1
|
Zhang Y, Wei G, Xue J, Xu J. CfSGR1 and CfSGR2 from Cryptomeria fortunei exhibit contrasting responses to hormones and abiotic stress in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109152. [PMID: 39423720 DOI: 10.1016/j.plaphy.2024.109152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Stay-green (SGR) genes are pivotal regulatory genes in the context of plant chlorophyll metabolism, but few studies on SGR homologues in Cryptomeria fortunei have been previously reported. We cloned two CfSGR genes and overexpressed them in Arabidopsis to explore their functions. Full-length CfSGR1 and CfSGR2 are 1265 and 1197 bp, encompassing open reading frames (ORFs) encoding 274 and 276 amino acids, respectively. SGRs exhibited high conservation in higher plants, and phylogenetic analysis indicated that SGRs from monocots and gymnosperms cluster in a clade. The proteins localized to chloroplasts and showed no transcriptional activity in yeast cells. The CfSGR gene expressions were induced by abiotic stresses and hormones. Under conditions of darkness, abscisic acid (ABA), salt, drought, or freezing stress, CfSGR2-transgenic Arabidopsis exhibited a delay in leaf yellowing compared to the WT, which was attributed to increased chlorophyll content and enhanced photosynthetic capacity. These transgenic plants exhibited improved resistance to stress via upregulated expression of resistance-related genes, increased antioxidant enzyme activities, and reduced malondialdehyde content and electrolyte leakage rate. In contrast, CfSGR1-transgenic plants may accelerate leaf yellowing and exhibit reduced stress resistance. Our findings highlight potential divergence in the functions of CfSGR genes concerning plant growth and development and responses to abiotic stresses or hormones, providing a scientific foundation for future breeding of stress-resistant C. fortunei cultivars.
Collapse
Affiliation(s)
- Yingting Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China; National Forestry and Grassland Administration Engineering Research Center for Osmanthus Fragrans, Osmanthus Innovation Center of National Engineering Research Center for Floriculture, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Guangqian Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jinyu Xue
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Hao Q, Li T, Lu G, Wang S, Li Z, Gu C, Kong F, Shu Q, Li Y. Chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 maintain petal greenness in Paeonia suffruticosa 'Lv Mu Yin Yu'. J Adv Res 2024:S2090-1232(24)00388-6. [PMID: 39236974 DOI: 10.1016/j.jare.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
INTRODUCTION Green flowers are not an adaptive trait in natural plants due to the challenge for pollinators to discriminate from leaves, but they are valuable in horticulture. The molecular mechanisms of green petals remain unclear. Tree peony (Paeonia suffruticosa) is a globally cultivated ornamental plant and considered the 'King of Flowers' in China. The P. suffruticosa 'Lv Mu Yin Yu (LMYY)' cultivar with green petals could be utilized as a representative model for understanding petal-specific chlorophyll (Chl) accumulation and color formation. OBJECTIVES Identify the key genes related to Chl metabolism and understand the molecular mechanism of petal color changes. METHODS The petal color parameter was analyzed at five developmental stages using a Chroma Spectrophotometer, and Chl and anthocyanin accumulation patterns were examined. Based on comparative transcriptomes, differentially expressed genes (DEGs) were identified, among which three were functionally characterized through overexpression in tobacco plants or silencing in 'LMYY' petals. RESULTS During flower development and blooming, flower color changed from green to pale pink, consistent with the Chl and anthocyanin levels. The level of Chl demonstrated a similar pattern with petal epidermal cell striation density. The DEGs responsible for Chl and anthocyanin metabolism were characterized through a comparative transcriptome analysis of flower petals over three critical developmental stages. The key chlorophyllase (PsCLH1) and light-harvesting chlorophyll a/b binding protein 1 (PsLhcb1) and PsLhcb5 influenced the Chl accumulation and the greenness of 'LMYY' petals. CONCLUSION PsCLH1, PsLhcb1, and PsLhcb5 were critical in accumulating the Chl and maintaining the petal greenness. Flower color changes from green to pale pink were regulated by the homeostasis of Chl degradation and anthocyanin biosynthesis. This study offers insights into underlying molecular mechanisms in the green petal and a strategy for germplasm innovation.
Collapse
Affiliation(s)
- Qing Hao
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tongtong Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Gaojie Lu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuo Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Zhen Li
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Cancan Gu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fan Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingyan Shu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
3
|
Yong S, Chen Q, Xu F, Fu H, Liang G, Guo Q. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors. PLANTA 2024; 260:25. [PMID: 38861219 PMCID: PMC11166782 DOI: 10.1007/s00425-024-04437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.
Collapse
Affiliation(s)
- Shunyuan Yong
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
4
|
Li YM, Tang XS, Sun MH, Zhang HX, Xie ZS. Expression and function identification of senescence-associated genes under continuous drought treatment in grapevine ( Vitis vinifera L.) leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:877-891. [PMID: 38974354 PMCID: PMC11222358 DOI: 10.1007/s12298-024-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024]
Abstract
Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01465-2.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Xuan-Si Tang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Meng-Hao Sun
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Hong-Xing Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Li X, Zhang W, Niu D, Liu X. Effects of abiotic stress on chlorophyll metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112030. [PMID: 38346561 DOI: 10.1016/j.plantsci.2024.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Chlorophyll, an essential pigment in the photosynthetic machinery of plants, plays a pivotal role in the absorption of light energy and its subsequent transfer to reaction centers. Given that the global production of chlorophyll reaches billions of tons annually, a comprehensive understanding of its biosynthetic pathways and regulatory mechanisms is important. The metabolic pathways governing chlorophyll biosynthesis and catabolism are complex, encompassing a series of interconnected reactions mediated by a spectrum of enzymes. Environmental fluctuations, particularly abiotic stressors such as drought, extreme temperature variations, and excessive light exposure, can significantly perturb these processes. Such disruptions in chlorophyll metabolism have profound implications for plant growth and development. This review delves into the core aspects of chlorophyll metabolism, encompassing both biosynthetic and degradative pathways. It elucidates key genes and enzymes instrumental in these processes and underscores the impact of abiotic stress on chlorophyll metabolism. Furthermore, the review aims to deepen the understanding of the interplay between chlorophyll metabolic dynamics and stress responses, thereby shedding light on potential regulatory mechanisms.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
6
|
Li Z, Liu J, Chen Y, Liang A, He W, Qin X, Qin K, Mu Z. Genome-Wide Identification of PYL/RCAR ABA Receptors and Functional Analysis of LbPYL10 in Heat Tolerance in Goji ( Lycium barbarum). PLANTS (BASEL, SWITZERLAND) 2024; 13:887. [PMID: 38592885 PMCID: PMC10975129 DOI: 10.3390/plants13060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The characterization of the PYL/RCAR ABA receptors in a great deal of plant species has dramatically advanced the study of ABA functions involved in key physiological processes. However, the genes in this family are still unclear in Lycium (Goji) plants, one of the well-known economically, medicinally, and ecologically valuable fruit crops. In the present work, 12 homologs of Arabidopsis PYL/RCAR ABA receptors were first identified and characterized from Lycium (L.) barbarum (LbPYLs). The quantitative real-time PCR (qRT-PCR) analysis showed that these genes had clear tissue-specific expression patterns, and most of them were transcribed in the root with the largest amount. Among the three subfamilies, while the Group I and Group III members were down-regulated by extraneous ABA, the Group II members were up-regulated. At 42 °C, most transcripts showed a rapid and violent up-regulation response to higher temperature, especially members of Group II. One of the genes in the Group II members, LbPYL10, was further functionally validated by virus-induced gene silencing (VIGS) technology. LbPYL10 positively regulates heat stress tolerance in L. barbarum by alleviating chlorophyll degradation, thus maintaining chlorophyll stability. Integrating the endogenous ABA level increase following heat stress, it may be concluded that LbPYL-mediated ABA signaling plays a vital role in the thermotolerance of L. barbarum plants. Our results highlight the strong potential of LbPYL genes in breeding genetically modified L. barbarum crops that acclimate to climate change.
Collapse
Affiliation(s)
- Zeyu Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (Z.L.); (J.L.); (Y.C.); (W.H.)
| | - Jiyao Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (Z.L.); (J.L.); (Y.C.); (W.H.)
| | - Yan Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (Z.L.); (J.L.); (Y.C.); (W.H.)
| | - Aihua Liang
- College of Life Sciences & Technology, Tarim University, Alaer 843300, China;
- State Key Laboratory Breeding Base for the Protection and Utilization of Biological Resources in Tarim Basin Co–Funded by Xinjiang Corps and the Ministry of Science and Technology, Alaer 843300, China
| | - Wei He
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (Z.L.); (J.L.); (Y.C.); (W.H.)
| | - Xiaoya Qin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Ken Qin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China;
| | - Zixin Mu
- College of Life Sciences & Technology, Tarim University, Alaer 843300, China;
- State Key Laboratory Breeding Base for the Protection and Utilization of Biological Resources in Tarim Basin Co–Funded by Xinjiang Corps and the Ministry of Science and Technology, Alaer 843300, China
| |
Collapse
|
7
|
Dong S, Li C, Tian H, Wang W, Yang X, Beckles DM, Liu X, Guan J, Gu X, Sun J, Miao H, Zhang S. Natural variation in STAYGREEN contributes to low-temperature tolerance in cucumber. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2552-2568. [PMID: 37811725 DOI: 10.1111/jipb.13571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Low-temperature (LT) stress threatens cucumber production globally; however, the molecular mechanisms underlying LT tolerance in cucumber remain largely unknown. Here, using a genome-wide association study (GWAS), we found a naturally occurring single nucleotide polymorphism (SNP) in the STAYGREEN (CsSGR) coding region at the gLTT5.1 locus associated with LT tolerance. Knockout mutants of CsSGR generated by clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 exhibit enhanced LT tolerance, in particularly, increased chlorophyll (Chl) content and reduced reactive oxygen species (ROS) accumulation in response to LT. Moreover, the C-repeat Binding Factor 1 (CsCBF1) transcription factor can directly activate the expression of CsSGR. We demonstrate that the LT-sensitive haplotype CsSGRHapA , but not the LT-tolerant haplotype CsSGRHapG could interact with NON-YELLOW COLORING 1 (CsNYC1) to mediate Chl degradation. Geographic distribution of the CsSGR haplotypes indicated that the CsSGRHapG was selected in cucumber accessions from high latitudes, potentially contributing to LT tolerance during cucumber cold-adaptation in these regions. CsSGR mutants also showed enhanced tolerance to salinity, water deficit, and Pseudoperonospora cubensis, thus CsSGR is an elite target gene for breeding cucumber varieties with broad-spectrum stress tolerance. Collectively, our findings provide new insights into LT tolerance and will ultimately facilitate cucumber molecular breeding.
