1
|
Aynalem YA, Paul P, Olson J, Lassi ZS, Meherali S. Preconception Care: A Concept Analysis of an Evolving Paradigm. J Adv Nurs 2025. [PMID: 39791592 DOI: 10.1111/jan.16711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
AIM(S) To clarify the concept of preconception care and develop a precise and inclusive definition to improve its implementation and impact on reproductive health outcomes. DESIGN This concept analysis paper employs Rodgers' evolutionary method to analyse the concept of preconception care, examining its historical evolution, attributes, antecedents and consequences. METHODS A comprehensive literature review was conducted using databases such as Cumulative Index to Nursing and Allied Health Literature, Scopus, MEDLINE and Google Scholar, covering publications from 2012 to 2024. Data extraction involved identifying surrogate and related terms, attributes, antecedents and consequences of preconception care. A total of 1520 publications were retrieved, with 166 meeting eligibility criteria. Using systematic random sampling, 40 articles were selected for in-depth analysis. RESULTS The analysis revealed that preconception care encompasses several attributes: period-related (biological, individual, public health and intergenerational), target population-related (individual, public and intergenerational) and pathway-related (universal, targeted and comprehensive). Antecedents include desires for a healthy baby and family planning decisions. Consequently, it improves pregnancy outcomes and health equity and enhances community and intergenerational health. The proposed operational definition highlights preconception care as a proactive strategy to optimise health before pregnancy through targeted and inclusive interventions. CONCLUSION Preconception care is a dynamic and multifaceted process that extends from immediate preconception periods to long-term health considerations. Addressing diverse needs and effectively improving health outcomes requires a tailored approach considering individual, public and intergenerational perspectives. IMPLICATIONS FOR PROFESSIONS AND PATIENT CARE A transparent and inclusive definition of preconception care will enable healthcare professionals, particularly nurses, to deliver more effective, culturally sensitive and equitable care. It will support advocacy for policy changes, resource allocation and educational initiatives to enhance preconception health. IMPACT Addressing preconception care's complexities and diverse needs will foster a more comprehensive understanding and implementation of preconception care, ultimately improving reproductive health outcomes and promoting health equity across generations. PATIENT OR PUBLIC CONTRIBUTION As this concept analysis was derived from published articles, patients or the public were not involved in the study's design, conduct or reporting.
Collapse
Affiliation(s)
- Yared Asmare Aynalem
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
- College of Health Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Pauline Paul
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Joanne Olson
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Zohra S Lassi
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Salima Meherali
- College of Health Sciences, Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Li ZH, Hu CY, Dai SW, Ma HY, Zhang SY, Sun C, Li JH, Huang K, Chen ML, Gao GP, Zhang XJ. Sex-specific associations between maternal exposure to metal mixtures and fetal growth trajectories: A prospective birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178291. [PMID: 39733573 DOI: 10.1016/j.scitotenv.2024.178291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The associations of prenatal metals exposure with birth outcomes have been widely assessed. However, evidence on the associations between metal mixtures and fetal intrauterine growth trajectories is scarce. OBJECTIVES This study aimed to explore the associations of metal mixtures with fetal intrauterine growth trajectories overall and by sex. METHODS We analyzed data from the Ma'anshan birth cohort, which included a total of 1041 pregnant woman. The concentrations of 12 metals in maternal blood were measured during early pregnancy, and fetal intrauterine growth indicators were standardized and assessed at 16, 23, 30, 34, and 38 weeks of gestation. We used generalized linear regression and linear mixed models to identify the key fetal growth indicator (biparietal diameter (BPD)), and applied GBTM to characterize BPD SD-scores trajectories. To further assess the individual and combined effects of metals, we conducted multivariable logistic regression and repeated holdouts weighted quantile sum (WQS) regression analyses, respectively. Finally, we performed a sex-stratified analysis to explore sex-specific associations. RESULTS The sex-stratified multivariable logistic regression analysis indicated that in male fetal, cobalt (Co) (OR: 0.60, 95 % CI: 0.38, 0.92) was negatively associated with the high-growth BPD-SD scores trajectory. In contrast, Co (OR: 2.39, 95 % CI: 1.40, 4.45) showed a positive association in female fetal. Results from the WQS showed that early pregnancy metal mixture exposure was associated with BPD-SD scores at 16, 34, and 38 weeks in female fetal. The results highlighted Zn and Co as key metals associated with high-growth BPD SD-scores trajectory. We also identified a significant interaction between early pregnancy metal mixtures and sex on high-growth BPD SD-scores trajectories. The WQS*sex interaction term had a mean odds ratio of 1.271 (95 % CI: 1.027, 1.619). CONCLUSION This study suggests that exposure to prenatal metal mixtures affects fetal intrauterine growth trajectories with sexual dimorphism.
Collapse
Affiliation(s)
- Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Si-Wei Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hui-Ya Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Management & Checkup Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, Anhui, China
| | - Si-Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Chen Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Jia-Hui Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Mao-Lin Chen
- Department of Gynecology and Obstetrics, Ma'anshan Maternal and Child Health Hospital, Ma'anshan 243000, China
| | - Guo-Peng Gao
- Department of Child Health Care, Ma'anshan Maternal and Child Health Hospital, Ma'anshan 243000, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
3
|
Zečević N, Kocić J, Perović M, Stojsavljević A. Detrimental effects of cadmium on male infertility: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117623. [PMID: 39733596 DOI: 10.1016/j.ecoenv.2024.117623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Infertility has become a serious health and socio-economic-psychological problem globally. The harmful role of trace metals in male infertility is recognized but still not sufficiently explained. Herein, a comprehensive review was conducted to elucidate the detrimental role of cadmium (Cd) on male infertility, particularly on infertility with unknown (idiopathic) causes. Peer-reviewed studies from 2000 to 2024 dealing with seminal plasma and blood Cd levels of fertile and infertile men were retrieved were interrogated with regard to strict inclusion/exclusion criteria, and then were thoroughly reviewed and analyzed. Another aim of this review was to indicate the potential effects of Cd on changes in seminogram findings. A median range of seminal plasma Cd levels from 0.2 to 1.5 µg/L can be considered safe for men's fertility. This review strongly implies that Cd levels were notably higher in seminal plasma of infertile cases than controls. The review's data also indicate that exposure to tobacco smoke is a major source of elevated seminal and blood Cd levels in infertile men. Newer research points to the importance of Cd in lower levels from the environment on changes in seminogram findings, primarily count, motility of spermatozoa, and their morphology. Overall, this review implies that seminal plasma Cd levels could be a good indicator of semen quality. However, new, in-depth studies are needed to confirm or reject the causal relationship of Cd with male infertility.
Collapse
Affiliation(s)
- Nebojša Zečević
- Clinic for Gynecology and Obstetrics "Narodni front", Kraljice Natalije 62, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Doktora Subotića 8, Belgrade, Serbia; Special Hospital Belgrade, Human Reproduction Center, Antifašističke borbe 2a, Belgrade, Serbia
| | - Jovana Kocić
- Clinic for Gynecology and Obstetrics "Narodni front", Kraljice Natalije 62, Belgrade, Serbia
| | - Milan Perović
- Clinic for Gynecology and Obstetrics "Narodni front", Kraljice Natalije 62, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Doktora Subotića 8, Belgrade, Serbia
| | - Aleksandar Stojsavljević
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
4
|
Pandey AN, Yadav PK, Premkumar KV, Tiwari M, Antony MM, Pandey AK, Chaube SK. Damage mechanisms of bisphenols on the quality of mammalian oocytes. Hum Reprod 2024:deae284. [PMID: 39706892 DOI: 10.1093/humrep/deae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
The extensive use of bisphenols in the plastics industry globally is a major growing concern for human health. Bisphenol compounds are easily leached out from plastic containers to food, beverages, and drinking water and contaminate the natural environment. Daily exposure of bisphenol compounds increases their load and impairs various organs, including the reproductive system. Bisphenol compounds directly or indirectly affect ovarian functions, such as folliculogenesis, steroidogenesis, oogenesis, and thereby oocyte quality. Bisphenol A (BPA) and its structural analogues act as endocrine disruptors and induce generation of reactive oxygen species (ROS) within the ovary. Excess levels of ROS induce death pathways in follicular steroidogenic cells and affect ovarian steroidogenesis. The reduced level of estradiol-17β impairs follicular growth and development that reduces the number and quality of oocytes. In addition, excess levels of ROS in follicular fluid trigger meiotic instability, which further deteriorates oocyte quality. The high level of ROS generates oxidative stress that triggers various death pathways in germ cells as well as in oocytes, induces follicular atresia, and depletes ovarian reserve. Although growing evidence indicates the destructive effects of bisphenol compounds at the level of ovary, potential effects and underlying mechanisms that deteriorate oocyte quality remain poorly understood. Therefore, this review summarizes the mechanisms by which bisphenols cause damage to the ovary, impair oocyte quality, and affect women's fertility.
Collapse
Affiliation(s)
- Ashutosh N Pandey
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pramod K Yadav
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Karuppanan V Premkumar
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mano Mohan Antony
- Centre for Molecular Evolutionary Genetics, Department of Zoology, Research Centre, University College Thiruvananthapuram, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Ajai K Pandey
- Department of Kayachikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Mendizabal-Ruiz G, Paredes O, Álvarez Á, Acosta-Gómez F, Hernández-Morales E, González-Sandoval J, Mendez-Zavala C, Borrayo E, Chavez-Badiola A. Artificial Intelligence in Human Reproduction. Arch Med Res 2024; 55:103131. [PMID: 39615376 DOI: 10.1016/j.arcmed.2024.103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
The use of artificial intelligence (AI) in human reproduction is a rapidly evolving field with both exciting possibilities and ethical considerations. This technology has the potential to improve success rates and reduce the emotional and financial burden of infertility. However, it also raises ethical and privacy concerns. This paper presents an overview of the current and potential applications of AI in human reproduction. It explores the use of AI in various aspects of reproductive medicine, including fertility tracking, assisted reproductive technologies, management of pregnancy complications, and laboratory automation. In addition, we discuss the need for robust ethical frameworks and regulations to ensure the responsible and equitable use of AI in reproductive medicine.
