1
|
Guzmán-Ruíz MA, Guerrero Vargas NN, Ramírez-Carreto RJ, González-Orozco JC, Torres-Hernández BA, Valle-Rodríguez M, Guevara-Guzmán R, Chavarría A. Microglia in physiological conditions and the importance of understanding their homeostatic functions in the arcuate nucleus. Front Immunol 2024; 15:1392077. [PMID: 39295865 PMCID: PMC11408222 DOI: 10.3389/fimmu.2024.1392077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Microglia are highly dynamic cells that have been mainly studied under pathological conditions. The present review discusses the possible implication of microglia as modulators of neuronal electrical responses in physiological conditions and hypothesizes how these cells might modulate hypothalamic circuits in health and during obesity. Microglial cells studied under physiological conditions are highly diverse, depending on the developmental stage and brain region. The evidence also suggests that neuronal electrical activity modulates microglial motility to control neuronal excitability. Additionally, we show that the expression of genes associated with neuron-microglia interaction is down-regulated in obese mice compared to control-fed mice, suggesting an alteration in the contact-dependent mechanisms that sustain hypothalamic arcuate-median eminence neuronal function. We also discuss the possible implication of microglial-derived signals for the excitability of hypothalamic neurons during homeostasis and obesity. This review emphasizes the importance of studying the physiological interplay between microglia and neurons to maintain proper neuronal circuit function. It aims to elucidate how disruptions in the normal activities of microglia can adversely affect neuronal health.
Collapse
Affiliation(s)
- Mara A Guzmán-Ruíz
- Programa de Becas Post-doctorales, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalí N Guerrero Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Michelle Valle-Rodríguez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Medicina Experimental "Ruy Pérez Tamayo", Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Li W, Wu T, Zhu K, Ba G, Liu J, Zhou P, Li S, Wang L, Liu H, Ren W, Yu H, Yu Y. A single-cell transcriptomic census of mammalian olfactory epithelium aging. Dev Cell 2024:S1534-5807(24)00482-9. [PMID: 39173624 DOI: 10.1016/j.devcel.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Mammalian olfactory epithelium has the capacity of self-renewal throughout life. Aging is one of the major causes leading to the olfactory dysfunction. Here, we performed single-cell RNA sequencing (scRNA-seq) analysis on young and aged murine olfactory epithelium (OE) and identified aging-related differentially expressed genes (DEGs) throughout 21 cell types. Aging led to the presence of activated horizontal basal cells (HBCs) in the OE and promoted cellular interaction between HBCs and neutrophils. Aging enhanced the expression of Egr1 and Fos in sustentacular cell differentiation from multipotent progenitors, whereas Bcl11b was downregulated during the sensory neuronal homeostasis in the aged OE. Egr1 and Cebpb were predictive core regulatory factors of the transcriptional network in the OE. Overexpression of Egr1 in aged OE organoids promoted cell proliferation and neuronal differentiation. Moreover, aging altered expression levels and frequencies of olfactory receptors. These findings provide a cellular and molecular framework of OE aging at the single-cell resolution.
Collapse
Affiliation(s)
- Weihao Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Tingting Wu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Kesen Zhu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Guangyi Ba
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jinxia Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ping Zhou
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shengjv Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Li Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Huanhai Liu
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China.
| | - Wenwen Ren
- Department of Otolaryngology, the Second Affiliated Hospital of the Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China.
| | - Hongmeng Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China; Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
3
|
Moghe M, Kim SS, Guan M, Rait A, Pirollo KF, Harford JB, Chang EH. scL-2PAM: A Novel Countermeasure That Ameliorates Neuroinflammation and Neuronal Losses in Mice Exposed to an Anticholinesterase Organophosphate. Int J Mol Sci 2024; 25:7539. [PMID: 39062781 PMCID: PMC11276659 DOI: 10.3390/ijms25147539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Due to their inhibition of acetylcholinesterase, organophosphates are among the most toxic of chemicals. Pralidoxime (a.k.a 2-PAM) is the only acetylcholinesterase reactivator approved in the U.S., but 2-PAM only poorly traverses the blood-brain barrier. Previously, we have demonstrated that scL-2PAM, a nanoformulation designed to enter the brain via receptor-mediated transcytosis, is superior to unencapsulated 2-PAM for reactivating brain acetylcholinesterase, ameliorating cholinergic crisis, and improving survival rates for paraoxon-exposed mice. Here, we employ histology and transcriptome analyses to assess the ability of scL-2PAM to prevent neurological sequelae including microglial activation, expression of inflammatory cytokines, and ultimately loss of neurons in mice surviving paraoxon exposures. Levels of the mRNA encoding chemokine ligand 2 (CCL2) were significantly upregulated after paraoxon exposures, with CCL2 mRNA levels in the brain correlating well with the intensity and duration of cholinergic symptoms. Our nanoformulation of 2-PAM was found to be superior to unencapsulated 2-PAM in reducing the levels of the CCL2 transcript. Moreover, brain histology revealed that scL-2PAM was more effective than unencapsulated 2-PAM in preventing microglial activation and the subsequent loss of neurons. Thus, scL-2PAM appears to be a new and improved countermeasure for reducing neuroinflammation and mitigating brain damage in survivors of organophosphate exposures.
Collapse
Affiliation(s)
- Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
- SynerGene Therapeutics, Inc., Potomac, MD 20854, USA;
| | - Miaoyin Guan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Antonina Rait
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | - Kathleen F. Pirollo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
| | | | - Esther H. Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (M.M.); (A.R.); (K.F.P.)
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
4
|
Gao L, Sun W, Zhang L, Liang C, Zhang D. Caffeine upregulates SIRT3 expression to ameliorate astrocytes-mediated HIV-1 Tat neurotoxicity via suppression of EGR1 signaling pathway. J Neurovirol 2024; 30:286-302. [PMID: 38926255 DOI: 10.1007/s13365-024-01222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Caffeine is one of the most popular consumed psychostimulants that mitigates several neurodegenerative diseases. Nevertheless, the roles and molecular mechanisms of caffeine in HIV-associated neurocognitive disorders (HAND) remain largely unclear. Transactivator of transcription (Tat) is a major contributor to the neuropathogenesis of HAND in the central nervous system. In the present study, we determined that caffeine (100 µM) treatment significantly ameliorated Tat-induced decreased astrocytic viability, oxidative stress, inflammatory response and excessive glutamate and ATP release, thereby protecting neurons from apoptosis. Subsequently, SIRT3 was demonstrated to display neuroprotective effects against Tat during caffeine treatment. In addition, Tat downregulated SIRT3 expression via activation of EGR1 signaling, which was reversed by caffeine treatment in astrocytes. Overexpression of EGR1 entirely abolished the neuroprotective effects of caffeine against Tat. Furthermore, counteracting Tat or caffeine-induced differential expression of SIRT3 abrogated the neuroprotection of caffeine against Tat-triggered astrocytic dysfunction and neuronal apoptosis. Taken together, our study establishes that caffeine ameliorates astrocytes-mediated Tat neurotoxicity by targeting EGR1/SIRT3 signaling pathway. Our findings highlight the beneficial effects of caffeine on Tat-induced astrocytic dysfunction and neuronal death and propose that caffeine might be a novel therapeutic drug for relief of HAND.
Collapse
Affiliation(s)
- Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
| | - Weixi Sun
- Disease Prevention and Control Center of Chongchuan District, Nantong, 226000, People's Republic of China
- Health Commission of Chongchuan District, Nantong, 226000, People's Republic of China
| | - Lei Zhang
- Nantong Health College of Jiangsu Province, Nantong, 226001, People's Republic of China
| | - Caixia Liang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Medical Key Laboratory of Molecular Immunology, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
- Nantong Municipal Key Laboratory of Metabolic Immunology and Disease Microenvironment, Medical Research Center, Nantong First People's Hospital, Nantong, 226001, People's Republic of China.
| |
Collapse
|
5
|
Lan Y, Han X, Huang F, Shi H, Wu H, Yang L, Hu Z, Wu X. Early Growth Response Gene-1 Deficiency Interrupts TGFβ1 Signaling Activation and Aggravates Neurodegeneration in Experimental Autoimmune Encephalomyelitis Mice. Neurosci Bull 2024; 40:283-292. [PMID: 37725245 PMCID: PMC10912064 DOI: 10.1007/s12264-023-01111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023] Open
Abstract
Early growth response protein 1 (Egr-1) triggers the transcription of many genes involved in cell growth, differentiation, synaptic plasticity, and neurogenesis. However, its mechanism in neuronal survival and degeneration is still poorly understood. This study demonstrated that Egr-1 was down-regulated at mRNA and protein levels in the central nervous system (CNS) of experimental autoimmune encephalomyelitis (EAE) mice. Egr-1 knockout exacerbated EAE progression in mice, as shown by increased disease severity and incidence; it also aggravated neuronal apoptosis, which was associated with weakened activation of the BDNF/TGFβ 1/MAPK/Akt signaling pathways in the CNS of EAE mice. Consistently, Egr-1 siRNA promoted apoptosis but mitigated the activation of BDNF/TGFβ 1/MAPK/Akt signaling in SH-SY5Y cells. Our results revealed that Egr-1 is a crucial regulator of neuronal survival in EAE by regulating TGFβ 1-mediated signaling activation, implicating the important role of Egr-1 in the pathogenesis of multiple sclerosis as a potential novel therapy target.
