1
|
da Silva RJ, Almeida MPO, Gomes AO, Franco PS, de Souza G, Rosini AM, Milian ICB, Servato JPS, Mineo JR, Mineo TWP, Silva NM, Ferro EAV, Barbosa BF. Intercellular adhesion molecule (ICAM)-1 is required to control Toxoplasma gondii infection in uterine tissues and establish a successful gestation in a murine model of congenital toxoplasmosis. Placenta 2025:S0143-4004(25)00103-1. [PMID: 40204594 DOI: 10.1016/j.placenta.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The placenta acts as a critical barrier against pathogens during pregnancy, although Toxoplasma gondii can breach this defense, leading to congenital infections. Intercellular adhesion molecule-1 (ICAM-1) is an adhesion molecule involved in immune responses, including leukocyte recruitment and pathogen clearance. Here, we investigate the role of ICAM-1 in gestational success and T. gondii infection using wild-type (WT) and ICAM-1 knockout (ICAM-1-/-) mice across early, mid- and late pregnancy stages. In early pregnancy, ICAM-1-/- mice infected with T. gondii exhibited a significantly higher embryonic loss rate (63 %) compared to WT mice (5 %). This was accompanied by an increased parasite burden in uterine tissues and elevated systemic and local IFN-γ levels, despite a reduced local inflammatory response. In contrast, mid-pregnancy showed no significant differences in fetal loss or implantation success among groups, suggesting ICAM-1 plays a limited role at this stage. During late pregnancy, ICAM-1-/- mice experienced higher embryonic loss rates (40 %) compared to WT mice (26.2 %), along with reduced implantation success and elevated IFN-γ levels, though parasite burden remained unchanged. Histological analysis revealed a less severe inflammatory profile in infected ICAM-1-/- uterine tissues, marked by reduced necrosis and hyperemia compared to WT mice. FOXP3 expression, a marker of regulatory T cells, was unaffected by ICAM-1, although a trend towards reestablishment was observed in infected ICAM-1-/- mice. Our findings underscore the critical role of ICAM-1 in ensuring gestational success during T. gondii infection, particularly in early pregnancy, by modulating immune responses at the maternal-fetal interface.
Collapse
Affiliation(s)
- Rafaela José da Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Angelica Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil.
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Iliana Claudia Balga Milian
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | | | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Tiago Wilson Patriarca Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Jamil Al-Obaidi MM, Desa MNM. Understanding the mechanisms underlying the disruption of the blood-brain barrier in parasitic infections. J Neurosci Res 2024; 102. [PMID: 38284852 DOI: 10.1002/jnr.25288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024]
Abstract
Parasites have a significant impact on the neurological, cognitive, and mental well-being of humans, with a global population of over 1 billion individuals affected. The pathogenesis of central nervous system (CNS) injury in parasitic diseases remains limited, and prevention and control of parasitic CNS infections remain significant areas of research. Parasites, encompassing both unicellular and multicellular organisms, have intricate life cycles and possess the ability to infect a diverse range of hosts, including the human population. Parasitic illnesses that impact the central and peripheral nervous systems are a significant contributor to morbidity and mortality in low- to middle-income nations. The precise pathways through which neurotropic parasites infiltrate the CNS by crossing the blood-brain barrier (BBB) and cause neurological harm remain incompletely understood. Investigating brain infections caused by parasites is closely linked to studying neuroinflammation and cerebral impairment. The exact molecular and cellular mechanisms involved in this process remain incomplete, but understanding the exact mechanisms could provide insight into their pathogenesis and potentially reveal novel therapeutic targets. This review paper explores the underlying mechanisms involved in the development of neurological disorders caused by parasites, including parasite-derived elements, host immune responses, and modifications in tight junctions (TJs) proteins.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- University of Technology and Applied Sciences, Rustaq College of Education, Science Department (Biology Unit), Rrustaq, Sultante of Oman
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
Mefloquine loaded niosomes as a promising approach for the treatment of acute and chronic toxoplasmosis. Acta Trop 2023; 239:106810. [PMID: 36581225 DOI: 10.1016/j.actatropica.2022.106810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022]
Abstract
Toxoplasmosis is a disease with a worldwide distribution and significant morbidity and mortality. In search of effective treatment, mefloquine (MQ) was repurposed and loaded with niosomes to treat acute and chronic phases of toxoplasmosis in experimental mice. Mice were orally inoculated with 20 cysts of Toxoplasma gondii (ME 49 strain) for the acute model of infection and 10 cysts for the chronic model of infection. Infected mice were dosed with MQ solution or MQ-niosomes at 50 mg/kg/day, starting from the second day post-infection (PI) (acute model) or the fifth week PI (chronic model), and this was continued for six consecutive days. The effects of MQ solution and MQ-niosomes were compared with a pyrimethamine/sulfadiazine (PYR/SDZ) dosing combination as mortality rates, brain cyst number, inflammatory score, and immunohistochemical studies that included an estimation of apoptotic cells (TUNEL assays). In the acute infection model, MQ solution and MQ-niosomes significantly reduced the mortality rate from 45% to 25 and 10%, respectively, compared with infected untreated controls, and decreased the number of brain cysts by 51.5% and 66.9%, respectively. In the chronic infection model, cyst reduction reached 80.9% and 12.3% for MQ solution and MQ-niosomes treatments, respectively. MQ-niosomes significantly decreased inflammation induced by acute or chronic T. gondii infection. Additionally, immunohistochemical analysis revealed that MQ solution and MQ-niosomes significantly increased the number of TUNEL-positive cells in brain tissue, indicative of induction of apoptosis. Collectively, these results indicate that MQ-niosomes may provide a useful delivery strategy to treat both acute and chronic toxoplasmosis.
Collapse
|
4
|
de Medeiros Brito RM, Meurer YDSR, Batista JAL, de Sá AL, de Medeiros Souza CR, de Souto JT, de Andrade-Neto VF. Chronic Toxoplasma gondii infection contributes to perineuronal nets impairment in the primary somatosensory cortex. Parasit Vectors 2022; 15:487. [PMID: 36566237 PMCID: PMC9790132 DOI: 10.1186/s13071-022-05596-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022] Open
Abstract
Toxoplasma gondii is able to manipulate the host immune system to establish a persistent and efficient infection, contributing to the development of brain abnormalities with behavioral repercussions. In this context, this work aimed to evaluate the effects of T. gondii infection on the systemic inflammatory response and structure of the primary somatosensory cortex (PSC). C57BL/6 and BALB/c mice were infected with T. gondii ME49 strain tissue cysts and accompanied for 30 days. After this period, levels of cytokines IFN-γ, IL-12, TNF-α and TGF-β were measured. After blood collection, mice were perfused and the brains were submitted to immunohistochemistry for perineuronal net (PNN) evaluation and cyst quantification. The results showed that C57BL/6 mice presented higher levels of TNF-α and IL-12, while the levels of TGF-β were similar between the two mouse lineages, associated with the elevated number of tissue cysts, with a higher occurrence of cysts in the posterior area of the PSC when compared to BALB/c mice, which presented a more homogeneous cyst distribution. Immunohistochemistry analysis revealed a greater loss of PNN labeling in C57BL/6 animals compared to BALB/c. These data raised a discussion about the ability of T. gondii to stimulate a systemic inflammatory response capable of indirectly interfering in the brain structure and function.
Collapse
Affiliation(s)
- Ramayana Morais de Medeiros Brito
- grid.411233.60000 0000 9687 399XPostgraduate Program in Parasitary Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil ,grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- grid.411216.10000 0004 0397 5145Postgraduate Program in Cognitive Neuroscience and Behavior, Memory and Cognition Studies Laboratory, Federal University of Paraíba, João Pessoa, Paraíba Brazil
| | - Jully Anne Lemos Batista
- grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Andréa Lima de Sá
- grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Cássio Ricardo de Medeiros Souza
- grid.411233.60000 0000 9687 399XLaboratory of Immunopharmacology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Janeusa Trindade de Souto
- grid.411233.60000 0000 9687 399XLaboratory of Immunopharmacology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| | - Valter Ferreira de Andrade-Neto
- grid.411233.60000 0000 9687 399XLaboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte Brazil
| |
Collapse
|
5
|
Alloo J, Leleu I, Grangette C, Pied S. Parasite infections, neuroinflammation, and potential contributions of gut microbiota. Front Immunol 2022; 13:1024998. [PMID: 36569929 PMCID: PMC9772015 DOI: 10.3389/fimmu.2022.1024998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Many parasitic diseases (including cerebral malaria, human African trypanosomiasis, cerebral toxoplasmosis, neurocysticercosis and neuroschistosomiasis) feature acute or chronic brain inflammation processes, which are often associated with deregulation of glial cell activity and disruption of the brain blood barrier's intactness. The inflammatory responses of astrocytes and microglia during parasite infection are strongly influenced by a variety of environmental factors. Although it has recently been shown that the gut microbiota influences the physiology and immunomodulation of the central nervous system in neurodegenerative diseases like Alzheimer's disease and Parkinson's, the putative link in parasite-induced neuroinflammatory diseases has not been well characterized. Likewise, the central nervous system can influence the gut microbiota. In parasite infections, the gut microbiota is strongly perturbed and might influence the severity of the central nervous system inflammation response through changes in the production of bacterial metabolites. Here, we review the roles of astrocytes and microglial cells in the neuropathophysiological processes induced by parasite infections and their possible regulation by the gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Sylviane Pied
- Center for Infection and Immunity of Lille-CIIL, Centre National de la Recherche Scientifique-CNRS UMR 9017-Institut National de la Recherche Scientifique et Médicale-Inserm U1019, Institut Pasteur de Lille, Univ. Lille, Lille, France
| |
Collapse
|
6
|
Briceño MP, Cariaco Y, Almeida MPO, Miranda NC, Araujo ECB, Santos SN, Bernardes ES, Silva NM. Effects of Notch signaling pathway inhibition by dibenzazepine in acute experimental toxoplasmosis. Tissue Cell 2022; 79:101952. [DOI: 10.1016/j.tice.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022]
|
7
|
Castaño BL, Silva AA, Hernandez-Velasco LL, Pinheiro APDS, Gibaldi D, Mineo JR, Silva NM, Lannes-Vieira J. Sulfadiazine Plus Pyrimethamine Therapy Reversed Multiple Behavioral and Neurocognitive Changes in Long-Term Chronic Toxoplasmosis by Reducing Brain Cyst Load and Inflammation-Related Alterations. Front Immunol 2022; 13:822567. [PMID: 35572567 PMCID: PMC9091718 DOI: 10.3389/fimmu.2022.822567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii infects one-third of the world population. For decades, it has been considered a silent lifelong infection. However, chronically T. gondii-infected persons may present psychiatric and neurocognitive changes as anxiety, depression, and memory loss. In a model of long-term chronic infection, behavioral alterations parallel neuroinflammation and systemic high cytokine levels, and may reflect brain cyst load. Recent findings support that in chronic infection an active parasite-host interplay involves an immune-mediated control of tissue cysts. Here, we tested the idea that etiological treatment in chronic phase may add advantage to intrinsic immune-mediated cyst control and impact behavioral changes. Thus, we combined sulfadiazine-plus-pyrimethamine (S+P), the first-choice therapy for toxoplasmosis, to study the association of brain cyst load and biological processes related to the immune response (neuroinflammation, blood-brain barrier -BBB- disruption and serum cytokine levels), with behavioral and neurocognitive changes of long-term chronic infection. Female C57BL/6 mice (H-2b) were infected (5 cysts, ME-49 strain) and treated with S+P from 30 to 60 days postinfection (dpi), compared with vehicle (Veh)-treated and noninfected controls. At endpoints (pre-therapy, 30 dpi; S+P therapy, 60 dpi; after ceased therapy, 90 dpi), independent groups were subjected to behavioral tests, and brain tissues and sera were collected. Multiple behavioral and neurocognitive changes were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic infection. S+P therapy resolved locomotor alterations, anxiety, and depressive-like behavior, partially or transiently ameliorated hyperactivity and habituation memory loss. Analysis after therapy cessation showed that S+P therapy reduced the number of stimuli required for aversive memory consolidation. S+P therapy resulted in reduced brain cyst load, neuroinflammation and BBB disruption, and lowered systemic Th1-cytokine levels. Correlation analysis revealed association between IFNγ, TNF and MCP-1/CCL2 serum levels, brain cyst load and behavioral and neurocognitive alterations. Moreover, principal-component analysis (PCA-2D and 3D projections) highlighted distinction between clusters (noninfected; Veh-treated and S+P-treated infected). Thus, our data suggest that S+P therapy added gain to intrinsic brain cyst control and, direct or indirectly, ameliorated inflammation-related alterations, traits associated with behavioral and neurocognitive alterations.