Collapse
Affiliation(s)
- Gerardo Mendizabal-Ruiz
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
| | - Omar Paredes
- Laboratorio de Innovación Biodigital, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; IVF 2.0 Limited, Department of Research and Development, London, UK
| | - Ángel Álvarez
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Fátima Acosta-Gómez
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Estefanía Hernández-Morales
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Josué González-Sandoval
- Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Celina Mendez-Zavala
- Laboratorio de Percepción Computacional, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ernesto Borrayo
- Laboratorio de Innovación Biodigital, Departamento de Bioingeniería Traslacional, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Alejandro Chavez-Badiola
- Conceivable Life Sciences, Department of Research and Development, Guadalajara, Jalisco, Mexico; IVF 2.0 Limited, Department of Research and Development, London, UK; New Hope Fertility Center, Deparment of Research, Ciudad de México, Mexico
| |
Collapse
|
6
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
7
|
Benoit L, Delille P, Alemanno S, Bats AS, Koual M. [Enhancing gynecological health: 10 changes for better living with your environment]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2024:S2468-7189(24)00305-2. [PMID: 39442614 DOI: 10.1016/j.gofs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Louise Benoit
- Gynecologic and Breast Oncologic Surgery Department, Georges-Pompidou European Hospital, AP-HP, Centre, 75012 Paris, France; Inserm UMR-S 1124, centre universitaire des Saint-Pères, université Paris-Cité, Paris, France.
| | - Pascale Delille
- Département transformation écologique et santé environnementale, direction de la stratégie et de la transformation, AP-HP, Paris, France
| | - Sylvie Alemanno
- Conservatoire national des arts et métiers, Paris, France; Société française des sciences de l'information et de la communication, Paris, France
| | - Anne-Sophie Bats
- Gynecologic and Breast Oncologic Surgery Department, Georges-Pompidou European Hospital, AP-HP, Centre, 75012 Paris, France; Inserm UMR-S 1147, centre de recherche des Cordeliers, université Paris-Cité, Paris, France
| | - Meriem Koual
- Gynecologic and Breast Oncologic Surgery Department, Georges-Pompidou European Hospital, AP-HP, Centre, 75012 Paris, France; Inserm UMR-S 1124, centre universitaire des Saint-Pères, université Paris-Cité, Paris, France
| |
Collapse
|
8
|
Bessa Santana PDP, Mota TC, Oliveira Das Mercês M, Baia De Souza E, Costa De Almeida NND, Da Silva Cordeiro M, Santos SDSD, Bahia MDO, Dos Santos Miranda M, Ohashi OM. Artesunate does not affect oocyte maturation and early embryo development of bovine. Drug Chem Toxicol 2024; 47:527-533. [PMID: 37288763 DOI: 10.1080/01480545.2023.2217478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 06/09/2023]
Abstract
Despite the cytotoxicity and embryotoxicity previously reported artesunate is a recommended drug to treat malaria for adults, children, and women in the first trimester of pregnancy. To address the putative effects of artesunate on female fertility and preimplantation embryo development, when the pregnancy is not detectable yet, artesunate was added to the oocyte in vitro maturation and in vitro embryo development of bovine. Briefly, in experiment 1 the cumulus-oocyte complexes (COCs) were in vitro matured for 18 h with 0.5, 1, or 2 µg/mL of artesunate or not (negative control) and then checked for nuclear maturation and subsequent embryo development. In experiment 2, the COCs were in vitro matured and fertilized without artesunate, which was added (0.5, 1, or 2 µg/mL) from the 1st to the 7th day of embryo culture along with a negative and a positive control group with doxorubicin. As a result, the use of artesunate on oocyte in vitro maturation did not differ from the negative control (p > 0.05) regarding nuclear maturation, cleavage, and blastocyst formation. Also, artesunate on in vitro embryo culture did not differ from negative control (p > 0.05) regarding cleavage and blastocyst formation, except for positive control, with doxorubicin (p < 0.05). In conclusion, under the conditions investigated, there was no evidence of artesunate toxicity on oocyte competence and the preimplantation period of in vitro embryo development in the bovine model, however, artesunate use still should be taken carefully as the outcome of implantation after oocytes and blastocysts exposure to artesunate remains unknown.
Collapse
|
9
|
Lin MW, Chen JY, Ye YX, Chen WY, Chan HL, Chou HC. Genotoxicity and cytotoxicity in male reproductive cells caused by sediment pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173578. [PMID: 38810737 DOI: 10.1016/j.scitotenv.2024.173578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
In recent years, mounting evidence has highlighted a global decline in male semen quality, paralleling an increase in male infertility problems. Such developments in the male reproductive system are likely due to a range of environmental factors, which could negatively affect the outcomes of pregnancy, reproductive health, and the well-being of fetuses. Different environmental contaminants ultimately accumulate in riverbed sediments due to gravity, so these sediments are frequently considered hotspots for pollutants. Therefore, understanding the detrimental effects of river sediment pollution on human reproductive health is crucial. This study indicates male germ cells' high vulnerability to environmental contaminants. There is a strong positive correlation between the concentration of complex accumulated pollutants from human activities and the reproductive toxicity observed in human testicular embryonic cell lines NCCIT and NTERA-2. This toxicity is characterized by increased levels of reactive oxygen species, disruption of critical cellular functions, genotoxic impacts, and the induction of cell apoptosis. This research marks a significant step in providing in vitro evidence of the damaging effects of environmental pollutants on the human male germline.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Jai-Yu Chen
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Xuan Ye
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Yi Chen
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Cai P, He H, Song X, Qiu T, Chen D, Zhang H. Association between gestational arsenic exposure and infant physical development: a prospective cohort study. BMC Public Health 2024; 24:2292. [PMID: 39174974 PMCID: PMC11342644 DOI: 10.1186/s12889-024-19818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Arsenic pollution is widespread worldwide. The association between gestational arsenic exposure and adverse birth outcomes has been demonstrated in previous studies; however, few investigations have examined whether gestational arsenic exposure has adverse effects on infant growth and development after birth. OBJECTIVE Our study was designed to evaluate particular associations between gestational arsenic exposure during pregnancy and newborn birth size and to investigate whether these associations continue to affect infants after birth. METHODS An ongoing prospective cohort study of 1100 pregnant women was conducted at the Wuxi Maternity and Child Health Care Hospital. The total urinary arsenic concentrations in the 2nd and 3rd trimester were determined using atomic fluorescence spectrometry. The relationships between urinary arsenic concentration and foetal growth parameters (birth weight, head circumference, length, and ponderal index), SGA (Small for gestational age), and physical growth of infants within one year after birth were analysed. RESULTS Urinary arsenic concentration in the 3rd trimester was associated with an increased incidence of SGA [adjusted model: OR = 2.860 (95% CI: 1.168, 7.020), P = 0.021)]. Arsenic exposure in late pregnancy had an adverse effect on the physical development of infants before the age of 1 year, and there was an interaction effect with the sex of infants. The weight and length of boys at 6 and 12 months negatively correlated with maternal urinary arsenic levels during late pregnancy. CONCLUSIONS In addition to affecting foetal growth, exposure to arsenic in the 3rd trimester also negatively affected the growth of offspring within the first year of life.
Collapse
Affiliation(s)
- Panyuan Cai
- Experimental Teaching Center of Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hongning He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Xiaoyue Song
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Ting Qiu
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Daozhen Chen
- Department of Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Heng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China.
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China.
| |
Collapse
|
11
|
Furlong MA, Paul KC, Parra KL, Fournier AJ, Ellsworth PC, Cockburn MG, Arellano AF, Bedrick EJ, Beamer PI, Ritz B. Pre-Conception And First Trimester Exposure To Pesticides And Associations With Stillbirth. Am J Epidemiol 2024:kwae198. [PMID: 39013781 DOI: 10.1093/aje/kwae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/22/2024] [Indexed: 07/18/2024] Open
Abstract
Associations of pesticide exposures during pre-conception with stillbirth have not been well explored. We linked Arizona pesticide use records with birth certificates from 2006-2020 and estimated associations of living within 500meters of any pyrethroid, organophosphate (OP), or carbamate pesticide applications during a 90 day pre-conception window or the first trimester, with stillbirth. We considered a binary measure of exposure (any exposure), as well as log-pounds and log-acres applied within 500m, in a negative control exposure framework with log-binomial regression. We included 1,237,750 births, 2,290 stillbirths, and 27 pesticides. During pre-conception, any exposure to pesticides were associated with stillbirth, including cyfluthrin (RR=1.97, 95% CI 1.17,3.32), zeta-cypermethrin (RR=1.81, 95%CI 1.20, 2.74), organophosphates as a class (RR=1.60, 95%CI 1.16, 2.19), malathion (RR=2.02, 95%CI 1.26, 3.24), carbaryl (RR=6.39, 95%CI 2.07, 19.74), and propamocarb hydrochloride (RR=7.72, 95%CI 1.10, 54.20) . During the first trimester, fenpropathrin (RR=4.36, 95%CI 1.09, 17.50), permethrin (RR=1.57, 95%CI 1.02, 2.42), organophosphates as a class (RR=1.50, 95%CI 1.11, 2.01), acephate (RR=2.31, 95%CI 1.22, 4.40), and formetanate hydrochloride (RR=7.22, 95%CI 1.03, 50.58) were associated with stillbirth. Interpretations were consistent when using continuous measures of pounds or acres of exposure. Pesticide exposures during pre-conception and first trimester may be associated with stillbirth.