Collapse
Affiliation(s)
- Yunyi Lan
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China.
| | - Zhibi Hu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Ali M, Huarte OU, Heurtaux T, Garcia P, Rodriguez BP, Grzyb K, Halder R, Skupin A, Buttini M, Glaab E. Single-Cell Transcriptional Profiling and Gene Regulatory Network Modeling in Tg2576 Mice Reveal Gender-Dependent Molecular Features Preceding Alzheimer-Like Pathologies. Mol Neurobiol 2024; 61:541-566. [PMID: 35980567 PMCID: PMC10861719 DOI: 10.1007/s12035-022-02985-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both in the relative risk of developing AD and in clinical disease manifestations. A molecular level understanding of these gender disparities is still missing, but could provide important clues on cellular mechanisms modulating the disease and reveal new targets for gender-oriented disease-modifying precision therapies. We therefore present here a comprehensive single-cell analysis of disease-associated molecular gender differences in transcriptomics data from the neocortex, one of the brain regions most susceptible to AD, in one of the most widely used AD mouse models, the Tg2576 model. Cortical areas are also most commonly used in studies of post-mortem AD brains. To identify disease-linked molecular processes that occur before the onset of detectable neuropathology, we focused our analyses on an age with no detectable plaques and microgliosis. Cell-type specific alterations were investigated at the level of individual genes, pathways, and gene regulatory networks. The number of differentially expressed genes (DEGs) was not large enough to build context-specific gene regulatory networks for each individual cell type, and thus, we focused on the study of cell types with dominant changes and included analyses of changes across the combination of cell types. We observed significant disease-associated gender differences in cellular processes related to synapse organization and reactive oxygen species metabolism, and identified a limited set of transcription factors, including Egr1 and Klf6, as key regulators of many of the disease-associated and gender-dependent gene expression changes in the model. Overall, our analyses revealed significant cell-type specific gene expression changes in individual genes, pathways and sub-networks, including gender-specific and gender-dimorphic changes in both upstream transcription factors and their downstream targets, in the Tg2576 AD model before the onset of overt disease. This opens a window into molecular events that could determine gender-susceptibility to AD, and uncovers tractable target candidates for potential gender-specific precision medicine for AD.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, 6200, Maastricht, the Netherlands
| | - Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L‑4362, Esch-Sur-Alzette, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Beatriz Pardo Rodriguez
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- University of the Basque Country, Cell Biology and Histology Department, 48940, Leioa, Vizcaya, Basque Country, Spain
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, 162a av. de la Faïencerie, 1511, Luxembourg, Luxembourg
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
7
|
Gupta S, Khan J, Ghosh S. Molecular mechanism of cognitive impairment associated with Parkinson's disease: A stroke perspective. Life Sci 2024; 337:122358. [PMID: 38128756 DOI: 10.1016/j.lfs.2023.122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Parkinson's disease (PD) is a common neurological illness that causes several motor and non-motor symptoms, most characteristically limb tremors and bradykinesia. PD is a slowly worsening disease that arises due to progressive neurodegeneration of specific areas of the brain, especially the substantia nigra of the midbrain. Even though PD has continuously been linked to a higher mortality risk in numerous epidemiologic studies, there have been significant discoveries regarding the connection between PD and stroke. The incidence of strokes such as cerebral infarction and hemorrhage is substantially associated with the development of PD. Moreover, cognitive impairments, primarily dementia, have been associated with stroke and PD. However, the underlying molecular mechanism of this phenomenon is still obscure. This concise review focuses on the relationship between stroke and PD, emphasizing the molecular mechanism of cognition deficit and memory loss evident in PD and stroke. Furthermore, we are also highlighting some potential drug molecules that can target both PD and stroke.
Collapse
Affiliation(s)
- Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India.
| |
Collapse
|
8
|
Huang Y, Chen Q, Wang Z, Wang Y, Lian A, Zhou Q, Zhao G, Xia K, Tang B, Li B, Li J. Risk factors associated with age at onset of Parkinson's disease in the UK Biobank. NPJ Parkinsons Dis 2024; 10:3. [PMID: 38167894 PMCID: PMC10762149 DOI: 10.1038/s41531-023-00623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Substantial evidence shown that the age at onset (AAO) of Parkinson's disease (PD) is a major determinant of clinical heterogeneity. However, the mechanisms underlying heterogeneity in the AAO remain unclear. To investigate the risk factors with the AAO of PD, a total of 3156 patients with PD from the UK Biobank were included in this study. We evaluated the effects of polygenic risk scores (PRS), nongenetic risk factors, and their interaction on the AAO using Mann-Whitney U tests and regression analyses. We further identified the genes interacting with nongenetic risk factors for the AAO using genome-wide environment interaction studies. We newly found physical activity (P < 0.0001) was positively associated with AAO and excessive daytime sleepiness (P < 0.0001) was negatively associated with AAO, and reproduced the positive associations of smoking and non-steroidal anti-inflammatory drug intake and the negative association of family history with AAO. In the dose-dependent analyses, smoking duration (P = 1.95 × 10-6), coffee consumption (P = 0.0150), and tea consumption (P = 0.0008) were positively associated with AAO. Individuals with higher PRS had younger AAO (P = 3.91 × 10-5). In addition, we observed a significant interaction between the PRS and smoking for AAO (P = 0.0316). Specifically, several genes, including ANGPT1 (P = 7.17 × 10-7) and PLEKHA6 (P = 4.87 × 10-6), may influence the positive relationship between smoking and AAO. Our data suggests that genetic and nongenetic risk factors are associated with the AAO of PD and that there is an interaction between the two.
Collapse
Affiliation(s)
- Yuanfeng Huang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Qian Chen
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zheng Wang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yijing Wang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, Hunan, China
| | - Qiao Zhou
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
| | - Guihu Zhao
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Beisha Tang
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China
| | - Bin Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Jinchen Li
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Bioinformatics Center, Xiangya Hospital & Furong Laboratory, Central South University, Changsha 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
9
|
Ferenczi S, Mogor F, Takacs P, Kovacs T, Toth VE, Varga ZV, Kovács K, Lohinai Z, Vass KC, Nagy N, Dora D. Depletion of muscularis macrophages ameliorates inflammation-driven dysmotility in murine colitis model. Sci Rep 2023; 13:22451. [PMID: 38105266 PMCID: PMC10725888 DOI: 10.1038/s41598-023-50059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023] Open
Abstract
Previously, the presence of a blood-myenteric plexus barrier and its disruption was reported in experimentally induced colitis via a macrophage-dependent process. The aim of this study is to reveal how myenteric barrier disruption and subsequent neuronal injury affects gut motility in vivo in a murine colitis model. We induced colitis with dextran sulfate sodium (DSS), with the co-administration of liposome-encapsulated clodronate (L-clodronate) to simultaneously deplete blood monocytes contributing to macrophage infiltration in the inflamed muscularis of experimental mice. DSS-treated animals receiving concurrent L-clodronate injection showed significantly decreased blood monocyte numbers and colon muscularis macrophage (MM) density compared to DSS-treated control (DSS-vehicle). DSS-clodronate-treated mice exhibited significantly slower whole gut transit time than DSS-vehicle-treated animals and comparable to that of controls. Experiments with oral gavage-fed Evans-blue dye showed similar whole gut transit times in DSS-clodronate-treated mice as in control animals. Furthermore, qPCR-analysis and immunofluorescence on colon muscularis samples revealed that factors associated with neuroinflammation and neurodegeneration, including Bax1, Hdac4, IL-18, Casp8 and Hif1a are overexpressed after DSS-treatment, but not in the case of concurrent L-clodronate administration. Our findings highlight that MM-infiltration in the muscularis layer is responsible for colitis-associated dysmotility and enteric neuronal dysfunction along with the release of mediators associated with neurodegeneration in a murine experimental model.
Collapse
Affiliation(s)
- Szilamér Ferenczi
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Fruzsina Mogor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
| | - Tamas Kovacs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Viktoria E Toth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Krisztina Kovács
- Institute of Experimental Medicine, Laboratory of Molecular Neuroendocrinology, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Koppány Csaba Vass
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzolto St. 58, Budapest, 1094, Hungary.
| |
Collapse
|
10
|
Liu LL, Han Y, Zhang ZJ, Wang YQ, Hu YW, Kaznacheyeva E, Ding JQ, Guo DK, Wang GH, Li B, Ren HG. Loss of DJ-1 function contributes to Parkinson's disease pathogenesis in mice via RACK1-mediated PKC activation and MAO-B upregulation. Acta Pharmacol Sin 2023; 44:1948-1961. [PMID: 37225849 PMCID: PMC10545772 DOI: 10.1038/s41401-023-01104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.