Collapse
Affiliation(s)
- Shaoyun Dong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Caixia Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haojie Tian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiping Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Davis, CA, 95616, USA
| | - Xiaoping Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiantao Guan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
8
|
Li Y, Zhang C, Ma C, Chen L, Yao M. Transcriptome and Biochemical Analyses of a Chlorophyll-Deficient Bud Mutant of Tea Plant ( Camellia sinensis). Int J Mol Sci 2023; 24:15070. [PMID: 37894753 PMCID: PMC10606798 DOI: 10.3390/ijms242015070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Tea leaf-color mutants have attracted increasing attention due to their accumulation of quality-related biochemical components. However, there is limited understanding of the molecular mechanisms behind leaf-color bud mutation in tea plants. In this study, a chlorina tea shoot (HY) and a green tea shoot (LY) from the same tea plant were investigated using transcriptome and biochemical analyses. The results showed that the chlorophyll a, chlorophyll b, and total chlorophyll contents in the HY were significantly lower than the LY's, which might have been caused by the activation of several genes related to chlorophyll degradation, such as SGR and CLH. The down-regulation of the CHS, DFR, and ANS involved in flavonoid biosynthesis might result in the reduction in catechins, and the up-regulated GDHA and GS2 might bring about the accumulation of glutamate in HY. RT-qPCR assays of nine DEGs confirmed the RNA-seq results. Collectively, these findings provide insights into the molecular mechanism of the chlorophyll deficient-induced metabolic change in tea plants.
Collapse
Affiliation(s)
| | | | | | | | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.L.); (C.Z.); (C.M.); (L.C.)
| |
Collapse
|
9
|
Rahman MA, Ullah H. Receptor for Activated C Kinase1B (RACK1B) Delays Salinity-Induced Senescence in Rice Leaves by Regulating Chlorophyll Degradation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2385. [PMID: 37376011 DOI: 10.3390/plants12122385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
The widely conserved Receptor for Activated C Kinase1 (RACK1) protein is a WD-40 type scaffold protein that regulates diverse environmental stress signal transduction pathways. Arabidopsis RACK1A has been reported to interact with various proteins in salt stress and Light-Harvesting Complex (LHC) pathways. However, the mechanism of how RACK1 contributes to the photosystem and chlorophyll metabolism in stress conditions remains elusive. In this study, using T-DNA-mediated activation tagging transgenic rice (Oryza sativa L.) lines, we show that leaves from rice RACK1B gene (OsRACK1B) gain-of-function (RACK1B-OX) plants exhibit the stay-green phenotype under salinity stress. In contrast, leaves from down-regulated OsRACK1B (RACK1B-UX) plants display an accelerated yellowing. qRT-PCR analysis revealed that several genes which encode chlorophyll catabolic enzymes (CCEs) are differentially expressed in both RACK1B-OX and RACK1B-UX rice plants. In addition to CCEs, stay-green (SGR) is a key component that forms the SGR-CCE complex in senescing chloroplasts, and which causes LHCII complex instability. Transcript and protein profiling revealed a significant upregulation of OsSGR in RACK1B-UX plants compared to that in RACK1B-OX rice plants during salt treatment. The results imply that senescence-associated transcription factors (TFs) are altered following altered OsRACK1B expression, indicating a transcriptional reprogramming by OsRACK1B and a novel regulatory mechanism involving the OsRACK1B-OsSGR-TFs complex. Our findings suggest that the ectopic expression of OsRACK1B negatively regulates chlorophyll degradation, leads to a steady level of LHC-II isoform Lhcb1, an essential prerequisite for the state transition of photosynthesis for adaptation, and delays salinity-induced senescence. Taken together, these results provide important insights into the molecular mechanisms of salinity-induced senescence, which can be useful in circumventing the effect of salt on photosynthesis and in reducing the yield penalty of important cereal crops, such as rice, in global climate change conditions.
Collapse
Affiliation(s)
| | - Hemayet Ullah
- Department of Biology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
10
|
Kim JY, Kim JH, Jang YH, Yu J, Bae S, Kim MS, Cho YG, Jung YJ, Kang KK. Transcriptome and Metabolite Profiling of Tomato SGR-Knockout Null Lines Using the CRISPR/Cas9 System. Int J Mol Sci 2022; 24:ijms24010109. [PMID: 36613549 PMCID: PMC9820150 DOI: 10.3390/ijms24010109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Stay-green 1 (SGR1) protein is a critical regulator of chlorophyll degradation and senescence in plant leaves; however, the functions of tomato SGR1 remain ambiguous. Here, we generated an SGR1-knockout (KO) null line via clustered regularly interspaced palindromic repeat (CRISPR)/CRISPR-associated protein 9-mediated gene editing and conducted RNA sequencing and gas chromatography−tandem mass spectrometry analysis to identify the differentially expressed genes (DEGs). Solanum lycopersicum SGR1 (SlSGR1) knockout null line clearly showed a turbid brown color with significantly higher chlorophyll and carotenoid levels than those in the wild-type (WT) fruit. Differential gene expression analysis revealed 728 DEGs between WT and sgr#1-6 line, including 263 and 465 downregulated and upregulated genes, respectively, with fold-change >2 and adjusted p-value < 0.05. Most of the DEGs have functions related to photosynthesis, chloroplasts, and carotenoid biosynthesis. The strong changes in pigment and carotenoid content resulted in the accumulation of key primary metabolites, such as sucrose and its derivatives (fructose, galactinol, and raffinose), glycolytic intermediates (glucose, glucose-6-phosphate, and fructose-6-phosphate), and tricarboxylic acid cycle intermediates (malate and fumarate) in the leaves and fruit of the SGR-KO null lines. Overall, the SGR1-KO null lines developed here provide new evidence for the mechanisms underlying the roles of SGR1 as well as the molecular pathways involved in photosynthesis, chloroplasts, and carotenoid biosynthesis.
Collapse
Affiliation(s)
- Jin Young Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Young Hee Jang
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jihyeon Yu
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sangsu Bae
- Department of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Me-Sun Kim
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
- Correspondence: (Y.J.J.); (K.K.K.); Tel.: +82-31-670-5101 (Y.J.J.); +82-31-670-5104 (K.K.K.)
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
- Correspondence: (Y.J.J.); (K.K.K.); Tel.: +82-31-670-5101 (Y.J.J.); +82-31-670-5104 (K.K.K.)
| |
Collapse
|
11
|
Genome-Wide Identification and Expression Analysis of Senescence-Associated Genes in Grapevine ( Vitis vinifera L.) Reveal Their Potential Functions in Leaf Senescence Order. Int J Mol Sci 2022; 23:ijms232112731. [PMID: 36361520 PMCID: PMC9656468 DOI: 10.3390/ijms232112731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023] Open
Abstract
Natural leaf senescence is an acclimation strategy that enables plants to reallocate nutrients. In the present study, interestingly, we found that the basal mature leaves of grapevine primary shoots (P) exhibited the earliest senescence, followed by the apical young leaves of secondary shoots (ST), and then the basal mature leaves of secondary shoots (S). The Chl level decreased with the extent of leaf senescence. According to the genome-wide identification and expression analysis, sixteen senescence-associated genes (SAGs) involved in Chl breakdown were identified in the grapevine genome. Their expression patterns showed that the transcript changes in VvSGR, VvPPH2, and VvFtsH6-2 corresponded to the changes in Chl content among P, S, and ST. The changes in the transcription of VvNYC1, VvSGR, VvPAO1, VvPAO2, VvPAO4, VvPPH1, VvPPH3, and VvFtsH6-1 only contributed to low Chl levels in P. The cis-element analysis indicated that these SAGs possessed several light- and hormone-responsive elements in their promoters. Among them, ABA-responsive elements were found in twelve of the sixteen promoters of SAGs. Correspondingly, ABA-signaling components presented various changes in transcription among P, S, and ST. The transcription changes in VvbZIP45 and VvSnRK2.1 were similar to those in VvSGR, VvPPH2, and VvFtsH6-2. The other nine ABA-signaling components, which included VvRCAR2, VvRCAR4, VvRCAR6, VvRCAR7, VvRCAR2, VvPP2C4, VvPP2C9, VvbZIP25, and VvSnRK2.3, were highly expressed in P but there was no difference between S and ST, with similar expression patterns for VvNYC1, VvSGR, VvPAO1, VvPAO2, VvPAO4, VvPPH1, VvPPH3, and VvFtsH6-1. These results suggested that the senescence of P and ST could be regulated by different members of Chl breakdown-related SAGs and ABA-signaling components. These findings provide us with important candidate genes to further study the regulation mechanism of leaf senescence order in grapevine.
Collapse
|
12
|
Sasi JM, Gupta S, Singh A, Kujur A, Agarwal M, Katiyar-Agarwal S. Know when and how to die: gaining insights into the molecular regulation of leaf senescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1515-1534. [PMID: 36389097 PMCID: PMC9530073 DOI: 10.1007/s12298-022-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.
