1
|
Wu C, Li M, Chen Z, Feng S, Deng Q, Duan R, Liu TCY, Yang L. Remote photobiomodulation ameliorates behavioral and neuropathological outcomes in a rat model of repeated closed head injury. Transl Psychiatry 2025; 15:8. [PMID: 39799140 PMCID: PMC11724958 DOI: 10.1038/s41398-025-03228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025] Open
Abstract
Repeated closed-head injuries (rCHI) from activities like contact sports, falls, military combat, and traffic accidents pose a serious risk due to their cumulative impact on the brain. Often, rCHI is not diagnosed until symptoms of irreversible brain damage appear, highlighting the need for preventive measures. This study assessed the prophylactic efficacy of remote photobiomodulation (PBM) targeted at the lungs against rCHI-induced brain injury and associated behavioral deficits. Utilizing the "Marmarou" weight-drop model, rCHI was induced in rats on days 0, 5, and 10. Remote PBM, employing an 808 nm continuous wave laser, was administered daily in 2-min sessions per lung side over 20 days. Behavioral deficits were assessed through three-chamber social interaction, forced swim, grip strength, open field, elevated plus maze, and Barnes maze tests. Immunofluorescence staining and 3D reconstruction evaluated neuronal damage, apoptosis, degeneration, and the morphology of microglia and astrocytes, as well as astrocyte and microglia-mediated excessive synapse elimination. Additionally, 16S rDNA amplicon sequencing analyzed changes in the lung microbiome following remote PBM treatment. Results demonstrated that remote PBM significantly improved depressive-like behaviors, motor dysfunction, and social interaction impairment while enhancing grip strength and reducing neuronal damage, apoptosis, and degeneration induced by rCHI. Analysis of lung microbiome changes revealed an enrichment of lipopolysaccharide (LPS) biosynthesis pathways, suggesting a potential link to neuroprotection. Furthermore, remote PBM mitigated hyperactivation of cortical microglia and astrocytes and significantly reduced excessive synaptic phagocytosis by these cells, highlighting its potential as a preventive strategy for rCHI with neuroprotective effects.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Meng Li
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Zhe Chen
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Yan B, Zhou J, Yan F, Gao M, Tang J, Huang L, Luo Y. Unlocking the potential of photobiomodulation therapy for brain neurovascular coupling: The biological effects and medical applications. J Cereb Blood Flow Metab 2025:271678X241311695. [PMID: 39763390 PMCID: PMC11705326 DOI: 10.1177/0271678x241311695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
Photobiomodulation (PBM) therapy stands as an innovative neurostimulation modality that has demonstrated both efficacy and safety in improving brain function. This therapy exerts multifaceted influences on neurons, blood vessels, and their intricate interplay known as neurovascular coupling (NVC). Growing evidence indicates that NVC may present a promising target for PBM intervention. However, the detailed mechanisms underlying its therapeutic benefits remain to be fully understood. This review aims to elucidate the potential metabolic pathways and signaling cascades involved in the modulatory effects of PBM, while also exploring the extensive repertoire of PBM applications in neurologic and psychiatric conditions. The prospects of PBM within the realm of NVC investigation are intensively considered, providing deeper insights into the powerful capabilities of PBM therapy and its potential to revolutionize neurostimulation treatments.
Collapse
Affiliation(s)
- Bingzi Yan
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhou
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Fengshuo Yan
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Mingyang Gao
- The Second Research Institute of Civil Aviation Administration of China, Chengdu, China
| | - Jiaji Tang
- Sichuan Becoming Technology Co., LTD, Chengdu, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wang L, Mao L, Huang Z, Switzer JA, Hess DC, Zhang Q. Photobiomodulation: shining a light on depression. Theranostics 2025; 15:362-383. [PMID: 39744683 PMCID: PMC11671386 DOI: 10.7150/thno.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
Depression is a prevalent public health issue, characterized by persistent low mood, impaired concentration, and diminished motivation. Photobiomodulation (PBM), which involves the application of red or near-infrared light, modulates physiological processes by enhancing cerebral blood flow, reducing inflammation, inhibiting apoptosis, and promoting neurogenesis. PBM can be administered transcranially or through systemic approaches, offering a potentially effective intervention for depression. This review discusses the characteristics of PBM, its underlying neurobiological mechanisms, and relevant physical parameters. Recent progress in both animal and clinical research underscores PBM's therapeutic potential for depression and emphasizes the need for further studies to establish a robust theoretical basis for standardized treatment protocols.
Collapse
Affiliation(s)
- Lian Wang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Liwei Mao
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Jeffrey A. Switzer
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| |
Collapse
|
4
|
Li S, Wong TWL, Ng SSM. Potential and Challenges of Transcranial Photobiomodulation for the Treatment of Stroke. CNS Neurosci Ther 2024; 30:e70142. [PMID: 39692710 DOI: 10.1111/cns.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Photobiomodulation (PBM), also known as low-level laser therapy, employs red or near-infrared light emitted from a laser or light-emitting diode for the treatment of various conditions. Transcranial PBM (tPBM) is a form of PBM that is delivered to the head to improve brain health, as tPBM enhances mitochondrial function, improves antioxidant responses, reduces inflammation, offers protection from apoptosis, improves blood flow, increases cellular energy production, and promotes neurogenesis and neuroplasticity. As such, tPBM holds promise as a treatment for stroke. This review summarizes recent findings on tPBM as a treatment for stroke, presenting evidence from both animal studies and clinical trials that demonstrate its efficacy. Additionally, it discusses the potential and challenges encountered in the translation process. Furthermore, it proposes new technologies and directions for the development of light-delivery methods and emphasizes the need for extensive studies to validate and widen the application of tPBM in future treatments for stroke.
Collapse
Affiliation(s)
- Siyue Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
5
|
Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2024; 13:55. [PMID: 39568081 PMCID: PMC11577763 DOI: 10.1186/s40035-024-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the accumulation of Aβ and abnormal tau hyperphosphorylation. Despite substantial efforts in development of drugs targeting Aβ and tau pathologies, effective therapeutic strategies for AD remain elusive. Recent attention has been paid to the significant role of cellular senescence in AD progression. Mounting evidence suggests that interventions targeting cellular senescence hold promise in improving cognitive function and ameliorating hallmark pathologies in AD. This narrative review provides a comprehensive summary and discussion of the physiological roles, characteristics, biomarkers, and commonly employed in vivo and in vitro models of cellular senescence, with a particular focus on various cell types in the brain, including astrocytes, microglia, oligodendrocyte precursor cells, neurons, and endothelial cells. The review further delves into factors influencing cellular senescence in AD and emphasizes the significance of targeting cellular senescence as a promising approach for AD treatment, which includes the utilization of senolytics and senomorphics.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Cavallini C, Olivi E, Tassinari R, Ventura C. Mechanotransduction, cellular biophotonic activity, and signaling patterns for tissue regeneration. J Biol Chem 2024; 300:107847. [PMID: 39357824 PMCID: PMC11539334 DOI: 10.1016/j.jbc.2024.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Signaling molecules exhibit mechanical oscillations, entailing precise vibrational directionalities. These steering signatures have profound functional implications and are intimately connected with the onset of molecular electric oscillations and biophoton emission. We discuss biophotonic activity as a form of endogenous photobiomodulation, orchestrating the mechano-sensing/-transduction in signaling players. We focus on exogenous photobiomodulation in the form of pulsed wave modulation of selected light wavelengths to direct endogenous biophotonic activity and molecular cellular dynamics. We highlight the relevance of this strategy to target and reprogram the developmental potential of tissue-resident stem cells in damaged tissues, affording precision regenerative medicine without the need for cell or tissue transplantation.
Collapse
Affiliation(s)
| | | | | | - Carlo Ventura
- ELDOR Lab, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
| |
Collapse
|
7
|
You J, Fuchs J, Wang M, Hu Q, Tao X, Krolczyk E, Tirumala T, Bragin A, Liu H, Engel J, Li L. Preventive effects of transcranial photobiomodulation on epileptogenesis in a kainic acid-induced rat epilepsy model. Exp Neurol 2024; 383:115005. [PMID: 39419434 DOI: 10.1016/j.expneurol.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy affects nearly 50 million people worldwide and is a major burden to families and society. A significant portion of patients are living in developing countries with limited access to therapeutic resources. This highlights the urgent need to develop more readily available, noninvasive treatments for seizure control. This research explored the effectiveness of transcranial photobiomodulation (tPBM), a non-invasive method utilizing photon-tissue interactions, for preventing epileptogenesis and controlling seizures. METHODS In a kainic acid (KA)-induced rat model of epilepsy, two different wavelengths of tPBM, 808 nm and 940 nm, were applied separately in two groups of animals (KA+808 and KA+940). The ability of tPBM for seizure control was evaluated by comparing the occurrence rate of interictal epileptiform discharges (IED) and behavioral seizures among three groups: KA, KA+808, KA+940. Prevention of epileptogenesis was assessed by comparing the occurrence rate of high frequency oscillations (HFOs), especially fast ripple (FR) rate, among the three groups. Nissl staining and immunostaining for the apoptosis marker caspase-3 were used as indications of neuroprotection. RESULTS The KA+808 group and the KA+940 group showed significantly lower FR and IED rates compared to the KA group. Weekly FR rates started to drop during the first week of tPBM treatment. The KA+808 and KA+940 groups also displayed milder seizure behaviors and less neuronal loss in hippocampal areas compared to KA rats without tPBM treatment. Similarly, lower caspase-3 levels in the KA+808 and KA+940 compared with the KA group suggested effectiveness of tPBM in reducing cell death. SIGNIFICANCE tPBM of 808 nm/940 nm showed effectiveness in suppressing epileptogenesis and ictogenesis in the KA-induced rat epilepsy model. This effectiveness of tPBM can be linked to the neuroprotection benefits of photon-tissue interactions. Further studies are warranted to elucidate the fundamental mechanism of tPBM protection, determine optimal treatment parameters and validate its effectiveness in other epilepsy models.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Jannon Fuchs
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Miaomiao Wang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Qichan Hu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Xiaoxiao Tao
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Elizabeth Krolczyk
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Tanya Tirumala
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, California, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA; Department of Neurology, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
8
|
Pasternak-Mnich K, Kujawa J, Agier J, Kozłowska E. Impact of photobiomodulation therapy on pro-inflammation functionality of human peripheral blood mononuclear cells - a preliminary study. Sci Rep 2024; 14:23111. [PMID: 39367102 PMCID: PMC11452683 DOI: 10.1038/s41598-024-74533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Research into the efficacy of photobiomodulation therapy (PBMT) in reducing inflammation has been ongoing for years, but standards for irradiation methodology still need to be developed. This study aimed to test whether PBMT stimulates in vitro human peripheral blood mononuclear cells (PBMCs) to synthesize pro-inflammatory cytokines, including chemokines. PBMCs were irradiated with laser radiation at two wavelengths simultaneously (λ = 808 nm in continuous emission and λ = 905 nm in pulsed emission). The laser radiation energy was dosed in one dose as a whole (5 J, 15 J, 20 J) or in a fractionated way (5 J + 15 J and 15 J + 5 J) with a frequency of 500, 1,500 and 2,000 Hz. The surface power densities were 177, 214 and 230 mW/cm2, respectively. A pro-inflammatory effect was observed at both the transcript and protein levels for IL-1β after PBMT at the energy doses 5 J and 20 J (ƒ=500 Hz) and only at the transcript level after application of PBMT at energy doses of 20 J (ƒ= 1,500; ƒ=2,000 Hz) and 5 + 15 J (ƒ=500 Hz). An increase in CCL2 and CCL3 mRNA expression was observed after PBMT at 5 + 15 J (ƒ=1,500 Hz) and 15 + 5 J (ƒ=2,000 Hz) and CCL3 concentration after application of an energy dose of 15 J (frequency of 500 Hz). Even though PBMT can induce mRNA synthesis and stimulate PBMCs to produce selected pro-inflammatory cytokines and chemokines, it is necessary to elucidate the impact of the simultaneous emission of two wavelengths on the inflammatory response mechanisms.