Collapse
Affiliation(s)
- Melissa A Furlong
- University of Arizona College of Public Health, Environmental Health Sciences
| | | | - Kimberly L Parra
- University of Arizona College of Public Health Epidemiology & Biostatistics
| | - Alfred J Fournier
- Department of Entomology, University of Arizona College of Agricultural and Life Sciences
| | - Peter C Ellsworth
- Department of Entomology, University of Arizona College of Agricultural and Life Sciences
| | - Myles G Cockburn
- Department of Community Medicine, University of Southern California
| | - Avelino F Arellano
- Department of Hydrology and Atmospheric Sciences, University of Arizona College of Science
| | - Edward J Bedrick
- University of Arizona College of Public Health Epidemiology & Biostatistics
| | - Paloma I Beamer
- University of Arizona College of Public Health, Environmental Health Sciences
| | - Beate Ritz
- Department of Epidemiology, University of California at Los Angeles
| |
Collapse
|
12
|
Gerson KD, Loder A, Landau Z, Anton L. Xenobiotic metabolites modify immune responses of the cervicovaginal epithelium: potential mechanisms underlying barrier disruption. BJOG 2024; 131:665-674. [PMID: 37705143 DOI: 10.1111/1471-0528.17654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE Xenobiotic metabolites are exogenous biochemicals that can adversely impact reproductive health. We previously identified xenobiotics in cervicovaginal fluid during pregnancy in association with short cervix. In other organ systems, xenobiotics can modify epithelial barrier function. We hypothesise that xenobiotics dysregulate epithelial cell and macrophage immune responses as a mechanism to disrupt the cervicovaginal barrier. DESIGN In vitro cell culture system. SETTING Laboratory within academic institution. SAMPLE Vaginal, ectocervical and endocervical epithelial cell lines and primary macrophages. METHODS Cells were treated with diethanolamine (2.5 mM), ethyl glucoside (5 mM) or tartrate (2.5 mM) for 24 h. MAIN OUTCOME MEASURES Cytokines and matrix metalloproteinases were measured in cell supernatants (n = 3 per condition). One-way analysis of variance (ANOVA) with Dunnett's test for multiple comparisons was performed. RESULTS Diethanolamine induces inflammatory cytokines, whereas ethyl glucoside and tartrate generally exert anti-inflammatory effects across all cells. Diethanolamine increases interleukin 6 (IL-6), IL-8, interferon γ-induced protein 10 kDa (IP-10), growth-regulated oncogene (GRO), fractalkine, matrix metalloproteinase 1 (MMP-1), MMP-9 and MMP-10 (p < 0.05 for all), factors involved in acute inflammation and recruitment of monocytes, neutrophils and lymphocytes. Ethyl glucoside and tartrate decrease multiple cytokines, including RANTES and MCP-1 (p < 0.05 for all), which serve as chemotactic factors. Vaginal cells exhibit heightened inflammatory tone compared with cervical cells and macrophages, with a greater number of differentially expressed analytes after xenobiotic exposure. CONCLUSIONS Xenobiotic metabolites present in the cervicovaginal space during pregnancy modify immune responses, unveiling potential pathways through which environmental exposures may contribute to the pathogenesis of cervical remodelling preceding preterm birth. Future work identifying xenobiotic sources and routes of exposure offers the potential to modify environmental risks to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Kristin D Gerson
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aaron Loder
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary Landau
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren Anton
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Bandanaa J, Bosomtwe A, Danson-Anokye A, Adjei E, Bissah M, Kotey DA. Determinants of pesticides use among tomato farmers in the Bono and Ahafo regions of Ghana. Sci Rep 2024; 14:5484. [PMID: 38443385 PMCID: PMC10914832 DOI: 10.1038/s41598-024-55169-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Tomato production plays a crucial role in the livelihoods of farmers and agricultural households in the forest savanna transitional belt of Ghana. However, the success of tomato cultivation is hindered by the presence of insect pests and diseases, necessitating the use of agricultural inputs. This study aimed to identify the pesticides used in tomato farming, assess their World Health Organization (WHO) active ingredient hazard class, determine the precautionary behaviour associated with pesticide use by tomato farmers, and elucidate the socio-economic factors influencing pesticide usage in the Bono and Ahafo regions of Ghana. A multistage sampling procedure was employed to select 1009 respondents, who were administered a structured questionnaire. Descriptive statistics and logistic regression models were used to analyse the collected data. The results revealed that tomato farmers utilized 15 types of insecticides (e.g., lambda and chlorpyrifos ethyl based), 8 types of fungicides (e.g., mancozeb and sulphur + copper based), and 6 types of weedicides (mostly glyphosate based) on their crops. Notably, four insecticides and two fungicides types were found to be unregistered products. Lambda-cyhalothrin-based insecticides and mancozeb-based fungicides were predominantly used by the farmers. The assessed pesticides exhibited varying levels of hazard, ranging from slight to moderate. The study found that farmer training was a significant driver influencing insecticide use, while the educational level of farmers and average yield played important roles in determining fungicide use. Socio-economic factors such as being the head of the household, employing farm workers, the cultivated tomato variety, and farmer training influenced weedicide use. The type of tomato variety cultivated emerged as the primary socio-economic driver of pesticide use. The study recommended the establishment and implementation of a systematic monitoring regime for pesticide product marketing and use, with the aim of reducing the utilization of unregistered products by farmers. Implementing these measures supports sustainable tomato farming in the Bono and Ahafo regions of Ghana.
Collapse
Affiliation(s)
- Joseph Bandanaa
- CSIR-Plant Genetic Resources Research Institute, P. O. Box 7, Bunso, Eastern Region, Ghana.
| | - Augustine Bosomtwe
- CSIR-Plant Genetic Resources Research Institute, P. O. Box 7, Bunso, Eastern Region, Ghana
| | | | - Eric Adjei
- Department of Agriculture, Berekum West District, P. O. Box 160, Berekum, Ghana
| | - Matilda Bissah
- CSIR-Plant Genetic Resources Research Institute, P. O. Box 7, Bunso, Eastern Region, Ghana
| | - Daniel A Kotey
- CSIR-Plant Genetic Resources Research Institute, P. O. Box 7, Bunso, Eastern Region, Ghana
| |
Collapse
|
14
|
Fauser BCJM, Adamson GD, Boivin J, Chambers GM, de Geyter C, Dyer S, Inhorn MC, Schmidt L, Serour GI, Tarlatzis B, Zegers-Hochschild F. Declining global fertility rates and the implications for family planning and family building: an IFFS consensus document based on a narrative review of the literature. Hum Reprod Update 2024; 30:153-173. [PMID: 38197291 PMCID: PMC10905510 DOI: 10.1093/humupd/dmad028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Family-planning policies have focused on contraceptive approaches to avoid unintended pregnancies, postpone, or terminate pregnancies and mitigate population growth. These policies have contributed to significantly slowing world population growth. Presently, half the countries worldwide exhibit a fertility rate below replacement level. Not including the effects of migration, many countries are predicted to have a population decline of >50% from 2017 to 2100, causing demographic changes with profound societal implications. Policies that optimize chances to have a child when desired increase fertility rates and are gaining interest as a family-building method. Increasingly, countries have implemented child-friendly policies (mainly financial incentives in addition to public funding of fertility treatment in a limited number of countries) to mitigate decreasing national populations. However, the extent of public spending on child benefits varies greatly from country to country. To our knowledge, this International Federation of Fertility Societies (IFFS) consensus document represents the first attempt to describe major disparities in access to fertility care in the context of the global trend of decreasing growth in the world population, based on a narrative review of the existing literature. OBJECTIVE AND RATIONALE The concept of family building, the process by which individuals or couples create or expand their families, has been largely ignored in family-planning paradigms. Family building encompasses various methods and options for individuals or couples who wish to have children. It can involve biological means, such as natural conception, as well as ART, surrogacy, adoption, and foster care. Family-building acknowledges the diverse ways in which individuals or couples can create their desired family and reflects the understanding that there is no one-size-fits-all approach to building a family. Developing education programs for young adults to increase family-building awareness and prevent infertility is urgently needed. Recommendations are provided and important knowledge gaps identified to provide professionals, the public, and policymakers with a comprehensive understanding of the role of child-friendly policies. SEARCH METHODS A narrative review of the existing literature was performed by invited global leaders who themselves significantly contributed to this research field. Each section of the review was prepared by two to three experts, each of whom searched the published literature (PubMed) for peer reviewed full papers and reviews. Sections were discussed monthly by all authors and quarterly by the review board. The final document was prepared following discussions among all team members during a hybrid invitational meeting where full consensus was reached. OUTCOMES Major advances in fertility care have dramatically improved family-building opportunities since the 1990s. Although up to 10% of all children are born as a result of fertility care in some wealthy countries, there is great variation in access to care. The high cost to patients of infertility treatment renders it unaffordable for most. Preliminary studies point to the increasing contribution of fertility care to the global population and the associated economic benefits for society. WIDER IMPLICATIONS Fertility care has rarely been discussed in the context of a rapid decrease in world population growth. Soon, most countries will have an average number of children per woman far below the replacement level. While this may have a beneficial impact on the environment, underpopulation is of great concern in many countries. Although governments have implemented child-friendly policies, distinct discrepancies in access to fertility care remain.
Collapse
Affiliation(s)
- Bart C J M Fauser
- University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Silke Dyer
- Groot Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
15
|
Li Y, Huang J, Ge C, Zhu S, Wang H, Zhang Y. The effects of prenatal azithromycin exposure on offspring ovarian development at different stages, doses, and courses. Biomed Pharmacother 2024; 172:116246. [PMID: 38359487 DOI: 10.1016/j.biopha.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Azithromycin, a commonly used macrolide antibiotic for treating chlamydial infections during pregnancy, has sparked investigations into its potential effects on offspring development. Despite these inquiries, there remains uncertainty about the specific impact of prenatal azithromycin exposure (PAzE) on offspring ovarian development and the precise "effect window". Pregnant mice, following clinical guidelines for azithromycin dosing, were orally administered azithromycin at different gestational stages [(gestational day, GD) 10-12 or GD 15-17], doses (50, 100, or 200 mg/kg·d), and courses (single or multiple). On GD 18, we collected offspring blood and ovaries to examine changes in fetal serum estradiol (E2) levels, fetal ovarian morphology, pre-granulosa cell function, and oocyte development. Multiple courses of PAzE resulted in abnormal fetal ovarian morphological development, disorganized germ cell nests, enhanced ovarian cell proliferation, and reduced apoptosis. Simultaneously, multiple courses of PAzE significantly increased fetal serum E2 levels, elevated ovarian steroidogenic function (indicated by Star, 3β-hsd, and Cyp19 expression), disrupted oocyte development (indicated by Figlα and Nobox expression), and led to alterations in the MAPK signal pathway in fetal ovaries, particularly in the high-dose treatment group. In contrast, a single course of PAzE reduced fetal ovarian cell proliferation, decreased steroidogenic function, and inhibited oocyte development, particularly through the downregulation of Mek2 expression in the MAPK signal pathway. These findings suggest that PAzE can influence various aspects of fetal mouse ovarian cell development. Multiple courses enhance pre-granulosa cell estrogen synthesis function and advance germ cell development, while a single terminal gestation dose inhibits germ cell development. These differential effects may be associated with changes in the MAPK signal pathway.