Collapse
Affiliation(s)
- Le-le Liu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yu Han
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zi-Jia Zhang
- Qingdao Municipal Hospital of Shandong Province, Qingdao, 266011, China
| | - Yi-Qi Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yu-Wei Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - Jian-Qing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dong-Kai Guo
- Laboratory of Clinical Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, China.
| | - Hai-Gang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
11
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
12
|
Su S, Chen M, Wu Y, Lin Q, Wang D, Sun J, Hai J. Fecal microbiota transplantation and short-chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion. CNS Neurosci Ther 2023; 29 Suppl 1:98-114. [PMID: 36627762 PMCID: PMC10314111 DOI: 10.1111/cns.14089] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023] Open
Abstract
AIMS Clear roles and mechanisms in explaining gut microbial dysbiosis and microbial metabolites short-chain fatty acids (SCFAs) alterations in chronic cerebral ischemic pathogenesis have yet to be explored. In this study, we investigated chronic cerebral hypoperfusion (CCH)-induced gut microbiota and metabolic profiles of SCFAs as well as the effects and mechanisms of fecal microbiota transplantation (FMT) and SCFAs treatment on CCH-induced hippocampal neuronal injury. METHODS Bilateral common carotid artery occlusion (BCCAo) was used to establish the CCH model. Gut microbiota and SCFAs profiles in feces and hippocampus were evaluated by 16S ribosomal RNA sequencing and gas chromatography-mass spectrometry. RNA sequencing analysis was performed in hippocampal tissues. The potential molecular pathways and differential genes were verified through western blot, immunoprecipitation, immunofluorescence, and ELISA. Cognitive function was assessed via the Morris water maze test. Ultrastructures of mitochondria and synapses were tested through a transmission electron microscope. RESULTS Chronic cerebral hypoperfusion induced decreased fecal acetic and propionic acid and reduced hippocampal acetic acid, which were reversed after FMT and SCFAs administration by changing fecal microbial community structure and compositions. Furthermore, in the hippocampus, FMT and SCFAs replenishment exerted anti-neuroinflammatory effects through inhibiting microglial and astrocytic activation as well as switching microglial phenotype from M1 toward M2. Moreover, FMT and SCFAs treatment alleviated neuronal loss and microglia-mediated synaptic loss and maintained the normal process of synaptic vesicle fusion and release, resulting in the improvement of synaptic plasticity. In addition, FMT and SCFAs supplement prevented oxidative phosphorylation dysfunction via mitochondrial metabolic reprogramming. The above effects of FMT and SCFAs treatment led to the inhibition of CCH-induced cognitive impairment. CONCLUSION Our findings highlight FMT and SCFAs replenishment would be the feasible gut microbiota-based strategy to mitigate chronic cerebral ischemia-induced neuronal injury.
Collapse
Affiliation(s)
- Shao‐Hua Su
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ming Chen
- Department of Neurosurgery, Xinhua hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Yi‐Fang Wu
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Da‐Peng Wang
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jun Sun
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
13
|
Mice with double knockout of Egr-1 and RCAN1 exhibit reduced inflammation during Pseudomonas aeruginosa lung infection. Immunobiology 2023; 228:152377. [PMID: 36933529 DOI: 10.1016/j.imbio.2023.152377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Pseudomonas aeruginosa represents one of the major opportunistic pathogens, which causes nosocomial infections in immunocompromised individuals. The molecular mechanisms controlling the host immune response to P. aeruginosa infections are not completely understood. In our previous study, early growth response 1 (Egr-1) and regulator of calcineurin 1 (RCAN1) were found to positively and negatively regulate the inflammatory responses, respectively, during P. aeruginosa pulmonary infection, and both of them had an impact on activating NF-κB pathway. Herein, we examined the inflammatory responses of Egr-1/RCAN1 double knockout mice using a mouse model of P. aeruginosa acute pneumonia. As a result, the Egr-1/RCAN1 double knockout mice showed reduced production of proinflammatory cytokines (IL-1β, IL-6, TNF and MIP-2), diminished inflammatory cell infiltration and decreased mortality, which were similar to those of Egr-1-deficienct mice but different from those of RCAN1-deficient mice. In vitro studies demonstrated that Egr-1 mRNA transcription preceded RCAN1 isoform 4 (RCAN1.4) mRNA transcription in macrophages, and the macrophages with Egr-1 deficiency exhibited decreased RCAN1.4 mRNA levels upon P. aeruginosa LPS stimulation. Moreover, Egr-1/RCAN1 double-deficient macrophages had reduced NF-κB activation compared to RCAN1-deficient macrophages. Taken together, Egr-1 predominates over RCAN1 in regulating inflammation during P. aeruginosa acute lung infection, which influences RCAN1.4 gene expression.
Collapse
|
14
|
Huang Q, Chen C, Chen W, Cai C, Xing H, Li J, Li M, Ma S. Cell type- and region-specific translatomes in an MPTP mouse model of Parkinson's disease. Neurobiol Dis 2023; 180:106105. [PMID: 36977454 DOI: 10.1016/j.nbd.2023.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by the progressive loss of nigrostriatal dopaminergic neurons (DANs), involving the dysregulation of both neurons and glial cells. Cell type- and region-specific gene expression profiles can provide an effective source for revealing the mechanisms of PD. In this study, we adopted the RiboTag approach to obtain cell type (DAN, microglia, astrocytes)- and brain region (substantia nigra, caudate-putamen)-specific translatomes at an early stage in an MPTP-induced mouse model of PD. Through DAN-specific translatome analysis, the glycosphingolipid biosynthetic process was identified as a significantly downregulated pathway in the MPTP-treated mice. ST8Sia6, a key downregulated gene related to glycosphingolipid biosynthesis, was confirmed to be downregulated in nigral DANs from postmortem brains of patients with PD. Specific expression of ST8Sia6 in DANs exerts anti-inflammatory and neuroprotective effects in MPTP-treated mice. Through cell type (microglia vs. astrocyte) and brain region (substantia nigra vs. caudate-putamen) comparisons, nigral microglia showed the most intense immune responses. Microglia and astrocytes in the substantia nigra showed similar levels of activation in interferon-related pathways and interferon gamma (IFNG) was identified as the top upstream regulator in both cell types. This work highlights that the glycosphingolipid metabolism pathway in the DAN is involved in neuroinflammation and neurodegeneration in an MPTP mouse model of PD and provides a new data source for elucidating the pathogenesis of PD.
Collapse
|
15
|
Inhibition of the MAPK/c-Jun-EGR1 Pathway Decreases Photoreceptor Cell Death in the rd1 Mouse Model for Inherited Retinal Degeneration. Int J Mol Sci 2022; 23:ijms232314600. [PMID: 36498926 PMCID: PMC9740268 DOI: 10.3390/ijms232314600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies that typically results in photoreceptor cell death and vision loss. Here, we explored the effect of early growth response-1 (EGR1) expression on photoreceptor cell death in Pde6brd1 (rd1) mice and its mechanism of action. To this end, single-cell RNA-seq (scRNA-seq) was used to identify differentially expressed genes in rd1 and congenic wild-type (WT) mice. Chromatin immunoprecipitation (ChIP), the dual-luciferase reporter gene assay, and western blotting were used to verify the relationship between EGR1 and poly (ADP-ribose) polymerase-1 (PARP1). Immunofluorescence staining was used to assess PARP1 expression after silencing or overexpression of EGR1. Photoreceptor cell death was assessed using the TUNEL assay following silencing/overexpression of EGR1 or administration of MAPK/c-Jun pathway inhibitors tanzisertib and PD98059. Our results showed differential expression of ERG1 in rd1 and WT mice via scRNA-seq analysis. The ChIP assay demonstrated EGR1 binding to the PARP1 promoter region. The dual-luciferase reporter gene assay and western blotting results revealed that EGR1 upregulated PARP1 expression. Additionally, the TUNEL assay showed that silencing EGR1 effectively reduced photoreceptor cell death. Similarly, the addition of tanzisertib and PD98059 reduced the expression of c-Jun and EGR1 and decreased photoreceptor cell death. Our study revealed that inhibition of the MAPK/c-Jun pathway reduced the expression of EGR1 and PARP1 and prevented photoreceptor cell death. These results highlight the importance of EGR1 for photoreceptor cell death and identify a new avenue for therapeutic interventions in RP.