Collapse
Affiliation(s)
- Jyothish Madambikattil Sasi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Apurva Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Alice Kujur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
- USDA-ARS Plant Genetics Research Unit, The Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Centre of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007 India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
13
|
Jin F, Hua M, Song L, Cui S, Sun H, Kong W, Hao Z. Transcriptome analysis of gene expression in the tomato leaf premature senescence mutant. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1501-1513. [PMID: 36389094 PMCID: PMC9530104 DOI: 10.1007/s12298-022-01223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Premature senescence of leaves can critically influence tomato yield and quality. In this study, the leaf premature senescence mutant MT318 was a spontaneous mutant and was controlled by a single recessive nuclear gene. The maximum photochemical efficiency (Fv/Fm), superoxide dismutase (SOD), and chlorophyll content in the leaves of mutant MT318 gradually decreased, while malondialdehyde (MDA) content significantly increased. Under the level 2 category, Gene Ontology (GO) enrichment analysis indicated that 45 terms were enriched, comprising 22 in biological process, 12 in cellular component, and 11 in molecular function. Genes are mainly involved in the metabolic processes (696 differentially expressed genes, DEGs), cellular processes (573 DEGs), single-organism processes (503 DEGs), and catalytic activity (675 DEGs). Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that the 4 pathways with the largest number of genes were biosynthesis of secondary metabolites, plant-pathogen interaction, plant hormone signal transduction, and MAPK signaling pathway-plant. The 'plant hormone signal transduction' pathway was the most significantly enriched at the T2 stage. Pearson correlation analysis showed that the auxin regulatory pathway and SA signal transduction pathway may play important roles. These results not only lay the foundation for the further cloning and functional analysis of the MT318 premature senescence gene but also provide a reference for the study of tomato leaf senescence. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01223-2.
Collapse
Affiliation(s)
- Fengmei Jin
- Tianjin Academy of Agriculture Sciences, Tianjin, 300192 China
| | - Mingyan Hua
- Tianjin Academy of Agriculture Sciences, Tianjin, 300192 China
| | - Lanfang Song
- Tianjin Academy of Agriculture Sciences, Tianjin, 300192 China
| | - Shaojie Cui
- Tianjin Academy of Agriculture Sciences, Tianjin, 300192 China
| | - Haibo Sun
- Tianjin Academy of Agriculture Sciences, Tianjin, 300192 China
| | - Weidong Kong
- Tianjin Academy of Agriculture Sciences, Tianjin, 300192 China
| | - Zhiyu Hao
- Tianjin Academy of Agriculture Sciences, Tianjin, 300192 China
| |
Collapse
|
14
|
Dong D, Yang Z, Ma Y, Li S, Wang M, Li Y, Liu Z, Han L, Chao Y. Expression of a Chlorophyll b Reductase Gene from Zoysia japonica Causes Changes in Leaf Color and Chlorophyll Morphology in Agrostis stolonifera. Int J Mol Sci 2022; 23:6032. [PMID: 35682725 PMCID: PMC9181577 DOI: 10.3390/ijms23116032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
The NYC-like (NOL) enzyme is considered as an essential enzyme for chlorophyll b degradation, which catalyzes the formation of 7-hydroxymethyl chlorophyll a from chlorophyll b. The ZjNOL gene was cloned from Zoysia japonica with a completed coding sequence of 981-bp in length, encoding 326 amino acids. ZjNOL was localized on the stroma side of the thylakoid membrane, and co-localized with ZjNYC in the chloroplasts. Multiple photoregulatory elements and hormone regulatory elements were identified in the promoter region of the ZjNOL gene, and the expression level of the ZjNOL gene was dramatically up-regulated in senescence leaves, which were regulated by a variety of plant hormones. ZjNOL's ectopic expression in creeping bentgrass produced yellow leaves, thicker cortex, and smaller vascular column cells. Additionally, transgenic plants exhibited morphological alterations in their chloroplast structure, and the number of grana and thylakoids per grana stack reduced dramatically. Transgenic plants also had a lower photosynthetic rate and Fm/Fv than the control. The transgenic plants displayed a decreased chlorophyll content and a greater rate of ion leakage. The properties and activities of ZjNOL will serve as a foundation for future research into gene functions and regulatory processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liebao Han
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (Z.Y.); (Y.M.); (S.L.); (M.W.); (Y.L.); (Z.L.)
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (D.D.); (Z.Y.); (Y.M.); (S.L.); (M.W.); (Y.L.); (Z.L.)
| |
Collapse
|
15
|
Paes de Melo B, Carpinetti PDA, Fraga OT, Rodrigues-Silva PL, Fioresi VS, de Camargos LF, Ferreira MFDS. Abiotic Stresses in Plants and Their Markers: A Practice View of Plant Stress Responses and Programmed Cell Death Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:1100. [PMID: 35567101 PMCID: PMC9103730 DOI: 10.3390/plants11091100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 05/12/2023]
Abstract
Understanding how plants cope with stress and the intricate mechanisms thereby used to adapt and survive environmental imbalances comprise one of the most powerful tools for modern agriculture. Interdisciplinary studies suggest that knowledge in how plants perceive, transduce and respond to abiotic stresses are a meaningful way to design engineered crops since the manipulation of basic characteristics leads to physiological remodeling for plant adaption to different environments. Herein, we discussed the main pathways involved in stress-sensing, signal transduction and plant adaption, highlighting biochemical, physiological and genetic events involved in abiotic stress responses. Finally, we have proposed a list of practice markers for studying plant responses to multiple stresses, highlighting how plant molecular biology, phenotyping and genetic engineering interconnect for creating superior crops.
Collapse
Affiliation(s)
- Bruno Paes de Melo
- Trait Development Department, LongPing HighTech, Cravinhos 14140-000, SP, Brazil
| | - Paola de Avelar Carpinetti
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | - Otto Teixeira Fraga
- Applied Biochemistry Program, Universidade Federal de Viçosa, Viçosa 36570-000, MG, Brazil;
| | | | - Vinícius Sartori Fioresi
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| | | | - Marcia Flores da Silva Ferreira
- Genetics and Breeding Program, Universidade Federal do Espírito Santo, Alegre 29500-000, ES, Brazil; (P.d.A.C.); (V.S.F.); (M.F.d.S.F.)
| |
Collapse
|
16
|
Jahan MS, Hasan MM, Alotaibi FS, Alabdallah NM, Alharbi BM, Ramadan KMA, Bendary ESA, Alshehri D, Jabborova D, Al-Balawi DA, Dessoky ES, Ibrahim MFM, Guo S. Exogenous Putrescine Increases Heat Tolerance in Tomato Seedlings by Regulating Chlorophyll Metabolism and Enhancing Antioxidant Defense Efficiency. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081038. [PMID: 35448766 PMCID: PMC9032913 DOI: 10.3390/plants11081038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 05/10/2023]
Abstract
Crops around the world are facing a diversity of environmental problems, of which high temperatures are proving to be the most serious threat to crops. Polyamine putrescine (Put) acts as a master growth regulator that contributes to optimal plant growth and development and increased stress tolerance. Here, the current study aimed to elucidate how Put functions in regulating chlorophyll (Chl) metabolism, oxidative stress, and antioxidant defense, as well as to characterize the expression of genes related to heat stress in tomato seedlings under such stress. The results revealed that Put treatment significantly attenuates heat-induced damage by promoting biomass production, increasing photosynthetic efficiency, and inhibiting excessive production of oxidative stress markers. Heat stress markedly decreased the Chl content in the tomato leaf and accelerated the leaf yellowing process. However, Put-treated tomato seedlings showed a higher Chl content, which could be associated with the functions of Put in elevating PBGD activity (Chl biosynthesis enzyme) and suppressing the activity of the Chl catabolic enzyme (Chlase and MDCase). Under high-temperature stress, the expression levels of the gene encoding factors involved in Chl biosynthesis and Chl catabolism were significantly down- and upregulated, respectively, and this trend was reversed in Put-treated heat-stressed seedlings. In addition, exogenous application of Put boosted the activity of antioxidant enzymes, along with the levels of expression of their encoding genes, only in plants that were heat stressed. Furthermore, the expression levels of heat-shock-related genes (HSP90, HSP70, and HsfA1) were elevated in Put-treated, high-temperature-stressed tomato seedlings. Taken together, our results indicate that Put treatment significantly increases the heat tolerance of tomato seedlings, by elevating Chl concentrations and suppressing Chl catabolic enzyme activity, modulating endogenous free PA content, increasing antioxidant defense efficiency, and upregulating the expression of heat-shock-related genes.
Collapse
Affiliation(s)
- Mohammad Shah Jahan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md. Mahadi Hasan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China;
| | - Fahad S. Alotaibi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Basmah M. Alharbi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (B.M.A.); (D.A.); (D.A.A.-B.)
| | - Khaled M. A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt;
| | - Eslam S. A. Bendary
- Department of Agricultural Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt;
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (B.M.A.); (D.A.); (D.A.A.-B.)
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Kibray 111208, Uzbekistan;
| | - Doha A. Al-Balawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (B.M.A.); (D.A.); (D.A.A.-B.)
| | - Eldessoky S. Dessoky
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
- Correspondence:
| |
Collapse
|
17
|
Peng H, Phung J, Stowe EC, Dhingra A, Neff MM. The NAC transcription factor ATAF2 promotes ethylene biosynthesis and response in Arabidopsis thaliana seedlings. FEBS Lett 2022; 596:1586-1599. [PMID: 35170054 DOI: 10.1002/1873-3468.14317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/10/2022]
Abstract
Arabidopsis thaliana ACTIVATING FACTOR 2 (ATAF2) plays extensive regulatory roles in pathogenesis, seedling development, and stress responses. Here, we performed transcriptome analysis on ATAF2 loss- and gain-of-function mutants to identify differentially expressed genes (DEGs). Gene ontology analyses on DEGs reveal that ATAF2 enhances seedling responses to multiple hormone and stress signals. In particular, our transcriptome analysis suggests that ATAF2 promotes ethylene biosynthesis and responses via activating relevant genes. This novel role of ATAF2 was further demonstrated by using multiple ATAF2 null and overexpression lines for reverse transcription quantitative PCR verification, ethylene production measurements, and assays of seedlings growth responses to the ethylene immediate biosynthetic precursor 1-aminocyclopropane-1-carboxylic acid (ACC). ACC suppresses ATAF2 expression to form a negative feedback regulation loop.