Collapse
Affiliation(s)
- Yating Li
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Sen Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
16
|
Zhang M, Liu XY, Deng YL, Liu C, Zeng JY, Miao Y, Wu Y, Li CR, Li YJ, Liu AX, Zhu JQ, Zeng Q. Associations between urinary biomarkers of exposure to disinfection byproducts and semen parameters: A repeated measures analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132638. [PMID: 37774606 DOI: 10.1016/j.jhazmat.2023.132638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Toxicological studies have demonstrated that disinfection byproducts (DBPs), particularly haloacetic acids, cause testicular toxicity. However, evidence from human studies is sparse and inconclusive. This study included 1230 reproductive-aged men from the Tongji Reproductive and Environmental (TREE) cohort to investigate the associations between repeated measures of DBP exposures and semen parameters. Urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) as biomarkers of DBP exposures and semen parameters in up to three samples from each man were assessed. The linear mixed effect models were applied to explore the associations between urinary biomarkers of DBP exposures and semen parameters. We found inverse associations of urinary DCAA with sperm count, progressive motility, and total motility (e.g., -14.86%; 95% CI: -19.33%, -10.15% in sperm total motility for the highest vs. lowest quartiles; all P for trends < 0.05). Moreover, urinary TCAA modeled as a continuous variable was negatively associated with sperm progressive motility and total motility, while the inverse associations across increasing urinary TCAA quartiles were seen among leaner men (BMI < 25 kg/m2). Exposure to DBPs reflected by urinary DCAA and TCAA was inversely associated with sperm motility and such effects were more evident among leaner men.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yang-Juan Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jin-Qin Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
17
|
Zhao Z, Liu W, Hu J, Chen S, Gao Y, Wang H, Luo M, Zhou T, Zhang G. Cohort Profile: China Southwest Birth Cohort (CSBC). Int J Epidemiol 2023; 52:e347-e353. [PMID: 37440714 PMCID: PMC10749777 DOI: 10.1093/ije/dyad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Ziling Zhao
- Obstetrics Department, Sichuan Provincial Maternity and Child Health Care Hospital (The Affiliated Women’s and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Weixin Liu
- Obstetrics Department, Sichuan Provincial Maternity and Child Health Care Hospital (The Affiliated Women’s and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Jinnuo Hu
- Obstetrics Department, Sichuan Provincial Maternity and Child Health Care Hospital (The Affiliated Women’s and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Shiqi Chen
- Obstetrics Department, Sichuan Provincial Maternity and Child Health Care Hospital (The Affiliated Women’s and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Yan Gao
- Obstetrics Department, Sichuan Provincial Maternity and Child Health Care Hospital (The Affiliated Women’s and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Hong Wang
- Obstetrics Department, Sichuan Provincial Maternity and Child Health Care Hospital (The Affiliated Women’s and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Min Luo
- Obstetrics Department, Sichuan Provincial Maternity and Child Health Care Hospital (The Affiliated Women’s and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Tianjin Zhou
- Obstetrics Department, Sichuan Provincial Maternity and Child Health Care Hospital (The Affiliated Women’s and Children’s Hospital of Chengdu Medical College), Chengdu, China
| | - Gang Zhang
- Obstetrics Department, Sichuan Provincial Maternity and Child Health Care Hospital (The Affiliated Women’s and Children’s Hospital of Chengdu Medical College), Chengdu, China
| |
Collapse
|
18
|
Yang P, Xie J, Huang S, Li X, Deng L, Zhang J, Chen L, Wu N, Huang G, Zhou C, Xiao L, Shen X. "Cocktail" of environmental chemicals and early reproductive outcomes of IVF: The insight from paternal and maternal exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119462. [PMID: 37925986 DOI: 10.1016/j.jenvman.2023.119462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Humans are exposed to various chemicals, including organophosphate esters (OPEs), phthalates (PAEs), and phenols. The effects on early reproductive outcomes of in vitro fertilization (IVF) remain unclear. METHODS We recruited 192 women and 157 men who underwent IVF treatment. A total of forty-nine urinary chemicals were detected, including six OPEs, fifteen PAEs, six parabens, two chlorophenols, nine bisphenols, five benzophenones, and six synthetic phenolic antioxidants. We examined the individual and joint effects of parental chemical exposure on early reproductive outcomes. RESULTS We found that certain chemicals were associated with early reproductive outcomes in Poisson regression models. For example, urinary diphenyl phosphate was negatively associated with high-quality embryos in both female (β: -0.12, 95%CI: -0.17, -0.07) and male partners (β: -0.09, 95%CI: -0.15, -0.03). A negative association was found between mixed chemicals and high-quality embryos in Bayesian kernel machine regression, weighted quantile sum regression (β: -0.34, 95%CI: -0.60, -0.07), and quantile-based g-computation model (β: -0.69, 95%CI: -1.34, -0.05) among female partners. Paternal mixture exposure was not associated with early reproductive outcomes. CONCLUSIONS Our results indicated that increased exposure to environmental chemicals was associated with adverse early reproductive outcomes of IVF, especially female partners.
Collapse
Affiliation(s)
- Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Songyi Huang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Langjing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinglei Zhang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lin Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Nanxin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guangtong Huang
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li Xiao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
19
|
Leung M. Invited Perspective: Climate Change and Reproductive Health-the Perils of Oversimplification. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:121307. [PMID: 38149877 PMCID: PMC10752218 DOI: 10.1289/ehp13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Michael Leung
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Vinnars MT, Bixo M, Damdimopoulou P. Pregnancy-related maternal physiological adaptations and fetal chemical exposure. Mol Cell Endocrinol 2023; 578:112064. [PMID: 37683908 DOI: 10.1016/j.mce.2023.112064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/15/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Prenatal life represents a susceptible window of development during which chemical exposures can permanently alter fetal development, leading to an increased likelihood of disease later in life. Therefore, it is essential to assess exposure in the fetus. However, direct assessment in human fetuses is challenging, so most research measures maternal exposure. Pregnancy induces a range of significant physiological changes in women that may affect chemical metabolism and responses. Moreover, placental function, fetal sex, and pregnancy complications may further modify these exposures. The purpose of this narrative review is to give an overview of major pregnancy-related physiological changes, including placental function and impacts of pregnancy complications, to summarize existing studies assessing chemical exposure in human fetal organs, and to discuss possible interactions between physiological changes and exposures. Our review reveals major knowledge gaps in factors affecting fetal chemical exposure, highlighting the need to develop more sophisticated tools for chemical health risk assessment in fetuses.
Collapse
Affiliation(s)
- Marie-Therese Vinnars
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Marie Bixo
- Department of Clinical Sciences, Division of Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
21
|
Liu Y, Liu Y, Chen S, Kong Z, Guo Y, Wang H. Prenatal exposure to acetaminophen at different doses, courses and time causes testicular dysplasia in offspring mice and its mechanism. CHEMOSPHERE 2023; 345:140496. [PMID: 37865203 DOI: 10.1016/j.chemosphere.2023.140496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Epidemiological investigation suggested that the use of acetaminophen during pregnancy may cause offspring testicular dysplasia, but no systematic study has been conducted. In this study, Kunming mice were given acetaminophen at different doses (100/200/400 mg/kg.d), courses (single/multiple), time (second/third trimester) during pregnancy. Fetal blood and testes were collected on gestaional day 18 for detection. The results indicated abnormal testicular development in the PAcE (prenatal acetaminophen exposure) groups. The maximum diameter/cross-sectional area decreased, the interstitial space widened, and decreased proliferation/increased apoptosis were observed, especially in the high-dose, multi-course and second-trimester groups. Meanwhile, the serum testosterone level decreased in PAcE groups, and the steroid synthesis function in Leydig cells, Sertoli and spermatogenic cell function were inhibited, it was more significant in high-dose, multi-course and second-trimester groups. Furthermore, Wnt signal pathway was activated but Notch signal pathway was inhibited in the PAcE groups. Finally, in vitro experiment, acetaminophen could inhibit spermatogonial cell proliferation, enhance apoptosis, and change Wnt/Notch signal pathway. In conclusion, this study confirmed that PAcE can change fetal testicular development in a dose, course and time-dependent manner, and found that multicellular function impaired. This study provides theoretical and experimental basis for systematically elucidating the developmental toxicity of acetaminophen in testis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yi Liu
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Sijia Chen
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ziyu Kong
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
22
|
Thangaraj SV, Zeng L, Pennathur S, Lea R, Sinclair KD, Bellingham M, Evans NP, Auchus R, Padmanabhan V. Developmental programming: Impact of preconceptional and gestational exposure to a real-life environmental chemical mixture on maternal steroid, cytokine and oxidative stress milieus in sheep. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165674. [PMID: 37495149 PMCID: PMC10568064 DOI: 10.1016/j.scitotenv.2023.165674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Gestational exposure to environmental chemicals (ECs) is associated with adverse, sex-specific offspring health effects of global concern. As the maternal steroid, cytokine and oxidative stress milieus can have critical effects on pregnancy outcomes and the programming of diseases in offspring, it is important to study the impact of real-life EC exposure, i.e., chronic low levels of mixtures of ECs on these milieus. Sheep exposed to biosolids, derived from human waste, is an impactful model representing the ECs humans are exposed to in real-life. Offspring of sheep grazed on biosolids-treated pasture are characterized by reproductive and metabolic disruptions. OBJECTIVE To determine if biosolids exposure disrupts the maternal steroid, cytokine and oxidative stress milieus, in a fetal sex-specific manner. METHODS Ewes were maintained before mating and through gestation on pastures fertilized with biosolids (BTP), or inorganic fertilizer (Control). From maternal plasma collected mid-gestation, 19 steroids, 14 cytokines, 6 oxidative stress markers were quantified. Unpaired t-test and ANOVA were used to test for differences between control and BTP groups (n = 15/group) and between groups based on fetal sex, respectively. Correlation between the different markers was assessed by Spearman correlation. RESULTS Concentrations of the mineralocorticoids - deoxycorticosterone, corticosterone, the glucocorticoids - deoxycortisol, cortisol, cortisone, the sex steroids - androstenedione, dehydroepiandrosterone, 16-OH-progesterone and reactive oxygen metabolites were higher in the BTP ewes compared to Controls, while the proinflammatory cytokines IL-1β and IL-17A and anti-inflammatory IL-36RA were decreased in the BTP group. BTP ewes with a female fetus had lower levels of IP-10. DISCUSSION These findings suggest that pre-conceptional and gestational exposure to ECs in biosolids increases steroids, reactive oxygen metabolites and disrupts cytokines in maternal circulation, likely contributors to the aberrant phenotypic outcomes seen in offspring of BTP sheep - a translationally relevant precocial model.