Collapse
|
16
|
The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals (Basel) 2022; 15:ph15070811. [PMID: 35890110 PMCID: PMC9315906 DOI: 10.3390/ph15070811] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson’s disease (PD) is a prevalent neurodegenerative aging disorder that manifests as motor and non-motor symptoms, and its etiopathogenesis is influenced by non-coding RNAs (ncRNAs). Signal pathway and gene sequence studies have proposed that alteration of ncRNAs is relevant to the occurrence and development of PD. Furthermore, many studies on brain tissues and body fluids from patients with PD indicate that variations in ncRNAs and their target genes could trigger or exacerbate neurodegenerative pathogenesis and serve as potential non-invasive biomarkers of PD. Numerous ncRNAs have been considered regulators of apoptosis, α-syn misfolding and aggregation, mitochondrial dysfunction, autophagy, and neuroinflammation in PD etiology, and evidence is mounting for the determination of the role of competing endogenous RNA (ceRNA) mechanisms in disease development. In this review, we discuss the current knowledge regarding the regulation and function of ncRNAs as well as ceRNA networks in PD pathogenesis, focusing on microRNAs, long ncRNAs, and circular RNAs to increase the understanding of the disease and propose potential target identification and treatment in the early stages of PD.
Collapse
|
17
|
Chou PC, Liu CM, Weng CH, Yang KC, Cheng ML, Lin YC, Yang RB, Shyu BC, Shyue SK, Liu JD, Chen SP, Hsiao M, Hu YF. Fibroblasts Drive Metabolic Reprogramming in Pacemaker Cardiomyocytes. Circ Res 2022; 131:6-20. [PMID: 35611699 DOI: 10.1161/circresaha.121.320301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The sinoatrial node (SAN) is characterized by the microenvironment of pacemaker cardiomyocytes (PCs) encased with fibroblasts. An altered microenvironment leads to rhythm failure. Operable cell or tissue models are either generally lacking or difficult to handle. The biological process behind the milieu of SANs to evoke pacemaker rhythm is unknown. We explored how fibroblasts interact with PCs and regulate metabolic reprogramming and rhythmic activity in the SAN. METHODS Tbx18 (T-box transcription factor 18)-induced PCs and fibroblasts were used for cocultures and engineered tissues, which were used as the in vitro models to explore how fibroblasts regulate the functional integrity of SANs. RNA-sequencing, metabolomics, and cellular and molecular techniques were applied to characterize the molecular signals underlying metabolic reprogramming and identify its critical regulators. These pathways were further validated in vivo in rodents and induced human pluripotent stem cell-derived cardiomyocytes. RESULTS We observed that rhythmicity in Tbx18-induced PCs was regulated by aerobic glycolysis. Fibroblasts critically activated metabolic reprogramming and aerobic glycolysis within PCs, and, therefore, regulated pacemaker activity in PCs. The metabolic reprogramming was attributed to the exclusive induction of Aldoc (aldolase c) within PCs after fibroblast-PC integration. Fibroblasts activated the integrin-dependent mitogen-activated protein kinase-E2F1 signal through cell-cell contact and turned on Aldoc expression in PCs. Interruption of fibroblast-PC interaction or Aldoc knockdown nullified electrical activity. Engineered Tbx18-PC tissue sheets were generated to recapitulate the microenvironment within SANs. Aldoc-driven rhythmic machinery could be replicated within tissue sheets. Similar machinery was faithfully validated in de novo PCs of adult mice and rats, and in human PCs derived from induced pluripotent stem cells. CONCLUSIONS Fibroblasts drive Aldoc-mediated metabolic reprogramming and rhythmic regulation in SANs. This work details the cellular machinery behind the complex milieu of vertebrate SANs and opens a new direction for future therapy.
Collapse
Affiliation(s)
- Pei-Chun Chou
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Chih-Min Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (C.-M.L., Y.-F.H.)
| | - Ching-Hui Weng
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Kai-Chien Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei (K.-C.Y.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan (M.-L.C.)
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan (Y.-C.L.)
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Jin-Dian Liu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.)
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan. (S.-P.C.)
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan (M.H.)
| | - Yu-Feng Hu
- Division of Cardiology, Department of Medicine, Heart Rhythm Center, Taipei Veterans General Hospital, Taiwan. (P.-C.C., C.-M.L., C.-H.W., J.-D.L., Y.-F.H.).,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (P.-C.C., C.-H.W., K.-C.Y., Y.-C.L., R.-B.Y., B.-C.S., S.-K.S., J.-D.L., Y.-F.H.).,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan (C.-M.L., Y.-F.H.)
| |
Collapse
|
18
|
Chen W, Zheng Q, Huang Q, Ma S, Li M. Repressing PTBP1 fails to convert reactive astrocytes to dopaminergic neurons in a 6-hydroxydopamine mouse model of Parkinson's disease. eLife 2022; 11:e75636. [PMID: 35535997 PMCID: PMC9208759 DOI: 10.7554/elife.75636] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Lineage reprogramming of resident glial cells to dopaminergic neurons (DAns) is an attractive prospect of the cell-replacement therapy for Parkinson's disease (PD). However, it is unclear whether repressing polypyrimidine tract binding protein 1 (PTBP1) could efficiently convert astrocyte to DAns in the substantia nigra and striatum. Although reporter-positive DAns were observed in both groups after delivering the adeno-associated virus (AAV) expressing a reporter with shRNA or CRISPR-CasRx to repress astroglial PTBP1, the possibility of AAV leaking into endogenous DAns could not be excluded without using a reliable lineage-tracing method. By adopting stringent lineage-tracing strategy, two other studies show that either knockdown or genetic deletion of quiescent astroglial PTBP1 fails to obtain induced DAns under physiological condition. However, the role of reactive astrocytes might be underestimated because upon brain injury, reactive astrocyte can acquire certain stem cell hallmarks that may facilitate the lineage conversion process. Therefore, whether reactive astrocytes could be genuinely converted to DAns after PTBP1 repression in a PD model needs further validation. In this study, we used Aldh1l1-CreERT2-mediated specific astrocyte-lineage-tracing method to investigate whether reactive astrocytes could be converted to DAns in a 6-hydroxydopamine (6-OHDA) mouse model of PD. However, we found that no astrocyte-originated DAn was generated after effective and persistent knockdown of astroglial PTBP1 either in the substantia nigra or in striatum, while AAV 'leakage' to nearby neurons was easily observed. Our results confirm that repressing PTBP1 does not convert astrocytes to DAns, regardless of physiological or PD-related pathological conditions.
Collapse
Affiliation(s)
- Weizhao Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| | - Qiongping Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Pereira MCL, Boese AC, Murad R, Yin J, Hamblin MH, Lee JP. Reduced dopaminergic neuron degeneration and global transcriptional changes in Parkinson's disease mouse brains engrafted with human neural stems during the early disease stage. Exp Neurol 2022; 352:114042. [PMID: 35271839 DOI: 10.1016/j.expneurol.2022.114042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Current stem cell therapies for Parkinson's disease (PD) focus on a neurorestorative approach that aims to repair the CNS during the symptomatic phase. However, the pleiotropic and supportive effects of human neural stem cells (hNSCs) may make them effective for PD treatment during the disease's earlier stages. In the current study, we investigated the therapeutic effects of transplanting hNSCs during the early stages of PD development when most dopaminergic neurons are still present and before symptoms appear. Previous studies on hNSCs in Parkinson's disease focus on the substantia nigra and its immediate surroundings, but other brain structures are affected in PD as well. Here, we investigated the therapeutic effects of hNSCs on the entire PD-afflicted brain transcriptome using RNA sequencing (RNA-seq). METHODS PD was induced with a single intranasal infusion of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and hNSCs were transplanted unilaterally into the striatum one week later. The timepoint for hNSC transplantation coincided with upregulation of endogenous proinflammatory cytokines in the CNS, which play a role in stem cell migration. At 3 weeks post-transplantation (4 weeks post-MPTP), we assessed motor symptoms through behavioral tests, quantified dopaminergic neurons in the substantia nigra, and performed global transcriptional profiling to understand the mechanism underlying the effect of hNSCs on dopaminergic neuron degeneration. RESULTS We found that early hNSC engraftment mitigated motor symptoms induced by MPTP, and also reduced MPTP-induced loss of dopaminergic neurons. In this study, we uniquely presented the first comprehensive analysis of the effect of hNSC transplantation on the transcriptional profiling of PD mouse brains showing decreased expression of 249 and increased expression of 200 genes. These include genes implicated in mitochondrial bioenergetics, proteostasis, and other signaling pathways associated with improved PD outcome following hNSC transplantation. CONCLUSION These findings indicate that NSC transplantation during the asymptomatic phase of PD may limit or halt the progression of this neurodegenerative disorder. Transcriptional profiling of hNSC-engrafted PD mouse brains provides mechanistic insight that could lead to novel approaches to ameliorating degeneration of dopaminergic neurons and improving behavioral dysfunction in PD.