Collapse
Affiliation(s)
- Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.,Chemical and Hop Laboratory, Department of Agriculture, Washington State, Yakima, WA, 98902, USA
| | - Jessica Phung
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Evan C Stowe
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA.,Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michael M Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
18
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
19
|
Li R, Su X, Zhou R, Zhang Y, Wang T. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses. BMC PLANT BIOLOGY 2022; 22:36. [PMID: 35039015 PMCID: PMC8762937 DOI: 10.1186/s12870-021-03410-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The use of mulberry leaves has long been limited to raising silkworms, but with the continuous improvement of mulberry (Morus alba) resource development and utilization, various mulberry leaf extension products have emerged. However, the fresh leaves of mulberry trees have a specific window of time for picking and are susceptible to adverse factors, such as drought stress. Therefore, exploring the molecular mechanism by which mulberry trees resist drought stress and clarifying the regulatory network of the mulberry drought response is the focus of the current work. RESULTS In this study, natural and drought-treated mulberry grafted seedlings were used for transcriptomic and proteomic analyses (CK vs. DS9), aiming to clarify the molecular mechanism of the mulberry drought stress response. Through transcriptome and proteome sequencing, we identified 9889 DEGs and 1893 DEPs enriched in stress-responsive GO functional categories, such as signal transducer activity, antioxidant activity, and transcription regulator activity. KEGG enrichment analysis showed that a large number of codifferentially expressed genes were enriched in flavonoid biosynthesis pathways, hormone signalling pathways, lignin metabolism and other pathways. Through subsequent cooperation analysis, we identified 818 codifferentially expressed genes in the CK vs. DS9 comparison group, including peroxidase (POD), superoxide dismutase (SOD), aldehyde dehydrogenase (ALDHs), glutathione s-transferase (GST) and other genes closely related to the stress response. In addition, we determined that the mulberry gene MaWRKYIII8 (XP_010104968.1) underwent drought- and abscisic acid (ABA)-induced expression, indicating that it may play an important role in the mulberry response to drought stress. CONCLUSIONS Our research shows that mulberry can activate proline and ABA biosynthesis pathways and produce a large amount of proline and ABA, which improves the drought resistance of mulberry. MaWRKYIII8 was up-regulated and induced by drought and exogenous ABA, indicating that MaWRKYIII8 may be involved in the mulberry response to drought stress. These studies will help us to analyse the molecular mechanism underlying mulberry drought tolerance and provide important gene information and a theoretical basis for improving mulberry drought tolerance through molecular breeding in the future.
Collapse
Affiliation(s)
- Ruixue Li
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xueqiang Su
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Rong Zhou
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yuping Zhang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Taichu Wang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China.
| |
Collapse
|
20
|
Gianoglio S, Comino C, Moglia A, Acquadro A, García-Carpintero V, Diretto G, Sevi F, Rambla JL, Dono G, Valentino D, Moreno-Giménez E, Fullana-Pericàs M, Conesa MA, Galmés J, Lanteri S, Mazzucato A, Orzáez D, Granell A. In-Depth Characterization of greenflesh Tomato Mutants Obtained by CRISPR/Cas9 Editing: A Case Study With Implications for Breeding and Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:936089. [PMID: 35898224 PMCID: PMC9309892 DOI: 10.3389/fpls.2022.936089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Gene editing has already proved itself as an invaluable tool for the generation of mutants for crop breeding, yet its ultimate impact on agriculture will depend on how crops generated by gene editing technologies are regulated, and on our ability to characterize the impact of mutations on plant phenotype. A starting operational strategy for evaluating gene editing-based approaches to plant breeding might consist of assessing the effect of the induced mutations in a crop- and locus-specific manner: this involves the analysis of editing efficiency in different cultivars of a crop, the assessment of potential off-target mutations, and a phenotypic evaluation of edited lines carrying different mutated alleles. Here, we targeted the GREENFLESH (GF) locus in two tomato cultivars ('MoneyMaker' and 'San Marzano') and evaluated the efficiency, specificity and mutation patterns associated with CRISPR/Cas9 activity for this gene. The GF locus encodes a Mg-dechelatase responsible for initiating chlorophyll degradation; in gf mutants, ripe fruits accumulate both carotenoids and chlorophylls. Phenotypic evaluations were conducted on two transgene-free T2 'MoneyMaker' gf lines with different mutant alleles (a small insertion of 1 nucleotide and a larger deletion of 123 bp). Both lines, in addition to reduced chlorophyll degradation, showed a notable increase in carotenoid and tocopherol levels during fruit ripening. Infection of gf leaves and fruits with Botrytis cinerea resulted in a significant reduction of infected area and pathogen proliferation compared to the wild type (WT). Our data indicates that the CRISPR/Cas9-mediated mutation of the GF locus in tomato is efficient, specific and reproducible and that the resulting phenotype is robust and consistent with previously characterized greenflesh mutants obtained with different breeding techniques, while also shedding light on novel traits such as vitamin E overaccumulation and pathogen resistance. This makes GF an appealing target for breeding tomato cultivars with improved features for cultivation, as well as consumer appreciation and health.
Collapse
Affiliation(s)
- Silvia Gianoglio
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Víctor García-Carpintero
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Gianfranco Diretto
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Rome, Italy
| | - Filippo Sevi
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Rome, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - José Luis Rambla
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Gabriella Dono
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Danila Valentino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Elena Moreno-Giménez
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), Paterna, Spain
| | - Mateu Fullana-Pericàs
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Miguel A. Conesa
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Jeroni Galmés
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Diego Orzáez
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Antonio Granell
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
- *Correspondence: Antonio Granell,
| |
Collapse
|
21
|
Ma L, Zeng N, Cheng K, Li J, Wang K, Zhang C, Zhu H. Changes in fruit pigment accumulation, chloroplast development, and transcriptome analysis in the CRISPR/Cas9-mediated knockout of Stay-green 1 (slsgr1) mutant. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The green-flesh (gf) mutant of the tomato fruit ripen to a muddy brown color and has been demonstrated previously to be a loss-of-function mutant. Here, we provide more evidence to support this view that SlSGR1 is involved in color change in ripening tomato fruits. Knocking out SlSGR1 expression using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome editing strategy showed obviously a muddy brown color with significantly higher chlorophyll and carotenoid content compared with wild-type (WT) fruits. To further verify the role of SlSGR1 in fruit color change, we performed transcriptome deep sequencing (RNA-seq) analysis, where a total of 354 differentially expressed genes (124/230 downregulated/upregulated) were identified between WT and slsgr1. Additionally, the expression of numerous genes associated with photosynthesis and chloroplast function changed significantly when SlSGR1 was knocked out. Taken together, these results indicate that SlSGR1 is involved in color change in ripening fruit via chlorophyll degradation and carotenoid biosynthesis.
Collapse
|
22
|
Research Progress in the Interconversion, Turnover and Degradation of Chlorophyll. Cells 2021; 10:cells10113134. [PMID: 34831365 PMCID: PMC8621299 DOI: 10.3390/cells10113134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Chlorophylls (Chls, Chl a and Chl b) are tetrapyrrole molecules essential for photosynthetic light harvesting and energy transduction in plants. Once formed, Chls are noncovalently bound to photosynthetic proteins on the thylakoid membrane. In contrast, they are dismantled from photosystems in response to environmental changes or developmental processes; thus, they undergo interconversion, turnover, and degradation. In the last twenty years, fruitful research progress has been achieved on these Chl metabolic processes. The discovery of new metabolic pathways has been accompanied by the identification of enzymes associated with biochemical steps. This article reviews recent progress in the analysis of the Chl cycle, turnover and degradation pathways and the involved enzymes. In addition, open questions regarding these pathways that require further investigation are also suggested.
Collapse
|
23
|
Feng Y, Cui R, Huang Y, Shi L, Wang S, Xu F. Repression of transcription factor AtWRKY47 confers tolerance to boron toxicity in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112406. [PMID: 34119927 DOI: 10.1016/j.ecoenv.2021.112406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Boron (B) excess gives rise to a serious agricultural problem. In this study, we identified a B toxicity responsive transcription factor AtWRKY47 in Arabidopsis thaliana. The T-DNA insertion mutants Atwrky47 showed enhanced tolerance to B toxicity with better growth parameters under high B conditions compared to wild-type Col-0 plants. Quantitative analysis of AtWRKY47 mRNA abundance indicated that it was down-regulated under B toxicity conditions. Fluorescently labeled AtWRKY47 protein was localized in nucleus. In contrast to the phenotype of Atwrky47 mutants, overexpression of AtWRKY47 in Col-0 background resulted in lower biomass, less chlorophyll content, and increased sensitivity to B toxicity. More importantly, the B concentration in shoots was higher in the overexpression lines and lower in the Atwrky47 mutants than in Col-0 plants, respectively. These results demonstrate that AtWRKY47 gene plays a key role in regulating plant tolerance to B toxicity.
Collapse
Affiliation(s)
- Yingna Feng
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Rui Cui
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yupu Huang
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
24
|
Zhang G, Yang J, Zhao X, Li Q, Wu Y, Li F, Wang Y, Hao Q, Wang W. Wheat TaPUB1 protein mediates ABA response and seed development through ubiquitination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110913. [PMID: 34134840 DOI: 10.1016/j.plantsci.2021.110913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 05/25/2023]
Abstract
Abscisic acid (ABA) is an important regulator of plant growth, development, and biotic and abiotic stress responses. Ubiquitination plays important roles in regulating ABA signaling. E3 ligase, a key member in ubiquitination, actively participates in the regulation of biosynthesis, de-repression, and activation of ABA response and degradation of signaling components. In this study, we found that that overexpression of wheat E3 ligase TaPUB1 decreased the sensitivity of wheat seedlings to ABA, whereas TaPUB1-RNA interference (TaPUB1-RNAi) lines increased wheat sensitivity to ABA during germination, root growth, and stomatal opening. TaPUB1 influenced the expression of several ABA-responsive genes, and also interacted with TaPYL4 and TaABI5, which are involved in ABA signal transduction, and promoted their degradation. Additionally, we observed that TaPUB1-OE lines resulted in lower single-split grain numbers, larger seed size, and higher thousand kernel weight, when compared with the WT lines. Contrasting results were obtained for TaPUB1-RNAi lines. It suggests that TaPUB1 acts as a negative regulator in the ABA signaling pathway by interacting with TaPYL4 and TaABI5, subsequently affecting seed development in wheat. In addition, the enhanced abiotic tolerance of overexpression lines due to enhanced photosynthesis and root development may be related to the degradation of TaABI5 by TaPUB1.