Collapse
Affiliation(s)
- S V Thangaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - L Zeng
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - S Pennathur
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - R Lea
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - K D Sinclair
- Schools of Biosciences and Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - M Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - N P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - R Auchus
- Departments of Pharmacology & Internal medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - V Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
de Fátima Alvim Braga I, Cozendey-Silva EN, Ertler LZ, Dos Santos Martins TG, da Silva Santos S, Silva BDADFE, Assumpção LR, Waissmann W. Early Abortions and Congenital Malformations: A Comparison Between Agricultural and Nonagricultural Areas in the State of São Paulo/Brazil. J Occup Environ Med 2023; 65:820-825. [PMID: 37264527 DOI: 10.1097/jom.0000000000002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Areas with higher agricultural production have higher rates of abortion and malformation, probable related to pesticides. OBJECTIVE To compare the rates of early abortion and fetal malformation in agricultural and nonagricultural areas. METHOD A survey was carried out on fetal deaths in children weighing less than 500 g or gestational age less than 22 weeks and fetal malformations in live births. RESULTS From 1996 to 2018, there was an increase in the rates of abortion and, albeit to a lesser extent, malformation. The areas of greater agricultural production have higher rates of fetal mortality and malformation than the others. CONCLUSIONS The study suggests that areas with higher use of pesticides have higher rates of abortion and fetal malformations than the others, requiring further observational studies, reducing confounders inherent to the ecological study.
Collapse
Affiliation(s)
- Isabel de Fátima Alvim Braga
- From the Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil (I.F.A.B., E.N.C.-S., S.S.S., W.W.); Medical Course, Federal University of Rio de Janeiro, Macaé, Brazil (L.Z.E., T.G.S.M.); Federal Fluminense University, Rio de Janeiro, Brazil (B.A.F.S.); and Faculty of Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil (L.R.A.)
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lyons HE, Arman BM, Robertson SA, Sharkey DJ. Immune regulatory cytokines in seminal plasma of healthy men: A scoping review and analysis of variance. Andrology 2023; 11:1245-1266. [PMID: 36891953 PMCID: PMC10947054 DOI: 10.1111/andr.13424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVE Seminal plasma cytokines are associated with fertility and reproductive health, but progressing their clinical utility is hampered by absence of reference data on concentration ranges of relevant cytokines in healthy men. We employed a systematic approach to assemble current evidence on the concentrations of immune regulatory cytokines present in seminal plasma (SP) of normozoospermic and/or fertile men and evaluated the impact of different platform methodologies for cytokine quantification. EVIDENCE REVIEW A systematic literature search was performed utilising PubMed, Web of Science and Scopus. Databases were searched from inception until 30th June 2022 inclusive, using combinations of keywords pertaining to seminal fluid and cytokines, and was restricted to human participants. Original data with values reported as concentration of specific cytokines in SP of men clearly defined as fertile or normozoospermic were extracted from studies written in English. RESULTS A total of 3769 publications were initially identified, of which 118 fulfilled the eligibility criteria for inclusion. A total of 51 individual cytokines are detectable in SP of healthy men. The number of studies reporting on each cytokine range from 1 to >20. The reported concentrations for many cytokines linked with fertility status, including IL6, CXCL8/IL8, and TNFA, are highly variable between published studies. This is associated with the different immunoassay methodologies utilised and may be exacerbated by a lack of validation of assays to ensure suitability for SP assessment. Due to the large variation between studies, accurate reference ranges for healthy men cannot be determined from the published data. CONCLUSIONS The concentrations of cytokines and chemokines detected in SP is inconsistent and highly variable between studies and cohorts, limiting current capacity to define reference ranges for cytokine concentrations in fertile men. The lack of standardisation in methods used to process and store SP, and variation in platforms used to evaluate cytokine abundance, are factors contributing to the observed heterogeneity. To progress the clinical utility of SP cytokine analysis will require standardisation and validation of methodologies so that reference ranges for healthy fertile men can be defined.
Collapse
Affiliation(s)
- Hannah E. Lyons
- Robinson Research Institute and School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Bridget M. Arman
- Robinson Research Institute and School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Obstetrics and GynaecologyUniversity of MelbourneParkvilleMelbourneAustralia
| | - Sarah A. Robertson
- Robinson Research Institute and School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - David J. Sharkey
- Robinson Research Institute and School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
25
|
Lahimer M, Djekkoun N, Tricotteaux-Zarqaoui S, Corona A, Lafosse I, Ali HB, Ajina M, Bach V, Benkhalifa M, Khorsi-Cauet H. Impact of Perinatal Coexposure to Chlorpyrifos and a High-Fat Diet on Kisspeptin and GnRHR Presence and Reproductive Organs. TOXICS 2023; 11:789. [PMID: 37755799 PMCID: PMC10534599 DOI: 10.3390/toxics11090789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Emerging evidence has indicated the involvement of extrahypothalamic Kisspeptin and GnRHR in reproductive function. In this study, we evaluate if maternal exposure to the pesticide chlorpyrifos (CPF) and/or a high-fat diet (HFD) has an impact on the expression of Kisspeptin and GnRHR in the reproductive organs of rats' offspring. A total of 16 pregnant rats are divided into four groups: a control group (n = 4), CPF group (4 rats exposed daily to 1/mg/kg/day), HFD group (4 rats randomly fed a 5.25 kcal/g HFD), and coexposed group (4 rats exposed to CPF and HDF). At postnatal development postnatal day (PND) 60, male and female offspring were sacrificed. The reproductive organs (ovary and testis) were removed, and histological and immunohistological analysis and in silico quantification (TissueGnostics software 6.0.1.102, TissueFAXS, HistoQuest) were applied to investigate the impact of different treatments on Kisspeptin and GnRHR expression in reproductive organs. The main outcomes of the study showed a significant decrease in rat offspring's body weight in the CPF group from PND30 and PND60 (p < 0.05 and p < 0.01, respectively). Histological analysis showed a significant increase in the atretic follicle and abnormal testis structure with germ cell desquamation in the CPF-exposed group. The immunodetection quantification of protein shows a significant decrease in GnRHR and Kisspeptin in the HFD and CPF exposed groups, respectively, in testis rat offspring. Perinatal exposure to CPF and HFD exposure affect the reproduction function of rat offspring.
Collapse
Affiliation(s)
- Marwa Lahimer
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, 80025 Amiens, France
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and 9 Health” (Code: LR19ES09), Sousse 4002, Tunisia;
| | - Narimane Djekkoun
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Sophian Tricotteaux-Zarqaoui
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Aurélie Corona
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Isabelle Lafosse
- MP3CV—UPJV—UR 7517, Jules Verne University of Picardie, 80025 Amiens, France;
| | - Habib Ben Ali
- Laboratory Histology Embryology, Faculty of Medicine Sousse, University of Sousse, Sousse 4000, Tunisia;
| | - Mounir Ajina
- Exercise Physiology and Physiopathology: From Integrated to Molecular “Biology, Medicine and 9 Health” (Code: LR19ES09), Sousse 4002, Tunisia;
- Service of Reproductive Medicine, University Hospital Farhat Hached, Sousse 4000, Tunisia
| | - Véronique Bach
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| | - Moncef Benkhalifa
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, 80025 Amiens, France
| | - Hafida Khorsi-Cauet
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, 80025 Amiens, France; (M.L.); (N.D.); (S.T.-Z.); (A.C.); (V.B.); (M.B.)
| |
Collapse
|
26
|
Ma C, Li X, Xiao H, Li B, Gu H, Guo Y, Wang H, Wen Y, Chen L. Course-, dose-, and stage-dependent toxic effects of prenatal acetaminophen exposure on fetal long bone development. Toxicol Lett 2023; 387:50-62. [PMID: 37741353 DOI: 10.1016/j.toxlet.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Acetaminophen is a common analgesic and fever reduction medicine for pregnant women. Epidemiological studies suggest that prenatal acetaminophen exposure (PAcE) affects offspring health and development. However, the effects of PAcE on fetal long bone development and its potential mechanisms have not been elucidated. Based on clinical dosing characteristics, fetal mouse femurs were obtained for detection after oral gavage of acetaminophen at different doses (0, 100 or 400 mg/kg d), courses (single or multiple times) or stages (mid- or late pregnancy) during pregnancy in Kunming mice. The results showed that compared with the control group, PAcE reduced the length of total femur and the primary ossification center (POC), delayed the mineralization of POC and the ossification of epiphyseal region, and down-regulated the mRNA expression of osteogenic function markers (such as Runx2, Bsp, Ocn , Col1a1) in fetal femur, particularly in the high dose, multiple courses, and mid-pregnancy group. Meanwhile, the osteoclast and angiogenic function were also inhibited by PAcE at high dose, multiple courses, and mid-pregnancy, but the inhibition level was less than osteogenic function. Moreover, the alteration of canonical Wnt signalling pathway in PAcE fetal bone were consistent with its osteogenesis function changes. In conclusion, PAcE caused development toxicity and multi-cellular function inhibition in fetal long bone, particularly in the high dose, multiple treatments and mid-pregnancy group, and the alteration of canonical Wnt signalling pathway may be its potential mechanism.