Collapse
Affiliation(s)
- Marcia C L Pereira
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rabi Murad
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Milton H Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
20
|
Funatsu J, Murakami Y, Shimokawa S, Nakatake S, Fujiwara K, Okita A, Fukushima M, Shibata K, Yoshida N, Koyanagi Y, Akiyama M, Notomi S, Nakao S, Hisatomi T, Takeda A, Paschalis EI, Vavvas DG, Ikeda Y, Sonoda KH. Circulating inflammatory monocytes oppose microglia and contribute to cone cell death in retinitis pigmentosa. PNAS NEXUS 2022; 1. [PMID: 35529318 DOI: 10.1093/pnasnexus/pgac003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinitis pigmentosa (RP) is an intractable inherited disease that primarily affects the rods through gene mutations followed by secondary cone degeneration. This cone-related dysfunction can lead to impairment of daily life activities, and ultimately blindness in patients with RP. Paradoxically, microglial neuroinflammation contributes to both protection against and progression of RP, but it is unclear which population(s) - tissue-resident microglia and/or peripheral monocyte-derived macrophages (mφ) - are implicated in the progression of the disease. Here we show that circulating blood inflammatory monocytes (IMo) are key effector cells that mediate cone cell death in RP. Attenuation of IMo and peripherally engrafted mφ by Ccl2 deficiency or immune modulation via intravenous nano-particle treatment suppressed cone cell death in rd10 mice, an animal model of RP. In contrast, the depletion of resident microglia by a colony-stimulating factor 1 receptor inhibitor exacerbated cone cell death in the same model. In human patients with RP, IMo was increased and correlated with disease progression. These results suggest that peripheral IMo is a potential target to delay cone cell death and prevent blindness in RP.
Collapse
Affiliation(s)
- Jun Funatsu
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shotaro Shimokawa
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shunji Nakatake
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ayako Okita
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Kensuke Shibata
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Genomics and Molecular Analysis, Yamaguchi University School of Medicine, Yamaguchi 755-8505, Japan
| | - Noriko Yoshida
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Ophthalmology, Fukuoka Dental College Medical and Dental Hospital, Fukuoka 814-0193, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Ocular Pathology and Imaging Science, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Chikushi Hospital, Fukuoka University, Fukuoka 818-8502, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Eleftherios I Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Boston Keratoprosthesis Laboratory, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Disruptive Technology Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.,Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.,Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
21
|
Ma J, Shi X, Li M, Chen S, Gu Q, Zheng J, Li D, Wu S, Yang H, Li X. MicroRNA-181a-2-3p shuttled by mesenchymal stem cell-secreted extracellular vesicles inhibits oxidative stress in Parkinson's disease by inhibiting EGR1 and NOX4. Cell Death Discov 2022; 8:33. [PMID: 35075150 PMCID: PMC8786891 DOI: 10.1038/s41420-022-00823-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/10/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
The current study investigated the physiological mechanisms by which extracellular vesicle (EV)-encapsulated miR-181a-2-3p derived from mesenchymal stem cells (MSCs) might mediate oxidative stress (OS) in Parkinson's disease (PD). First, 6-hydroxydopamine (6-OHDA)-induced PD cell and mouse models were established, after which miR-181a-2-3p, EGR1, and NOX4 expression patterns were determined in SH-SY5Y cells and substantia nigra (SN) of PD mice. Next, the binding affinity among miR-181a-2-3p, EGR1, and NOX4 was identified using multiple assays. Gain- or loss-of-function experiments were further adopted to detect SH-SY5Y cell proliferation and apoptosis and to measure the levels of SOD, MDA, and ROS. Finally, the effects of miR-181a-2-3p from MSC-derived EVs in PD mouse models were also explored. It was found that miR-181a-2-3p was poorly expressed in 6-OHDA-induced SH-SY5Y cells, whereas miR-181a-2-3p from MSCs could be transferred into SH-SY5Y cells via EVs. In addition, miR-181a-2-3p could target and inhibit EGR1, which promoted the expression of NOX4. The aforementioned miR-181a-2-3p shuttled by MSC-derived EVs facilitated SH-SY5Y proliferation and SOD levels, but suppressed apoptosis and MDA and ROS levels by regulating EGR1 via inhibition of NOX4/p38 MAPK, so as to repress OS of PD. Furthermore, in PD mice, miR-181a-2-3p was carried by EVs from MSCs to alleviate apoptosis of dopamine neurons and OS, accompanied by increased expressions of α-syn and decreased 4-HNE in SN tissues. Collectively, our findings revealed that MSC-derived EV-loaded miR-181a-2-3p downregulated EGR1 to inhibit OS via the NOX4/p38 MAPK axis in PD.
Collapse
Affiliation(s)
- Jianjun Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China.
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, 450003, P. R. China.
- Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, P. R. China.
| | - Xiaoxue Shi
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, 450003, P. R. China
| | - Mingjian Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, P. R. China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, P. R. China
| | - Qi Gu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, P. R. China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, P. R. China
| | - Dongsheng Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, P. R. China
| | - Shaopu Wu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, P. R. China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, P. R. China
| | - Xue Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, 450003, P. R. China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, 450003, P. R. China
| |
Collapse
|
22
|
Li S, Bi G, Han S, Huang R. MicroRNAs Play a Role in Parkinson’s Disease by Regulating Microglia Function: From Pathogenetic Involvement to Therapeutic Potential. Front Mol Neurosci 2022; 14:744942. [PMID: 35126050 PMCID: PMC8814625 DOI: 10.3389/fnmol.2021.744942] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease (PD) is a clinically common neurodegenerative disease of the central nervous system (CNS) characterized by loss of dopamine neurons in the substantia nigra. Microglia (MG), as an innate immune cell in the CNS, are involved in a variety of immunity and inflammatory responses in the CNS. A number of studies have shown that the overactivation of MG is one of the critical pathophysiological mechanisms underlying PD. MicroRNAs (miRNAs) are considered to be an important class of gene expression regulators and are involved in a variety of physiological and pathological mechanisms, including immunity and inflammation. In addition, miRNAs can affect the progress of PD by regulating the expression of various MG genes and the polarization state of the MG. Here, we summarize recent articles and describe the important role of MG pathological polarization in the progression of PD, the diverse mechanisms responsible for how miRNAs regulate MG, and the potential therapeutic prospects of miRNAs for PD. We also propose that the regulation of miRNAs may be a novel protective approach against the pathogenesis of PD.
Collapse
Affiliation(s)
- Silu Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guorong Bi
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shunchang Han
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Rui Huang,
| |
Collapse
|
23
|
Zhou T, Zhang M, Xie Y, Chen Y, Peng S, Jing X, Lei M, Tao E, Liang Y. Effects of miRNAs in exosomes derived from α-synuclein overexpressing SH-SY5Y cells on autophagy and inflammation of microglia. Cell Signal 2021; 89:110179. [PMID: 34715309 DOI: 10.1016/j.cellsig.2021.110179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/27/2022]
Abstract
Our previous study has revealed that GFP-α-synuclein overexpressing SH-SY5Y cells-derived exosomes (GFP-SNCA Exo) decrease autophagy in microglia via their load of miRNAs. However, it is unclear whether GFP-SNCA Exo can affect microglial inflammation via modulation of autophagy. In order to investigate the effects of miRNAs carried by GFP-SNCA Exo on autophagy and inflammation of microglia. SH-SY5Y cells were transfected with lentivirus expressing α-synuclein and then their exosomes were collected. Western blot and laser confocal images showed that α-synuclein transferred between SH-SY5Y cells and microglia through exosomes. Differentially expressed miRNAs between GFP-SNCA Exo and the vector exosomes were detected by microarray analysis. After bioinformatics analysis of the differentially expressed miRNAs, we found that their target genes were enriched in the MAPK and autophagy-associated signaling pathway. The expression of P62, p-JNK/JNK, and p-ERK/ERK and the release of IL-6 significantly increased whereas LC3 II/I decreased in microglia exposed to GFP-SNCA Exo for 48 h when compared to the control group. But rapamycin could reverse the increasing expression of p-JNK/JNK, p-ERK/ERK and the release of IL-6 induced by GFP-SNCA Exo. Dual immunofluorescence staining for LC3B and LAMP1 showed that the fluorescence density of LC3B decreased and the fluorescence of LC3B and LAMP1 were not co-located in microglia after 48 h co-culture with GFP-SNCA Exo compared with the control group, which indicated that these exosomes decreased autophagy and impaired the autophagy flux in recipient microglia. Taken together, our results indicate that GFP-SNCA Exo activate the MAPK signaling pathway and inflammation by decreasing autophagy in microglia.