Collapse
Affiliation(s)
- Kamila Pasternak-Mnich
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland.
| | - Jolanta Kujawa
- Department of Medical Rehabilitation, Faculty of Health Sciences, Medical University of Lodz, 251 Pomorska St, Lodz, 92-213, Poland
| | - Justyna Agier
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| | - Elżbieta Kozłowska
- Department of Microbiology, Genetics and Experimental Immunology, Lodz Centre of Molecular Studies on Civilisation Diseases, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
9
|
Lau AA, Jin K, Beard H, Windram T, Xie K, O'Brien JA, Neumann D, King BM, Snel MF, Trim PJ, Mitrofanis J, Hemsley KM, Austin PJ. Photobiomodulation in the infrared spectrum reverses the expansion of circulating natural killer cells and brain microglial activation in Sanfilippo mice. J Neurochem 2024; 168:2791-2813. [PMID: 38849324 DOI: 10.1111/jnc.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Sanfilippo syndrome results from inherited mutations in genes encoding lysosomal enzymes that catabolise heparan sulfate (HS), leading to early childhood-onset neurodegeneration. This study explores the therapeutic potential of photobiomodulation (PBM), which is neuroprotective and anti-inflammatory in several neurodegenerative diseases; it is also safe and PBM devices are readily available. We investigated the effects of 10-14 days transcranial PBM at 670 nm (2 or 4 J/cm2/day) or 904 nm (4 J/cm2/day) in young (3 weeks) and older (15 weeks) Sanfilippo or mucopolysaccharidosis type IIIA (MPS IIIA) mice. Although we found no PBM-induced changes in HS accumulation, astrocyte activation, CD206 (an anti-inflammatory marker) and BDNF expression in the brains of Sanfilippo mice, there was a near-normalisation of microglial activation in older MPS IIIA mice by 904 nm PBM, with decreased IBA1 expression and a return of their morphology towards a resting state. Immune cell immunophenotyping of peripheral blood with mass cytometry revealed increased pro-inflammatory signalling through pSTAT1 and p-p38 in NK and T cells in young but not older MPS IIIA mice (5 weeks of age), and expansion of NK, B and CD8+ T cells in older affected mice (17 weeks of age), highlighting the importance of innate and adaptive lymphocytes in Sanfilippo syndrome. Notably, 670 and 904 nm PBM both reversed the Sanfilippo-induced increase in pSTAT1 and p-p38 expression in multiple leukocyte populations in young mice, while 904 nm reversed the increase in NK cells in older mice. In conclusion, this is the first study to demonstrate the beneficial effects of PBM in Sanfilippo mice. The distinct reduction in microglial activation and NK cell pro-inflammatory signalling and number suggests PBM may alleviate neuroinflammation and lymphocyte activation, encouraging further investigation of PBM as a standalone, or complementary therapy in Sanfilippo syndrome.
Collapse
Affiliation(s)
- A A Lau
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Jin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - H Beard
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - T Windram
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - K Xie
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - J A O'Brien
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| | - D Neumann
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - B M King
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - M F Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - P J Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - J Mitrofanis
- Fonds Clinatec, Université Grenoble Alpes, Grenoble, France
- Institute of Ophthalmology, University College London, London, UK
| | - K M Hemsley
- Childhood Dementia Research Group, Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, South Australia, Australia
| | - P J Austin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
10
|
Lim L. Modifying Alzheimer's disease pathophysiology with photobiomodulation: model, evidence, and future with EEG-guided intervention. Front Neurol 2024; 15:1407785. [PMID: 39246604 PMCID: PMC11377238 DOI: 10.3389/fneur.2024.1407785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
This manuscript outlines a model of Alzheimer's Disease (AD) pathophysiology in progressive layers, from its genesis to the development of biomarkers and then to symptom expression. Genetic predispositions are the major factor that leads to mitochondrial dysfunction and subsequent amyloid and tau protein accumulation, which have been identified as hallmarks of AD. Extending beyond these accumulations, we explore a broader spectrum of pathophysiological aspects, including the blood-brain barrier, blood flow, vascular health, gut-brain microbiodata, glymphatic flow, metabolic syndrome, energy deficit, oxidative stress, calcium overload, inflammation, neuronal and synaptic loss, brain matter atrophy, and reduced growth factors. Photobiomodulation (PBM), which delivers near-infrared light to selected brain regions using portable devices, is introduced as a therapeutic approach. PBM has the potential to address each of these pathophysiological aspects, with data provided by various studies. They provide mechanistic support for largely small published clinical studies that demonstrate improvements in memory and cognition. They inform of PBM's potential to treat AD pending validation by large randomized controlled studies. The presentation of brain network and waveform changes on electroencephalography (EEG) provide the opportunity to use these data as a guide for the application of various PBM parameters to improve outcomes. These parameters include wavelength, power density, treatment duration, LED positioning, and pulse frequency. Pulsing at specific frequencies has been found to influence the expression of waveforms and modifications of brain networks. The expression stems from the modulation of cellular and protein structures as revealed in recent studies. These findings provide an EEG-based guide for the use of artificial intelligence to personalize AD treatment through EEG data feedback.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
11
|
Liu L, Wu Z, Lu Y, Lu W, Su G, Zhou Z. Effects of phototherapy on biopterin, neopterin, tryptophan, and behavioral neuroinflammatory reaction in patients with post-stroke depression. Sci Rep 2024; 14:18368. [PMID: 39112627 PMCID: PMC11306333 DOI: 10.1038/s41598-024-68799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The aim of this study was to investigate the overall effects of phototherapy on biopterin (BH4), neopterin (BH2), tryptophan (Trp), and behavioral neuroinflammatory reaction in patients with post-stroke depression. There involved a total of 100 hospitalized patients with post-stroke depression at our hospital from February 2021 to December 2022. The participants enrolled were randomly assigned to either the control group or the experimental group. The control group received routine treatment, including medication and psychological support, while the experimental group received 30 min of phototherapy daily for 8 weeks. All participantsvoluntarily participated in the study and provided informed consent. Baseline characteristics of the patients were statistically analyzed. The severity of depressive symptoms was evaluated using the hamilton depression scale (HAMD) and the beck depression inventory (BDI). Levels of amino acid neurotransmitters, including gamma-aminobutyric acid (GABA), aspartic acid (Asp), and glutamic acid (Glu), were measured using radioimmunoassay. Plasma levels of neuroinflammatory factors, such as TNF-α, IL-6, and IL-1β were, determined using ELISA. Plasma levels of BH4, BH2, and Trp were detected by HPLC. Levels of SOD, GPx, CAT, and MDA in plasma were measured using corresponding kits and colorimetry. Quality of life was assessed using the SF-36 scale. There were no differences in baseline characteristic between the two groups (P > 0.05). The HAMD and BDI scores in the experimental group were lower than those in the control group (P < 0.05), indicating phototherapy could reduce the severity of post-stroke depression. The levels of GABA, Glu, and Asp in both groups significantly increased after treatment compared to their respective levels before treatment (P < 0.01).The levels of GABA in the experimental group were higher than those in the control group (P < 0.01),while the levels of Glu, and Asp were lower than those in the control group (P < 0.01). The plasma levels of TNF-α, IL-6, and IL-1β in the experimental group were evidently lower than those in the control group (P < 0.05). Moreover, the levels of BH4 and Trp in experimental group were significantly higher than those in the control group (P < 0.05), while the levelsof BH2 in the experimental group were significantly lower than the control group (P < 0.05). Additionally, the levels of SOD, GPx, and CAT in the experimental group were evidently higher than those in the control group (P < 0.05), whereas the levels of MDA in the experimental group were significantly lower than control group (P < 0.05). The experimental group showed higher scores in physical function, mental health, social function, and overall health compared to the control group (P < 0.05). Phototherapy exerted a profound impact on the metabolism of BH4, BH2, and Trp, as well as on behavioral neuroinflammatory reactions and the quality of life in patients suffering from post-stroke depression. Through its ability to optimize the secretion and synthesis of neurotransmitters, phototherapy effectively regulated neuroinflammatory reactions, improved biochemical parameters, enhancedantioxidant capacity, and alleviated depressive symptoms. As a result, phototherapy was considered a valuable adjuvant therapeutic approach for patients with post-stroke depression.