Collapse
Affiliation(s)
- Barrios Leda Castaño
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Federal University Fluminense, Niterói, Brazil
| | | | | | - Daniel Gibaldi
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - José Roberto Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Transforming growth factor (TGF)-β1 and interferon (IFN)-γ differentially regulate ICAM-1 expression and adhesion of Toxoplasma gondii to human trophoblast (BeWo) and uterine cervical (HeLa) cells. Acta Trop 2021; 224:106111. [PMID: 34450063 DOI: 10.1016/j.actatropica.2021.106111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/24/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
Toxoplasma gondii is a parasite able to infect various cell types, including trophoblast cells. Studies have demonstrated that interleukin (IL)-10, transforming growth factor (TGF)-β1 and interferon (IFN)-γ are involved in the susceptibility of BeWo trophoblast cells to T. gondii infection. Furthermore, T. gondii is able to adhere to the plasma membrane of host cells through intercellular adhesion molecule (ICAM)-1. Thus, the present study aimed to assess the role of IL-10, TGF-β1 and IFN-γ in the expression of ICAM-1 in BeWo and HeLa cells and to analyze the role of ICAM-1 in the adhesion and invasion of T. gondii to these cells under the influence of these cytokines. For this purpose, BeWo and HeLa cells were treated or not, before and after T. gondii infection, with rIL-10, rTGF-β1 or rIFN-γ. For the BeWo cells, rIL-10 and rTGF-β1 favored susceptibility to infection, but only rTGF-β1 and rIFN-γ increased ICAM-1 expression, and TNF-α release. On the other hand, rIFN-γ downregulated the expression of ICAM-1 triggered by T. gondii in HeLa cells, leading to control of the infection. Moreover, we observed that upregulation of ICAM-1, mediated by cytokine's stimulation, in BeWo and HeLa cells resulted in a high number rate of both parasite adhesion and invasion to these cells, which were strongly reduced after ICAM-1 neutralization. Likewise, the blockage of ICAM-1 molecule also impaired T. gondii infection in human villous explants. Taken together, these findings demonstrate that TGF-β1 and IFN-γ differentially regulate ICAM-1 expression, which may interfere in the adhesion/invasion of T. gondii to BeWo and HeLa cells for modulating susceptibility to infection.
Collapse
|
9
|
Castaño Barrios L, Da Silva Pinheiro AP, Gibaldi D, Silva AA, Machado Rodrigues e Silva P, Roffê E, da Costa Santiago H, Tostes Gazzinelli R, Mineo JR, Silva NM, Lannes-Vieira J. Behavioral alterations in long-term Toxoplasma gondii infection of C57BL/6 mice are associated with neuroinflammation and disruption of the blood brain barrier. PLoS One 2021; 16:e0258199. [PMID: 34610039 PMCID: PMC8491889 DOI: 10.1371/journal.pone.0258199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
The Apicomplexa protozoan Toxoplasma gondii is a mandatory intracellular parasite and the causative agent of toxoplasmosis. This illness is of medical importance due to its high prevalence worldwide and may cause neurological alterations in immunocompromised persons. In chronically infected immunocompetent individuals, this parasite forms tissue cysts mainly in the brain. In addition, T. gondii infection has been related to mental illnesses such as schizophrenia, bipolar disorder, depression, obsessive-compulsive disorder, as well as mood, personality, and other behavioral changes. In the present study, we evaluated the kinetics of behavioral alterations in a model of chronic infection, assessing anxiety, depression and exploratory behavior, and their relationship with neuroinflammation and parasite cysts in brain tissue areas, blood-brain-barrier (BBB) integrity, and cytokine status in the brain and serum. Adult female C57BL/6 mice were infected by gavage with 5 cysts of the ME-49 type II T. gondii strain, and analyzed as independent groups at 30, 60 and 90 days postinfection (dpi). Anxiety, depressive-like behavior, and hyperactivity were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic T. gondii infection, in a direct association with the presence of parasite cysts and neuroinflammation, independently of the brain tissue areas, and linked to BBB disruption. These behavioral alterations paralleled the upregulation of expression of tumor necrosis factor (TNF) and CC-chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β and CCL5/RANTES) in the brain tissue. In addition, increased levels of interferon-gamma (IFNγ), TNF and CCL2/MCP-1 were detected in the peripheral blood, at 30 and 60 dpi. Our data suggest that the persistence of parasite cysts induces sustained neuroinflammation, and BBB disruption, thus allowing leakage of cytokines of circulating plasma into the brain tissue. Therefore, all these factors may contribute to behavioral changes (anxiety, depressive-like behavior, and hyperactivity) in chronic T. gondii infection.
Collapse
Affiliation(s)
- Leda Castaño Barrios
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Da Silva Pinheiro
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Federal University Fluminense, Niterói, Rio de Janeiro, Brazil
| | | | - Ester Roffê
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Tostes Gazzinelli
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Roberto Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Sousa RO, Cariaco Y, Almeida MPO, Nascimento LAC, Coutinho LB, Ferreira-Júnior AA, Briceño MPP, Venâncio MDFA, Oliveira MC, Miranda NC, Pajuaba ACAM, Ferro EAV, Filice LDSC, Silva NM. The imbalance of TNF and IL-6 levels and FOXP3 expression at the maternal-fetal interface is involved in adverse pregnancy outcomes in a susceptible murine model of congenital toxoplasmosis. Cytokine 2021; 143:155517. [PMID: 33814270 DOI: 10.1016/j.cyto.2021.155517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 11/16/2022]
Abstract
Vertical transmission of Toxoplasma gondii leads to adverse pregnancy outcomes depending on the time at which the infection occurs and the immunological state of the mother. C57BL/6 and BALB/c mice have been described as susceptible and resistant mouse lineages to congenital T. gondii infection, respectively. This study aimed to elucidate the systemic and local cytokine profile of pregnant mice infected with T. gondii and whether the expression of the transcription factor FOXP3, related to T regulatory cells, is associated with the resistance/susceptibility of these lineages of mice in the context of experimental congenital toxoplasmosis. For this purpose, C57BL/6 and BALB/c females were orally infected with the T. gondii ME-49 strain on the day of vaginal plug detection or day 14 of gestation, examined 7 or 5 days later, respectively, as models of early and late pregnancy. Cytokine levels were measured systemically and in the uterus/placenta. Additionally, the uterus/placenta were evaluated macroscopically for resorption rates and histologically for parasite and FOXP3 immunostaining. The FOXP3 protein expression was also evaluated by western blotting assay. It was found that, during early pregnancy, the infection leads to high IFN-γ, TNF and IL-6 levels systemically, with the TNF levels being higher in C57BL/6 mice. At the maternal-fetal interface, the infection induced high levels of IFN-γ in both mouse lineages; however, higher levels were observed in BALB/c, while high TNF and IL-6 levels were found in C57BL/6, but not in BALB/c mice. In contrast, in late gestation, T. gondii interfered less strongly with the cytokine profile. In early pregnancy, a reduction of FOXP3 expression at the maternal-fetal interface of infected mice was also observed, and the reduction was larger in C57BL/6 compared with BALB/c mice. Additionally, the parasite was seldom found in the uterus/placenta. Thus, the worse pregnancy outcomes observed in C57BL/6 mice were associated with higher TNF systemically, and TNF and IL-6 at the maternal-fetal interface, with lower FOXP3 expression.