Collapse
Affiliation(s)
- Chi Ma
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xufeng Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hanwen Gu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Joint Disease Research Center of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
27
|
Balsarkar G. Enzyme-Disrupting Chemicals as the Elephant in the Room for Infertility. J Obstet Gynaecol India 2023; 73:293-294. [PMID: 37701085 PMCID: PMC10492717 DOI: 10.1007/s13224-023-01819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
|
28
|
Chhillar S, Batra V, Kumaresan A, Kumar R, Pal A, Datta TK. Acute exposure to organophosphorus pesticide metabolites compromises buffalo sperm function and impairs fertility. Sci Rep 2023; 13:9102. [PMID: 37277402 DOI: 10.1038/s41598-023-35541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Agrichemicals such as organophosphorus pesticides' metabolites (OPPMs) are more hazardous and pervasive than their parent pesticides. Parental germline exposure to such xenobiotics leads to an elevated susceptibility towards reproductive failures e.g. sub- or in-fertility. This study sought to examine the effects of low-dose, acute OPPM exposure on mammalian sperm function using buffalo as the model organism. The buffalo spermatozoa were briefly (2 h) exposed to metabolites of the three most prevalent organophosphorus pesticides (OPPs) viz. Omethoate (from Dimethoate), paraoxon-methyl (from methyl/ethyl parathion) and 3, 5, 6-trichloro-2-pyridinol (from chlorpyrifos). Exposure to OPPMs resulted in compromised structural and functional integrity (dose-dependent) of the buffalo spermatozoa typified by elevated membrane damage, increased lipid peroxidation, precocious capacitation and tyrosine phosphorylation, perturbed mitochondrial activity and function and (P < 0.05). This led to a decline in the in vitro fertilizing ability (P < 0.01) of the exposed spermatozoa, as indicated by reduced cleavage and blastocyst formation rates. Preliminary data indicate that acute exposure to OPPMs, akin to their parent pesticides, induces biomolecular and physiological changes in spermatozoa that compromise their health and function ultimately affecting their fertility. This is the first study demonstrating the in vitro spermatotoxic effects of multiple OPPMs on male gamete functional integrity.
Collapse
Affiliation(s)
- Shivani Chhillar
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-NDRI, National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-NDRI, National Dairy Research Institute, Karnal, India
- School of Medicine, Division of Child Health, Obstetrics and Gynecology, University of Nottingham, Nottingham, England
| | - Arumugam Kumaresan
- Theriogenelogy Lab., SRS of National Dairy Research Institute, Bengaluru, India
| | - Rakesh Kumar
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-NDRI, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-NDRI, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab., Animal Biotechnology Centre, ICAR-NDRI, National Dairy Research Institute, Karnal, India.
- ICAR-Central Institute for Research on Buffaloes, Hisar, India.
| |
Collapse
|
29
|
Castro-Ramirez I, Rocha-Amador DO, Ruiz-Vera T, Alegría-Torres JA, Cruz-Jiménez G, Enciso-Donis I, Costilla-Salazar R. Environmental and biological monitoring of organochlorine pesticides in the city of Salamanca, Mexico. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2839-2856. [PMID: 36066703 DOI: 10.1007/s10653-022-01368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
The former Tekchem Industrial Unit located in the city of Salamanca, Mexico, constitutes an environmental liability in which the presence of high levels of organochlorine pesticides (OCPs) has been reported. In the present study, levels of OCPs were quantified using gas chromatography-mass spectrometry in 52 soil samples and in 88 blood samples from school-age children in the city of Salamanca. A median concentration of 70.6 ng/g (6.93-3299) was obtained for total OCPs in soil, while for the total sum of dichlorodiphenyltrichloroethane (DDT) the value was 49.6 ng/g (6.93-3276). In children, the median level of the total sum of OCPs was 390 ng/g lipid (7.34-14,895), and for the total sum of DDT was 175 ng/g lipid (< LOD-14,802). The OCPs that resulted in highest concentrations in soil were DDT and its metabolites, as well as aldrin and heptachlor epoxide, while in blood the highest levels corresponded to 4,4'-dichlorodiphenyltrichloroethane (4,4'-DDT) and its metabolites, followed by heptachlor and heptachlor epoxide. The spatial distribution of the concentrations of OCPs in soil shows that the facilities of Tekchem may be a significant potential source for the dispersion of these compounds toward the metropolitan area of Salamanca. The results obtained in the present study demonstrate the presence of OCPs in soil and in child population, providing important bases to study the problem from a broader perspective, while reiterating the importance of continuing efforts to generate resolute and precautionary measures with respect to the environmental liability of Tekchem.
Collapse
Affiliation(s)
- Israel Castro-Ramirez
- DICIVA, Environmental Science Department, University of Guanajuato, Irapuato, Mexico
| | | | - Tania Ruiz-Vera
- DICIVA, Environmental Science Department, University of Guanajuato, Irapuato, Mexico
| | | | | | | | | |
Collapse
|
30
|
Montjean D, Godin Pagé MH, Bélanger MC, Benkhalifa M, Miron P. An Overview of E-Cigarette Impact on Reproductive Health. Life (Basel) 2023; 13:life13030827. [PMID: 36983982 PMCID: PMC10053939 DOI: 10.3390/life13030827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Electronic cigarettes (e-cigarettes) are often considered a "safe substitute" for conventional cigarette cessation. The composition of the fluid is not always clearly defined and shows a large variation within brands and manufacturers. More than 80 compounds were detected in liquids and aerosols. E-cigarettes contain nicotine, and the addition of flavorings increases the toxicity of e-cigarette vapour in a significant manner. The heat generated by the e-cigarette leads to the oxidation and decomposition of its components, eventually forming harmful constituents in the inhaled vapour. The effects of these toxicants on male and female reproduction are well established in conventional cigarette smokers. Although toxins were measured at much lower levels in e-cigarette aerosols compared to smoke from a conventional cigarette, there are concerns about their potential impact on male and female reproduction. The information available was mainly obtained from studies conducted in animal models, and investigations in humans are scarce. However, the effects observed in animal models suggest that caution should be taken when vaping and that more research needs to be conducted to identify its potential adverse effects on fertility. The prevalence of e-cigarette usage is alarming, and warnings should be made about the impact of vaping on reproductive health. This document reviews the data regarding the impact of e-cigarette use on male and female reproduction.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Center, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada
| | | | - Marie-Claire Bélanger
- Fertilys Fertility Center, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), CHUM Research Center, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| | - Moncef Benkhalifa
- Fertilys Fertility Center, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada
- Médecine et Biologie de la Reproduction et Laboratoire PERITOX, Université Picardie Jules Verne, CBH-CHU Amiens Picardie, 1 Rond-Point du Professeur Christian Cabrol, 80054 Amiens, France
| | - Pierre Miron
- Fertilys Fertility Center, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
31
|
Budani MC, Tiboni GM. Nutrition, female fertility and in vitro fertilization outcomes. Reprod Toxicol 2023; 118:108370. [PMID: 37001829 DOI: 10.1016/j.reprotox.2023.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The investigation of modifiable factors that may exert influences on female reproductive health and in vitro fertilization (IVF) outcomes is increasing. Growing attention is being paid to nutrition. The aim of the present review is to recapitulate the current understanding on the effects of nutrition on female fertility and IVF outcomes. In particular, the three main classes of macromolecules have been analysed i.e. carbohydrates, proteins and fatty acids. An increasing number of studies have focused on the potential benefit of whole grain, vegetables and omega-3 polynsatured fatty acids (ω-3 PUFAs) on reproductive outcomes. Controversial results exist regarding the consumption of omega-6 (ω-6) PUFAs and dairy. Overall, nutrition appears to represent a modifiable factor that may play a significant role in the context of female reproduction and IVF outcomes, but the limited number of studies and the discrepancies between the available data call for further research in the area.
Collapse
|
32
|
Dusza HM, van Boxel J, van Duursen MBM, Forsberg MM, Legler J, Vähäkangas KH. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160403. [PMID: 36417947 DOI: 10.1016/j.scitotenv.2022.160403] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment and have recently been found in human lungs, blood and placenta. However, data on the possible effects of MNPs on human health is extremely scarce. The potential toxicity of MNPs during pregnancy, a period of increased susceptibility to environmental insults, is of particular concern. The placenta provides a unique interface between maternal and fetal circulation which is essential for in utero survival and healthy pregnancy. Placental toxicokinetics and toxicity of MNPs are still largely unexplored and the limited studies performed up to now focus mainly on polystyrene particles. Practical and ethical considerations limit research options in humans, and extrapolation from animal studies is challenging due to marked differences between species. Nevertheless, diverse in vitro and ex vivo human placental models exist e.g., plasma membrane vesicles, mono-culture and co-culture of placental cells, placenta-on-a-chip, villous tissue explants, and placental perfusion that can be used to advance this research area. The objective of this concise review is to recapitulate different human placental models, summarize the current understanding of placental uptake, transport and toxicity of MNPs and define knowledge gaps. Moreover, we provide perspectives for future research urgently needed to assess the potential hazards and risks of MNP exposure to maternal and fetal health.