Collapse
Affiliation(s)
- Lin Liu
- Department of Mental Health, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
- Hebei Institute of Mental Health, Shijiazhuang, Hebei, China
| | - Zhenguo Wu
- Department of Mental Health, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
- Hebei Institute of Mental Health, Shijiazhuang, Hebei, China
| | - Yueying Lu
- Department of Mental Health, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
- Hebei Institute of Mental Health, Shijiazhuang, Hebei, China
| | - Wenting Lu
- Department of Mental Health, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
- Hebei Institute of Mental Health, Shijiazhuang, Hebei, China
| | - Guanli Su
- Department of Mental Health, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China
- Hebei Institute of Mental Health, Shijiazhuang, Hebei, China
| | - Zixuan Zhou
- Department of Mental Health, The First Hospital of Hebei Medical University, No.89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
- Hebei Institute of Mental Health, Shijiazhuang, Hebei, China.
| |
Collapse
|
12
|
Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L. The role of estrogen in Alzheimer's disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 2024:10.1007/s11010-024-05071-4. [PMID: 39088186 DOI: 10.1007/s11010-024-05071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Estrogens are pivotal regulators of brain function throughout the lifespan, exerting profound effects from early embryonic development to aging. Extensive experimental evidence underscores the multifaceted protective roles of estrogens on neurons and neurotransmitter systems, particularly in the context of Alzheimer's disease (AD) pathogenesis. Studies have consistently revealed a greater risk of AD development in women compared to men, with postmenopausal women exhibiting heightened susceptibility. This connection between sex factors and long-term estrogen deprivation highlights the significance of estrogen signaling in AD progression. Estrogen's influence extends to key processes implicated in AD, including amyloid precursor protein (APP) processing and neuronal health maintenance mediated by brain-derived neurotrophic factor (BDNF). Reduced BDNF expression, often observed in AD, underscores estrogen's role in preserving neuronal integrity. Notably, hormone replacement therapy (HRT) has emerged as a sex-specific and time-dependent strategy for primary cardiovascular disease (CVD) prevention, offering an excellent risk profile against aging-related disorders like AD. Evidence suggests that HRT may mitigate AD onset and progression in postmenopausal women, further emphasizing the importance of estrogen signaling in AD pathophysiology. This review comprehensively examines the physiological and pathological changes associated with estrogen in AD, elucidating the therapeutic potential of estrogen-based interventions such as HRT. By synthesizing current knowledge, it aims to provide insights into the intricate interplay between estrogen signaling and AD pathogenesis, thereby informing future research directions and therapeutic strategies for this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
14
|
Zhang J, Liu J, Huang Y, Yan L, Xu S, Zhang G, Pei L, Yu H, Zhu X, Han X. Current role of magnetic resonance imaging on assessing and monitoring the efficacy of phototherapy. Magn Reson Imaging 2024; 110:149-160. [PMID: 38621553 DOI: 10.1016/j.mri.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Phototherapy, also known as photobiological therapy, is a non-invasive and highly effective physical treatment method. Its broad use in clinics has led to significant therapeutic results. Phototherapy parameters, such as intensity, wavelength, and duration, can be adjusted to create specific therapeutic effects for various medical conditions. Meanwhile, Magnetic Resonance Imaging (MRI), with its diverse imaging sequences and excellent soft-tissue contrast, provides a valuable tool to understand the therapeutic effects and mechanisms of phototherapy. This review explores the clinical applications of commonly used phototherapy techniques, gives a brief overview of how phototherapy impacts different diseases, and examines MRI's role in various phototherapeutic scenarios. We argue that MRI is crucial for precise targeting, treatment monitoring, and prognosis assessment in phototherapy. Future research and applications will focus on personalized diagnosis and monitoring of phototherapy, expanding its applications in treatment and exploring multimodal imaging technology to enhance diagnostic and therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Jiangong Zhang
- Department of Nuclear Medicine, The First people's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, PR China
| | - Jiahuan Liu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Yang Huang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Linlin Yan
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Shufeng Xu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Guozheng Zhang
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Lei Pei
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Huachen Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Xisong Zhu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China
| | - Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, PR China.
| |
Collapse
|
15
|
Ramanishankar A, S AS, Begum RF, Jayasankar N, Nayeem A, Prajapati BG, Nirenjen S. Unleashing light's healing power: an overview of photobiomodulation for Alzheimer's treatment. Future Sci OA 2024; 10:FSO922. [PMID: 38841181 PMCID: PMC11152588 DOI: 10.2144/fsoa-2023-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 06/07/2024] Open
Abstract
Aim: Photobiomodulation involves the use of low-level light therapy or near-infrared light therapy found to be useful in the treatment of a wide range of neurological diseases. Objective: The aim is to review the mechanism and clinical applications of photobiomodulation therapy (PBMT) in managing Alzheimer's disease. Methods: To ensure that the consensus statement accurately reflects both the experts' viewpoint and the most recent developments in the field, the expert opinions were recorded and thoroughly reviewed. Results: PBMT elicits reduction of beta-amyloid plaque, restoration of mitochondrial function, anti-inflammatory and antioxidant properties with a stimulation in ATP synthesis. Conclusion: The PBMT could be helpful in patients non-responsive to traditional pharmacological therapy providing significant aid in the management of Alzheimer's disease when introduced into the medical field.
Collapse
Affiliation(s)
- Aakash Ramanishankar
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Vels Institute of Science Technology & Advanced Studies, Pallavaram, Chennai. India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of science & technology, Chennai, Tamil Nadu, India
| | - Rukaiah F Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of science & technology, Chennai, Tamil Nadu, India
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of science & technology, Chennai, Tamil Nadu, India
| | - Afreen Nayeem
- Department of Pharmaceutics, Anand College of Pharmacy Agra-Delhi Highway (NH2) Keetham, Agra, Uttar Pradesh, 282007, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics, Shree SK Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, 384012, India
| | - Shanmugasundaram Nirenjen
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of science & technology, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Feng Y, Huang Z, Ma X, Zong X, Tesic V, Ding B, Wu CYC, Lee RHC, Zhang Q. Photobiomodulation Inhibits Ischemia-Induced Brain Endothelial Senescence via Endothelial Nitric Oxide Synthase. Antioxidants (Basel) 2024; 13:633. [PMID: 38929072 PMCID: PMC11200452 DOI: 10.3390/antiox13060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recent research suggests that photobiomodulation therapy (PBMT) positively impacts the vascular function associated with various cerebrovascular diseases. Nevertheless, the specific mechanisms by which PBMT improves vascular function remain ambiguous. Since endothelial nitric oxide synthase (eNOS) is crucial in regulating vascular function following cerebral ischemia, we investigated whether eNOS is a key element controlling cerebrovascular function and the senescence of vascular endothelial cells following PBMT treatment. Both rat photothrombotic (PT) stroke and in vitro oxygen-glucose deprivation (OGD)-induced vascular endothelial injury models were utilized. We demonstrated that treatment with PBMT (808 nm, 350 mW/cm2, 2 min/day) for 7 days significantly reduced PT-stroke-induced vascular permeability. Additionally, PBMT inhibited the levels of endothelial senescence markers (senescence green and p21) and antiangiogenic factor (endostatin), while increasing the phospho-eNOS (Ser1177) in the peri-infarct region following PT stroke. In vitro study further indicated that OGD increased p21, endostatin, and DNA damage (γH2AX) levels in the brain endothelial cell line, but they were reversed by PBMT. Intriguingly, the beneficial effects of PBMT were attenuated by a NOS inhibitor. In summary, these findings provide novel insights into the role of eNOS in PBMT-mediated protection against cerebrovascular senescence and endothelial dysfunction following ischemia. The use of PBMT as a therapeutic is a promising strategy to improve endothelial function in cerebrovascular disease.
Collapse
Affiliation(s)
- Yu Feng
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Zhihai Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Xuemei Zong
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Baojin Ding
- Department of Biochemistry & Molecular Biology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| | - Quanguang Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Shreveport, LA 71103, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA 71103, USA
| |
Collapse
|
17
|
Huang Z, Hamblin MR, Zhang Q. Photobiomodulation in experimental models of Alzheimer's disease: state-of-the-art and translational perspectives. Alzheimers Res Ther 2024; 16:114. [PMID: 38773642 PMCID: PMC11106984 DOI: 10.1186/s13195-024-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
Alzheimer's disease (AD) poses a significant public health problem, affecting millions of people across the world. Despite decades of research into therapeutic strategies for AD, effective prevention or treatment for this devastating disorder remains elusive. In this review, we discuss the potential of photobiomodulation (PBM) for preventing and alleviating AD-associated pathologies, with a focus on the biological mechanisms underlying this therapy. Future research directions and guidance for clinical practice for this non-invasive and non-pharmacological therapy are also highlighted. The available evidence indicates that different treatment paradigms, including transcranial and systemic PBM, along with the recently proposed remote PBM, all could be promising for AD. PBM exerts diverse biological effects, such as enhancing mitochondrial function, mitigating the neuroinflammation caused by activated glial cells, increasing cerebral perfusion, improving glymphatic drainage, regulating the gut microbiome, boosting myokine production, and modulating the immune system. We suggest that PBM may serve as a powerful therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
18
|
Lu W, Wen J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes. Aging Dis 2024; 16:AD.2024.0214-1. [PMID: 38421829 PMCID: PMC11745440 DOI: 10.14336/ad.2024.0214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Post-stroke depression (PSD), a frequent and disabling complication of stroke, has a strong impact on almost thirty percent of stroke survivors. The pathogenesis of PSD is not completely clear so far. Neuroinflammation following stroke is one of underlying mechanisms that involves in the pathophysiology of PSD and plays an important function in the development of depression and is regarded as a sign of depression. During the neuroinflammation after ischemic stroke onset, both astrocytes and microglia undergo a series of morphological and functional changes and play pro-inflammatory or anti-inflammatory effect in the pathological process of stroke. Importantly, astrocytes and microglia exert dual roles in the pathological process of PSD due to the phenotypic transformation. We summarize the latest evidence of neuroinflammation involving in PSD in this review, focus on the phenotypic transformation of microglia and astrocytes following ischemic stroke and reveal the dual roles of both microglia and astrocytes in the PSD via modulating the neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Lim L. Traumatic Brain Injury Recovery with Photobiomodulation: Cellular Mechanisms, Clinical Evidence, and Future Potential. Cells 2024; 13:385. [PMID: 38474349 PMCID: PMC10931349 DOI: 10.3390/cells13050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic Brain Injury (TBI) remains a significant global health challenge, lacking effective pharmacological treatments. This shortcoming is attributed to TBI's heterogeneous and complex pathophysiology, which includes axonal damage, mitochondrial dysfunction, oxidative stress, and persistent neuroinflammation. The objective of this study is to analyze transcranial photobiomodulation (PBM), which employs specific red to near-infrared light wavelengths to modulate brain functions, as a promising therapy to address TBI's complex pathophysiology in a single intervention. This study reviews the feasibility of this therapy, firstly by synthesizing PBM's cellular mechanisms with each identified TBI's pathophysiological aspect. The outcomes in human clinical studies are then reviewed. The findings support PBM's potential for treating TBI, notwithstanding variations in parameters such as wavelength, power density, dose, light source positioning, and pulse frequencies. Emerging data indicate that each of these parameters plays a role in the outcomes. Additionally, new research into PBM's effects on the electrical properties and polymerization dynamics of neuronal microstructures, like microtubules and tubulins, provides insights for future parameter optimization. In summary, transcranial PBM represents a multifaceted therapeutic intervention for TBI with vast potential which may be fulfilled by optimizing the parameters. Future research should investigate optimizing these parameters, which is possible by incorporating artificial intelligence.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON M4Y 2G8, Canada
| |
Collapse
|
20
|
Chen Z, Li M, Wu C, Su Y, Feng S, Deng Q, Zou P, Liu TCY, Duan R, Yang L. Photobiomodulation therapy alleviates repeated closed head injury-induced anxiety-like behaviors. JOURNAL OF BIOPHOTONICS 2024; 17:e202300343. [PMID: 37909411 DOI: 10.1002/jbio.202300343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Repeated closed head injury (rCHI) is one of the most common brain injuries. Although extensive studies have focused on how to treat rCHI-induced brain injury and reduce the possibility of developing memory deficits, the prevention of rCHI-induced anxiety has received little research attention. The current study was designed to assess the effects of photobiomodulation (PBM) therapy in preventing anxiety following rCHI. The rCHI disease model was constructed by administering three repeated closed-head injuries within an interval 5 days. 2-min daily PBM therapy using an 808 nm continuous wave laser at 350 mW/cm2 on the scalp was implemented for 20 days. We found that PBM significantly ameliorated rCHII-induced anxiety-like behaviors, neuronal apoptosis, neuronal injury, promotes astrocyte/microglial polarization to anti-inflammatory phenotype, preserves mitochondrial fusion-related protein MFN2, attenuates the elevated mitochondrial fission-related protein DRP1, and mitigates neuronal senescence. We concluded that PBM therapy possesses great potential in preventing anxiety following rCHI.