Collapse
Affiliation(s)
- Romulo Oliveira Sousa
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Yusmaris Cariaco
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Layane Alencar Costa Nascimento
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Loyane Bertagnolli Coutinho
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Angelo Alves Ferreira-Júnior
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marisol Patricia Pallete Briceño
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Mariele de Fátima Alves Venâncio
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Mário Cézar Oliveira
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Natália Carnevalli Miranda
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
11
|
McGovern KE, Nance JP, David CN, Harrison RES, Noor S, Worth D, Landrith TA, Obenaus A, Carson MJ, Morikis D, Wilson EH. SPARC coordinates extracellular matrix remodeling and efficient recruitment to and migration of antigen-specific T cells in the brain following infection. Sci Rep 2021; 11:4549. [PMID: 33633185 PMCID: PMC7907143 DOI: 10.1038/s41598-021-83952-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 01/14/2023] Open
Abstract
Central nervous system (CNS) injury and infection can result in profound tissue remodeling in the brain, the mechanism and purpose of which is poorly understood. Infection with the protozoan parasite Toxoplasma gondii causes chronic infection and inflammation in the brain parenchyma. Control of parasite replication requires the continuous presence of IFNγ-producing T cells to keep T. gondii in its slowly replicating cyst form. During infection, a network of extracellular matrix fibers, revealed using multiphoton microscopy, forms in the brain. The origin and composition of these structures are unknown but the fibers have been observed to act as a substrate for migrating T cells. In this study, we show a critical regulator of extracellular matrix (ECM) remodeling, Secreted Protein, Acidic, Rich in Cysteine (SPARC), is upregulated in the brain during the early phases of infection in the frontal cortex. In the absence of SPARC, a reduced and disordered fibrous network, increased parasite burden, and reduced antigen-specific T cell entry into the brain points to a role for SPARC in T cell recruitment to and migration within the brain. We also report SPARC can directly bind to CCR7 ligands CCL19 and CCL21 but not CXCL10, and enhance migration toward a chemokine gradient. Measurement of T cell behavior points to tissue remodeling being important for access of immune cells to the brain and facilitating cellular locomotion. Together, these data identify SPARC as an important regulatory component of immune cell trafficking and access to the inflamed CNS.
Collapse
Affiliation(s)
- Kathryn E McGovern
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- BIO5 Institute, Department of Immunobiology, University of Arizona, Tucson, AZ, 85724, USA
| | - J Philip Nance
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Clément N David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- Nanostring Technologies, Inc, 530 Fairview Ave N, Seattle, WA, 98109, USA
| | - Reed E S Harrison
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521-0129, USA
- UCSD Bioengineering and the Institute for Engineering in Medicine, San Diego, CA, 92093, USA
| | - Shahani Noor
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- School of Medicine, MSC08, University of New Mexico, Albequerque, NM, 87131, USA
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Tyler A Landrith
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
- Ambrey Genetics, Aliso Viejo, CA, 92656, USA
| | - Andre Obenaus
- School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA
| | - Monica J Carson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521-0129, USA
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
12
|
Cristina Borges Araujo E, Cariaco Y, Paulo Oliveira Almeida M, Patricia Pallete Briceño M, Neto de Sousa JE, Rezende Lima W, Maria Costa-Cruz J, Maria Silva N. Beneficial effects of Strongyloides venezuelensis antigen extract in acute experimental toxoplasmosis. Parasite Immunol 2020; 43:e12811. [PMID: 33247953 DOI: 10.1111/pim.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Toxoplasma gondii is a protozoan with worldwide distribution and triggers a strong Th1 immune response in infected susceptible hosts. On the contrary, most helminth infections are characterized by Th2 immune response and the use of helminth-derived antigens to regulate immune response in inflammatory disorders has been broadly investigated. OBJECTIVES The aim of this study was to investigate whether treatment with Strongyloides venezuelensis antigen extract (SvAg) would alter immune response against T gondii. METHODS C57BL/6 mice were orally infected with T gondii and treated with SvAg, and parasitological, histological and immunological parameters were investigated. RESULTS It was observed that SvAg treatment improved survival rates of T gondii-infected mice. At day 7 post-infection, the parasite load was lower in the lung and small intestine of infected SvAg-treated mice than untreated infected mice. Remarkably, SvAg-treated mice infected with T gondii presented reduced inflammatory lesions in the small intestine than infected untreated mice and decreased intestinal and systemic levels of IFN-γ, TNF-α and IL-6. In contrast, SvAg treatment increased T gondii-specific IgA serum levels in infected mice. CONCLUSIONS S venezuelensis antigen extract has anti-parasitic and anti-inflammatory properties during T gondii infection suggesting as a possible alternative to parasite and inflammation control.
Collapse
Affiliation(s)
- Ester Cristina Borges Araujo
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Yusmaris Cariaco
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Marcos Paulo Oliveira Almeida
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | | | - José Eduardo Neto de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Wânia Rezende Lima
- Instituto de Biotecnologia, Universidade Federal de Catalão, Rua Terezinha Margon Vaz, s/n Residencial Barka II, Catalão, Brasil
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Neide Maria Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| |
Collapse
|
13
|
The Role of Decidual PD-1 + Treg Cells in Adverse Pregnancy Outcomes due to Toxoplasma gondii Infection. Inflammation 2020; 42:2119-2128. [PMID: 31468303 DOI: 10.1007/s10753-019-01075-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii infection during pregnancy can result in adverse pregnancy outcomes. Previously, we have reported that these outcomes are associated with the impaired function of decidual Treg cells; however, the detailed mechanisms involved were unclear. It has been reported that the suppressive capacity of Treg cells is dependent on PD-1 expression. The present study explored the role of decidual PD-1+ Treg cell function in adverse pregnancy outcomes due to T. gondii infection. Toxoplasma gondii-infected pregnant mice were sacrificed on gestational day 14 and their pregnancy outcomes were observed. The expression of PD-1 on decidual Treg cells and expressions of Foxp3, CTLA-4, TGF-β, and IL-10 on decidual PD-1+ and PD-1- Treg cells were determined using flow cytometry. The results showed that the expression of PD-1 on decidual Treg cells was clearly higher in the T. gondii-infected mice than in the normal mice. Meanwhile, the expressions of Foxp3, CTLA-4, TGF-β, and IL-10 on decidual PD-1+ Treg cells were higher in the infected mice than in the normal mice. The expressions were higher in decidual PD1+ Treg cells than in PD-1- Treg cells in the infected mice. However, these expressions on PD-1- Treg cells did not significantly differ between the infected and normal mice. Nonetheless, the absolute percentages of decidual PD-1+ Treg cells decreased significantly in the infected mice compared with those in the normal mice. These results suggest that T. gondii infection mainly influences the function of decidual PD-1+ Treg cells, which would result in an insufficiently immunotolerant microenvironment and consequently in adverse pregnancy outcomes.
Collapse
|
14
|
Pereira AV, Gois MB, Silva MS, Miranda Junior NRD, Campos CBHF, Schneider LCL, Barbosa CP, Nogueira-Melo GDA, Sant'Ana DDMG. Toxoplasma gondii causes lipofuscinosis, collagenopathy and spleen and white pulp atrophy during the acute phase of infection. Pathog Dis 2020; 77:5739919. [PMID: 32068829 DOI: 10.1093/femspd/ftaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, we evaluated homeostatic and functional disorders of the spleen in mice inoculated with Toxoplasma gondii. The kinetics of megakaryocyte and leukocyte production, body and spleen mass and certain histopathological aspects were analyzed. There was increased (P < 0.05) the accumulation of lipofuscin in the red pulp of the spleen, in the periods of 30 and 60 dpi of the infection, that is, in the chronification stage of the disease and decrease of the white pulp area. In addition, we observed (from 7dpi) a quantitative and qualitative increase (P < 0.05) in the deposition of collagen fibers in the spleen of all infected mice. Since resolution of the inflammatory process resulted in pathophysiological changes, we can suggest that the T. gondii invaded and multiplied in the cells of the white and red pulps of the spleen. Although we did not find the parasite in the spleen, this hypothesis is supported by the presence of diffuse inflammatory infiltrate, which extended through the spleen parenchyma of all inoculated mice. Taken together, our results suggest that T. gondii causes severe homeostatic disorders that have altered spleen physiology, including diffuse parenchymal inflammation, lipofuscinosis in histiocytes, early aging, collagenopathy, systemic sclerosis and spleen and white pulp atrophy.
Collapse
Affiliation(s)
- Andréia Vieira Pereira
- State University of Maringá, Department of Clinical Analysis and Biomedicine, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | - Marcelo Biondaro Gois
- Federal University of "Recôncavo'' of Bahia, Avenue Carlos Amaral, Santo Antônio de Jesus, CEP 44.430-622, Brazil; Institute of Health Sciences, Federal University of Bahia; and Postgraduate Program in Regional Development and Environment, Maria Milza College
| | - Mariana Sacchi Silva
- State University of Maringá, Department of Clinical Analysis and Biomedicine, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | | | - Carla Betânia Huf Ferraz Campos
- State University of Maringá, Department of Clinical Analysis and Biomedicine, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | - Larissa Carla Lauer Schneider
- State University of Maringá, Department of Morphological Sciences, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | - Carmem Patrícia Barbosa
- State University of Maringá, Department of Morphological Sciences, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| | | | - Débora de Mello Gonçales Sant'Ana
- State University of Maringá, Department of Clinical Analysis and Biomedicine, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil.,State University of Maringá, Department of Morphological Sciences, Avenue Colombo, 5790, CEP: 87020-900, Maringá, Brazil
| |
Collapse
|
15
|
El-Kowrany SI, El Ghaffar AESA, Shoheib ZS, Mady RF, Gamea GAM. Evaluation of nitazoxanide as a novel drug for the treatment of acute and chronic toxoplasmosis. Acta Trop 2019; 195:145-154. [PMID: 30986380 DOI: 10.1016/j.actatropica.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
Abstract
Toxoplasmosis is a widespread, neglected disease with significant morbidity and mortality. In search of an effective treatment, nitazoxanide (NTZ) was evaluated in the treatment of acute and chronic toxoplasmosis in experimental mice. For this purpose, mice were infected with 20 cysts (acute infection model) or 10 cysts (chronic infection model) of Toxoplasma gondii (ME 49 strain). Treated mice received NTZ (at doses of 100 and 150 mg/kg), starting from the third day (acute model) or the fifth week (chronic model) post-infection, which continued for 14 consecutive days. The effects of NTZ were evaluated in comparison to the pyrimethamine/sulfadiazine combination. Evaluation included mortality rates, brain cyst count, inflammatory scoring and immunological studies. The latter included estimation of interferon-gamma (IFN-γ) and induced nitric oxide synthase (iNOS). In the acute infection model, NTZ at 100 and 150 mg/kg significantly reduced the number of brain cysts by 78 and 87% compared to the infected untreated controls and reduced the mortality rate to 24 and 20%, respectively, compared with 44% in the infected untreated control. In the chronic infection model, cyst reduction reached 32 and 38% for 100 and 150 mg/kg NTZ treatments, respectively. NTZ was significantly able to reduce inflammation caused by acute and chronic T. gondii infection with slight necrosis and few infiltrating mononuclear cells. Additionally, the immunological analysis revealed that NTZ significantly increased the production of serum IFN-γ and enhanced iNOS production in brain tissue, suggesting an immunomodulatory role for the drug. Based on the findings of the present study, it can be concluded that NTZ is a potential drug for the treatment of acute and chronic toxoplasmosis.