Collapse
Affiliation(s)
- Tianen Zhou
- Department of Emergency, The First People's Hospital of Foshan, Foshan 528000, China
| | - Meng Zhang
- Department of General Practice, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yingyu Xie
- Department of Neurology, Shantou Central Hospital, Shantou 515000, China
| | - Ying Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Sudan Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiuna Jing
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ming Lei
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Enxiang Tao
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| | - Yanran Liang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
24
|
Comparative Transcriptome Analysis in Monocyte-Derived Macrophages of Asymptomatic GBA Mutation Carriers and Patients with GBA-Associated Parkinson's Disease. Genes (Basel) 2021; 12:genes12101545. [PMID: 34680941 PMCID: PMC8535749 DOI: 10.3390/genes12101545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations of the GBA gene, encoding for lysosomal enzyme glucocerebrosidase (GCase), are the greatest genetic risk factor for Parkinson’s disease (PD) with frequency between 5% and 20% across the world. N370S and L444P are the two most common mutations in the GBA gene. PD carriers of severe mutation L444P in the GBA gene is characterized by the earlier age at onset compared to N370S. Not every carrier of GBA mutations develop PD during one’s lifetime. In the current study we aimed to find common gene expression signatures in PD associated with mutation in the GBA gene (GBA-PD) using RNA-seq. We compared transcriptome of monocyte-derived macrophages of 5 patients with GBA-PD (4 L444P/N, 1 N370S/N) and 4 asymptomatic GBA mutation carriers (GBA-carriers) (3 L444P/N, 1 N370S/N) and 4 controls. We also conducted comparative transcriptome analysis for L444P/N only GBA-PD patients and GBA-carriers. Revealed deregulated genes in GBA-PD independently of GBA mutations (L444P or N370S) were involved in immune response, neuronal function. We found upregulated pathway associated with zinc metabolism in L444P/N GBA-PD patients. The potential important role of DUSP1 in the pathogenesis of GBA-PD was suggested.
Collapse
|
25
|
Hanas JS, Hocker JRS, Vannarath CA, Lerner MR, Blair SG, Lightfoot SA, Hanas RJ, Couch JR, Hershey LA. Distinguishing Alzheimer's Disease Patients and Biochemical Phenotype Analysis Using a Novel Serum Profiling Platform: Potential Involvement of the VWF/ADAMTS13 Axis. Brain Sci 2021; 11:brainsci11050583. [PMID: 33946285 PMCID: PMC8145311 DOI: 10.3390/brainsci11050583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
It is important to develop minimally invasive biomarker platforms to help in the identification and monitoring of patients with Alzheimer's disease (AD). Assisting in the understanding of biochemical mechanisms as well as identifying potential novel biomarkers and therapeutic targets would be an added benefit of such platforms. This study utilizes a simplified and novel serum profiling platform, using mass spectrometry (MS), to help distinguish AD patient groups (mild and moderate) and controls, as well as to aid in understanding of biochemical phenotypes and possible disease development. A comparison of discriminating sera mass peaks between AD patients and control individuals was performed using leave one [serum sample] out cross validation (LOOCV) combined with a novel peak classification valuation (PCV) procedure. LOOCV/PCV was able to distinguish significant sera mass peak differences between a group of mild AD patients and control individuals with a p value of 10-13. This value became non-significant (p = 0.09) when the same sera samples were randomly allocated between the two groups and reanalyzed by LOOCV/PCV. This is indicative of physiological group differences in the original true-pathology binary group comparison. Similarities and differences between AD patients and traumatic brain injury (TBI) patients were also discernable using this novel LOOCV/PCV platform. MS/MS peptide analysis was performed on serum mass peaks comparing mild AD patients with control individuals. Bioinformatics analysis suggested that cell pathways/biochemical phenotypes affected in AD include those involving neuronal cell death, vasculature, neurogenesis, and AD/dementia/amyloidosis. Inflammation, autoimmunity, autophagy, and blood-brain barrier pathways also appear to be relevant to AD. An impaired VWF/ADAMTS13 vasculature axis with connections to F8 (factor VIII) and LRP1 and NOTCH1 was indicated and is proposed to be important in AD development.
Collapse
Affiliation(s)
- Jay S. Hanas
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.R.L.); (S.G.B.)
- Veterans Administration Hospital, Oklahoma City, OK 73104, USA;
- Correspondence:
| | - James R. S. Hocker
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
| | - Christian A. Vannarath
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
| | - Megan R. Lerner
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.R.L.); (S.G.B.)
| | - Scott G. Blair
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (M.R.L.); (S.G.B.)
| | | | - Rushie J. Hanas
- Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.S.H.); (C.A.V.); (R.J.H.)
| | - James R. Couch
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.C.); (L.A.H.)
| | - Linda A. Hershey
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (J.R.C.); (L.A.H.)
| |
Collapse
|
26
|
Maia J, Otake AH, Poças J, Carvalho AS, Beck HC, Magalhães A, Matthiesen R, Strano Moraes MC, Costa-Silva B. Transcriptome Reprogramming of CD11b + Bone Marrow Cells by Pancreatic Cancer Extracellular Vesicles. Front Cell Dev Biol 2020; 8:592518. [PMID: 33330473 PMCID: PMC7729189 DOI: 10.3389/fcell.2020.592518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancers (PC) are highly metastatic with poor prognosis, mainly due to delayed detection. We previously showed that PC-derived extracellular vesicles (EVs) act on macrophages residing in the liver, eliciting extracellular matrix remodeling in this organ and marked hepatic accumulation of CD11b+ bone marrow (BM) cells, which support PC liver metastasis. We here show that PC-EVs also bind to CD11b+ BM cells and induce the expansion of this cell population. Transcriptomic characterization of these cells shows that PC-EVs upregulate IgG and IgA genes, which have been linked to the presence of monocytes/macrophages in tumor microenvironments. We also report here the transcriptional downregulation of genes linked to monocyte/macrophage activation, trafficking, and expression of inflammatory molecules. Together, these results show for the first time the existence of a PC-BM communication axis mediated by EVs with a potential role in PC tumor microenvironments.
Collapse
Affiliation(s)
- Joana Maia
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Andreia Hanada Otake
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Juliana Poças
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Ana Magalhães
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP – Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciencias Medicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
27
|
Karthikkeyan G, Najar MA, Pervaje R, Pervaje SK, Modi PK, Prasad TSK. Identification of Molecular Network Associated with Neuroprotective Effects of Yashtimadhu ( Glycyrrhiza glabra L.) by Quantitative Proteomics of Rotenone-Induced Parkinson's Disease Model. ACS OMEGA 2020; 5:26611-26625. [PMID: 33110989 PMCID: PMC7581237 DOI: 10.1021/acsomega.0c03420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 05/04/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder, whose treatment with modern therapeutics leads to a plethora of side effects with prolonged usage. Therefore, the management of PD with complementary and alternative medicine is often pursued. In the Ayurveda system of alternative medicine, Yashtimadhu choorna, a Medhya Rasayana (nootropic), prepared from the dried roots of Glycyrrhiza glabra L. (licorice), is prescribed for the management of PD with a favorable outcome. We pursued to understand the neuroprotective effects of Yashtimadhu choorna against a rotenone-induced cellular model of PD using differentiated IMR-32 cells. Cotreatment with Yashtimadhu choorna extract rescued rotenone-induced apoptosis and hyperphosphorylation of ERK-1/2. Quantitative proteomic analysis of six peptide fractions from independent biological replicates acquired 1,561,169 mass spectra, which when searched resulted in 565,008 peptide-spectrum matches mapping to 30,554 unique peptides that belonged to 4864 human proteins. Proteins commonly identified in biological replicates and >4 PSMs were considered for further analysis, leading to a refined set of 3720 proteins. Rotenone treatment differentially altered 144 proteins (fold ≥1.25 or ≤0.8), involved in mitochondrial, endoplasmic reticulum, and autophagy functions. Cotreatment with Yashtimadhu choorna extract rescued 84 proteins from the effect of rotenone and an additional regulation of 4 proteins. Network analysis highlighted the interaction of proteins and pathways regulated by them, which can be targeted for neuroprotection. Validation of proteomics data highlighted that Yashtimadhu confers neuroprotection by preventing mitochondrial oxidative stress and apoptosis. This discovery will pave the way for understanding the molecular action of Ayurveda drugs and developing novel therapeutics for PD.
Collapse
Affiliation(s)
- Gayathree Karthikkeyan
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Mohd. Altaf Najar
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | | | - Prashant Kumar Modi
- Center
for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | |
Collapse
|
28
|
Provenzano F, Pérez MJ, Deleidi M. Redefining Microglial Identity in Health and Disease at Single-Cell Resolution. Trends Mol Med 2020; 27:47-59. [PMID: 33008729 DOI: 10.1016/j.molmed.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
Microglia have long been considered a homogenous cell population that uniformly responds to extrinsic factors. Here, we describe how the recent development of single-cell technologies has revealed the heterogeneity of both human and mouse microglia and identified distinct microglial states linked to specific developmental, aging, and disease stages. We discuss progress and future developments in data analysis, essential tools for the comprehension of big data derived from single-cell omics, and the necessity of integrating such data with functional studies to correlate genetic cues with the relevant biological functions of microglia. Defining the functional correlates of distinct microglia states is fundamental to dissecting the 'microglial etiology' of aging and complex neurological diseases and identifying novel therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Francesca Provenzano
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - María José Pérez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Simmnacher K, Krach F, Schneider Y, Alecu JE, Mautner L, Klein P, Roybon L, Prots I, Xiang W, Winner B. Unique signatures of stress-induced senescent human astrocytes. Exp Neurol 2020; 334:113466. [PMID: 32949572 DOI: 10.1016/j.expneurol.2020.113466] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Senescence was recently linked to neurodegeneration and astrocytes are one of the major cell types to turn senescent under neurodegenerative conditions. Senescent astrocytes were detected in Parkinson's disease (PD) patients' brains besides reactive astrocytes, yet the difference between senescent and reactive astrocytes is unclear. We aimed to characterize senescent astrocytes in comparison to reactive astrocytes and investigate differences and similarities. In a cell culture model of human fetal astrocytes, we determined a unique senescent transcriptome distinct from reactive astrocytes, which comprises dysregulated pathways. Both, senescent and reactive human astrocytes activated a proinflammatory pattern. Astrocyte senescence was at least partially depending on active mechanistic-target-of-rapamycin (mTOR) and DNA-damage response signaling, both drivers of senescence. To further investigate how PD and senescence connect to each other, we asked if a PD-linked environmental factor induces senescence and if senescence impairs midbrain neurons. We could show that the PD-linked pesticide rotenone causes astrocyte senescence. We further delineate, that the senescent secretome exaggerates rotenone-induced neurodegeneration in midbrain neurons differentiated from human induced pluripotent stem cells (hiPSC) of PD patients with alpha-synuclein gene (SNCA) locus duplication.