Collapse
Affiliation(s)
- Zhe Chen
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Meng Li
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yanlin Su
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu Feng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Peibin Zou
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| |
Collapse
|
21
|
Feng Y, Huang Z, Ma X, Zong X, Wu CY, Lee RH, Lin HW, Hamblin MR, Zhang Q. Activation of testosterone-androgen receptor mediates cerebrovascular protection by photobiomodulation treatment in photothrombosis-induced stroke rats. CNS Neurosci Ther 2024; 30:e14574. [PMID: 38421088 PMCID: PMC10851319 DOI: 10.1111/cns.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 03/02/2024] Open
Abstract
RATIONALE Numerous epidemiological studies have reported a link between low testosterone levels and an increased risk of cerebrovascular disease in men. However, there is ongoing controversy surrounding testosterone replacement therapy due to potential side effects. PBMT has been demonstrated to improve cerebrovascular function and promote testosterone synthesis in peripheral tissues. Despite this, the molecular mechanisms that could connect PBMT with testosterone and vascular function in the brain of photothrombosis (PT)-induced stroke rats remain largely unknown. METHODS We measured behavioral performance, cerebral blood flow (CBF), vascular permeability, and the expression of vascular-associated and apoptotic proteins in PT-induced stroke rats treated with flutamide and seven consecutive days of PBM treatment (350 mW, 808 nM, 2 min/day). To gain further insights into the mechanism of PBM on testosterone synthesis, we used testosterone synthesis inhibitors to study their effects on bEND.3 cells. RESULTS We showed that PT stroke caused a decrease in cerebrovascular testosterone concentration, which was significantly increased by 7-day PBMT (808 nm, 350 mW/cm2 , 42 J/cm2 ). Furthermore, PBMT significantly increased cerebral blood flow (CBF) and the expression of vascular-associated proteins, while inhibiting vascular permeability and reducing endothelial cell apoptosis. This ultimately mitigated behavioral deficits in PT stroke rats. Notably, treatment with the androgen receptor antagonist flutamide reversed the beneficial effects of PBMT. Cellular experiments confirmed that PBMT inhibited cell apoptosis and increased vascular-associated protein expression in brain endothelial cell line (bEnd.3) subjected to oxygen-glucose deprivation (OGD). However, these effects were inhibited by flutamide. Moreover, mechanistic studies revealed that PBMT-induced testosterone synthesis in bEnd.3 cells was partly mediated by 17β-hydroxysteroid dehydrogenase 5 (17β-HSD5). CONCLUSIONS Our study provides evidence that PBMT attenuates cerebrovascular injury and behavioral deficits associated with testosterone/AR following ischemic stroke. Our findings suggest that PBMT may be a promising alternative approach for managing cerebrovascular diseases.
Collapse
Affiliation(s)
- Yu Feng
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Zhihai Huang
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Xiaohui Ma
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Xuemei Zong
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Celeste Yin‐Chieh Wu
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Reggie Hui‐Chao Lee
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Hung Wen Lin
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| | - Michael R. Hamblin
- Wellman Center for PhotomedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Quanguang Zhang
- Department of NeurologyLouisiana State University Health Sciences CenterShreveportLouisianaUSA
| |
Collapse
|
22
|
Ramakrishnan P, Joshi A, Fazil M, Yadav P. A comprehensive review on therapeutic potentials of photobiomodulation for neurodegenerative disorders. Life Sci 2024; 336:122334. [PMID: 38061535 DOI: 10.1016/j.lfs.2023.122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
A series of experimental trials over the past two centuries has put forth Photobiomodulation (PBM) as a treatment modality that utilizes colored lights for various conditions. While in its cradle, PBM was used for treating simple conditions such as burns and wounds, advancements in recent years have extended the use of PBM for treating complex neurodegenerative diseases (NDDs). PBM has exhibited the potential to curb several symptoms and signs associated with NDDs. While several of the currently used therapeutics cause adverse side effects alongside being highly invasive, PBM on the contrary, seems to be broad-acting, less toxic, and non-invasive. Despite being projected as an ideal therapeutic for NDDs, PBM still isn't considered a mainstream treatment modality due to some of the challenges and knowledge gaps associated with it. Here, we review the advantages of PBM summarized above with an emphasis on the common mechanisms that underlie major NDDs and how PBM helps tackle them. We also discuss important questions such as whether PBM should be considered a mainstay treatment modality for these conditions and if PBM's properties can be harnessed to develop prophylactic therapies for high-risk individuals and also highlight important animal studies that underscore the importance of PBM and the challenges associated with it. Overall, this review is intended to bring the major advances made in the field to the spotlight alongside addressing the practicalities and caveats to develop PBM as a major therapeutic for NDDs.
Collapse
Affiliation(s)
- Pooja Ramakrishnan
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Aradhana Joshi
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| | - Mohamed Fazil
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India; School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Pankaj Yadav
- Fly Laboratory # 210, Anusandhan Kendra-II, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
23
|
Lin H, Li D, Zhu J, Liu S, Li J, Yu T, Tuchin VV, Semyachkina-Glushkovskaya O, Zhu D. Transcranial photobiomodulation for brain diseases: review of animal and human studies including mechanisms and emerging trends. NEUROPHOTONICS 2024; 11:010601. [PMID: 38317779 PMCID: PMC10840571 DOI: 10.1117/1.nph.11.1.010601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
The brain diseases account for 30% of all known diseases. Pharmacological treatment is hampered by the blood-brain barrier, limiting drug delivery to the central nervous system (CNS). Transcranial photobiomodulation (tPBM) is a promising technology for treating brain diseases, due to its effectiveness, non-invasiveness, and affordability. tPBM has been widely used in pre-clinical experiments and clinical trials for treating brain diseases, such as stroke and Alzheimer's disease. This review provides a comprehensive overview of tPBM. We summarize emerging trends and new discoveries in tPBM based on over one hundred references published in the past 20 years. We discuss the advantages and disadvantages of tPBM and highlight successful experimental and clinical protocols for treating various brain diseases. A better understanding of tPBM mechanisms, the development of guidelines for clinical practice, and the study of dose-dependent and personal effects hold great promise for progress in treating brain diseases.
Collapse
Affiliation(s)
- Hao Lin
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Dongyu Li
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
- Huazhong University of Science and Technology, School of Optical Electronic Information, Wuhan, China
| | - Jingtan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Shaojun Liu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Jingting Li
- Huazhong University of Science and Technology, School of Engineering Sciences, Wuhan, China
| | - Tingting Yu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| | - Valery V. Tuchin
- Saratov State University, Science Medical Center, Saratov, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow, Russia
- Tomsk State University, Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Science Medical Center, Saratov, Russia
- Humboldt University, Department of Physics, Berlin, Germany
| | - Dan Zhu
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics – Advanced Biomedical Imaging Facility, Wuhan, China
| |
Collapse
|
24
|
Feng W, Domeracki A, Park C, Shah S, Chhatbar PY, Pawar S, Chang C, Hsu PC, Richardson E, Hasan D, Sokhadze E, Zhang Q, Liu H. Revisiting Transcranial Light Stimulation as a Stroke Therapeutic-Hurdles and Opportunities. Transl Stroke Res 2023; 14:854-862. [PMID: 36369294 DOI: 10.1007/s12975-022-01103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Near-infrared laser therapy, a special form of transcranial light therapy, has been tested as an acute stroke therapy in three large clinical trials. While the NEST trials failed to show the efficacy of light therapy in human stroke patients, there are many lingering questions and lessons that can be learned. In this review, we summarize the putative mechanism of light stimulation in the setting of stroke, highlight barriers, and challenges during the translational process, and evaluate light stimulation parameters, dosages and safety issues, choice of outcomes, effect size, and patient selection criteria. In the end, we propose potential future opportunities with transcranial light stimulation as a cerebroprotective or restorative tool for future stroke treatment.