Collapse
|
16
|
Mitoma H, Manto M. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. NEUROIMMUNE DISEASES 2019. [PMCID: PMC7121618 DOI: 10.1007/978-3-030-19515-1_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the organ of highest metabolic demand, utilizing over 25% of total body glucose utilization via an enormous vasculature with one capillary every 73 μm, the brain evolves a barrier at the capillary and postcapillary venules to prevent toxicity during serum fluctuations in metabolites and hormones, to limit brain swelling during inflammation, and to prevent pathogen invasion. Understanding of neuroprotective barriers has since evolved to incorporate the neurovascular unit (NVU), the blood-cerebrospinal fluid (CSF) barrier, and the presence of CNS lymphatics that allow leukocyte egress. Identification of the cellular and molecular participants in BBB function at the NVU has allowed detailed analyses of mechanisms that contribute to BBB dysfunction in various disease states, which include both autoimmune and infectious etiologies. This chapter will introduce some of the cellular and molecular components that promote barrier function but may be manipulated by inflammatory mediators or pathogens during neuroinflammation or neuroinfectious diseases.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium, Department of Neurosciences, University of Mons, Mons, Belgium
| |
Collapse
|
17
|
Moreira-Souza ACA, Rangel TP, Silva SRBD, Figliuolo VR, Savio LEB, Schmitz F, Takiya CM, Wyse ATS, Vommaro RC, Coutinho-Silva R. Disruption of Purinergic Receptor P2X7 Signaling Increases Susceptibility to Cerebral Toxoplasmosis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:730-738. [PMID: 30653952 DOI: 10.1016/j.ajpath.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
Toxoplasmosis is a neglected disease that affects millions of individuals worldwide. Toxoplasma gondii infection is an asymptomatic disease, with lethal cases occurring mostly in HIV patients and organ transplant recipients. Nevertheless, atypical strains of T. gondii in endemic locations cause severe pathology in healthy individuals. Toxoplasmosis has no cure but it can be controlled by the proinflammatory immune response. The purinergic receptor P2X7 (P2X7) is involved in many inflammatory events and has been associated with genes that confer resistance against toxoplasmosis in humans. In vitro studies have reported parasite death after P2X7-receptor activation in various cell types. To understand the contribution of P2X7 during cerebral toxoplasmosis, wild-type and P2rx7 knockout mice were infected orally with T. gondii and their pathologic profiles were analyzed. We found that all P2rx7-/- mice died 8 weeks after infection with an increased number of cysts and fewer inflammatory infiltrates in their brains. The cytokines interleukin-1β, interleukin-12, tumor necrosis factor-α, and reactive oxygen species were absent or reduced in P2rx7-/- mice. Taken together, these data suggest that the P2X7 receptor promotes inflammatory infiltrates, proinflammatory cytokines, and reactive oxygen species production in the brain, and that P2X7 signaling mediates major events that confer resistance to cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Aline Cristina Abreu Moreira-Souza
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Cellular Ultrastructure Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thuany Prado Rangel
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Vanessa Ribeiro Figliuolo
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Schmitz
- Laboratory of Neuroprotection and Metabolic Disease, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Christina Maeda Takiya
- Laboratory of Immunopathology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Rossiane Claudia Vommaro
- Laboratory of Cellular Ultrastructure Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology in Structural Biology and Bioimaging (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
El-Tantawy NL, Soliman AF, Abdel-Magied A, Ghorab D, Khalil AT, Naeem ZM, Shimizu K, El-Sharkawy SH. Could Araucaria heterophylla resin extract be used as a new treatment for toxoplasmosis? Exp Parasitol 2018; 195:44-53. [PMID: 30339984 DOI: 10.1016/j.exppara.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 11/18/2022]
Abstract
Toxoplasmosis is a worldwide parasitic disease responsible for serious health problems to human. The currently available drugs used for toxoplasmosis treatment showed a limited efficacy and cause serious host toxicity. The in vitro screening for toxoplasmicidal activity of Araucaria heterophylla resin (AHR) extract and its major component 13-epi-cupressic acid (CUP) showed that both AHR (EC50 = 3.90) and CUP (EC50 = 3.69) have high toxoplasmicidal activity in comparison with standard cotrimoxazole (EC50 = 4.28). The antiprotozoal effects of AHR and CUP were investigated against acute and chronic toxoplasmosis using mice models. Two groups of Swiss albino mice were infected by RH Toxoplasma strain intraperitoneally and by Me49 strain orally. Both groups were treated with AHR and CUP in different doses. Their effects were evaluated by survival rate, peritoneal, spleen and liver parasite burdens, brain cyst burden, NO serum level and histopathological lesions. The ultrastructural changes of tachyzoites of acutely infected mice were studied using scanning electron microscopy (SEM). There is an evidence of toxoplasmicidal activity of AHR and CUP in acute and chronic experimental toxoplasmosis. In the acute model, mice treated with AHR and CUP showed prolonged survival rates, a significant decrease in the parasite density in peritoneal lavage and pathological insult in both liver and spleen compared with that of untreated ones. SEM results denote evident morphological alterations of treated tachyzoites. In chronic experimental toxoplasmosis, AHR and CUP treated groups could significantly reduce brain cyst burden by 96.05% and 98.02% respectively. This study indicates that AHR and CUP showed potent toxoplasmicidal activities experimentally and could be used as a potential natural nontoxic agent for treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Nora L El-Tantawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Amal F Soliman
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Aida Abdel-Magied
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Ghorab
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ashraf T Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Zein M Naeem
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of Agro-Environmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, 812-8581, Japan
| | - Saleh H El-Sharkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Estato V, Stipursky J, Gomes F, Mergener TC, Frazão-Teixeira E, Allodi S, Tibiriçá E, Barbosa HS, Adesse D. The Neurotropic Parasite Toxoplasma gondii Induces Sustained Neuroinflammation with Microvascular Dysfunction in Infected Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2674-2687. [PMID: 30121257 DOI: 10.1016/j.ajpath.2018.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022]
Abstract
Toxoplasmosis is one of the leading parasitic diseases worldwide. Some data suggest that chronic acquired toxoplasmosis could be linked to behavioral alterations in humans. The parasite infects neurons, forming immunologically silent cysts. Cerebral microcirculation homeostasis is determinant to brain functions, and pathologic states can alter capillarity or blood perfusion, leading to neurodegeneration and cognitive deficits. Albino mice were infected with Toxoplasma gondii (ME49 strain) and analyzed after 10, 40, and 180 days. Infected mice presented decreased cerebral blood flow at 10 and 40 days post infection (dpi), which were restored at 180 dpi, as shown by laser speckle contrast imaging. Intravital microscopy demonstrated that infection led to significant capillary rarefaction, accompanied by neuroinflammation, with microglial activation and increased numbers of rolling and adherent leukocytes to the wall of cerebral capillaries. Acetylcholine-induced vasodilation was altered at all time points, and blood brain barrier permeability was evident in infected animals at 40 dpi. Infection reduced angiogenesis, with a decreased number of isolectin B4-stained blood vessels and a decrease in length and branching of laminin-stained capillaries. Sulfadiazine reduced parasite load and partially repaired microvascular damages. We conclude that T. gondii latent infection causes a harmful insult in the brain, promoting neuroinflammation and microcirculatory dysfunction in the brain, with decreased angiogenesis and can contribute to a neurodegenerative process.