Collapse
Affiliation(s)
- Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, PR China
| | - Junjiao Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoyu Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yunzhen Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Fangyuan Li
- College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yong Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Qunqun Hao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, PR China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
25
|
Wang P, Grimm B. Connecting Chlorophyll Metabolism with Accumulation of the Photosynthetic Apparatus. TRENDS IN PLANT SCIENCE 2021; 26:484-495. [PMID: 33422426 DOI: 10.1016/j.tplants.2020.12.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 05/14/2023]
Abstract
Chlorophyll (Chl) is indispensable for photosynthesis. In association with Chl-binding proteins (CBPs), it is responsible for light absorption, excitation energy transfer, and charge separation within the photosynthetic complexes. By contrast, photoexcitation of free Chl and its metabolic intermediates generates hazardous reactive oxygen species (ROS). While antagonistic activities of Chl synthesis and catabolism have been mostly elucidated, the tight synchronization of these metabolic activities with the formation and dismantling of the photosynthetic complexes is poorly understood. Recently, a set of auxiliary factors were identified to adjust metabolic activities and provide accurate amounts of Chl for pigment-protein complexes. Here, we review current knowledge of post-translational coordination of Chl formation, breakdown, and turnover with the assembly and disassembly of various CBPs and highlight future research perspectives.
Collapse
Affiliation(s)
- Peng Wang
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 Building 12, 10115 Berlin, Germany.
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institute of Biology/Plant Physiology, Philippstraße 13 Building 12, 10115 Berlin, Germany.
| |
Collapse
|
26
|
Yang M, Zhu S, Jiao B, Duan M, Meng Q, Ma N, Lv W. SlSGRL, a tomato SGR-like protein, promotes chlorophyll degradation downstream of the ABA signaling pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:316-327. [PMID: 33166770 DOI: 10.1016/j.plaphy.2020.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/25/2020] [Indexed: 05/25/2023]
Abstract
Chlorophyll (chl) degradation plays a vital role during green plant growth and development, including nutrient metabolism, fruit and seed maturation, and phototoxic detoxification. STAY-GREEN (SGR) is a plant-specific regulator involved in chl degradation. Previous studies showed that SlSGR1 functioned in chl degradation and lycopene accumulation during fruit ripening of tomato (Solanum lycopersicum). However, little is known about SlSGR-LIKE (SlSGRL) gene, which is a homolog of SlSGR1. We cloned the SlSGRL gene and created transgenic tomato plants overexpressing (OE) SlSGRL. Expression analysis showed that SlSGRL was up-regulated by abscisic acid (ABA). Our data showed that SlSGRL-OE lines exhibited earlier leaf yellowing than wild-type (WT) lines under ABA treatment. Yeast two-hybrid (Y2H) assay revealed that SlSGRL interacted with pheophytin pheophorbide hydrolase (SlPPH) and light-harvesting complex a2 (SlLHCa2) to promote the chl degradation. Further analysis demonstrated that ABA-INSENSITIVE5 (SlABI5) and SlABI5-LIKE regulated SlSGRL expression by directly binding to the sequence (-611 to -582) of the SlSGRL promoter that included an ABRE cis-element. We proposed that SlSGRL, which was regulated by SlABI5/SlABI5-LIKE, mainly acted in ABA-induced chl degradation via interacting with SlPPH and SlLHCa2.
Collapse
Affiliation(s)
- Minmin Yang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai'an 271018, Shandong, PR China.
| | - Shaobo Zhu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai'an 271018, Shandong, PR China.
| | - Baozhen Jiao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai'an 271018, Shandong, PR China.
| | - Ming Duan
- Experimental and Teaching Center, Shanxi Agricultural University, Jinzhong 030801, Shanxi, PR China.
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai'an 271018, Shandong, PR China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai'an 271018, Shandong, PR China.
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai'an 271018, Shandong, PR China.
| |
Collapse
|
27
|
Jan S, Singh R, Bhardwaj R, Ahmad P, Kapoor D. Plant growth regulators: a sustainable approach to combat pesticide toxicity. 3 Biotech 2020; 10:466. [PMID: 33088662 DOI: 10.1007/s13205-020-02454-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022] Open
Abstract
Pesticides are chemical substances intended for preventing or controlling pests. These are toxic substances which contaminate soil, water bodies and vegetative crops. Excessive use of pesticides may cause destruction of biodiversity. In plants, pesticides lead to oxidative stress, inhibition of physiological and biochemical pathways, induce toxicity, impede photosynthesis and negatively affect yield of crops. Increased production of reactive oxygen species like superoxide radicals, O- 2 hydrogen peroxide, H2O2; singlet oxygen, O2; hydroxyl radical, OH-; and hydroperoxyl radical HO2-, causes damage to protein, lipid, carbohydrate and DNA within plants. Plant growth regulators (PGR) are recognized for promoting growth and development under optimal as well as stress conditions. PGR combat adverse effect by acting as chemical messenger and under complex regulation, enable plants to survive under stress conditions. PGR mediate various physiological and biochemical responses, thereby reducing pesticide-induced toxicity. Exogenous applications of PGRs, such as brassinosteroid, cytokinins, salicylic acid, jasmonic acid, etc., mitigate pesticide toxicity by stimulating antioxidant defense system and render tolerance towards stress conditions. They provide resistance against pesticides by controlling production of reactive oxygen species, nutrient homeostasis, increase secondary metabolite production, and trigger antioxidant mechanisms. These phytohormones protect plants against oxidative damage by activating mitogen-stimulated protein kinase cascade. Current study is based on reported research work that has shown the effect of PGR in promoting plant growth subjected to pesticide stress. The present review covers the aspects of pesticidal response of plants and evaluates the contribution of PGRs in mitigating pesticide-induced stress and increasing the tolerance of plants. Further, the study suggests the use of PGRs as a tool in mitigating effects of pesticidal stress together with improved growth and development.
Collapse
|
28
|
Jiao B, Meng Q, Lv W. Roles of stay-green (SGR) homologs during chlorophyll degradation in green plants. BOTANICAL STUDIES 2020; 61:25. [PMID: 32965575 PMCID: PMC7511501 DOI: 10.1186/s40529-020-00302-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/18/2020] [Indexed: 05/29/2023]
Abstract
Chlorophyll (Chl) degradation is one of the most obvious signs of leaf senescence and fruit ripening. Stay-green (SGR) homologs that can remove magnesium from Chl a are the most important components in Chl degradation pathway in green plants. SGR homologs are not only universally involved in Chl breakdown during the senescence of green organs, but also play crucial roles in other organs during plant growth and development, such as fruit mature and nodule development. In this review, we focus on the diverse functions of SGR homologs in plant growth and development. A better understanding of SGR would be helpful for providing a theoretical basis for further illustrating the regulatory mechanism of SGR homologs.
Collapse
Affiliation(s)
- Baozhen Jiao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong People’s Republic of China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, Tai’an, 271018 Shandong People’s Republic of China
| |
Collapse
|
29
|
Begum Y, Mondal SK. Comprehensive study of the genes involved in chlorophyll synthesis and degradation pathways in some monocot and dicot plant species. J Biomol Struct Dyn 2020; 39:2387-2414. [PMID: 32292132 DOI: 10.1080/07391102.2020.1748717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlorophyll (Chl) biosynthesis is one of the most important cellular processes essential for plant photosynthesis. Chl degradation pathway is also important catabolic process occurs during leaf senescence, fruit ripening and under biotic or abiotic stress conditions. Here we have systematically investigated the molecular evolution, gene structure, compositional analysis along with ENc plot, correspondence analysis and codon usage bias of the proteins and encoded genes involved in Chl metabolism from monocots and dicots. The gene and species specific phylogenetic trees using amino acid sequences showed clear clustering formation of the selected species based on monocots and dicots but not supported by 18S rRNA. Nucleotide composition of the encoding genes showed that average GC%, GC1%, GC2% and GC3% were higher in monocots. RSCU analysis depicts that genes from monocots for both pathways and genes for synthesis pathway from dicots only biased to G/C-ending synonymous codons but in degradation pathway most optimal codons (except UUG) in dicots biased to A/U-ending synonymous codons. We found strong evidence of episodic diversifying selection at several amino acid sites in all genes investigated. Conserved domain and gene structures were observed for the genes with varying lengths of introns and exons, involved in Chl metabolism along with some intronless genes within synthesis pathway. ENc and correspondence analyses suggested the mutational or selection constraint on the genes to shape the codon usage. These comprehensive studies may be helpful in further research in molecular phylogenetics and genomics and to better understand the evolutionary dynamics of Chl metabolic pathway.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, West Bengal, India
| | - Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
30
|
Wang P, Richter AS, Kleeberg JRW, Geimer S, Grimm B. Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nat Commun 2020; 11:1254. [PMID: 32198392 PMCID: PMC7083845 DOI: 10.1038/s41467-020-14992-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Chlorophyll is indispensable for life on Earth. Dynamic control of chlorophyll level, determined by the relative rates of chlorophyll anabolism and catabolism, ensures optimal photosynthesis and plant fitness. How plants post-translationally coordinate these two antagonistic pathways during their lifespan remains enigmatic. Here, we show that two Arabidopsis paralogs of BALANCE of CHLOROPHYLL METABOLISM (BCM) act as functionally conserved scaffold proteins to regulate the trade-off between chlorophyll synthesis and breakdown. During early leaf development, BCM1 interacts with GENOMES UNCOUPLED 4 to stimulate Mg-chelatase activity, thus optimizing chlorophyll synthesis. Meanwhile, BCM1’s interaction with Mg-dechelatase promotes degradation of the latter, thereby preventing chlorophyll degradation. At the onset of leaf senescence, BCM2 is up-regulated relative to BCM1, and plays a conserved role in attenuating chlorophyll degradation. These results support a model in which post-translational regulators promote chlorophyll homeostasis by adjusting the balance between chlorophyll biosynthesis and breakdown during leaf development. Plants regulate chlorophyll levels to optimise photosynthesis. Here Wang et al. describe two paralogous thylakoid proteins, BCM1 and BCM2, which stimulate chlorophyll biosynthesis and attenuate chlorophyll degradation respectively through interaction with the Mg-chelatase-stimulating factor GUN4 and Mg-dechelatase isoform SGR1.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
| | - Andreas S Richter
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.,Institute of Biology/Physiology of Plant Cell Organelles, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Julius R W Kleeberg
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
31
|
Xie Z, Wu S, Chen J, Zhu X, Zhou X, Hörtensteiner S, Ren G, Kuai B. The C-terminal cysteine-rich motif of NYE1/SGR1 is indispensable for its function in chlorophyll degradation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2019; 101:257-268. [PMID: 31302867 DOI: 10.1007/s11103-019-00902-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/09/2019] [Indexed: 05/08/2023]
Abstract
The C-terminal cysteine-rich motif of NYE1/SGR1 affects chlorophyll degradation likely by mediating its self-interaction and conformational change, and somehow altering its Mg-dechelating activity in response to the changing redox potential. During green organ senescence in plants, the most prominent phenomenon is the degreening caused by net chlorophyll (Chl) loss. NON-YELLOWING1/STAY-GREEN1 (NYE1/SGR1) was recently reported to be able to dechelates magnesium (Mg) from Chl a to initiate its degradation, but little is known about the domain/motif basis of its functionality. In this study, we carried out a protein truncation assay and identified a conserved cysteine-rich motif (CRM, P-X3-C-X3-C-X-C2-F-P-X5-P) at its C terminus, which is essential for its function. Genetic analysis showed that all four cysteines in the CRM were irreplaceable, and enzymatic assays demonstrated that the mutation of each of the four cysteines affected its Mg-dechelating activity. The CRM plays a critical role in the conformational change and self-interaction of NYE1 via the formation of inter- and intra-molecular disulfide bonds. Our results may provide insight into how NYE1 responds to rapid redox changes during leaf senescence and in response to various environmental stresses.