Collapse
Affiliation(s)
- Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Alexis Domeracki
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Christine Park
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shreyansh Shah
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Pratik Y Chhatbar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Swaroop Pawar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cherylee Chang
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Po-Chun Hsu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Eric Richardson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - David Hasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Estate Sokhadze
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Quanguang Zhang
- Department Department of Neurology, LSU Health Sciences Center, Shreveport, LA, 71103, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
25
|
Chang SY, Kim E, Carpena NT, Lee JH, Kim DH, Lee MY. Photobiomodulation Can Enhance Stem Cell Viability in Cochlea with Auditory Neuropathy but Does Not Restore Hearing. Stem Cells Int 2023; 2023:6845571. [PMID: 38020205 PMCID: PMC10665102 DOI: 10.1155/2023/6845571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Sensorineural hearing loss is very difficult to treat. Currently, one of the techniques used for hearing rehabilitation is a cochlear implant that can transform sound into electrical signals instead of inner ear hair cells. However, the prognosis remains very poor if sufficient auditory nerve cells are not secured. In this study, the effect of mouse embryonic stem cells (mESC) and photobiomodulation (PBM) combined treatment on auditory function and auditory nerve cells in a secondary neuropathy animal model was investigated. To confirm the engraftment of stem cells in vitro, cochlear explants were treated with kanamycin (KM) to mimic nerve damage and then cocultured with GFP-mESC. GFP-mESCs were observed to have attached and integrated into the explanted samples. An animal model for secondary neurodegeneration was achieved by KM treatment and was treated by a combination therapy of GFP-mESC and NIR-PBM at 8 weeks of KM treatment. Hearing recovery by functional testing using auditory brain stem response (ABR) and eABR was measured as well as morphological changes and epifluorescence analysis were conducted after 2 weeks of combination therapy. KM treatment elevated the hearing threshold at 70-80 dB and even after the combination treatment with GFP-mESC and PBM was applied, the auditory function was not restored. In addition, the stem cells transplanted into cochlea has exponentially increased due to PBM treatment although did not produce any malignancy. This study confirmed that the combined treatment with mESC and PBM could not improve hearing or increase the response of the auditory nerve. Nevertheless, it is noteworthy in this study that the cells are distributed in most cochlear tissues and the proliferation of stem cells was very active in animals irradiated with PBM compared to other groups wherein the stem cells had disappeared immediately after transplantation or existed for only a short period of time.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
| | - Eunjeong Kim
- Department of Biological Science, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
| | - Nathaniel T. Carpena
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | | | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
26
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Chen C, Bao Y, Xing L, Jiang C, Guo Y, Tong S, Zhang J, Chen L, Mao Y. Exosomes Derived from M2 Microglial Cells Modulated by 1070-nm Light Improve Cognition in an Alzheimer's Disease Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304025. [PMID: 37702115 PMCID: PMC10646245 DOI: 10.1002/advs.202304025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Indexed: 09/14/2023]
Abstract
Near-infrared photobiomodulation has been identified as a potential strategy for Alzheimer's disease (AD). However, the mechanisms underlying this therapeutic effect remain poorly characterize. Herein, it is illustrate that 1070-nm light induces the morphological alteration of microglia from an M1 to M2 phenotype that secretes exosomes, which alleviates the β-amyloid burden to improve cognitive function by ameliorating neuroinflammation and promoting neuronal dendritic spine plasticity. The results show that 4 J cm-2 1070-nm light at a 10-Hz frequency prompts microglia with an M1 inflammatory type to switch to an M2 anti-inflammatory type. This induces secretion of M2 microglial-derived exosomes containing miR-7670-3p, which targets activating transcription factor 6 (ATF6) during endoplasmic reticulum (ER) stress. Moreover, it is found that miR-7670-3p reduces ATF6 expression to further ameliorate ER stress, thus attenuating the inflammatory response and protecting dendritic spine integrity of neurons in the cortex and hippocampus of 5xFAD mice, ultimately leading to improvements in cognitive function. This study highlights the critical role of exosomes derive from 1070-nm light-modulated microglia in treating AD mice, which may provide a theoretical basis for the treatment of AD with the use of near-infrared photobiomodulation.
Collapse
Affiliation(s)
- Chengwei Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Yuting Bao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Lu Xing
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Chengyong Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghai200032China
| | - Yu Guo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Shuangmei Tong
- Department of Pharmacy, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain ScienceFudan UniversityShanghai200032China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical CollegeFudan UniversityShanghai200040China
- National Center for Neurological DisordersShanghai200040China
- Shanghai Key Laboratory of Brain Function Restoration and Neural RegenerationShanghai200040China
- Neurosurgical Institute of Fudan UniversityShanghai200040China
- Shanghai Clinical Medical Center of NeurosurgeryShanghai200040China
| |
Collapse
|
28
|
Chang SY, Lee MY. Photobiomodulation of Neurogenesis through the Enhancement of Stem Cell and Neural Progenitor Differentiation in the Central and Peripheral Nervous Systems. Int J Mol Sci 2023; 24:15427. [PMID: 37895108 PMCID: PMC10607539 DOI: 10.3390/ijms242015427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Photobiomodulation (PBM) is the regulation of biological processes using light energy from sources such as lasers or light-emitting diodes. Components of the nervous system, such as the brain and peripheral nerves, are important candidate PBM targets due to the lack of therapeutic modalities for the complete cure of neurological diseases. PBM can be applied either to regenerate damaged organs or to prevent or reduce damage caused by disease. Although recent findings have suggested that neural cells can be regenerated, which contradicts our previous understanding, neural structures are still thought to have weaker regenerative capacity than other systems. Therefore, enhancing the regenerative capacity of the nervous system would aid the future development of therapeutics for neural degeneration. PBM has been shown to enhance cell differentiation from stem or progenitor cells to near-target or target cells. In this review, we have reviewed research on the effects of PBM on neurogenesis in the central nervous system (e.g., animal brains) and the peripheral nervous system (e.g., peripheral sensory neural structures) and sought its potential as a therapeutic tool for intractable neural degenerative disorders.
Collapse
Affiliation(s)
- So-Young Chang
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea;
| | - Min Young Lee
- Beckman Laser Institute Korea, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Otolaryngology-Head &Neck Surgery, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
29
|
Wu C, Liu TCY, Duan R, Yang L. Photobiomodulation: A Potential Non-invasive Method to Alleviate Neurological Events Following COVID-19 Infection. Neurosci Bull 2023; 39:1595-1597. [PMID: 37191785 PMCID: PMC10186286 DOI: 10.1007/s12264-023-01064-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Affiliation(s)
- Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
30
|
涂 静, 黄 媛, 黄 莺, 吴 蒙, 王 瑞. [Photobiomodulation Promotes Hippocampal Neurogenesis and Improves Cognitive Function and Anti-Inflammatory Injury in Rats With Chronic Cerebral Hypoperfusion]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:965-971. [PMID: 37866954 PMCID: PMC10579075 DOI: 10.12182/20230960202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 10/24/2023]
Abstract
Objective To investigate the effect of photobiomodulation (PBM) on hippocampal neurogenesis, cognitive function, and inflammatory injury in rats with chronic cerebral hypoperfusion. Methods Bilateral ovariectomy (OVX) was performed on female Sprague-Dawley (SD) rats. One week later, the rats were randomly assigned to three groups, Sham surgery (or Sham) group, bilateral common carotid artery occlusion (BCCAO) group, and PBM intervention (or BCCAO+PBM) group. There were 8 rats in each group. In the BCCAO group, chronic cerebral hyporeperfusion was induced by permanent ligation of bilateral common carotid arteries and no PBM was given. Rats in the Sham group underwent the same surgical procedure except for the occlusion of the two carotids arteries and no PBM was given. In addition to the BCCAO surgery, rats in the BCCAO+PBM group received 808 nm laser therapy (5 min each time at a laser dose of 20 mW/cm 2) of the frontal cortex every other day for 1 month. Between 86 and 90 days after BCCAO, Morris water maze (MWM) was used to observe the spatial learning and memory function of the rats. The rats were sacrificed on day 90 and immunofluorescence staining and Western blot were performed thereafter. Immunofluorescence staining was used to determine the expression of 5-bromodeoxyuracil nucleoside (BrdU), a cell proliferation marker, glial fibrillary acidic protein (GFAP), an astrocyte marker, doublecortin (DCX), a specific marker of newborn neuron precursor cells, NeuN, a marker of mature neurons, and Iba1, a microglia marker, in the hippocampal dentate gyrus (DG) region. Western blot was performed to analyze the protein expressions of inflammasome components, NLRP3, ASC, cleaved caspase-1, and Iba1 in the hippocampus. Results In the latency trial of MWM test, BCCAO+PBM rats spent shorter periods of time finding the underwater platform than the BCCAO rats did. In the probe trial, after the platform that was original placed in a quadrant was removed, the BCCAO+PBM rats spent longer periods of time exploring the quadrant than the BCCAO animals did ( P<0.05). Compared with BCCAO rats, BCCAO+PBM rats showed significant decrease in the immunofluorescence intensities of GFAP and Iba1 ( P<0.01). PBM intervention significantly increased the number of BrdU-positive cells in the hippocampal DG region compared with those of Sham and BCCAO groups ( P<0.05). Furthermore, the number of NeuN positive cells showed no significant difference among the three groups, while in BCCAO+PBM group, the number of DCX-positive cells was significantly increased ( P<0.001) and the number of DCX +/NeuN + co-located cells was significantly increased compared to that of the BCCAO group ( P<0.001). Compared with those of the BCCAO group, Western blot results showed that the protein expression levels of Iba1, NLRP3, and cleaved caspase-1 in the BCCAO+PBM group were significantly decreased ( P<0.05), while the ASC protein expression level showed no significant difference. Conclusion PBM can effectively improve the spatial learning and memory function in rats with chronic cerebral hypoperfusion, inhibit the activation of glial cells, reduce inflammatory damage mediated by NLRP3 inflammasome, and promote the regeneration of endogenous neural stem cells in the hippocampal DG region of rats.
Collapse
Affiliation(s)
- 静宜 涂
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| | - 媛媛 黄
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| | - 莺 黄
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| | - 蒙 吴
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| | - 瑞敏 王
- 唐山职业技术学院基础医学部 病理教研室 (唐山 063000)Pathological Teaching and Research Division, Department of Basic Medicine, Tangshan Vocational and Technical College, Tangshan 063000, China
| |
Collapse
|
31
|
Shalaby RA, Qureshi MM, Khan MA, Salam SMA, Kwon HS, Lee KH, Chung E, Kim YR. Photobiomodulation therapy restores olfactory function impaired by photothrombosis in mouse olfactory bulb. Exp Neurol 2023:114462. [PMID: 37295546 DOI: 10.1016/j.expneurol.2023.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
An ischemic stroke typically accompanies numerous disorders ranging from somatosensory dysfunction to cognitive impairments, inflicting patients with various neurologic symptoms. Among pathologic outcomes, post-stroke olfactory dysfunctions are frequently observed. Despite the well-known prevalence, therapy options for such compromised olfaction are limited, likely due to the complexity of olfactory bulb architecture, which encompasses both the peripheral and central nervous systems. As photobiomodulation (PBM) emerged for treating ischemia-associated symptoms, the effectiveness of PBM on stroke-induced impairment of olfactory function was explored. Novel mouse models with olfactory dysfunctions were prepared using photothrombosis (PT) in the olfactory bulb on day 0. The post-PT PBM was performed daily from day 2 to day 7 by irradiating the olfactory bulb via an 808 nm laser with a fluence of 40 J/cm2 (325 mW/cm2 for 2 min per day). The buried food test (BFT) was used to score behavioral acuity in food-deprived mice to assess the olfactory function before PT, after PT, and after PBM. Histopathological examinations and cytokine assays were performed on the mouse brains harvested on day 8. The results from BFT were specific to an individual, with positive correlations between the baseline latency time measured before PT and its alteration at the ensuing stages for both the PT and PT + PBM groups. Also, the correlation analysis in both groups showed highly similar, significant positive relationships between the early and late latency time change independent of PBM, implicating a common recovery mechanism. Particularly, PBM treatment accelerated the recovery of impaired olfaction following PT by suppressing inflammatory cytokines and enhancing both glial and vascular factors (e.g., GFAP, IBA-1, and CD31). PBM therapy during the acute phase of ischemia improves the compromised olfactory function by modulating microenvironments and inflammation status of the affected tissue.
Collapse
Affiliation(s)
- Reham A Shalaby
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - Muhammad Mohsin Qureshi
- Division of Biophysics and Bioimaging, Princess Margret Cancer Center, Toronto, Ontario, Canada
| | - Mohd Afzal Khan
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - S M Abdus Salam
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, BioMedical Sciences Graduate Program (BMSGP), South Korea
| | - Hyuk Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University, Hwasun Hospital and Medical School, BioMedical Sciences Graduate Program (BMSGP), South Korea.