Collapse
Affiliation(s)
- Vanessa Estato
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Produtos Naturais, Departamento de Produtos Naturais, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joice Stipursky
- Laboratório de Neurobiologia Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Gomes
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tally C Mergener
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edwards Frazão-Teixeira
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo Tibiriçá
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helene S Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Liu J, Huang S, Lu F. Galectin-3 and Galectin-9 May Differently Regulate the Expressions of Microglial M1/M2 Markers and T Helper 1/Th2 Cytokines in the Brains of Genetically Susceptible C57BL/6 and Resistant BALB/c Mice Following Peroral Infection With Toxoplasma gondii. Front Immunol 2018; 9:1648. [PMID: 30108583 PMCID: PMC6080610 DOI: 10.3389/fimmu.2018.01648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/04/2018] [Indexed: 11/13/2022] Open
Abstract
Toxoplasmic encephalitis (TE), an opportunistic infection, is a severe health problem in immunocompromised patients. Previous studies have revealed that C57BL/6 mice are susceptible and BALB/c mice are resistant to TE. To investigate the mechanisms involved in the immunopathogenesis of TE in susceptible C57BL/6 and resistant BALB/c mice, both strains of mice were perorally infected with the Prugniuad (Pru) strain of Toxoplasma gondii. Our results showed that compared with BALB/c mice, C57BL/6 mice infected with T. gondii Pru strain had more severe brain histopathological damage, and higher mRNA expression levels of tachyzoite-specific surface antigen 1, bradyzoite-specific antigen 1, interferon gamma (IFNγ), interleukin (IL)-10, arginase1 (Arg1) (M2 marker), galectin (Gal)-3, Gal-9, T. gondii microneme protein 1 (TgMIC1), TgMIC4, and TgMIC6 during the course of infection by using quantitative real-time reverse transcription-polymerase chain reaction. Further analysis displayed that BALB/c mice showed higher numbers of microglial cells and higher levels of IL-1β, inducible nitric oxide synthase (iNOS) (M1 marker), and chitinase-3-like protein 3 (Ym1) (M2 marker) in the early infective stage [at day 14 or 35 post infection (p.i.)] compared with C57BL/6 mice, whereas C57BL/6 mice showed higher numbers of microglial cells and higher levels of IL-10, iNOS (M1 marker), and Ym1 (M2 marker) at days 35, 50, or 70 p.i. compared with BALB/c mice. Correlation analysis showed that significant positive correlations existed between Gal-3 and IL-4/IL-10/iNOS/Ym1 and between Gal-9 and IL-4/Ym1 in C57BL/6 mice; between Gal-3 and IFNγ/Arg1 and between Gal-9 and IFNγ/Arg1 in BALB/c mice. Together, our data demonstrated that different Gal-3 and Gal-9 expressions as well as different positive correlations were found between Gal-3 and T helper 1 (Th1)/Th2/M1/M2 cytokines or between Gal-9 and Th1/Th2/M2 cytokines in the brains of T. gondii Pru strain-infected C57BL/6 and BALB/c mice.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Hurtado-Alvarado G, Becerril-Villanueva E, Contis-Montes de Oca A, Domínguez-Salazar E, Salinas-Jazmín N, Pérez-Tapia SM, Pavon L, Velázquez-Moctezuma J, Gómez-González B. The yin/yang of inflammatory status: Blood-brain barrier regulation during sleep. Brain Behav Immun 2018; 69:154-166. [PMID: 29154957 DOI: 10.1016/j.bbi.2017.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022] Open
Abstract
Sleep loss induces a low-grade inflammatory status characterized by a subtle but sustained increase of pro-inflammatory mediators, which are key regulators of blood-brain barrier function. To investigate the influence of inflammatory status on blood-brain barrier dysfunction induced by sleep restriction we performed an experiment using two strains of mice with different immunological backgrounds, C57BL/6 mice that have a predominant pro-inflammatory response and BALB/c mice that have a predominant anti-inflammatory response. Mice were sleep-restricted during 10 days using the flowerpot technique during 20 h per day with 4 h of daily sleep opportunity. The systemic inflammatory status, blood-brain barrier permeability, and the hippocampal expression of neuroinflammatory markers were characterized at the 10th day. Serum levels of TNF and IFN-γ increased in sleep-restricted C57BL/6 but not in BALB/c mice; no changes in other cytokines were found. Sleep restriction increased blood-brain barrier permeability in C57BL/6 strain but not in BALB/c. The hippocampus of sleep-restricted C57BL/6 mice exhibited an increase in the expression of the neuroinflammatory markers Iba-1, A2A adenosine receptor, and MMP-9; meanwhile in sleep-restricted BALB/c mice the expression of this markers was lesser than the control group. These data suggest that cytokines may be playing a key role in modulating blood-brain barrier function during sleep restriction, and probably the effects are related to Iba-1, MMP-9 and A2A adenosine receptor overexpression.
Collapse
Affiliation(s)
- G Hurtado-Alvarado
- Area of Neurosciences, Dept. Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - E Becerril-Villanueva
- Dept. Psychoimmunology, National Institute of Psychiatry, "Ramón de la Fuente", Mexico City, Mexico
| | | | - E Domínguez-Salazar
- Area of Neurosciences, Dept. Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - N Salinas-Jazmín
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - S M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Dept. Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - L Pavon
- Dept. Psychoimmunology, National Institute of Psychiatry, "Ramón de la Fuente", Mexico City, Mexico
| | - J Velázquez-Moctezuma
- Area of Neurosciences, Dept. Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - B Gómez-González
- Area of Neurosciences, Dept. Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico.
| |
Collapse
|
22
|
DINCEL GC. First description of enhanced expression of glia maturation factor-beta in experimental toxoplasmic encephalitis. J Int Med Res 2017; 45:1670-1679. [PMID: 28774213 PMCID: PMC5805200 DOI: 10.1177/0300060517700320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/27/2017] [Indexed: 01/29/2023] Open
Abstract
Objective We previously showed that Toxoplasma gondii infection induces severe neuropathology in the form of oxidative stress, high nitric oxide production, glial activation, and apoptosis. This study examined the association between glia maturation factor-beta (GMF-β) expression, activated astrocytes/microglia, and neuropathology in toxoplasmic encephalitis (TE). Methods Mouse brain GMF expression was examined by immunohistochemistry on days 10 and 30 post- T. gondii infection. Results Neuropathology of infected mice was associated with increased GMF expression in reactive glial cells and neurons compared with healthy controls. Specific up-regulation of GMF-β expression in glial cells was associated with increased gliosis in TE. Conclusions GMF up-regulation in glial cells causes neuronal destruction, suggesting a TE pathological pathway involving GMF-mediated brain cell cytotoxicity. GMF-β may therefore be a good biomarker for disease risk assessment and to estimate host neuropathy after exposure to T. gondii, as well as providing a new therapeutic target. This is the first study to demonstrate the expression of GMF-β in reactive glial cells and its association with neuropathology in TE.
Collapse
|
23
|
Moreira-Souza ACA, Almeida-da-Silva CLC, Rangel TP, Rocha GDC, Bellio M, Zamboni DS, Vommaro RC, Coutinho-Silva R. The P2X7 Receptor Mediates Toxoplasma gondii Control in Macrophages through Canonical NLRP3 Inflammasome Activation and Reactive Oxygen Species Production. Front Immunol 2017; 8:1257. [PMID: 29075257 PMCID: PMC5643413 DOI: 10.3389/fimmu.2017.01257] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is the protozoan parasite that causes toxoplasmosis, a potentially fatal disease to immunocompromised patients, and which affects approximately 30% of the world’s population. Previously, we showed that purinergic signaling via the P2X7 receptor contributes to T. gondii elimination in macrophages, through reactive oxygen species (ROS) production and lysosome fusion with the parasitophorous vacuole. Moreover, we demonstrated that P2X7 receptor activation promotes the production of anti-parasitic pro-inflammatory cytokines during early T. gondii infection in vivo. However, the cascade of signaling events that leads to parasite elimination via P2X7 receptor activation remained to be elucidated. Here, we investigated the cellular pathways involved in T. gondii elimination triggered by P2X7 receptor signaling, during early infection in macrophages. We focused on the potential role of the inflammasome, a protein complex that can be co-activated by the P2X7 receptor, and which is involved in the host immune defense against T. gondii infection. Using peritoneal and bone marrow-derived macrophages from knockout mice deficient for inflammasome components (NLRP3−/−, Caspase-1/11−/−, Caspase-11−/−), we show that the control of T. gondii infection via P2X7 receptor activation by extracellular ATP (eATP) depends on the canonical inflammasome effector caspase-1, but not on caspase-11 (a non-canonical inflammasome effector). Parasite elimination via P2X7 receptor and inflammasome activation was also dependent on ROS generation and pannexin-1 channel. Treatment with eATP increased IL-1β secretion from infected macrophages, and this effect was dependent on the canonical NLRP3 inflammasome. Finally, treatment with recombinant IL-1β promoted parasite elimination via mitochondrial ROS generation (as assessed using Mito-TEMPO). Together, our results support a model where P2X7 receptor activation by eATP inhibits T. gondii growth in macrophages by triggering NADPH-oxidase-dependent ROS production, and also by activating a canonical NLRP3 inflammasome, which increases IL-1β production (via caspase-1 activity), leading to mitochondrial ROS generation.
Collapse
Affiliation(s)
- Aline Cristina Abreu Moreira-Souza
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Parasitology and Cell Biology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thuany Prado Rangel
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Parasitology and Cell Biology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabrielle da Costa Rocha
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Bellio
- Department of Immunology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Simões Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rossiane Claudia Vommaro
- Parasitology and Cell Biology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Immunobiology Program, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Pereira AV, Góis MB, Lera KRJL, Falkowski-Temporini GJ, Massini PF, Drozino RN, Aleixo DL, Miranda MM, da Silva Watanabe P, Conchon-Costa I, da Costa IN, Dos Anjos Neto Filho M, de Araújo SM, Pavanelli WR. Histopathological lesions in encephalon and heart of mice infected with Toxoplasma gondii increase after Lycopodium clavatum 200dH treatment. Pathol Res Pract 2016; 213:50-57. [PMID: 27894616 DOI: 10.1016/j.prp.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023]
Abstract
In many cases, symptoms of toxoplasmosis are mistaken for the ones of other infectious diseases. Clinical signs are rare in immunocompetent people. However, when they arise, in the acute phase of infection, several organs are affected due to the rapid spread of tachyzoites through the bloodstream. In the present study, the reduction of tachyzoites in peripheral blood of mice of G72 (infected 72h after treatment) and G48 (infected 48h after treatment and treated three more times), when compared with IC (infected and non-treated), suggests protective effect exerted by Lycopodium clavatum. If on the one hand L. clavatum brought benefits, reducing parasitemia, on the other hand, the parasitism became exacerbated. Histopathological analysis demonstrated focal, multifocal and diffuse inflammatory infiltrates, ranging from absent, discreet, moderate to intense, in heart and encephalon of mice of NIC (non-infected and non-treated), IC, G48 and G72 groups, respectively. In the perivascular region and meninges, the injuries were enlarged. The presence of tachyzoites was demonstrated through immunohistochemical (IHC) assay in myocardium. Toxoplasma gondii induced increase of collagen fibers in myocardium of mice of G72 and G48 groups, compared with IC (p<0.05) and NIC (p<0.001). The presence of inflammatory infiltrates, as well as the progressive fibrosis, caused myocardial remodeling in animals treated with L. clavatum. Counterstaining with H&E suggests TGF-β expression by mononuclear cells in the inflammatory infiltrate. Based on our results, we can conclude that the adopted regimen and potency exerted a protective effect, reducing parasitemia. However, it intensified the histopathological lesions in encephalon and heart of mice infected with T. gondii.