Collapse
Affiliation(s)
- Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jeske van Boxel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juliette Legler
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kirsi H Vähäkangas
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
33
|
Guarnieri G, Becatti M, Squecco R, Comeglio P, Garella R, Tamburrino L, Marchiani S, Vignozzi L, Vannelli GB, Maggi M, Morelli A. Effects of benzo[a]pyrene on the reproductive axis: Impairment of kisspeptin signaling in human gonadotropin-releasing hormone primary neurons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120766. [PMID: 36460192 DOI: 10.1016/j.envpol.2022.120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The neuroendocrine control of reproduction is strictly coordinated at the central level by the pulsatile release of gonadotropin-releasing hormone (GnRH) by the hypothalamic GnRH neurons. Alterations of the GnRH-network, especially during development, lead to long-term reproductive and systemic consequences, also causing infertility. Recent evidence shows that benzo[a]pyrene (BaP), a diffuse pollutant that can play a role as an endocrine disruptor, affects gonadal function and gamete maturation, whereas data demonstrating its impact at hypothalamic level are very scarce. This study investigated the effects of BaP (10 μM) in a primary cell culture isolated from the human fetal hypothalamus (hfHypo) and exhibiting a clear GnRH neuron phenotype. BaP significantly decreased gene and protein expression of both GnRH and kisspeptin receptor (KISS1R), the master regulator of GnRH neuron function. Moreover, BaP exposure increased phospho-ERK1/2 signaling, a well-known mechanism associated with KISS1R activation. Interestingly, BaP altered the electrophysiological membrane properties leading to a significant depolarizing effect and it also significantly increased GnRH release, with both effects being not affected by kisspeptin addition. In conclusion, our findings demonstrate that BaP may alter GnRH neuron phenotype and function, mainly interfering with KISS1R signaling and GnRH secretion and therefore with crucial mechanisms implicated in the central neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Comeglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sara Marchiani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| | | | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
34
|
Zang L, Lv H, Du J, Pan Y, Lin Y, Dai J. Association of phthalate exposure with low birth weight in couples conceiving naturally or via assisted reproductive technology in a prospective birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158852. [PMID: 36122707 DOI: 10.1016/j.scitotenv.2022.158852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Few studies have investigated the adverse effects of preconception phthalate (PAE) exposure on birth weight in couples receiving assisted reproductive technology (ART) compared to naturally conceived newborns. OBJECTIVES We examined the association between parental preconception/prenatal urinary phthalate exposure and low birth weight (LBW) risk in couples who conceived using ART or naturally. METHODS From the Jiangsu Birth Cohort Study (China), we recruited 544 couples who conceived after infertility treatment and 940 couples who conceived naturally and gave birth to a singleton infant between November 2014 and December 2019. Seventeen metabolites of phthalate and three metabolites of phthalate alternatives were analyzed in parental spot urine samples. Clinical data were collected from medical records. We used generalized linear models, elastic net regression, Bayesian kernel machine regression, and quantile-based g-computation to examine the individual and joint effects of parental phthalate exposure on birth weight and LBW risk ratios (RR). RESULTS The relationship between parental phthalate exposure and birth weight was consistent between ART and natural conception. Maternal exposure to mono-ethyl phthalate and mono-carboxyisooctyl phthalate was associated with an increased risk of LBW in ART-conceived infants (RR = 1.27; 95 % confidence interval (CI): 1.03, 1.56; and RR = 1.31; 95 % CI: 1.03, 1.67, respectively). In contrast, in the spontaneously conceived infants, higher paternal prenatal concentrations of mono-benzyl phthalate and mono-carboxyisononyl phthalate were associated with a 40 % and 53 % increase in LBW risk, respectively. Exposure to PAE mixtures was associated with LBW in ART-conceived infants, with the effects primarily driven by di-ethyl phthalate, benzylbutyl phthalate, and di-isononyl phthalate metabolites. Sex-specific LBW was observed, with females appearing to be more susceptible than males. CONCLUSIONS Maternal preconception and paternal prenatal exposure to phthalates were associated with increased risk of LBW in infants. Compared with natural conception, ART-conceived fetuses were more sensitive to PAE mixtures, which requires further attention.
Collapse
Affiliation(s)
- Lu Zang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Lv
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215006, China
| | - Jiangbo Du
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Lin
- State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215006, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; State Keey Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
35
|
Koenig MR, Wesselink AK, Kuriyama AS, Chaiyasarikul A, Hatch EE, Wise LA. Feasibility of mail-based biospecimen collection in an online preconception cohort study. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 4:1052231. [PMID: 36699143 PMCID: PMC9869415 DOI: 10.3389/frph.2022.1052231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Prospective cohort studies that enroll participants before conception are crucial for deepening scientific understanding of how the preconception environment influences reproductive outcomes. While web-based research methods provide efficient and effective strategies to collect questionnaire-based data, few of these studies incorporate biospecimen collection, which can enhance the validity of exposure assessment. There is limited literature on the feasibility and cost-effectiveness of collecting biospecimens in web-based preconception cohort studies. Methods We evaluated the feasibility and cost-effectiveness of in-clinic and mail-based biospecimen collection in Pregnancy Study Online (PRESTO), a North American web-based preconception cohort study. Both members of the couple were eligible to participate if their conception attempt time was ≤3 months at enrollment. We invited study participants from the Boston, MA and Detroit, MI metropolitan areas to attend a study visit and provide urine and blood (hereafter "in-clinic protocol"). We invited all other participants to complete mail-based collection of urine and blood spots (hereafter "mail-based protocol"). We compared overall consent and protocol completion rates, demographic characteristics of those who consented and completed either of the protocols, and costs between mail-based and in-clinic protocols for biospecimen collection. Finally, we described logistical challenges pertaining to reliance on mail-based delivery of time-sensitive biospecimens compared with in-clinic methods. Results During January 2022-July 2022, 69% of female participants (134/195) and 42% of male participants (31/74) consented to participate in the mail-based protocol. Consent rates for the in-clinic protocol were 39% for female participants (289/739 during March 2014-July 2022) and 25% for male participants (40/157 during March 2017-July 2022). Participants who consented to participate were generally of higher socioeconomic position than non-participants. Deviations from the protocol occurred more frequently within the mail-based protocol but were easily corrected. The cost per participant enrolled was similar across protocols (mail-based: $276.14 vs. in-clinic: $270.38). Conclusions Our results indicate that mail-based collection of biospecimens may create opportunities to recruit a larger and more geographically diverse participant population at a comparable cost-per-participant enrolled to in-clinic methods.
Collapse
|
36
|
Sheikh IA, Beg MA, Hamoda TAAM, Mandourah HMS, Memili E. Androgen receptor signaling and pyrethroids: Potential male infertility consequences. Front Cell Dev Biol 2023; 11:1173575. [PMID: 37187621 PMCID: PMC10175798 DOI: 10.3389/fcell.2023.1173575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Infertility is a global health concern inflicting a considerable burden on the global economy and a severe socio-psychological impact. Approximately 15% of couples suffer from infertility globally, with a male factor contribution of approximately 50%. However, male infertility remains largely unexplored, as the burden of infertility is mostly assigned to female people. Endocrine-disrupting chemicals (EDCs) have been proposed as one of the factors causing male infertility. Pyrethroids represent an important class of EDCs, and numerous studies have associated pyrethroid exposure with impaired male reproductive function and development. Therefore, the present study investigated the potentially toxic effects of two common pyrethroids, cypermethrin and deltamethrin, on androgen receptor (AR) signaling. The structural binding characterization of cypermethrin and deltamethrin against the AR ligand-binding pocket was performed using Schrodinger's induced fit docking (IFD) approach. Various parameters were estimated, such as binding interactions, binding energy, docking score, and IFD score. Furthermore, the AR native ligand, testosterone, was subjected to similar experiments against the AR ligand-binding pocket. The results revealed commonality in the amino acid-binding interactions and overlap in other structural parameters between the AR native ligand, testosterone, and the ligands, cypermethrin and deltamethrin. The estimated binding energy values of cypermethrin and deltamethrin were very high and close to those calculated for AR native ligand, testosterone. Taken together, the results of this study suggested potential disruption of AR signaling by cypermethrin and deltamethrin, which may result in androgen dysfunction and subsequent male infertility.
Collapse
Affiliation(s)
- Ishfaq Ahmad Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Ishfaq Ahmad Sheikh,
| | - Mohd Amin Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Erdogan Memili
- College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
37
|
Shao S, Pan W, Wang B, Liu Y, Gan H, Li M, Liao T, Yang X, Yang Q, Huang C, Geng M, Pan G, Liu K, Zhu P, Tao F. Association between antibiotic exposure and the risk of infertility in women of childbearing age: A case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114414. [PMID: 36516626 DOI: 10.1016/j.ecoenv.2022.114414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Based on self-report questionnaires, two previous epidemiological studies investigated the association between the exposure of women to antibiotics and their fertility. However, biomonitoring studies on low-dose antibiotic exposure, mainly from food and water, and its relation to the risk of infertility are missing. METHODS Based on a case-control study design, 302 women with infertility (144 primary infertility, 158 secondary infertility) and 302 women with normal fertility, all aged 20-49 years, were recruited from Anhui Province, China, in 2020 and 2021. A total of 41 common antibiotics and two antibiotic metabolites in urine samples were determined by liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS). RESULTS Twenty-eight antibiotics with detection rates from 10% to 100% in both cases (median concentration: ∼2.294 ng/mL) and controls (∼1.596 ng/mL) were included in the analysis. Logistic regression analysis revealed that after controlling for confounding factors, high concentrations of eight individual antibiotics (sulfamethoxazole, sulfaclozine, sulfamonomethoxine, penicillin G, chlorotetracycline, ofloxacin, norfloxacin, and cyadox) and four antibiotic classes (sulfonamides, tetracyclines, quinoxalines, and veterinary antibiotics) were related to a high risk of female infertility, with odds ratios (ORs) ranging from 1.30 to 2.86, except for chlorotetracycline (OR = 6.34), while another nine individual antibiotics (sulfamethazine, azithromycin, cefaclor, amoxicillin, oxytetracycline, pefloxacin, sarafloxacin, enrofloxacin, and florfenicol) and classes of chloramphenicol analogs and human antibiotics were related to a reduced risk of infertility, with ORs ranging from 0.70 to 0.20. Based on restricted cubic spline models after controlling for confounding factors, we observed that the relationship between all of the above protective antibiotics and infertility was nonlinear: A certain concentration could reduce the risk of female infertility while exceeding a safe dose could increase the risk of infertility. CONCLUSION These results provide preliminary evidence that the effects of antibiotics on female fertility vary based on the active ingredient and usage and imply the importance of exposure dose. Future studies are needed to verify these results by controlling for multiple confounding factors.