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, South Korea; AI Graduate School, Gwangju Institute of Science and Technology, South Korea.
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Feng S, Wu C, Zou P, Deng Q, Chen Z, Li M, Zhu L, Li F, Liu TCY, Duan R, Yang L. High-intensity interval training ameliorates Alzheimer's disease-like pathology by regulating astrocyte phenotype-associated AQP4 polarization. Theranostics 2023; 13:3434-3450. [PMID: 37351177 PMCID: PMC10283053 DOI: 10.7150/thno.81951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Alzheimer's disease (AD), one of the most common forms of dementia, is a widely studied neurodegenerative disease characterized by Aβ accumulation and tau hyperphosphorylation. Currently, there is no effective cure available for AD. The astrocyte AQP4 polarized distribution-mediated glymphatic system is essential for Aβ and abnormal tau clearance and is a potential therapeutic target for AD. However, the role of exercise on the AQP4 polarized distribution and the association between the AQP4 polarized distribution and astrocyte phenotype polarization are poorly understood. Methods: Using a streptozotocin (STZ)-induced sporadic AD rat model, we investigated the effects of high-intensity interval training on AD pathologies. The Branes maze task was conducted to measure spatial learning and memory. Immunofluorescence staining of NeuN with TUNEL, Fluoro-Jade C, and relative neuronal damage markers was applied to measure neuronal apoptosis, neurodegeneration, and damage. Sholl analysis was carried out to analyze the morphology of microglia. Line-scan analysis, 3D rendering, and the orthogonal view were applied to analyze the colocalization. Western blot analysis and enzyme-linked immunosorbent assay (ELISA) analysis were conducted to examine AQP4 and Aβ, respectively. An APP/PS1 transgenic AD mice model was used to confirm the key findings. Results: High-intensity interval training (HIIT) alleviates cognitive dysfunction in STZ-induced AD-like rat models and provides neuroprotection against neurodegeneration, neuronal damage, and neuronal loss. Additionally, HIIT improved the drainage of abnormal tau and Aβ from the cortex and hippocampus via the glymphatic system to the kidney. Further mechanistic studies support that the beneficial effects of HIIT on AD might be due, in part, to the polarization of glial cells from a neurotoxic phenotype towards a neuroprotective phenotype. Furthermore, an intriguing finding of our study is that the polarized distribution of AQP4 was strongly correlated with astrocyte phenotype. We found A2 phenotype exhibited more evident AQP4 polarization than the A1 phenotype. Conclusion: Our findings indicate that HIIT ameliorates Alzheimer's disease-like pathology by regulating astrocyte phenotype and astrocyte phenotype-associated AQP4 polarization. These changes promote Aβ and p-tau clearance from the brain tissue through the glymphatic system and the kidney.
Collapse
Affiliation(s)
- Shu Feng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Chongyun Wu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Peibin Zou
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Qianting Deng
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Zhe Chen
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Meng Li
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Ling Zhu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Fanghui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Timon Cheng-Yi Liu
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Rui Duan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| | - Luodan Yang
- School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
33
|
Sheng R, Chen C, Chen H, Yu P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation. Front Immunol 2023; 14:1197422. [PMID: 37283739 PMCID: PMC10239808 DOI: 10.3389/fimmu.2023.1197422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide, with most survivors reporting dysfunctions of motor, sensation, deglutition, cognition, emotion, and speech, etc. Repetitive transcranial magnetic stimulation (rTMS), one of noninvasive brain stimulation (NIBS) techniques, is able to modulate neural excitability of brain regions and has been utilized in neurological and psychiatric diseases. Moreover, a large number of studies have shown that the rTMS presents positive effects on function recovery of stroke patients. In this review, we would like to summarized the clinical benefits of rTMS for stroke rehabilitation, including improvements of motor impairment, dysphagia, depression, cognitive function, and central post-stroke pain. In addition, this review will also discuss the molecular and cellular mechanisms underlying rTMS-mediated stroke rehabilitation, especially immune regulatory mechanisms, such as regulation of immune cells and inflammatory cytokines. Moreover, the neuroimaging technique as an important tool in rTMS-mediated stroke rehabilitation has been discussed, to better understanding the mechanisms underlying the effects of rTMS. Finally, the current challenges and future prospects of rTMS-mediated stroke rehabilitation are also elucidated with the intention to accelerate its widespread clinical application.
Collapse
Affiliation(s)
- Rongjun Sheng
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Changchun Chen
- Department of Radiology, The People’s Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China
| | - Huan Chen
- Department of Radiology, The People’s Hospital of Longyou, Quzhou, China
| | - Peipei Yu
- Department of Radiology, Sanmen People’s Hospital, Taizhou, China
| |
Collapse
|
34
|
Calbiague García V, Cadiz B, Herrera P, Díaz A, Schmachtenberg O. Evaluation of Photobiomodulation and Boldine as Alternative Treatment Options in Two Diabetic Retinopathy Models. Int J Mol Sci 2023; 24:ijms24097918. [PMID: 37175628 PMCID: PMC10178531 DOI: 10.3390/ijms24097918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy causes progressive and irreversible damage to the retina through activation of inflammatory processes, overproduction of oxidative species, and glial reactivity, leading to changes in neuronal function and finally ischemia, edema, and hemorrhages. Current treatments are invasive and mostly applied at advanced stages, stressing the need for alternatives. To this end, we tested two unconventional and potentially complementary non-invasive treatment options: Photobiomodulation, the stimulation with near-infrared light, has shown promising results in ameliorating retinal pathologies and insults in several studies but remains controversial. Boldine, on the other hand, is a potent natural antioxidant and potentially useful to prevent free radical-induced oxidative stress. To establish a baseline, we first evaluated the effects of diabetic conditions on the retina with immunofluorescence, histological, and ultrastructural analysis in two diabetes model systems, obese LepRdb/db mice and organotypic retinal explants, and then tested the potential benefits of photobiomodulation and boldine treatment in vitro on retinal explants subjected to high glucose concentrations, mimicking diabetic conditions. Our results suggest that the principal subcellular structures affected by these conditions were mitochondria in the inner segment of photoreceptors, which displayed morphological changes in both model systems. In retinal explants, lactate metabolism, assayed as an indicator of mitochondrial function, was altered, and decreased photoreceptor viability was observed, presumably as a consequence of increased oxidative-nitrosative stress. The latter was reduced by boldine treatment in vitro, while photobiomodulation improved mitochondrial metabolism but was insufficient to prevent retinal structural damage caused by high glucose. These results warrant further research into alternative and complementary treatment options for diabetic retinopathy.
Collapse
Affiliation(s)
- Víctor Calbiague García
- Ph. D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Bárbara Cadiz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Pablo Herrera
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alejandra Díaz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
35
|
Wu C, Zou P, Feng S, Zhu L, Li F, Liu TCY, Duan R, Yang L. Molecular Hydrogen: an Emerging Therapeutic Medical Gas for Brain Disorders. Mol Neurobiol 2023; 60:1749-1765. [PMID: 36567361 DOI: 10.1007/s12035-022-03175-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Oxidative stress and neuroinflammation are the main physiopathological changes involved in the initiation and progression of various neurodegenerative disorders or brain injuries. Since the landmark finding reported in 2007 found that hydrogen reduced the levels of peroxynitrite anions and hydroxyl free radicals in ischemic stroke, molecular hydrogen's antioxidative and anti-inflammatory effects have aroused widespread interest. Due to its excellent antioxidant and anti-inflammatory properties, hydrogen therapy via different routes of administration exhibits great therapeutic potential for a wide range of brain disorders, including Alzheimer's disease, neonatal hypoxic-ischemic encephalopathy, depression, anxiety, traumatic brain injury, ischemic stroke, Parkinson's disease, and multiple sclerosis. This paper reviews the routes for hydrogen administration, the effects of hydrogen on the previously mentioned brain disorders, and the primary mechanism underlying hydrogen's neuroprotection. Finally, we discuss hydrogen therapy's remaining issues and challenges in brain disorders. We conclude that understanding the exact molecular target, finding novel routes, and determining the optimal dosage for hydrogen administration is critical for future studies and applications.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Fanghui Li
- School of Sports Science, Nanjing Normal University, Nanjing, 210046, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
36
|
Rodrigues AF, Rebelo C, Reis T, Simões S, Bernardino L, Peça J, Ferreira L. Engineering optical tools for remotely controlled brain stimulation and regeneration. Biomater Sci 2023; 11:3034-3050. [PMID: 36947145 DOI: 10.1039/d2bm02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Neurological disorders are one of the world's leading medical and societal challenges due to the lack of efficacy of the first line treatment. Although pharmacological and non-pharmacological interventions have been employed with the aim of regulating neuronal activity and survival, they have failed to avoid symptom relapse and disease progression in the vast majority of patients. In the last 5 years, advanced drug delivery systems delivering bioactive molecules and neuromodulation strategies have been developed to promote tissue regeneration and remodel neuronal circuitry. However, both approaches still have limited spatial and temporal precision over the desired target regions. While external stimuli such as electromagnetic fields and ultrasound have been employed in the clinic for non-invasive neuromodulation, they do not have the capability of offering single-cell spatial resolution as light stimulation. Herein, we review the latest progress in this area of study and discuss the prospects of using light-responsive nanomaterials to achieve on-demand delivery of drugs and neuromodulation, with the aim of achieving brain stimulation and regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina Rebelo
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Tiago Reis
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Susana Simões
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - João Peça
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Lino Ferreira
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
37
|
Nie F, Hao S, Ji Y, Zhang Y, Sun H, Will M, Han W, Ding Y. Biphasic dose response in the anti-inflammation experiment of PBM. Lasers Med Sci 2023; 38:66. [PMID: 36749428 DOI: 10.1007/s10103-022-03664-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/22/2022] [Indexed: 02/08/2023]
Abstract
Non-invasive laser irradiation can induce photobiomodulation (PBM) effects in cells and tissues, which can help reduce inflammation and pain in several clinical scenarios. The purpose of this study is to review the current literature to verify whether PBM can produce dose effects in anti-inflammatory experiments by summarizing the clinical and experimental effects of different laser parameters of several diseases. The so-called Arndt-Schulz curve is often used to describe two-phase dose reactions, assuming small doses of therapeutic stimulation, medium doses of inhibition, and large doses of killing. In the past decade, more and more attention has been paid to the clinical application of PBM, especially in the field of anti-inflammation, because it represents a non-invasive strategy with few contraindications. Although there are different types of lasers available, their use is adjusted by different parameters. In general, the parameters involved are wavelength, energy density, power output, and radiation time. However, due to the biphasic effect, the scientific and medical communities remain puzzled by the ways in which the application of PBM must be modified depending on its clinical application. This article will discuss these parameter adjustments and will then also briefly introduce two controversial theories of the molecular and cellular mechanisms of PBM. A better understanding of the extent of dualistic dose response in low-intensity laser therapy is necessary to optimize clinical treatment. It also allows us to explore the most dependable mechanism for PBM use and, ultimately, standardize treatment for patients with various diseases.