Collapse
Affiliation(s)
- Andréia Vieira Pereira
- Department of Experimental Pathology, State University of Londrina, Londrina, PR, Brazil
| | - Marcelo Biondaro Góis
- Department of Morphological Sciences, State University of Maringa, Maringa, PR, Brazil.
| | | | | | | | | | - Denise Lessa Aleixo
- Department of Health Sciences, State University of Maringa, Maringa, PR, Brazil
| | | | | | - Ivete Conchon-Costa
- Department of Experimental Pathology, State University of Londrina, Londrina, PR, Brazil
| | | | | | | | | |
Collapse
|
25
|
Pomares C, Holmes TH, Estran R, Press CJ, Ramirez R, Talucod J, Maecker H, Rosenberg-Hasson Y, Montoya JG. Cytokine profiles in patients with toxoplasmic lymphadenitis in the setting of pregnancy. Cytokine 2016; 90:14-20. [PMID: 27744174 DOI: 10.1016/j.cyto.2016.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Majority of Toxoplasma gondii infections are benign and asymptomatic; however, some patients experience toxoplasmic lymphadenitis (TL). Factors associated as to whether infection will be symptomatic or not are unknown. METHODS Dye test titers of patients with acute toxoplasmosis (pregnant and not pregnant) with TL (TL+) were compared with those in patients with asymptomatic acute infection (TL-). Additionally, mean levels of 62 serum cytokines were compared between TL+ and TL- pregnant women and between TL+ pregnant and non-pregnant women. RESULTS During acute infection, mean dye test titer was higher in TL+ than in TL- patients (p=0.021). In addition, out of 62 cytokines, CXCL9andCXCL10 levels were higher (p<0.05) and resistin mean levels were lower (p<0.05) in pregnant women with TL+ compared to TL-. Among patients with TL+, levels of VCAM1andCCL2 were lower (p<0.05) in pregnant women than in non-pregnant women. CONCLUSION Here we report differences in dye test titers in patients with acute infection. Cytokine responses vary according to the presence of TL+ and to the pregnancy status. Factors underlying these differences are presently unknown and require further studies to define individual and combined roles of cytokines in TL+.
Collapse
Affiliation(s)
- Christelle Pomares
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, Palo Alto, CA, USA; Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA; INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes - Université de Nice Sophia Antipolis d, Faculté de Médecine, 06204 Nice Cedex 3, France; Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet e, CS 23079, 06202 Nice Cedex 3, France.
| | - Tyson H Holmes
- Stanford University Human Immune Monitoring Centre, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Cynthia J Press
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, Palo Alto, CA, USA
| | - Raymund Ramirez
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, Palo Alto, CA, USA
| | - Jeanne Talucod
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, Palo Alto, CA, USA
| | - Holden Maecker
- Department of Immunology, Fairchild Science Building, D033, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Yael Rosenberg-Hasson
- Department of Immunology, Fairchild Science Building, D033, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Jose G Montoya
- Palo Alto Medical Foundation Toxoplasma Serology Laboratory, Palo Alto, CA, USA; Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Maksimov P, Hermosilla C, Kleinertz S, Hirzmann J, Taubert A. Besnoitia besnoiti infections activate primary bovine endothelial cells and promote PMN adhesion and NET formation under physiological flow condition. Parasitol Res 2016; 115:1991-2001. [PMID: 26847631 DOI: 10.1007/s00436-016-4941-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/26/2016] [Indexed: 12/25/2022]
Abstract
Besnoitia besnoiti is an obligate intracellular and emerging coccidian parasite of cattle that mainly infects host endothelial cells during acute infection. We here analyzed early innate immune reactions of B. besnoiti-infected primary bovine umbilical vein endothelial cells (BUVEC). B. besnoiti infections significantly activated BUVEC since the gene transcripts of several adhesion molecules (P-selectin, intercellular adhesion molecule 1(ICAM-1)), chemokines (CXCL1, CXCL8, CCL5), and of COX-2 were significantly upregulated during in vitro infection. Overall, the highest upregulation of most transcripts was observed at 24 or 48 h post infection (p.i.). Enhanced adhesion molecule expression in infected host cells was confirmed by PMN adhesion assays being performed under physiological flow conditions revealing a significantly increased PMN adhesion on B. besnoiti-infected BUVEC layers at 24 h p.i. Furthermore, we were able to illustrate neutrophil extracellular traps (NETs) being released by PMN under physiological flow conditions after adhesion to B. besnoiti-infected BUVEC layers. The present study shows that B. besnoiti infections of primary BUVEC induce a cascade of pro-inflammatory reactions and triggers early innate immune responses.
Collapse
Affiliation(s)
- P Maksimov
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany.,Federal Research Institute for Animal Health, Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Riems, Germany
| | - C Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany
| | - S Kleinertz
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany.,Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - J Hirzmann
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany
| | - A Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Gießen, Germany.
| |
Collapse
|
27
|
Endothelial-Leukocyte Interaction in Severe Malaria: Beyond the Brain. Mediators Inflamm 2015; 2015:168937. [PMID: 26491221 PMCID: PMC4605361 DOI: 10.1155/2015/168937] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 01/23/2023] Open
Abstract
Malaria is the most important parasitic disease worldwide, accounting for 1 million deaths each year. Severe malaria is a systemic illness characterized by dysfunction of brain tissue and of one or more peripheral organs as lungs and kidney. The most severe and most studied form of malaria is associated with cerebral complications due to capillary congestion and the adhesion of infected erythrocytes, platelets, and leukocytes to brain vasculature. Thus, leukocyte rolling and adhesion in the brain vascular bed during severe malaria is singular and distinct from other models of inflammation. The leukocyte/endothelium interaction and neutrophil accumulation are also observed in the lungs. However, lung interactions differ from brain interactions, likely due to differences in the blood-brain barrier and blood-air barrier tight junction composition of the brain and lung endothelium. Here, we review the importance of endothelial dysfunction and the mechanism of leukocyte/endothelium interaction during severe malaria. Furthermore, we hypothesize a possible use of adjunctive therapies to antimalarial drugs that target the interaction between the leukocytes and the endothelium.
Collapse
|
28
|
Ueno N, Lodoen MB. From the blood to the brain: avenues of eukaryotic pathogen dissemination to the central nervous system. Curr Opin Microbiol 2015; 26:53-9. [PMID: 26048316 PMCID: PMC10538213 DOI: 10.1016/j.mib.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/25/2022]
Abstract
Infection of the central nervous system (CNS) is a significant cause of morbidity and mortality, and treatments available to combat the highly debilitating symptoms of CNS infection are limited. The mechanisms by which pathogens in the circulation overcome host immunity and breach the blood-brain barrier are active areas of investigation. In this review, we discuss recent work that has significantly advanced our understanding of the avenues of pathogen dissemination to the CNS for four eukaryotic pathogens of global health importance: Toxoplasma gondii, Plasmodium falciparum, Trypanosoma brucei, and Cryptococcus neoformans. These studies highlight the remarkable diversity of pathogen strategies for trafficking to the brain and will ultimately contribute to an improved ability to combat life-threatening CNS disease.
Collapse
Affiliation(s)
- Norikiyo Ueno
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, USA.
| |
Collapse
|
29
|
Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol 2015; 37:159-70. [PMID: 25376390 DOI: 10.1111/pim.12157] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
The zoonotic pathogen Toxoplasma gondii infects over 30% of the human population. The intracellular parasite can persist lifelong in the CNS within neurons modifying their function and structure, thus leading to specific behavioural changes of the host. In recent years, several in vitro studies and murine models have focused on the elucidation of these modifications. Furthermore, investigations of the human population have correlated Toxoplasma seropositivity with changes in neurological functions; however, the complex underlying mechanisms of the subtle behavioural alteration are still not fully understood. The parasites are able to induce direct modifications in the infected cells, for example by altering dopamine metabolism, by functionally silencing neurons as well as by hindering apoptosis. Moreover, indirect effects of the peripheral immune system and alterations of the immune status of the CNS, observed during chronic infection, might also contribute to changes in neuronal connectivity and synaptic plasticity. In this review, we will provide an overview and highlight recent advances, which describe changes in the neuronal function and morphology upon T. gondii infection.
Collapse
Affiliation(s)
- A Parlog
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
30
|
Landrith TA, Harris TH, Wilson EH. Characteristics and critical function of CD8+ T cells in the Toxoplasma-infected brain. Semin Immunopathol 2015; 37:261-70. [PMID: 25898888 DOI: 10.1007/s00281-015-0487-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 12/13/2022]
Abstract
The rise of the AIDS epidemic made the requirement for T cells in our continuous protection from pathogens critically apparent. The striking frequency with which AIDS patients exhibited profound neurological pathologies brought attention to many chronic infections that are latent within the immune-privileged CNS. One of the most common lethal opportunistic infections of these patients was with the protozoan parasite, Toxoplasma gondii. Reactivation of Toxoplasma cysts within the brain causes massive tissue destruction evidenced as multiple ring-enhancing lesions on MRI and is called toxoplasmic encephalitis (TE). TE is not limited to AIDS patients, but rather is a risk for all severely immunocompromised patients, including recipients of chemotherapy or transplant recipients. The lessons learned from these patient populations are supported by T cell depletion studies in mice. Such experiments have demonstrated that CD4+ and CD8+ T cells are required for protection against TE. Although it is clear that these T cell subsets work synergistically to fight infection, much evidence has been generated that suggests CD8+ T cells play a dominant role in protection during chronic toxoplasmosis. In other models of CNS inflammation, such as intracerebral infection with LCMV and experimental autoimmune encephalomyelitis (EAE), infiltration of T cells into the brain is harmful and even fatal. In the brain of the immunocompetent host, the well-regulated T cell response to T. gondii is therefore an ideal model to understand a controlled inflammatory response to CNS infection. This review will examine our current understanding of CD8+ T cells in the CNS during T. gondii infection in regards to the (1) mechanisms governing entry into the brain, (2) cues that dictate behavior within the brain, and (3) the functional and phenotypic properties exhibited by these cells.