Collapse
Affiliation(s)
- Katrin Simmnacher
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yanni Schneider
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julian E Alecu
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lena Mautner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Paulina Klein
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, MultiPark and Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184 Lund, Sweden
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
30
|
USP1 inhibitor ML323 enhances osteogenic potential of human dental pulp stem cells. Biochem Biophys Res Commun 2020; 530:418-424. [PMID: 32546349 DOI: 10.1016/j.bbrc.2020.05.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/14/2020] [Indexed: 12/17/2022]
Abstract
LIM homeobox 8 (LHX8) is expressed during embryonic development of craniofacial tissues, including bone and teeth. In a previous study, the overexpression of LHX8 inhibited osteodifferentiation of human dental pulp stem cells (DPSCs). In this study, a cDNA microarray analysis was performed to reveal the molecular changes which occur in response to LHX8 overexpression in DPSCs and discover possible targets for an osteoinductive agent. There were 345 differentially expressed genes (DEGs) in response to osteoinductive signaling and 53 DEGs in response to LHX8 overexpression and osteoinductive signaling, respectively. Thirty-eight genes were common in both conditions, and among these, genes upregulated in LHX8 DPSCs but downregulated in osteodifferentiated DPSCs were chosen. Five of them had commercial inhibitors available. Among the tested inhibitors, ML323, which target DNA-binding protein inhibitor ID-1, promoted osteodifferentiation of DPSCs. In conclusion, inhibition of ID-1 led to increased osteogenesis of human DPSCs.
Collapse
|
31
|
Li J, Ma S, Chen J, Hu K, Li Y, Zhang Z, Su Z, Woodgett JR, Li M, Huang Q. GSK-3β Contributes to Parkinsonian Dopaminergic Neuron Death: Evidence From Conditional Knockout Mice and Tideglusib. Front Mol Neurosci 2020; 13:81. [PMID: 32581704 PMCID: PMC7283909 DOI: 10.3389/fnmol.2020.00081] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) dysregulation has been implicated in nigral dopaminergic neurodegeneration, one of the main pathological features of Parkinson’s disease (PD). The two isoforms, GSK-3α and GSK-3β, have both been suggested to play a detrimental role in neuronal death. To date, several studies have focused on the role of GSK-3β on PD pathogenesis, while the role of GSK-3α has been largely overlooked. Here, we report in situ observations that both GSK-3α and GSK-3β are dephosphorylated at a negatively acting regulatory serine, indicating kinase activation, selectively in nigral dopaminergic neurons following exposure of mice to 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP). To identify whether GSK-3α and GSK-3β display functional redundancy in regulating parkinsonian dopaminergic cell death, we analysed dopaminergic neuron-specific Gsk3a null (Gsk3aΔDat) and Gsk3b null (Gsk3bΔDat) mice, respectively. We found that Gsk3bΔDat, but not Gsk3aΔDat, showed significant resistance to MPTP insult, revealing non-redundancy of GSK-3α and GSK-3β in PD pathogenesis. In addition, we tested the neuroprotective effect of tideglusib, the most clinically advanced inhibitor of GSK-3, in the MPTP model of PD. Administration of higher doses (200 mg/kg and 500 mg/kg) of tideglusib exhibited significant neuroprotection, whereas 50 mg/kg tideglusib failed to prevent dopaminergic neurodegeneration from MPTP toxicity. Administration of 200 mg/kg tideglusib improved motor symptoms of MPTP-treated mice. Together, these data demonstrate GSK-3β and not GSK-3α is critical for parkinsonian neurodegeneration. Our data support the view that GSK-3β acts as a potential therapeutic target in PD and tideglusib would be a candidate drug for PD neuroprotective therapy.
Collapse
Affiliation(s)
- Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongyi Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zeyu Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zixiang Su
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Transcription factor early growth response-1 plays an oncogenic role in salivary gland pleomorphic adenoma. Biotechnol Lett 2019; 42:197-207. [PMID: 31786685 DOI: 10.1007/s10529-019-02776-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/24/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Although abnormal expression of early growth response-1 (Egr1) has been revealed in various human solid tumors, the functions and potential mechanisms of Egr1 in the progression of salivary gland pleomorphic adenoma (SGPA) are not entirely understood. RESULTS An elevated expression of Egr1 was observed both in the human salivary gland pleomorphic adenoma tissues and tumor-initiating cell (TIC) cells, when compared with control group. By loss-of-function assay, the proliferation and invasion capacities of TICs were inhibited, while the cell apoptosis was promoted, which were further evidenced by the protein expression analysis of several key apoptosis-related regulators. Furthermore, TICs with Mithramycin A (an Egr1 inhibitor) treatment achieved the same effects of endogenous Egr1 knockdown. CONCLUSIONS All these data collectively suggest that Egr1 act as an oncogenic factor in salivary gland pleomorphic adenoma, which may be a potential target for the treatment of SGPA.
Collapse
|
33
|
Sosthenes MCK, Diniz DG, Roodselaar J, Abadie-Guedes R, de Siqueira Mendes FDCC, Fernandes TN, Bittencourt JC, Diniz CWP, Anthony DC, Guedes RCA. Stereological Analysis of Early Gene Expression Using Egr-1 Immunolabeling After Spreading Depression in the Rat Somatosensory Cortex. Front Neurosci 2019; 13:1020. [PMID: 31607855 PMCID: PMC6774394 DOI: 10.3389/fnins.2019.01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Early growth response-1 (Egr-1), defined as a zinc finger transcription factor, is an upstream master switch of the inflammatory response, and its expression can be used to investigate the spatial and temporal extent of inflammatory changes in the brain. Cortical spreading depression (CSD) is characterized as a slowly propagating (2-5 mm/min) depolarization wave through neurons and astrocytes in humans that contributes to migraines and possibly to other brain pathologies. In rodents, CSD can be induced experimentally, which involves unilateral depolarization that is associated with microglial and astrocyte responses. The impact of CSD on structures beyond the affected hemisphere has not been explored. Here, we used an optical fractionator method to investigate potential correlations between the number of and period of the eletrophysiologic record of CSD phenomena and Egr-1 expression in ipsilateral and contralateral hemispheres. CSD was elicited by the restricted application of a 2% KCl solution over the left premotor cortex. Electrophysiological events were recorded using a pair of Ag/AgCl agar-Ringer electrodes for 2 or 6 h. An optical fractionator was applied to count the Egr-1 positive cells. We found that CSD increased Egr-1 expression in a time- and event-dependent manner in the ipsilateral/left hemisphere. Although CSD did not cross the midline, multiple CSD inductions were associated with an increased number of Egr-1 positive cells in the contralateral/right hemisphere. Thus, repeated CSD waves may have far reaching effects that are more global than previously considered possible. The mechanism of contralateral expression is unknown, but we speculate that callosal projections from the depolarized hemisphere may be related to this phenomenon.