Collapse
Affiliation(s)
- Fang Nie
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Shaolong Hao
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yu Ji
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Hao Sun
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Melissa Will
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei Han
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - YuChuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
38
|
Stevens AR, Hadis M, Milward M, Ahmed Z, Belli A, Palin W, Davies DJ. Photobiomodulation in Acute Traumatic Brain Injury: A Systematic Review and Meta-Analysis. J Neurotrauma 2023; 40:210-227. [PMID: 35698294 DOI: 10.1089/neu.2022.0140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photobiomodulation (PBM) is a therapeutic modality that has gained increasing interest in neuroscience applications, including acute traumatic brain injury (TBI). Its proposed mechanisms for therapeutic effect when delivered to the injured brain include antiapoptotic and anti-inflammatory effects. This systematic review summarizes the available evidence for the value of PBM in improving outcomes in acute TBI and presents a meta-analysis of the pre-clinical evidence for neurological severity score (NSS) and lesion size in animal models of TBI. A systematic review of the literature was performed, with searches and data extraction performed independently in duplicate by two authors. Eighteen published articles were identified for inclusion: seventeen pre-clinical studies of in vivo animal models and one clinical study in human patients. The available human study supports safety and feasibility of PBM in acute moderate TBI. For pre-clinical studies, meta-analysis for NSS and lesion size were found to favor intervention versus control. Subgroup analysis based on PBM parameter variables for these outcomes was performed. Favorable parameters were identified as: wavelengths in the region of 665 nm and 810 nm; time to first administration of PBM ≤4 h; total number of daily treatments ≤3. No differences were identified between pulsed and continuous wave modes or energy delivery. Mechanistic substudies within included in vivo studies are presented and were found to support hypotheses of antiapoptotic, anti-inflammatory, and pro-proliferative effects, and a modulation of cellular metabolism. This systematic review provides substantial meta-analysis evidence of the benefits of PBM on functional and histological outcomes of TBI in in vivo mammalian models. Study design and PBM parameters should be closely considered for future human clinical studies.
Collapse
Affiliation(s)
- Andrew Robert Stevens
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, and University of Birmingham, Edgbaston, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, United Kingdom.,Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Mohammed Hadis
- Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Michael Milward
- Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Zubair Ahmed
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, and University of Birmingham, Edgbaston, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, United Kingdom.,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Antonio Belli
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, and University of Birmingham, Edgbaston, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, United Kingdom.,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - William Palin
- Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - David James Davies
- Department of Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, and University of Birmingham, Edgbaston, Birmingham, United Kingdom.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham, Birmingham, United Kingdom.,Phototherapy Research Group, School of Dentistry, University of Birmingham, Birmingham, United Kingdom.,Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
39
|
Huang Z, Zhang Y, Ma X, Feng Y, Zong X, Jordan JD, Zhang Q. Photobiomodulation attenuates oligodendrocyte dysfunction and prevents adverse neurological consequences in a rat model of early life adversity. Theranostics 2023; 13:913-930. [PMID: 36793860 PMCID: PMC9925323 DOI: 10.7150/thno.78777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: Adverse experiences in early life including abuse, trauma and neglect, have been linked to poor physical and mental health outcomes. Emerging evidence implies that those who experienced early life adversity (ELA) are more likely to develop cognitive dysfunction and depressive-like symptoms in adulthood. The molecular mechanisms responsible for the negative consequences of ELA, however, remain unclear. In the absence of effective management options, anticipatory guidance is the mainstay of ELA prevention. Furthermore, there is no available treatment that prevents or alleviates the neurologic sequelae of ELA, especially traumatic stress. Hence, the present study aims to investigate the mechanisms for these associations and evaluate whether photobiomodulation (PBM), a non-invasive therapeutic procedure, can prevent the negative cognitive and behavioral manifestations of ELA in later life. Methods: ELA was induced by repeated inescapable electric foot shock of rats from postnatal day 21 to 26. On the day immediately following the last foot shock, 2-min daily PBM treatment was applied transcranially for 7 consecutive days. Cognitive dysfunction and depression-like behaviors were measured by a battery of behavioral tests in adulthood. Subsequently, oligodendrocyte progenitor cells (OPCs) differentiation, the proliferation and apoptosis of oligodendrocyte lineage cells (OLs), mature oligodendrocyte, myelinating oligodendrocyte, the level of oxidative damage, reactive oxygen species (ROS) and total antioxidant capacity were measured and analyzed using immunofluorescence staining, capillary-based immunoassay (ProteinSimple®) and antioxidant assay kit. Results: The rats exposed to ELA exhibited obvious oligodendrocyte dysfunction, including a reduction in OPCs differentiation, diminished generation and survival of OLs, decreased OLs, and decreased matured oligodendrocyte. Furthermore, a deficit in myelinating oligodendrocytes was observed, in conjunction with an imbalance in redox homeostasis and accumulated oxidative damage. These alternations were concomitant with cognitive dysfunction and depression-like behaviors. Importantly, we found that early PBM treatment largely prevented these pathologies and reversed the neurologic sequelae resulting from ELA. Conclusions: Collectively, these findings provide new insights into the mechanism by which ELA affects neurological outcomes. Moreover, our findings support that PBM may be a promising strategy to prevent ELA-induced neurologic sequelae that develops later in life.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA 71103 USA
| |
Collapse
|
40
|
Feng Y, Yang L, Ma X, Huang Z, Zong X, Citadin CT, Lin HW, Zhang Q. Photobiomodulation treatment inhibits neurotoxic astrocytic polarization and protects neurons in in vitro and in vivo stroke models. Neurochem Int 2023; 162:105464. [PMID: 36539162 DOI: 10.1016/j.neuint.2022.105464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The beneficial effects of photobiomodulation (PBM) on function recovery after stroke have been well-established, while its molecular and cellular mechanisms remain to be elucidated. The current study was designed to investigate the effect of PBM on synaptic proteins and astrocyte polarization of photothrombotic (PT)-stroke induced rats in vivo, and explore the possible effect of PBM treatment on oxygen-glucose deprivation (OGD)-induced neurotoxic astrocytic polarization in vitro. We reported that 2-min PBM treatment (808 nm) for 7 days significantly increased synaptic proteins and neuroprotective astrocytic marker S100 Calcium Binding Protein A10 (S100A10) and inhibited neurotoxic astrocytic marker C3d in the peri-infarct region after ischemic stroke. Cell culture studies of primary cortical neurons and N2a cells showed that single-dose PBM treatment could increase cellular viability, regulate the apoptotic proteins (Caspase 9, Bcl-xL and BAX) and preserve synaptic proteins following OGD exposure. Additionly, PBM decreased the levels of C3d, inducible nitric oxide synthase (iNOS) and interleukin 1β (IL-1β) on astrocytes exposed to OGD. In summary, we demonstrated that PBM could inhibit neurotoxic astrocytic polarization, preserve synaptic integrity and protect neurons against stroke injury both in vitro and in vivo.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA; Department of Cellular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 1501 Kings Highway, LA, 71103, USA.
| |
Collapse
|
41
|
Lee TL, Ding Z, Chan AS. Can transcranial photobiomodulation improve cognitive function? A systematic review of human studies. Ageing Res Rev 2023; 83:101786. [PMID: 36371017 DOI: 10.1016/j.arr.2022.101786] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) has been studied for over a decade as a possible cognitive intervention. OBJECTIVE To evaluate the effect of tPBM for enhancing human cognitive function in healthy adults and remediating impaired cognitive function in adults with cognitive disorders. METHODS A systematic literature search from three electronic databases (PubMed, Scopus, Web of Science) was conducted from 1987 to May 2022. The cognitive function being evaluated included learning and memory, attention, executive function, language, and global cognitive function. RESULTS Of the 35 studies identified, 29 (82.9 %) studies reported positive improvement in cognitive functions after tPBM. All nine studies on participants with subjective memory complaints, mild cognitive impairment, and dementia, showed positive outcomes. Seven (87.5 %) studies on traumatic brain injury (TBI) patients also showed positive results. A series of clinical trials on stroke patients showed positive trends on improved neurological deficit at first, but was prematurely terminated later at phase III due to the lack of statistical significance. One of the most common protocols for clinical populations employed devices delivering near-infrared light (810 nm), the irradiance of 20-25 mW/cm2, and fluence of 1-10 J/cm2. While this was common, the reviewed protocols also included other wavelengths of light ranging from visible, red (630-635 nm) to invisible near-infrared maximum wavelengths of 1060-1068 nm. CONCLUSIONS tPBM seems to improve cognitive function. However, only half of the reviewed clinical trials were randomized control trials, further investigation is warranted.
Collapse
Affiliation(s)
- Tsz-Lok Lee
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zihan Ding
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China; Research Centre for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Shamloo S, Defensor E, Ciari P, Ogawa G, Vidano L, Lin JS, Fortkort JA, Shamloo M, Barron AE. The anti-inflammatory effects of photobiomodulation are mediated by cytokines: Evidence from a mouse model of inflammation. Front Neurosci 2023; 17:1150156. [PMID: 37090796 PMCID: PMC10115964 DOI: 10.3389/fnins.2023.1150156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
There is an urgent need for therapeutic approaches that can prevent or limit neuroinflammatory processes and prevent neuronal degeneration. Photobiomodulation (PBM), the therapeutic use of specific wavelengths of light, is a safe approach shown to have anti-inflammatory effects. The current study was aimed at evaluating the effects of PBM on LPS-induced peripheral and central inflammation in mice to assess its potential as an anti-inflammatory treatment. Daily, 30-min treatment of mice with red/NIR light (RL) or RL with a 40 Hz gamma frequency flicker for 10 days prior to LPS challenge showed anti-inflammatory effects in the brain and systemically. PBM downregulated LPS induction of key proinflammatory cytokines associated with inflammasome activation, IL-1β and IL-18, and upregulated the anti-inflammatory cytokine, IL-10. RL provided robust anti-inflammatory effects, and the addition of gamma flicker potentiated these effects. Overall, these results demonstrate the potential of PBM as an anti-inflammatory treatment that acts through cytokine expression modulation.