Collapse
Affiliation(s)
- Tyler A Landrith
- Division of Biomedical Sciences, University of California, Riverside, CA, 92521, USA
| | | | | |
Collapse
|
31
|
Influence of toxoplasmosis on acetylcholinesterase activity, nitric oxide levels and cellular lesion on the brain of mice. Pathol Res Pract 2014; 210:526-32. [DOI: 10.1016/j.prp.2014.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 01/09/2023]
|
32
|
Toxoplasma gondii 70 kDa heat shock protein: systemic detection is associated with the death of the parasites by the immune response and its increased expression in the brain is associated with parasite replication. PLoS One 2014; 9:e96527. [PMID: 24801069 PMCID: PMC4011789 DOI: 10.1371/journal.pone.0096527] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
The heat shock protein of Toxoplasma gondii (TgHSP70) is a parasite virulence factor that is expressed during T. gondii stage conversion. To verify the effect of dexamethasone (DXM)-induced infection reactivation in the TgHSP70-specific humoral immune response and the presence of the protein in the mouse brain, we produced recombinant TgHSP70 and anti-TgHSP70 IgY antibodies to detect the protein, the specific antibody and levels of immune complexes (ICs) systemically, as well as the protein in the brain of resistant (BALB/c) and susceptible (C57BL/6) mice. It was observed higher TgHSP70-specific antibody titers in serum samples of BALB/c compared with C57BL/6 mice. However, the susceptible mice presented the highest levels of TgHSP70 systemically and no detection of specific ICs. The DXM treatment induced increased parasitism and lower inflammatory changes in the brain of C57BL/6, but did not interfere with the cerebral parasitism in BALB/c mice. Additionally, DXM treatment decreased the serological TgHSP70 concentration in both mouse lineages. C57BL/6 mice presented high expression of TgHSP70 in the brain with the progression of infection and under DXM treatment. Taken together, these data indicate that the TgHSP70 release into the bloodstream depends on the death of the parasites mediated by the host immune response, whereas the increased TgHSP70 expression in the brain depends on the multiplication rate of the parasite.
Collapse
|
33
|
Tonin AA, Da Silva AS, Casali EA, Silveira SS, Moritz CEJ, Camillo G, Flores MM, Fighera R, Thomé GR, Morsch VM, Schetinger MRC, Rue MDL, Vogel FSF, Lopes STA. Influence of infection by Toxoplasma gondii on purine levels and E-ADA activity in the brain of mice experimentally infected mice. Exp Parasitol 2014; 142:51-8. [PMID: 24768956 DOI: 10.1016/j.exppara.2014.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 12/20/2022]
Abstract
The aim of this study was to assess the purine levels and E-ADA activity in the brain of mice (BALB/c) experimentally infected with Toxoplasma gondii. In experiment I (n=24) the mice were infected with RH strain of T. gondii, while in experiment II (n=36) they were infected with strain ME-49 of T. gondii. Our results showed that, for RH strain (acute phase), an increase in both periods in the levels of ATP, ADP, AMP, adenosine, hypoxanthine, xanthine (only on day 6 PI) and uric acid (only on day 6 PI). By the other hand, the RH strain led, on days 4 and 6 PI, to a reduction in the concentration of inosine. ME-49, a cystogenic strain, showed some differences in acute and chronic phase, since on day 6 PI the levels of ATP and ADP were increased, while on day 30 these same nucleotides were reduced. On day 60 PI, ME-49 induced a reduction in the levels of ATP, ADP, AMP, adenosine, inosine and xanthine, while uric acid was increased. A decrease of E-ADA activity was observed in brain on days 4 and 6 PI (RH), and 30 PI (ME-49); however on day 60 PI E-ADA activity was increased for infection by ME-49 strain. Therefore, it was possible to conclude that infection with T. gondii changes the purine levels and the activity of E-ADA in brain, which may be associated with neurological signs commonly observed in this disease.
Collapse
Affiliation(s)
- Alexandre A Tonin
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Brazil; Department of Small Animal, Universidade Federal de Santa Maria, Brazil.
| | | | - Emerson A Casali
- Department of Morphological Science, Universidade Federal do Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Stephanie S Silveira
- Department of Morphological Science, Universidade Federal do Rio Grande do Sul, Brazil
| | - Cesar E J Moritz
- Department of Morphological Science, Universidade Federal do Rio Grande do Sul, Brazil
| | - Giovana Camillo
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Brazil
| | - Mariana M Flores
- Department of Veterinary Pathology, Universidade Federal de Santa Maria, Brazil
| | - Rafael Fighera
- Department of Veterinary Pathology, Universidade Federal de Santa Maria, Brazil
| | - Gustavo R Thomé
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Brazil
| | - Vera M Morsch
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Brazil
| | | | - Mario De La Rue
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Brazil; Department of Small Animal, Universidade Federal de Santa Maria, Brazil
| | - Fernanda S F Vogel
- Department of Preventive Veterinary Medicine, Universidade Federal de Santa Maria, Brazil
| | - Sonia T A Lopes
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Brazil; Department of Small Animal, Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
34
|
Astrocytes, microglia/macrophages, and neurons expressing Toll-like receptor 11 contribute to innate immunity against encephalitic Toxoplasma gondii infection. Neuroscience 2014; 269:184-91. [PMID: 24704432 DOI: 10.1016/j.neuroscience.2014.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022]
Abstract
Toll-like receptor 11 (TLR11) is a specific receptor for Toxoplasma gondii and uropathogenic Escherichia coli and has recently been identified in the mouse brain. In the present study, TLR11 gene expression was measured in the mouse brain by Real-time quantitative polymerase chain reaction (RT-PCR). Furthermore, the TLR11 protein expression profile was evaluated in neuroglia and neurons throughout the encephalitic period (10, 20, and 30days after inoculation) in mice with experimentally induced T. gondii infection. In the brains of experimental (n=21) and control (n=7) mice, TLR11, glial fibrillary acidic protein (GFAP), cd11b, NeuN, TLR11/GFAP+, TLR11/cd11b+, and TLR11/NeuN+ cells were investigated using either indirect single- or double-labeling immunoperoxidase staining. The results indicated that TLR11 gene expression increased during chronic toxoplasmic encephalitis, and there was a variable degree of TLR11 immunopositivity among cd11b+, GFAP+, and NeuN+ cells in the brain. On the tenth day of infection, there was a significant increase in TLR11 protein and gene expression, which remained stable during the later stages of infection. In this experimental model, TLR11 expression was induced in astrocytes, neurons, and microglia/macrophages during the immune response to T. gondii infection.
Collapse
|
35
|
Wu B, Fu X, Huang B, Tong X, Zheng H, Huang S, Lu F. Comparison of dynamic expressions of Tim-3 and PD-1 in the brains between toxoplasmic encephalitis-resistant BALB/c and -susceptible C57BL/6 mice. Parasitol Res 2014; 113:1261-7. [PMID: 24481903 DOI: 10.1007/s00436-014-3764-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/10/2014] [Indexed: 01/07/2023]
Abstract
T cells and IFN-γ are essential for controlling the reactivation of toxoplasmic encephalitis (TE), regardless of whether mice are susceptible or resistant to TE. It has been demonstrated that CD8(+) T cells exhausted in chronic Toxoplasma gondii infection result in TE reactivation in C57BL/6 mice. However, this phenomenon had not been reported in genetically TE-resistant BALB/c mice. To explore the immune mechanism of TE in different backgrounds of mice, the dynamic expressions of Tim-3, programmed cell death 1 (PD-1), and their ligands (galectin-9, PD-L1, PD-L2) in brain tissues were compared between TE-resistant BALB/c and -susceptible C57BL/6 mice infected with Prugniaud (Pru, a type II strain) of T. gondii in this study. Compared with infected BALB/c mice, there were remarkable pathological changes with significantly higher histological scores in the brains of C57BL/6 mice at 14, 35, 50, and 70 days postinfection (p.i., P < 0.01); significantly increased mRNA expressions of Tim-3 at 35 (P < 0.05) and 70 (P < 0.01) days p.i.; and significantly increased PD-1 at all the times p.i. (P < 0.01) in the brains of infected C57BL/6 mice. Furthermore, there were significantly increased mRNA expressions of PD-L1 in the brain of C57BL/6 mice than that in BALB/c mice at all the times p.i. (P < 0.01). Although the mRNA expressions of galectin-9 (ligand of Tim-3) were increased in the brains of both lineages of mice at all the times p.i., it showed no differences between the two lineages of mice. Our data suggest that the differences of Tim-3 and PD-1/PD-L1 expressions may contribute to the different immune responses between TE-resistant BALB/c and -susceptible C57BL/6 mice infected with Pru strain of T. gondii.
Collapse
Affiliation(s)
- Bin Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Araujo ECB, Barbosa BF, Coutinho LB, Barenco PVC, Sousa LA, Milanezi CM, Bonfá G, Pavanelli WR, Silva JS, Ferro EAV, Silva DAO, Cunha-Junior JP, Silva NM. Heme oxygenase-1 activity is involved in the control of Toxoplasma gondii infection in the lung of BALB/c and C57BL/6 and in the small intestine of C57BL/6 mice. Vet Res 2013; 44:89. [PMID: 24088531 PMCID: PMC3851451 DOI: 10.1186/1297-9716-44-89] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/13/2013] [Indexed: 01/12/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme that catabolizes free heme, which induces an intense inflammatory response. The expression of HO-1 is induced by different stimuli, triggering an anti-inflammatory response during biological stress. It was previously verified that HO-1 is able to induce indoleamine 2,3-dioxygenase (IDO), an enzyme that is induced by IFN-γ in Toxoplasma gondii infection. To verify the role of HO-1 during in vivo T. gondii infection, BALB/c and C57BL/6 mice were infected with the ME49 strain and treated with zinc protoporphyrin IX (ZnPPIX) or hemin, which inhibit or induce HO-1 activity, respectively. The results show that T. gondii infection induced high levels of HO-1 expression in the lung of BALB/c and C57BL6 mice. The animals treated with ZnPPIX presented higher parasitism in the lungs of both lineages of mice, whereas hemin treatment decreased the parasite replication in this organ and in the small intestine of infected C57BL/6 mice. Furthermore, C57BL/6 mice infected with T. gondii and treated with hemin showed higher levels of IDO expression in the lungs and small intestine than uninfected mice. In conclusion, our data suggest that HO-1 activity is involved in the control of T. gondii in the lungs of both mouse lineages, whereas the hemin, a HO-1 inducer, seems to be involved in the control of parasitism in the small intestine of C57BL/6 mice.