Collapse
Affiliation(s)
- Zuokun Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| | - Shengdong Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| | - Junyi Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| | - Xiaoyu Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| | - Stefan Hörtensteiner
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China.
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
32
|
Abstract
Phytol, the prenyl side chain of chlorophyll, is derived from geranylgeraniol by reduction of three double bonds. Recent results demonstrated that the conversion of geranylgeraniol to phytol is linked to chlorophyll synthesis, which is catalyzed by protein complexes associated with the thylakoid membranes. One of these complexes contains light harvesting chlorophyll binding like proteins (LIL3), enzymes of chlorophyll synthesis (protoporphyrinogen oxidoreductase, POR; chlorophyll synthase, CHLG) and geranylgeranyl reductase (GGR). Phytol is not only employed for the synthesis of chlorophyll, but also for tocopherol (vitamin E), phylloquinol (vitamin K) and fatty acid phytyl ester production. Previously, it was believed that phytol is derived from reduction of geranylgeranyl-diphosphate originating from the 4-methylerythritol-5-phosphate (MEP) pathway. The identification and characterization of two kinases, VTE5 and VTE6, involved in phytol and phytyl-phosphate phosphorylation, respectively, indicated that most phytol employed for tocopherol synthesis is derived from reduction of geranylgeranylated chlorophyll to (phytol-) chlorophyll. After hydrolysis from chlorophyll, free phytol is phosphorylated by the two kinases, and phytyl-diphosphate employed for the synthesis of tocopherol and phylloquinol. The reason why some chloroplast lipids, i.e. chlorophyll, tocopherol and phylloquinol, are derived from phytol, while others, i.e. carotenoids and tocotrienols (in some plant species) are synthesized from geranylgeraniol, remains unclear.
Collapse
|
33
|
Dröge-Laser W, Snoek BL, Snel B, Weiste C. The Arabidopsis bZIP transcription factor family-an update. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:36-49. [PMID: 29860175 DOI: 10.1016/j.pbi.2018.05.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 05/18/2023]
Abstract
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups.
Collapse
Affiliation(s)
- Wolfgang Dröge-Laser
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany.
| |
Collapse
|
34
|
Czedik‐Eysenberg A, Seitner S, Güldener U, Koemeda S, Jez J, Colombini M, Djamei A. The 'PhenoBox', a flexible, automated, open-source plant phenotyping solution. THE NEW PHYTOLOGIST 2018; 219:808-823. [PMID: 29621393 PMCID: PMC6485332 DOI: 10.1111/nph.15129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/22/2018] [Indexed: 05/11/2023]
Abstract
There is a need for flexible and affordable plant phenotyping solutions for basic research and plant breeding. We demonstrate our open source plant imaging and processing solution ('PhenoBox'/'PhenoPipe') and provide construction plans, source code and documentation to rebuild the system. Use of the PhenoBox is exemplified by studying infection of the model grass Brachypodium distachyon by the head smut fungus Ustilago bromivora, comparing phenotypic responses of maize to infection with a solopathogenic Ustilago maydis (corn smut) strain and effector deletion strains, and studying salt stress response in Nicotiana benthamiana. In U. bromivora-infected grass, phenotypic differences between infected and uninfected plants were detectable weeks before qualitative head smut symptoms. Based on this, we could predict the infection outcome for individual plants with high accuracy. Using a PhenoPipe module for calculation of multi-dimensional distances from phenotyping data, we observe a time after infection-dependent impact of U. maydis effector deletion strains on phenotypic response in maize. The PhenoBox/PhenoPipe system is able to detect established salt stress responses in N. benthamiana. We have developed an affordable, automated, open source imaging and data processing solution that can be adapted to various phenotyping applications in plant biology and beyond.
Collapse
Affiliation(s)
- Angelika Czedik‐Eysenberg
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna BioCenter (VBC)Dr. Bohr‐Gasse 31030ViennaAustria
| | - Sebastian Seitner
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna BioCenter (VBC)Dr. Bohr‐Gasse 31030ViennaAustria
| | - Ulrich Güldener
- Department of Genome‐oriented BioinformaticsTechnische Universität MünchenWissenschaftszentrum WeihenstephanFreisingGermany
| | - Stefanie Koemeda
- Vienna Biocenter Core Facilities (VBCF)Dr. Bohr‐Gasse 31030ViennaAustria
| | - Jakub Jez
- Vienna Biocenter Core Facilities (VBCF)Dr. Bohr‐Gasse 31030ViennaAustria
| | - Martin Colombini
- Workshop, Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)Campus‐Vienna‐Biocenter 11030ViennaAustria
| | - Armin Djamei
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna BioCenter (VBC)Dr. Bohr‐Gasse 31030ViennaAustria
| |
Collapse
|
35
|
Wang N, Liu Z, Zhang Y, Li C, Feng H. Identification and fine mapping of a stay-green gene (Brnye1) in pakchoi (Brassica campestris L. ssp. chinensis). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:673-684. [PMID: 29209732 DOI: 10.1007/s00122-017-3028-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/24/2017] [Indexed: 05/19/2023]
Abstract
Using bulked segregant analysis combined with next-generation sequencing, we delimited the Brnye1 gene responsible for the stay-green trait of nye in pakchoi. Sequence analysis identified Bra019346 as the candidate gene. "Stay-green" refers to a plant trait whereby leaves remain green during senescence. This trait is useful in the cultivation of pakchoi (Brassica campestris L. ssp. chinensis), which is marketed as a green leaf product. This study aimed to identify the gene responsible for the stay-green trait in pakchoi. We identified a stay-green mutant in pakchoi, which we termed "nye". Genetic analysis revealed that the stay-green trait is controlled by a single recessive gene, Brnye1. Using the BSA-seq method, a 3.0-Mb candidate region was mapped on chromosome A03, which helped us localize Brnye1 to an 81.01-kb interval between SSR markers SSRWN27 and SSRWN30 via linkage analysis in an F2 population. We identified 12 genes in this region, 11 of which were annotated based on the Brassica rapa annotation database, and one was a functionally unknown gene. An orthologous gene of the Arabidopsis gene AtNYE1, Bra019346, was identified as the potential candidate for Brnye1. Sequence analysis revealed a 40-bp insertion in the second exon of Bra019346 in nye, which generated the TAA stop codon. A candidate gene-specific Indel marker in 1561 F2 individuals showed perfect cosegregation with Brnye1 in the nye mutant. These results provide a foundation for uncovering the molecular mechanism of the stay-green trait in pakchoi.
Collapse
Affiliation(s)
- Nan Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiyong Liu
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yun Zhang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chengyu Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hui Feng
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, 110866, China.
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
36
|
Kuai B, Chen J, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:751-767. [PMID: 28992212 DOI: 10.1093/jxb/erx322] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chlorophyll breakdown is one of the most obvious signs of leaf senescence and fruit ripening. The resulting yellowing of leaves can be observed every autumn, and the color change of fruits indicates their ripening state. During these processes, chlorophyll is broken down in a multistep pathway, now termed the 'PAO/phyllobilin' pathway, acknowledging the core enzymatic breakdown step catalysed by pheophorbide a oxygenase, which determines the basic linear tetrapyrrole structure of the products of breakdown that are now called 'phyllobilins'. This review provides an update on the PAO/phyllobilin pathway, and focuses on recent biochemical and molecular progress in understanding phyllobilin-modifying reactions as the basis for phyllobilin diversity, on the evolutionary diversity of the pathway, and on the transcriptional regulation of the pathway genes.