Collapse
Affiliation(s)
- Shirin Shamloo
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Erwin Defensor
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Peter Ciari
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Gaku Ogawa
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Laura Vidano
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jennifer S. Lin
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - John A. Fortkort
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
| | - Mehrdad Shamloo
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Mehrdad Shamloo,
| | - Annelise E. Barron
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
- Annelise E. Barron,
| |
Collapse
|
43
|
Kim UJ, Hong N, Ahn JC. Photobiomodulation Attenuated Cognitive Dysfunction and Neuroinflammation in a Prenatal Valproic Acid-Induced Autism Spectrum Disorder Mouse Model. Int J Mol Sci 2022; 23:ijms232416099. [PMID: 36555737 PMCID: PMC9785820 DOI: 10.3390/ijms232416099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication and interaction disorders, as well as repetitive and restrictive behaviors. To date, no effective treatment strategies have been identified. However, photobiomodulation (PBM) is emerging as a promising treatment for neurological and neuropsychiatric disorders. We used mice exposed to valproic acid (VPA) as a model of ASD and found that pathological behavioral and histological changes that may have been induced by VPA were attenuated by PBM treatment. Pregnant mice that had been exposed to VPA were treated with PBM three times. Thereafter, we evaluated the offspring for developmental disorders, motor function, hyperactivity, repetitive behaviors, and cognitive impairment. PBM attenuated many of the pathological behaviors observed in the VPA-induced ASD mouse model. In addition, pathophysiological analyses confirmed that the increase in activated microglia and astrocytes observed in the VPA-induced ASD mouse model was attenuated by PBM treatment. This suggests that PBM can counteract the behavioral changes caused by neuroinflammation in ASD. Therefore, our data show that PBM has therapeutic potential and may reduce the prevalence of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Ui-Jin Kim
- Department of Medical Laser, Graduate School, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Namgue Hong
- Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence: (N.H.); (J.-C.A.)
| | - Jin-Chul Ahn
- Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Correspondence: (N.H.); (J.-C.A.)
| |
Collapse
|
44
|
Abstract
Although the cause(s) of Alzheimer's disease in the majority of cases remains elusive, it has long been associated with hypertension. In animal models of the disease, hypertension has been shown to exacerbate Alzheimer-like pathology and behavior, while in humans, hypertension during mid-life increases the risk of developing the disease later in life. Unfortunately, once individuals are diagnosed with the disease, there are few therapeutic options available. There is neither an effective symptomatic treatment, one that treats the debilitating cognitive and memory deficits, nor, more importantly, a neuroprotective treatment, one that stops the relentless progression of the pathology. Further, there is no specific preventative treatment that offsets the onset of the disease. A key factor or clue in this quest for an effective preventative and therapeutic treatment may lie in the contribution of hypertension to the disease. In this review, we explore the idea that photobiomodulation, the application of specific wavelengths of light onto body tissues, can reduce the neuropathology and behavioral deficits in Alzheimer's disease by controlling hypertension. We suggest that treatment with photobiomodulation can be an effective preventative and therapeutic option for this neurodegenerative disease.
Collapse
Affiliation(s)
- Audrey Valverde
- Université Grenoble Alpes, Fonds de dotation Clinatec, Grenoble, France
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de dotation Clinatec, Grenoble, France,
Institute of Ophthalmology, University College London, London, United Kingdom,Correspondence to: John Mitrofanis, E-mail:
| |
Collapse
|
45
|
Yang L, Feng S, Wu C, Yang L. The Lung Microbiome: A Potential Target in Regulating Autoimmune Inflammation of the Brain. Neurosci Bull 2022; 38:1435-1437. [PMID: 35821336 PMCID: PMC9672157 DOI: 10.1007/s12264-022-00912-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/17/2022] [Indexed: 10/17/2022] Open
Affiliation(s)
- Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
46
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Cardoso FDS, Salehpour F, Coimbra NC, Gonzalez-Lima F, Gomes da Silva S. Photobiomodulation for the treatment of neuroinflammation: A systematic review of controlled laboratory animal studies. Front Neurosci 2022; 16:1006031. [PMID: 36203812 PMCID: PMC9531128 DOI: 10.3389/fnins.2022.1006031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuroinflammation is a response that involves different cell lineages of the central nervous system, such as neurons and glial cells. Among the non-pharmacological interventions for neuroinflammation, photobiomodulation (PBM) is gaining prominence because of its beneficial effects found in experimental brain research. We systematically reviewed the effects of PBM on laboratory animal models, specially to investigate potential benefits of PBM as an efficient anti-inflammatory therapy. Methods We conducted a systematic search on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: photobiomodulation, low-level laser therapy, brain, neuroinflammation, inflammation, cytokine, and microglia. Data search was limited from 2009 to June 2022. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The initial systematic search identified 140 articles. Among them, 54 articles were removed for duplication and 59 articles by screening. Therefore, 27 studies met the inclusion criteria. Results The studies showed that PBM has anti-inflammatory properties in several conditions, such as traumatic brain injury, edema formation and hyperalgesia, ischemia, neurodegenerative conditions, aging, epilepsy, depression, and spinal cord injury. Conclusion Taken together, these results indicate that transcranial PBM therapy is a promising strategy to treat brain pathological conditions induced by neuroinflammation.
Collapse
Affiliation(s)
- Fabrízio dos Santos Cardoso
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
- *Correspondence: Fabrízio dos Santos Cardoso
| | - Farzad Salehpour
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Norberto Cysne Coimbra
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Francisco Gonzalez-Lima
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX, United States
| | - Sérgio Gomes da Silva
- Centro Universitário UNIFAMINAS (UNIFAMINAS), Muriaé, MG, Brazil
- Hospital do Câncer de Muriaé, Fundação Cristiano Varella (FCV), Muriaé, MG, Brazil
| |
Collapse
|
48
|
Zhang Q, Cai J, Wang Z, Wang Z, Lin B, Zhao J, Mao J, Li Y, Li J, Yang X, Shuai X, Lu L, Shen J. Upregulating microRNA‐210 to Inhibit Apoptosis of Neural Stem Cells with an MRI–Visible Nanomedicine for Stroke Therapy. SMALL STRUCTURES 2022; 3. [DOI: 10.1002/sstr.202200035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Transplantation of neural stem cells (NSCs) is a promising paradigm for treating stroke. However, the poor survival of transplanted NSCs greatly limits the therapeutic potential. microRNA‐210 (miR‐210), a key hypoxia‐regulated miRNA, can enhance cell survival by targeting the expression of multiple apoptosis‐related genes, such as caspase‐8‐associated protein‐2 (casp8ap2), Bax, and Bcl‐2. Meanwhile, a noninvasive cell‐tracking method is also indispensable for monitoring the in vivo cell‐based therapy. Herein, an MRI–visible nanomedicine is developed to codeliver superparamagnetic iron oxide (SPIO) nanoparticles and miR‐210 into NSCs. This therapeutic nanomedicine not only promotes the survival of NSCs via upregulating miR‐210 to inhibit NSCs apoptosis but also allows an in vivo tracking of transplanted NSCs with MRI. The enhanced NSCs survivability significantly promotes the structural and functional recovery after stroke onset, which highlights the great potential of the multifunctional nanomedicine to improve the therapeutic efficacy of NSCs for stroke treatment.
Collapse
Affiliation(s)
- Qinyuan Zhang
- Department of Radiology Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Jiali Cai
- PCFM Lab of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices School of Materials Science and Engineering Sun Yat-Sen University Guangzhou 510275 China
| | - Zhiyong Wang
- PCFM Lab of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices School of Materials Science and Engineering Sun Yat-Sen University Guangzhou 510275 China
| | - Zhe Wang
- Department of Radiology Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Bingling Lin
- Department of Radiology Peking University Shenzhen Hospital Shenzhen 518000 China
| | - Junya Zhao
- Department of Radiology Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Jiaji Mao
- Department of Radiology Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Yunhua Li
- Department of Radiology Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Jianing Li
- Department of Radiology Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Xieqing Yang
- Department of Radiology Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education School of Materials Science and Engineering Sun Yat-Sen University Guangzhou 510275 China
| | - Liejing Lu
- Department of Radiology Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Jun Shen
- Department of Radiology Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| |
Collapse
|
49
|
Cardoso FDS, Serra FT, Coimbra NC, Gonzalez-Lima F, Gomes da Silva S. Transcranial photobiomodulation changes neuronal morphology in the cerebral cortex of rats. Neurosci Lett 2022; 781:136681. [DOI: 10.1016/j.neulet.2022.136681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
50
|
Pallanti S, Di Ponzio M, Grassi E, Vannini G, Cauli G. Transcranial Photobiomodulation for the Treatment of Children with Autism Spectrum Disorder (ASD): A Retrospective Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9050755. [PMID: 35626932 PMCID: PMC9139753 DOI: 10.3390/children9050755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022]
Abstract
Children with Autism Spectrum Disorder (ASD) face several challenges due to deficits in social function and communication along with restricted patterns of behaviors. Often, they also have difficult-to-manage and disruptive behaviors. At the moment, there are no pharmacological treatments for ASD core features. Recently, there has been a growing interest in non-pharmacological interventions for ASD, such as neuromodulation. In this retrospective study, data are reported and analyzed from 21 patients (13 males, 8 females) with ASD, with an average age of 9.1 (range 5−15), who received six months of transcranial photobiomodulation (tPBM) at home using two protocols (alpha and gamma), which, respectively, modulates the alpha and gamma bands. They were evaluated at baseline, after three and six months of treatment using the Childhood Autism Rating Scale (CARS), the Home Situation Questionnaire-ASD (HSQ-ASD), the Autism Parenting Stress Index (APSI), the Montefiore Einstein Rigidity Scale−Revised (MERS−R), the Pittsburgh Sleep Quality Index (PSQI) and the SDAG, to evaluate attention. Findings show that tPBM was associated with a reduction in ASD severity, as shown by a decrease in CARS scores during the intervention (p < 0.001). A relevant reduction in noncompliant behavior and in parental stress have been found. Moreover, a reduction in behavioral and cognitive rigidity was reported as well as an improvement in attentional functions and in sleep quality. Limitations were discussed as well as future directions for research.
Collapse
Affiliation(s)
- Stefano Pallanti
- Neurodevelopment Division, Istituto di Neuroscienze, 50121 Florence, Italy; (M.D.P.); (E.G.); (G.V.)
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| | - Michele Di Ponzio
- Neurodevelopment Division, Istituto di Neuroscienze, 50121 Florence, Italy; (M.D.P.); (E.G.); (G.V.)
| | - Eleonora Grassi
- Neurodevelopment Division, Istituto di Neuroscienze, 50121 Florence, Italy; (M.D.P.); (E.G.); (G.V.)
| | - Gloria Vannini
- Neurodevelopment Division, Istituto di Neuroscienze, 50121 Florence, Italy; (M.D.P.); (E.G.); (G.V.)
| | - Gilla Cauli
- Asst Fatebenefratelli Sacco, 20154 Milan, Italy;
| |
Collapse
|