specifically in the context of M1 and M2 activation states. Tracking and modulating these activation states may provide new insights into both PD etiology and therapeutic strategies.
Collapse
Affiliation(s)
- M S Moehle
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.
| | - A B West
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|