Collapse
Affiliation(s)
- Benke Kuai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Junyi Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, China
| | - Stefan Hörtensteiner
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse, Zurich, Switzerland
| |
Collapse
|
37
|
Sharma A, Kumar V, Yuan H, Kanwar MK, Bhardwaj R, Thukral AK, Zheng B. Jasmonic Acid Seed Treatment Stimulates Insecticide Detoxification in Brassica juncea L. FRONTIERS IN PLANT SCIENCE 2018; 9:1609. [PMID: 30450109 PMCID: PMC6224710 DOI: 10.3389/fpls.2018.01609] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/17/2018] [Indexed: 05/18/2023]
Abstract
The present study focused on assessing the effects of jasmonic acid (JA) seed treatment on the physiology of Brassica juncea seedlings grown under imidacloprid (IMI) toxicity. It has been observed that IMI application declined the chlorophyll content and growth of seedlings. However, JA seed treatment resulted in the significant recovery of chlorophyll content and seedling growth. Contents of oxidative stress markers like superoxide anion, hydrogen peroxide, and malondialdehyde were enhanced with IMI application, but JA seed treatment significantly reduced their contents. Antioxidative defense system was activated with IMI application which was further triggered after JA seed treatment. Activities of antioxidative enzymes and contents of non-enzymatic antioxidants were enhanced with the application of IMI as well as JA seed treatment. JA seed treatment also regulated the gene expression of various enzymes under IMI stress. These enzymes included respiratory burst oxidase (RBO), Ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO), NADH-ubiquinone oxidoreductase (NADH), carboxylesterase (CXE), chlorophyllase (CHLASE), cytochrome P450 monooxygenase (P450). JA seed treatment up-regulated the expressions of RUBISCO, NADH, CXE, and P450 under IMI toxicity. However, expressions of RBO and CHLASE were down-regulated in seedlings germinated from JA seed treatment and grown in presence of IMI. Seed soaking with JA also resulted in a significant reduction of IMI residues in B. juncea seedlings. The present study concluded that seed soaking with JA could efficiently reduce the IMI toxicity by triggering the IMI detoxification system in intact plants.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
- *Correspondence: Anket Sharma, Bingsong Zheng,
| | - Vinod Kumar
- Department of Botany & Environment Studies, DAV University, Jalandhar, India
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | | | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Ashwani Kumar Thukral
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- *Correspondence: Anket Sharma, Bingsong Zheng,
| |
Collapse
|
38
|
Li X, Huang L, Lu J, Cheng Y, You Q, Wang L, Song X, Zhou X, Jiao Y. Large-Scale Investigation of Soybean Gene Functions by Overexpressing a Full-Length Soybean cDNA Library in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:631. [PMID: 29868085 PMCID: PMC5954216 DOI: 10.3389/fpls.2018.00631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Molecular breeding has become an important approach for crop improvement, and a prerequisite for molecular breeding is elucidation of the functions of genetic loci or genes. Soybean is one of the most important food and oil crops worldwide. However, due to the difficulty of genetic transformation in soybean, studies of its functional genomics lag far behind those of other crops such as rice, which severely impairs the progress of molecular improvement in soybean. Here, we describe an effective large-scale strategy to investigate the functions of soybean genes via overexpression of a full-length soybean cDNA library in Arabidopsis. The overexpression vector pJL12 was modified for use in the construction of a normalized full-length cDNA library. The constructed cDNA library showed good quality; repetitive clones represented approximately 4%, insertion fragments were approximately 2.2 kb, and the full-length rate was approximately 98%. This cDNA library was then overexpressed in Arabidopsis, and approximately 2000 transgenic lines were preliminarily obtained. Phenotypic analyses of the positive T1 transgenic plants showed that more than 5% of the T1 transgenic lines displayed abnormal developmental phenotypes, and approximately 1% of the transgenic lines exhibited potentially favorable traits. We randomly amplified 4 genes with obvious phenotypes (enlarged seeds, yellowish leaves, more branches, and dense siliques) and repeated the transgenic analyses in Arabidopsis. Subsequent phenotypic observation demonstrated that these phenotypes were indeed due to the overexpression of soybean genes. We believe our strategy represents an effective large-scale approach to investigate the functions of soybean genes and further reveal genes favorable for molecular improvement in soybean.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lei Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jianhua Lu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yihui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qingbo You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lijun Wang
- The College of Life Science, Yangtze University, Jingzhou, China
| | - Xuejiao Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yongqing Jiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Yongqing Jiao,
| |
Collapse
|
39
|
Piao W, Han SH, Sakuraba Y, Paek NC. Rice 7-Hydroxymethyl Chlorophyll a Reductase Is Involved in the Promotion of Chlorophyll Degradation and Modulates Cell Death Signaling. Mol Cells 2017; 40:773-786. [PMID: 29047257 PMCID: PMC5682254 DOI: 10.14348/molcells.2017.0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022] Open
Abstract
The loss of green coloration via chlorophyll (Chl) degradation typically occurs during leaf senescence. To date, many Chl catabolic enzymes have been identified and shown to interact with light harvesting complex II to form a Chl degradation complex in senescing chloroplasts; this complex might metabolically channel phototoxic Chl catabolic intermediates to prevent oxidative damage to cells. The Chl catabolic enzyme 7-hydroxymethyl Chl a reductase (HCAR) converts 7-hydroxymethyl Chl a (7-HMC a) to Chl a. The rice (Oryza sativa) genome contains a single HCAR homolog (OsHCAR), but its exact role remains unknown. Here, we show that an oshcar knockout mutant exhibits persistent green leaves during both dark-induced and natural senescence, and accumulates 7-HMC a and pheophorbide a (Pheo a) in green leaf blades. Interestingly, both rice and Arabidopsis hcar mutants exhibit severe cell death at the vegetative stage; this cell death largely occurs in a light intensity-dependent manner. In addition, 7-HMC a treatment led to the generation of singlet oxygen (1O2) in Arabidopsis and rice protoplasts in the light. Under herbicide-induced oxidative stress conditions, leaf necrosis was more severe in hcar plants than in wild type, and HCAR-overexpressing plants were more tolerant to reactive oxygen species than wild type. Therefore, in addition to functioning in the conversion of 7-HMC a to Chl a in senescent leaves, HCAR may play a critical role in protecting plants from high light-induced damage by preventing the accumulation of 7-HMC a and Pheo a in developing and mature leaves at the vegetative stage.
Collapse
Affiliation(s)
- Weilan Piao
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Su-Hyun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
40
|
Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP. The "STAY-GREEN" trait and phytohormone signaling networks in plants under heat stress. PLANT CELL REPORTS 2017; 36:1009-1025. [PMID: 28484792 DOI: 10.1007/s00299-017-2119-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 05/22/2023]
Abstract
The increasing demand for food and the heavy yield losses in primary crops due to global warming mean that there is an urgent need to improve food security. Therefore, understanding how plants respond to heat stress and its consequences, such as drought and increased soil salinity, has received much attention in plant science community. Plants exhibit stress tolerance, escape or avoidance via adaptation and acclimatization mechanisms. These mechanisms rely on a high degree of plasticity in their cellular metabolism, in which phytohormones play an important role. "STAY-GREEN" is a crucial trait for genetic improvement of several crops, which allows plants to keep their leaves on the active photosynthetic level under stress conditions. Understanding the physiological and molecular mechanisms concomitant with "STAY-GREEN" trait or delayed leaf senescence, as well as those regulating photosynthetic capability of plants under heat stress, with a certain focus on the hormonal pathways, may be a key to break the plateau of productivity associated with adaptation to high temperature. This review will discuss the recent findings that advance our understanding of the mechanisms controlling leaf senescence and hormone signaling cascades under heat stress.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Botany Department Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Magdi El-Sayed
- Botany Department Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Sudisha Jogaiah
- Plant Healthcare and Diagnostic Center, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, 580 003, India
| | - David J Burritt
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Lam-Son Phan Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam.
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
41
|
Fan ZQ, Tan XL, Shan W, Kuang JF, Lu WJ, Chen JY. BrWRKY65, a WRKY Transcription Factor, Is Involved in Regulating Three Leaf Senescence-Associated Genes in Chinese Flowering Cabbage. Int J Mol Sci 2017; 18:ijms18061228. [PMID: 28594365 PMCID: PMC5486051 DOI: 10.3390/ijms18061228] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 11/23/2022] Open
Abstract
Plant-specific WRKY transcription factors (TFs) have been implicated to function as regulators of leaf senescence, but their association with postharvest leaf senescence of economically important leafy vegetables, is poorly understood. In this work, the characterization of a Group IIe WRKY TF, BrWRKY65, from Chinese flowering cabbage (Brassica rapa var. parachinensis) is reported. The expression of BrWRKY65 was up-regulated following leaf chlorophyll degradation and yellowing during postharvest senescence. Subcellular localization and transcriptional activation assays showed that BrWRKY65 was localized in the nucleus and exhibited trans-activation ability. Further electrophoretic mobility shift assay (EMSA) and transient expression analysis clearly revealed that BrWRKY65 directly bound to the W-box motifs in the promoters of three senescence-associated genes (SAGs) such as BrNYC1 and BrSGR1 associated with chlorophyll degradation, and BrDIN1, and subsequently activated their expressions. These findings demonstrate that BrWRKY65 may be positively associated with postharvest leaf senescence, at least partially, by the direct activation of SAGs. Taken together, these findings provide new insights into the transcriptional regulatory mechanism of postharvest leaf senescence in Chinese flowering cabbage.
Collapse
Affiliation(s)
- Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiao-Li Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
42
|
Chen J, Ren G, Kuai B. The Mystery of Mendel's Stay-Green: Magnesium Stays Chelated in Chlorophylls. MOLECULAR PLANT 2016; 9:1556-1558. [PMID: 27867106 DOI: 10.1016/j.molp.2016.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 05/07/2023]
Affiliation(s)
- Junyi Chen
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200433, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200433, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200433, China.
| |
Collapse
|
43
|
Lin Y, Tan L, Zhao L, Sun X, Sun C. RLS3, a protein with AAA+ domain localized in chloroplast, sustains leaf longevity in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:971-982. [PMID: 27357911 DOI: 10.1111/jipb.12487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 05/05/2023]
Abstract
Leaf senescence plays an important role in crop developmental processes that dramatically affect crop yield and grain quality. The genetic regulation of leaf senescence is complex, involving many metabolic and signaling pathways. Here, we identified a rapid leaf senescence 3 (rls3) mutant that displayed accelerated leaf senescence, shorter plant height and panicle length, and lower seed set rate than the wild type. Map-based cloning revealed that RLS3 encodes a protein with AAA+ domain, localizing it to chloroplasts. Sequence analysis found that the rls3 gene had a single-nucleotide substitution (G→A) at the splice site of the 10th intron/11th exon, resulting in the cleavage of the first nucleotide in 11th exon and premature termination of RLS3 protein translation. Using transmission electron microscope, the chloroplasts of the rls3 mutant were observed to degrade much faster than those of the wild type. The investigation of the leaf senescence process under dark incubation conditions further revealed that the rls3 mutant displayed rapid leaf senescence. Thus, the RLS3 gene plays key roles in sustaining the normal growth of rice, while loss of function in RLS3 leads to rapid leaf senescence. The identification of RLS3 will be helpful to elucidate the mechanisms involved in leaf senescence in rice.