Collapse
Affiliation(s)
- Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom.,Laboratório de Neuroanatomia Química, Departamento de Anatomia, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Jay Roodselaar
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Ricardo Abadie-Guedes
- Laboratório de Fisiologia da Nutrição Naíde Teodósio, Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| | - Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Curso de Medicina, Centro Universitário do Estado do Pará, Belém, Brazil
| | - Taiany Nogueira Fernandes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Jackson Cioni Bittencourt
- Laboratório de Neuroanatomia Química, Departamento de Anatomia, Universidade de São Paulo, São Paulo, Brazil.,Núcleo de Neurociências e Comportamento, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rubem Carlos Araújo Guedes
- Laboratório de Fisiologia da Nutrição Naíde Teodósio, Departamento de Nutrição, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
34
|
George G, Valiya Parambath S, Lokappa SB, Varkey J. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes. Gene 2019; 697:67-77. [DOI: 10.1016/j.gene.2019.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/12/2019] [Accepted: 02/01/2019] [Indexed: 12/31/2022]
|
35
|
Arige V, Agarwal A, Khan AA, Kalyani A, Natarajan B, Gupta V, Reddy SS, Barthwal MK, Mahapatra NR. Regulation of Monoamine Oxidase B Gene Expression: Key Roles for Transcription Factors Sp1, Egr1 and CREB, and microRNAs miR-300 and miR-1224. J Mol Biol 2019; 431:1127-1147. [PMID: 30738894 DOI: 10.1016/j.jmb.2019.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 11/15/2022]
Abstract
Monoamine oxidase B (MAO-B), a flavoenzyme located in the outer mitochondrial membrane, is involved in the catabolism of monoamines. Altered levels of MAO-B are associated with cardiovascular/neuronal diseases. However, molecular mechanisms of MAO-B gene regulation are partially understood. We undertook a systematic analysis of the MAO-B gene to identify the key transcriptional/post-transcriptional regulatory molecules. Expression of MAO-B promoter-reporter constructs in cultured cells identified the -144/+25-bp domain as the core promoter region. Stringent in silico analysis of this core promoter predicted binding sites for several transcription factors. Over-expression/down-regulation of transcription factors Sp1/Egr1/CREB increased/decreased the MAO-B promoter-reporter activity and endogenous MAO-B protein level. Electrophoretic mobility shift assays and ChIP assays provided evidence for interactions of Sp1/Egr1/CREB with the MAO-B promoter. MAOB transcript level also positively correlated with the transcript level of Sp1/Egr1/CREB in various human tissue samples. Computational predictions using multiple algorithms coupled with systematic functional analysis revealed direct interactions of the microRNAs miR-1224 and miR-300 with MAO-B 3'-UTR. Dopamine dose-dependently enhanced MAO-B transcript and protein levels via increased binding of CREB to MAO-B promoter and reduced miR-1224/miR-300 levels. 8-Bromo-cAMP and forskolin augmented MAO-B expression, whereas inhibition of PKA diminished the gene expression suggesting involvement of cAMP-PKA axis. Interestingly, Sp1/Egr1/CREB/miR-1224 levels correlate with MAO-B expression in rodent models of hypertension/MPTP-induced neurodegeneration, indicating their roles in governing MAO-B gene expression in these disease states. Taken together, this study elucidates the previously unknown roles of the transcription factors Sp1/Egr1/CREB and microRNAs miR-1224/miR-300 in regulating MAO-B gene expression under basal/disease states involving dysregulated catecholamine levels.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anshu Agarwal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Abrar A Khan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ananthamohan Kalyani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Bhargavi Natarajan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vinayak Gupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Santosh Reddy
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Manoj K Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
36
|
Jiao Z, Zhang W, Chen C, Zhu X, Chen X, Zhou M, Peng G, Liu H, Qiu J, Lin Y, Huang S, Mo M, Yang X, Qu S, Xu P. Gene Dysfunction Mediates Immune Response to Dopaminergic Degeneration in Parkinson's Disease. ACS Chem Neurosci 2019; 10:803-811. [PMID: 30289236 DOI: 10.1021/acschemneuro.8b00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many publications reported that genetic dysfunction mediates abnormal immune responses in the brain, which is important for the development of neurodegenerative diseases, especially for Parkinson's disease (PD). This immune disorder results in subsequent inflammatory reaction, which stimulates microglia or other immune cells to secrete cytokines and chemokines and disturbs the proportion of peripheral blood lymphocyte subsets contributing to dopaminergic (DA) neuron apoptosis. Furthermore, the abnormal immune related signal pathways caused by genetic variants promote chronic inflammation destroying the blood-brain barrier, which allows infiltration of different molecules and blood cells into the central nervous system (CNS) exerting toxicity on DA neurons. As a result, the inflammatory reaction in the CNS accelerates the progression of Parkinson's disease and promotes α-synuclein aggregation and diffusion among DA neurons in the procession of Parkinson's disease. Thus, for disease evaluation, the genetic mediated abnormal immune response in PD may be assessed based on the multiple immune molecules and inflammatory factors, as well as the ratio of lymphocyte subsets from PD patient's peripheral blood as potential biomarkers.
Collapse
Affiliation(s)
- Zhigang Jiao
- Central Laboratory, Shunde Hospital, Southern Medical University, Foshan 528300, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Foshan 528300, China
| | - Wenlong Zhang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Chaojun Chen
- Department of Neurology, Guangzhou Chinese Medical Integrated Hospital (Huadu), Guangdong 510800, China
| | - Xiaoqin Zhu
- Guangzhou Medical University, Guangzhou 511436, China
| | - Xiang Chen
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Miaomiao Zhou
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Guoyou Peng
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hanqun Liu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiewen Qiu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuwan Lin
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shuxuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Mingshu Mo
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xinling Yang
- Department of Neurology, the Third Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Shaogang Qu
- Central Laboratory, Shunde Hospital, Southern Medical University, Foshan 528300, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Foshan 528300, China
| | - Pingyi Xu
- Department of Neurology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
37
|
Hu K, Huang Q, Liu C, Li Y, Liu Y, Wang H, Li M, Ma S. c-Jun/Bim Upregulation in Dopaminergic Neurons Promotes Neurodegeneration in the MPTP Mouse Model of Parkinson's Disease. Neuroscience 2018; 399:117-124. [PMID: 30590105 DOI: 10.1016/j.neuroscience.2018.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The proapoptotic BH3-only protein Bim has been reported to be involved in dopaminergic neurodegeneration of experimental PD. However, an in situ expression profile of Bim in PD has not been performed, and the cell types of which Bim accounts for PD pathogenesis is unclear. Here, we report with in situ observations that Bim is transcriptionally induced in the dopaminergic neurons of the SNpc in 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. To investigate the precise role of Bim in the dopaminergic neurons in parkinsonian neuronal death, we obtained dopaminergic neuron-specific Bim null (Bim△Dat) mice. Bim△Dat mice are shown to be resistant to MPTP-induced neurotoxicity, confirming that the induction of Bim in dopaminergic neurons is responsible for parkinsonian neurodegeneration. Furthermore, we demonstrated with dopaminergic neuron-specific c-Jun knockout (c-Jun△Dat) that the transcriptional upregulation of Bim of nigral dopaminergic neurons was c-Jun-dependent and further validated the detrimental role of c-Jun in dopaminergic neurodegeneration. Together, these data specify that c-Jun-mediated Bim upregulation in nigral dopaminergic neurons contributes to parkinsonian neurodegeneration.
Collapse
Affiliation(s)
- Kunhua Hu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Chong Liu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yongyi Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yueyue Liu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China; Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
38
|
Wu S, Lei L, Song Y, Liu M, Lu S, Lou D, Shi Y, Wang Z, He D. Mutation of hop-1 and pink-1 attenuates vulnerability of neurotoxicity in C. elegans: the role of mitochondria-associated membrane proteins in Parkinsonism. Exp Neurol 2018; 309:67-78. [PMID: 30076829 DOI: 10.1016/j.expneurol.2018.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is considered as a critical mechanism in the pathogenesis of Parkinson's disease (PD). Increasing evidence supports the notion of mitochondria-associated membranes (MAMs) in mitochondrial dysfunction; yet little is known about the role of MAMs-related proteins in the pathogenesis of PD. Herein we exposed the nematode Caenorhabditis elegans to 0.5-10.0 μM rotenone (RO) or 0.2-1.6 mM paraquat (PQ) for 3 days. Our results showed that both RO and PQ induced similar Parkinsonism including motor deficits and dopaminergic degeneration. RO/PQ caused mitochondrial damages characterized by the increase of vacuole areas and autophagy vesicles, but the decrease of mitochondrial cristae. RO/PQ-impacted mitochondrial function was also demonstrated by the decrease of ATP level and mitochondrial membrane potential. Additionally, the attachment or surrounding of endoplasmic reticulum to the damaged mitochondria indicates ultrastructural alterations in MAMs. Using fluorescently labeled transgenic nematodes, we further found that the expression of tomm-7 and genes of Complex I, II and III was reduced, whereas the expression of pink-1 was increased in the exposed animals. To determine MAMs in toxicity toward PD, we investigated the mutants of hop-1 and pink-1, encoding presenilin and PTEN-induced putative kinase 1 (PINK1) in mitochondria-associated membranes, respectively. Results demonstrated that the mutation of both hop-1 and pink-1 reduced the vulnerability of lethal, behavioral, and mitochondrial toxicity induced by RO/PQ. These findings suggest that presenilin and PINK1 play important roles in the RO/PQ-induced neurotoxicity through the mechanisms involved in mitochondria-associated membranes.
Collapse
Affiliation(s)
- Siyu Wu
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Lili Lei
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Yang Song
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Mengting Liu
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Shibo Lu
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China
| | - Dan Lou
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore 21205, USA
| | - Yonghong Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518# Ziyue RD, Shanghai 200241, China
| | - Zhibin Wang
- Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore 21205, USA.
| | - Defu He
- Laboratory of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
| |
Collapse
|