Collapse
Affiliation(s)
- Ester C B Araujo
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Parasitic infections of the central nervous system (CNS) include two broad categories of infectious organisms: single-celled protozoa and multicellular metazoa. The protozoal infections include malaria, American trypanosomiasis, human African trypanosomiasis, toxoplasmosis, amebiasis, microsporidiasis, and leishmaniasis. The metazoal infections are grouped into flatworms, which include trematoda and cestoda, and roundworms or nematoda. Trematoda infections include schistosomiasis and paragonimiasis. Cestoda infections include cysticercosis, coenurosis, hydatidosis, and sparganosis. Nematoda infections include gnathostomiasis, angiostrongyliasis, toxocariasis, strongyloidiasis, filariasis, baylisascariasis, dracunculiasis, micronemiasis, and lagochilascariasis. The most common route of CNS invasion is through the blood. In some cases, the parasite invades the olfactory neuroepithelium in the nasal mucosa and penetrates the brain via the subarachnoid space or reaches the CNS through neural foramina of the skull base around the cranial nerves or vessels. The neuropathological changes vary greatly, depending on the type and size of the parasite, geographical strain variations in parasitic virulence, immune evasion by the parasite, and differences in host immune response. Congestion of the leptomeninges, cerebral edema, hemorrhage, thrombosis, vasculitis, necrosis, calcification, abscesses, meningeal and perivascular polymorphonuclear and mononuclear inflammatory infiltrate, microglial nodules, gliosis, granulomas, and fibrosis can be found affecting isolated or multiple regions of the CNS, or even diffusely spread. Some infections may be present as an expanding mass lesion. The parasites can be identified by conventional histology, immunohistochemistry, in situ hybridization, and PCR.
Collapse
Affiliation(s)
- José Eymard Homem Pittella
- Pathology Service, Hospital das Clínicas, Medical Faculty of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
38
|
Furtado JM, Bharadwaj AS, Ashander LM, Olivas A, Smith JR. Migration of toxoplasma gondii-infected dendritic cells across human retinal vascular endothelium. Invest Ophthalmol Vis Sci 2012; 53:6856-62. [PMID: 22952125 DOI: 10.1167/iovs.12-10384] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Toxoplasma gondii, the parasite responsible for ocular toxoplasmosis, accesses the retina from the bloodstream. We investigated the dendritic cell as a potential taxi for T. gondii tachyzoites moving across the human retinal endothelium, and examined the participation of adhesion molecules and chemokines in this process. METHODS CD14-positive monocytes were isolated from human peripheral blood by antibody-mediated cell enrichment, and cultured in granulocyte-macrophage colony-stimulating factor and interleukin-4 to generate dendritic cells. Transmigration assays were performed over 18 hours in transwells seeded with human retinal endothelial cells and using dendritic cells exposed to laboratory or natural strains of T. gondii tachyzoites. Parasites were tagged with yellow fluorescent protein to verify infection. In some experiments, endothelial monolayers were preincubated with antibody directed against adhesion molecules, or chemokine was added to lower chambers of transwells. RESULTS Human monocyte-derived dendritic cell preparations infected with laboratory or natural strain T. gondii tachyzoites transmigrated in larger numbers across simulated human retinal endothelium than uninfected dendritic cells (P ≤ 0.0004 in 5 of 6 experiments). Antibody blockade of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and activated leukocyte cell adhesion molecule (ALCAM) inhibited transmigration (P ≤ 0.007), and CCL21 or CXCL10 increased transmigration (P ≤ 0.031). CONCLUSIONS Transmigration of human dendritic cells across retinal endothelium is increased following infection with T. gondii. Movement may be impacted by locally produced chemokines and is mediated in part by ICAM-1, VCAM-1, and ALCAM. These findings have implications for development of novel therapeutics aimed at preventing retinal infection by T. gondii.
Collapse
Affiliation(s)
- João M Furtado
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
39
|
Enrofloxacin is able to control Toxoplasma gondii infection in both in vitro and in vivo experimental models. Vet Parasitol 2012; 187:44-52. [DOI: 10.1016/j.vetpar.2011.12.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 12/23/2011] [Accepted: 12/30/2011] [Indexed: 11/24/2022]
|
40
|
The impaired pregnancy outcome in murine congenital toxoplasmosis is associated with a pro-inflammatory immune response, but not correlated with decidual inducible nitric oxide synthase expression. Int J Parasitol 2012; 42:341-52. [DOI: 10.1016/j.ijpara.2012.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 02/01/2023]
|
41
|
Abstract
The blood-brain barrier (BBB) is a structural and functional barrier that protects the central nervous system (CNS) from invasion by blood-borne pathogens including parasites. However, some intracellular and extracellular parasites can traverse the BBB during the course of infection and cause neurological disturbances and/or damage which are at times fatal. The means by which parasites cross the BBB and how the immune system controls the parasites within the brain are still unclear. In this review we present the current understanding of the processes utilized by two human neuropathogenic parasites, Trypanosoma brucei spp and Toxoplasma gondii, to go across the BBB and consequences of CNS invasion. We also describe briefly other parasites that can invade the brain and how they interact with or circumvent the BBB. The roles played by parasite-derived and host-derived molecules during parasitic and white blood cell invasion of the brain are discussed.
Collapse
Affiliation(s)
- Willias Masocha
- Department of Applied Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | | |
Collapse
|
42
|
O’Donovan J, Proctor A, Gutierrez J, Worrell S, Nally J, Marques P, Brady C, McElroy M, Sammin D, Buxton D, Maley S, Bassett H, Markey B. Distribution of Lesions in Fetal Brains Following Experimental Infection of Pregnant Sheep With Toxoplasma gondii. Vet Pathol 2011; 49:462-9. [DOI: 10.1177/0300985811424732] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Six ovine fetal brains were harvested 33 to 35 days postchallenge from 5 ewes, each of which was given 3000 Toxoplasma gondii oocysts on day 90 of pregnancy. Histopathologic examination of transverse sections taken at 13 levels in the fetal brains revealed the presence of toxoplasmosis-related lesions in all 6 brains. However, lesions were not randomly distributed ( P = .007); they were most numerous at the level of the optic tract, the rostral margin of the pons, and 4 mm caudal to the ansate sulcus and were absent in all sections at the level of the caudal cerebellum. Lesion distribution may be due to hemodynamic factors, differences in the expression of endothelial surface receptor molecules at the level of the blood-brain barrier, or the presence of localized permissive/inhibitory factors within the brain. The results have implications for the selection of areas of brain from aborted ovine fetuses to be examined histopathologically for laboratory diagnosis.
Collapse
Affiliation(s)
- J. O’Donovan
- Regional Veterinary Laboratory, Department of Agriculture, Fisheries, and Food, Athlone, Ireland
| | - A. Proctor
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - J. Gutierrez
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - S. Worrell
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - J. Nally
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - P. Marques
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - C. Brady
- Central Veterinary Research Laboratory, Department of Agriculture, Fisheries, and Food, Celbridge, Ireland
| | - M. McElroy
- Central Veterinary Research Laboratory, Department of Agriculture, Fisheries, and Food, Celbridge, Ireland
| | - D. Sammin
- Central Veterinary Research Laboratory, Department of Agriculture, Fisheries, and Food, Celbridge, Ireland
| | - D. Buxton
- Moredun Research Institute, Pentland Science Park, Edinburgh, Scotland
| | - S. Maley
- Moredun Research Institute, Pentland Science Park, Edinburgh, Scotland
| | - H. Bassett
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - B. Markey
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
43
|
ArtinM, a D-mannose-binding lectin from Artocarpus integrifolia, plays a potent adjuvant and immunostimulatory role in immunization against Neospora caninum. Vaccine 2011; 29:9183-93. [PMID: 22001880 DOI: 10.1016/j.vaccine.2011.09.136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/22/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022]
Abstract
ArtinM and Jacalin (JAC) are lectins from the jackfruit (Artocarpus integrifolia) that have important role in modulation of immune responses to pathogens. Neospora caninum is an Apicomplexa parasite that causes neuromuscular disease in dogs and reproductive disorders in cattle, with economic impact on the livestock industry. Hence, we evaluated the adjuvant effect of ArtinM and JAC in immunization of mice against neosporosis. Six C57BL/6 mouse groups were subcutaneously immunized three times at 2-week intervals with Neospora lysate antigen (NLA) associated with lectins (NLA+ArtinM and NLA+JAC), NLA, ArtinM and JAC alone, and PBS (infection control). Animals were challenged with lethal dose of Nc-1 isolate and evaluated for morbidity, mortality, specific antibody response, cytokine production by spleen cells, brain parasite burden and inflammation. Our results demonstrated that ArtinM was able to increase NLA immunogenicity, inducing the highest levels of specific total IgG and IgG2a/IgG1 ratio, ex vivo Th1 cytokine production, increased survival, the lowest brain parasite burden, along with the highest inflammation scores. In contrast, NLA+JAC immunized group showed intermediate survival, the highest brain parasite burden and the lowest inflammation scores. In conclusion, ArtinM presents stronger immunostimulatory and adjuvant effect than Jacalin in immunization of mice against neosporosis, by inducing a protective Th1-biased pro-inflammatory immune response and higher protection after parasite challenge.
Collapse
|
44
|
Grab DJ, Chakravorty SJ, van der Heyde H, Stins MF. How can microbial interactions with the blood-brain barrier modulate astroglial and neuronal function? Cell Microbiol 2011; 13:1470-8. [DOI: 10.1111/j.1462-5822.2011.01661.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|