Collapse
Affiliation(s)
- Yanhui Lin
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Lubin Tan
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Lei Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Xianyou Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), MOE Key Laboratory of Crop Heterosis and Utilization, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
44
|
Rosianskey Y, Dahan Y, Yadav S, Freiman ZE, Milo-Cochavi S, Kerem Z, Eyal Y, Flaishman MA. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening. PLANTA 2016; 244:491-504. [PMID: 27097639 DOI: 10.1007/s00425-016-2522-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/06/2016] [Indexed: 05/14/2023]
Abstract
Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained chlorophyll degradation in the parthenocarpic fruit.
Collapse
Affiliation(s)
- Yogev Rosianskey
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Yardena Dahan
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Sharawan Yadav
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Zohar E Freiman
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Shira Milo-Cochavi
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Zohar Kerem
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Yoram Eyal
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel
| | - Moshe A Flaishman
- Institute of Plant Sciences, Agricultural Research Organization, P.O. Box 6, Bet-Dagan, 50250, Israel.
| |
Collapse
|
45
|
Wu S, Li Z, Yang L, Xie Z, Chen J, Zhang W, Liu T, Gao S, Gao J, Zhu Y, Xin J, Ren G, Kuai B. NON-YELLOWING2 (NYE2), a Close Paralog of NYE1, Plays a Positive Role in Chlorophyll Degradation in Arabidopsis. MOLECULAR PLANT 2016; 9:624-7. [PMID: 26732493 DOI: 10.1016/j.molp.2015.12.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/13/2015] [Accepted: 12/03/2015] [Indexed: 05/07/2023]
Affiliation(s)
- Shouxin Wu
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhongpeng Li
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lifeng Yang
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zuokun Xie
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junyi Chen
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianqi Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Gao
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiong Gao
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yihua Zhu
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiwen Xin
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering, Fudan Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
46
|
Kaya A, Doganlar ZB. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:470-479. [PMID: 26629659 DOI: 10.1016/j.ecoenv.2015.11.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 05/04/2023]
Abstract
Jasmonic acid (JA) is one of the important phytohormones, regulating the stress responses as well as plant growth and development. The aim of this study is to determine the effects of exogenous JA application on stress responses of tobacco plant exposed to imazapic. In this study, phytotoxic responses resulting from both imazapic and imazapic combined with JA treatment are investigated comparatively for tobacco plants. For plants treated with imazapic at different concentrations (0.030, 0.060 and 0.120mM), antioxidant enzyme activities (catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), carotenoids, glutathione and malondialdehyte (MDA) contents, jasmonic acid, abscisic acid and indole-3-acetic acid levels as well as herbicide residue amounts on leaves increased in general compared to the control group. In the plants treated with 45µM jasmonic acid, pigment content, antioxidant activity and phytohormone level increased whereas MDA content and the amount of herbicidal residue decreased compared to the non-treated plants. Our findings show that imazapic treatment induces some phytotoxic responses on tobacco leaves and that exogenous jasmonic acid treatment alleviates the negative effects of herbicide treatment by regulating these responses.
Collapse
Affiliation(s)
- Armagan Kaya
- Adiyaman University, Kahta Vocational School, Department of Plant and Animal Breeding, 02040 Adiyaman, Turkey.
| | - Zeynep Banu Doganlar
- Trakya University, Faculty of Medicine, Department of Medical Biology, 22030 Edirne, Turkey.
| |
Collapse
|
47
|
Sakuraba Y, Han SH, Lee SH, Hörtensteiner S, Paek NC. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription. PLANT CELL REPORTS 2016; 35:155-66. [PMID: 26441053 DOI: 10.1007/s00299-015-1876-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 05/04/2023]
Abstract
The Arabidopsis transcriptional factor NAC016 directly activates chlorophyll degradation during leaf senescence by binding to the promoter of SGR1 and upregulating its transcription. During leaf senescence or abiotic stress in Arabidopsis thaliana, STAYGREEN1 (SGR1) promotes chlorophyll (Chl) degradation, acting with Chl catabolic enzymes, but the mechanism regulating SGR1 transcription remains largely unknown. Here, we show that the Arabidopsis senescence-associated NAC transcription factor NAC016 directly activates SGR1 transcription. Under senescence-promoting conditions, the expression of SGR1 was downregulated in nac016-1 mutants and upregulated in NAC016-overexpressing (NAC016-OX) plants. By yeast one-hybrid and chromatin immunoprecipitation assays, we found that NAC016 directly binds to the SGR1 promoter, which contains the NAC016-specific binding motif (termed the NAC016BM). Furthermore, nac016-1 SGR1-OX plants showed an early leaf yellowing phenotype, similar to SGR1-OX plants, confirming that NAC016 directly activates SGR1 expression in the leaf senescence regulatory cascade. Although we found that NAC016 activates SGR1 expression in senescing leaves, this transcriptional regulation is considerably weaker in maturing seeds; the seeds of sgr1-1 mutants (also known as nonyellowing1-1, nye1-1) stayed green, while the seeds of nac016-1 mutants turned from green to yellow normally. We also found that the abscisic acid (ABA) signaling-related transcription factor genes ABI5 and EEL and the ABA biosynthesis gene AAO3, which activate SGR1 expression directly or indirectly, were significantly downregulated in nac016-1 mutants and upregulated in NAC016-OX plants. However, the NAC016BM does not exist in their promoter regions, indicating that NAC016 may indirectly activate these ABA signaling and biosynthesis genes, probably by directly activating transcriptional cascades regulated by the NAC transcription factor NAP. The NAC016-mediated regulatory cascades of SGR1 and other Chl degradation-related genes are discussed.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Su-Hyun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Sang-Hwa Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- CKD Research Institute, Yongin, 16995, Korea
| | | | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
48
|
Bell A, Moreau C, Chinoy C, Spanner R, Dalmais M, Le Signor C, Bendahmane A, Klenell M, Domoney C. SGRL can regulate chlorophyll metabolism and contributes to normal plant growth and development in Pisum sativum L. PLANT MOLECULAR BIOLOGY 2015; 89:539-58. [PMID: 26346777 PMCID: PMC4659853 DOI: 10.1007/s11103-015-0372-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/31/2015] [Indexed: 05/09/2023]
Abstract
Among a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development. Divergence of the two encoded proteins is associated with a loss of similarity in intron/exon gene structure. Transient expression of SGRL in leaves of Nicotiana benthamiana promoted the degradation of chlorophyll, in a manner that was distinct from that shown by SGR. Removal of a predicted transmembrane domain from SGRL reduced its activity in transient expression assays, although variants with and without this domain reduced SGR-induced chlorophyll degradation, indicating that the effects of the two proteins are not additive. The combined data suggest that the function of SGRL during growth and development is in chlorophyll re-cycling, and its mode of action is distinct from that of SGR. Studies of pea sgrL mutants revealed that plants had significantly lower stature and yield, a likely consequence of reduced photosynthetic efficiencies in mutant compared with control plants under conditions of high light intensity.
Collapse
Affiliation(s)
- Andrew Bell
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Carol Moreau
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Rebecca Spanner
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Marion Dalmais
- INRA/CNRS - URGV, 2 rue Gaston Crémieux, 91057, Evry, France
| | | | | | - Markus Klenell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Claire Domoney
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
49
|
Kang MY, Kwon HY, Kim NY, Sakuraba Y, Paek NC. CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) Contributes to Floral Repression under Non-Inductive Short Days in Arabidopsis. Int J Mol Sci 2015; 16:26493-505. [PMID: 26556345 PMCID: PMC4661828 DOI: 10.3390/ijms161125969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/28/2022] Open
Abstract
In Arabidopsis, CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS) genes act in repression of photomorphogenesis in darkness, and recent reports revealed that some of these genes, such as COP1 and DET1, also have important roles in controlling flowering time and circadian rhythm. The COP/DET/FUS protein COP10 interacts with DET1 and DNA DAMAGE-BINDING PROTEIN 1 (DDB1) to form a CDD complex and represses photomorphogenesis in darkness. The cop10-4 mutants flower normally in inductive long days (LD) but early in non-inductive short days (SD) compared with wild type (WT); however, the role of COP10 remains unknown. Here, we investigate the role of COP10 in SD-dependent floral repression. Reverse transcription-quantitative PCR revealed that in SD, expression of the LD-dependent floral inducers GI, FKF1, and FT significantly increased in cop10-4 mutants, compared with WT. This suggests that COP10 mainly regulates FT expression in a CO-independent manner. We also show that COP10 interacts with GI in vitro and in vivo, suggesting that COP10 could also affect GI function at the posttranslational level. Moreover, FLC expression was repressed drastically in cop10-4 mutants and COP10 interacts with MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE (MSI4/FVE), which epigenetically inhibits FLC expression. These data suggest that COP10 contributes to delaying flowering in the photoperiod and autonomous pathways by downregulating FT expression under SD.
Collapse
Affiliation(s)
- Min-Young Kang
- Iriti Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Hye-Young Kwon
- Iriti Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Na-Yun Kim
- Iriti Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Yasuhito Sakuraba
- Iriti Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Nam-Chon Paek
- Iriti Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
50
|
Sakuraba Y, Park SY, Paek NC. The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation. Mol Cells 2015; 38:390-5. [PMID: 25913011 PMCID: PMC4443279 DOI: 10.14348/molcells.2015.0039] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/06/2015] [Indexed: 12/25/2022] Open
Abstract
Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, staygreen1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a stay-green phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - So-Yon Park
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061-0331,
USA
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916,
Korea
| |
Collapse
|