Collapse
Affiliation(s)
- Shanshan Shao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Weijun Pan
- Clinical Center of Reproductive Medicine, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, Anhui, China
| | - Baolin Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Yuwei Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Hong Gan
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Mengdie Li
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Tierong Liao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Xinliu Yang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Qianhui Yang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Cun Huang
- Clinical Center of Reproductive Medicine, Ma'anshan Maternal and Child Health Hospital, Ma'anshan, Anhui, China
| | - Menglong Geng
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Guixia Pan
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Peng Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
38
|
Cech R, Zaller JG, Lyssimachou A, Clausing P, Hertoge K, Linhart C. Pesticide drift mitigation measures appear to reduce contamination of non-agricultural areas, but hazards to humans and the environment remain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158814. [PMID: 36115411 DOI: 10.1016/j.scitotenv.2022.158814] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 05/12/2023]
Abstract
Pesticide drift onto non-agricultural land is a common problem in intensively farmed regions, and national action plans have been established across Europe to prevent it. Here, we analyzed official data on pesticide residues in grass samples collected over six years to determine whether implemented measures to reduce pesticide drift were effective. We used 306 samples collected between 2014 and 2020 on non-agricultural land in one of the most intensively managed apple and wine growing regions in Europe, the Autonomous Province of Bolzano-South Tyrol, Italy. Samples were analyzed for up to 314 substances by gas chromatography and mass spectrometry. Percentage of sites with multiple pesticides and number of pesticides decreased between 2014 and 2020. Fungicides were most often detected, with fluazinam found on 74 % and captan on 60 % of the contaminated sites (53 sites out of a total of 88 sites were contaminated). The most frequently found insecticide, phosmet, was detected in 49 % of the contaminated sites. Only one herbicide, oxadiazon, was detected in <1 % of the sites; glyphosate was not analyzed. The percentage of residues with human hazard properties increased significantly across years regarding reproductive toxicity (from 21 % of the detected substances in 2014 to 88 % in 2020) and specific target organ toxicity (0 % in 2014 to 21 % in 2020). Percentages of substances associated with endocrine-disruption (89 % of substances across years) or carcinogenic properties (45 % of substances across years) remained constant. The percentage of sites where concentrations in grass samples exceeded the surrogate maximum residue levels (MRLs) for lettuce also remained constant. Potential ecotoxicological hazards of detected residues regarding acute contact toxicity to honeybees remained high over the study years, while the acute and chronic toxicity to earthworms decreased. Our results suggest that while drift mitigation measures contributed some reduction in pesticide contamination, they were not sufficient to eliminate substantial risks to human health and the environment in nontarget areas.
Collapse
Affiliation(s)
- Ramona Cech
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria
| | - Johann G Zaller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Integrative Biology and Biodiversity Research, Institute of Zoology, Gregor Mendel Straße 33, 1180 Vienna, Austria.
| | - Angeliki Lyssimachou
- Health and Environment Alliance (HEAL), Rue de la Charité 22, B-1210 Bruxelles, Belgium
| | - Peter Clausing
- Pesticide Action Network Germany, Nernstweg 32, 22765 Hamburg, Germany
| | - Koen Hertoge
- Pesticide Action Network Europe, 67 Rue de la Pacification, 1000 Brussels, Belgium
| | - Caroline Linhart
- Pesticide Action Network Europe, 67 Rue de la Pacification, 1000 Brussels, Belgium
| |
Collapse
|
39
|
Zhu Y, Kong B, Liu R, Zhao Y. Developing biomedical engineering technologies for reproductive medicine. SMART MEDICINE 2022; 1:e20220006. [PMID: 39188735 PMCID: PMC11235786 DOI: 10.1002/smmd.20220006] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 08/28/2024]
Abstract
Infertility is a rising global health issue with a far-reaching impact on the socioeconomic livelihoods. As there are highly complex causes of male and female infertility, it is highly desired to promote and maintain reproductive health by the integration of advanced technologies. Biomedical engineering, a mature technology applied in the fields of biology and health care, has emerged as a powerful tool in the diagnosis and treatment of infertility. Nowadays, various promising biomedical engineering approaches are under investigation to address human infertility. Biomedical engineering approaches can not only improve our fundamental understanding of sperm and follicle development in bioengineered devices combined with microfabrication, biomaterials, and relevant cells, but also be applied to repair uterine, ovary, and cervicovaginal tissues and restore tissue function. Here, we introduce the infertility in male and female and provide a comprehensive summary of the various promising biomedical engineering technologies and their applications in reproductive medicine. Also, the challenges and prospects of biomedical engineering technologies for clinical transformation are discussed. We believe that this review will promote communications between engineers, biologists, and clinicians and potentially contribute to the clinical transformation of these innovative research works in the immediate future.
Collapse
Affiliation(s)
- Yujuan Zhu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Bin Kong
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
40
|
Dou Y, Yin Y, Li Z, Du J, Jiang Y, Jiang T, Guo W, Qin R, Li M, Lv H, Lu Q, Qiu Y, Lin Y, Jin G, Lu C, Ma H, Hu Z. Maternal exposure to metal mixtures during early pregnancy and fetal growth in the Jiangsu Birth Cohort, China. ENVIRONMENTAL RESEARCH 2022; 215:114305. [PMID: 36096164 DOI: 10.1016/j.envres.2022.114305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Previous epidemiological studies have reported that prenatal exposure to metals might have influence on fetal growth. Most studies assessed the effect of individual metals, while the investigation on the relationship between multiple metal exposure and fetal growth is sparse. The objective of the present study is to assess the joint impact of metal mixtures on fetal growth during pregnancy. A total of 1275 maternal-infant pairs from the Jiangsu Birth Cohort (JBC) Study were included to investigate the effect of maternal metal exposure on fetal biometry measures at 22-24, 30-32, and 34-36 weeks of gestation. Lead (Pb), arsenic (As), cadmium (Cd), mercury (Hg), chromium (Cr), vanadium(V), thallium (Tl) and barium (Ba) were measured by inductively coupled plasma mass spectrometry (ICP-MS) in maternal urine samples collected in the first trimester. We used general linear models and restricted cubic splines to test dose-response relationships between single metals and fetal growth. The weighted quantile sum (WQS) models were then applied to evaluate the overall effect of all these metals. We observed inverse associations of exposure to Pb, V and Cr with estimated fetal weight (EFW) at 34-36 weeks of gestation. Notably, maternal exposure to metal mixtures was significantly associated with reduced EFW at 34-36 weeks of gestation after adjusting for some covariates and confounders (aβ -0.05 [95% CI: 0.09, -0.01], P = 0.023), and this association was mainly driven by Cr (30.41%), Pb (23.92%), and Tl (15.60%). These findings indicated that prenatal exposure to metal mixtures might impose adverse effects on fetal growth.
Collapse
Affiliation(s)
- Yuanyan Dou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yin Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wenhui Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Mei Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yun Qiu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China.
| |
Collapse
|
41
|
Martin L, Zhang Y, First O, Mustieles V, Dodson R, Rosa G, Coburn-Sanderson A, Adams CD, Messerlian C. Lifestyle interventions to reduce endocrine-disrupting phthalate and phenol exposures among reproductive age men and women: A review and future steps. ENVIRONMENT INTERNATIONAL 2022; 170:107576. [PMID: 36283156 PMCID: PMC9890927 DOI: 10.1016/j.envint.2022.107576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/08/2022] [Accepted: 10/08/2022] [Indexed: 05/04/2023]
Abstract
Non-persistent endocrine-disrupting chemicals (EDCs), including phthalates and phenols, are ubiquitous in both the environment and human body. A growing body of epidemiologic studies have identified concerning links between EDCs and adverse reproductive and developmental health effects. Despite consistent evidence, risk assessments and policy interventions often arrive late. This presents an urgent need to identify evidence-based interventions for implementation at both clinical and community levels to reduce EDC exposure, especially in susceptible populations. The reproductive life cycle (menarche to menopause for females and after pubertal onset for males) includes some of the most vulnerable periods to environmental exposures, such as the preconception and perinatal stages, representing a key window of opportunity to intervene and prevent unfavorable health outcomes. This review aims to synthesize and assess behavioral, dietary, and residential EDC-driven interventions to develop recommendations for subsequent, larger-scale studies that address knowledge-gaps in current interventions during the reproductive life cycle. We selected 21 primary interventions for evaluation, in addition to four supplemental interventions. Among these, accessible (web-based) educational resources, targeted replacement of (known) toxic products, and personalization of the intervention through meetings and support groups, were the most promising strategies for reducing EDC concentrations. However, we document a paucity of interventions to prevent phthalate and phenol exposures during the reproductive years, especially among men. Accordingly, we recommend additional, larger clinical and community-based intervention studies to reduce EDC exposure. Specifically, future intervention studies should focus on short-term, mid-, and long-term exposure reduction to phthalates and phenols. The latter, especially, is required for the development of clinical and public health guidelines to promote reproductive and developmental health globally.
Collapse
Affiliation(s)
- Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Olivia First
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Gabriela Rosa
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Ayanna Coburn-Sanderson
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Charleen D Adams
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Boston, MA, USA.
| |
Collapse
|
42
|
Ojifinni OO, Ibisomi L. Perception of men's need for preconception care-A qualitative exploration among health care providers and community members. Front Public Health 2022; 10:958618. [PMID: 36523582 PMCID: PMC9745313 DOI: 10.3389/fpubh.2022.958618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background Several studies have shown that suboptimal health in men can result in poor reproductive health outcomes. The factors associated include lifestyle exposures and poor health-seeking behavior. The poor reproductive health outcomes can be mitigated through preconception care (PCC). PCC services for men are however rare. This qualitative study explored views about men's need for PCC in Nigeria. Methods This exploratory qualitative study was done in Ibadan North Local Government Area, Oyo State, Nigeria. Focus group discussions were held with 12 religious leaders, 22 men and 23 women of reproductive age at the community level. There were key informant interviews with two community leaders and 26 health workers including specialist physicians and nurses at the primary, secondary, and tertiary health care levels. Transcribed data were analyzed thematically using inductive coding on MAXQDA. Results The reasons participants proffered for men's health requiring attention included men's genetic contribution to pregnancy, treatment of low sperm count, and preventing transmission of infection to their partners. Participants stated however that men are often reluctant about accessing health services until complications arise. Opinions differed on men's need for PCC: while some believed that men need PCC, others expressed contrary views stating that men do not require PCC as the service is more appropriate for women. Conclusion Successful deployment and uptake of PCC services require the availability of the services and improved awareness about the need to optimize men's health along with that of their partners.
Collapse
Affiliation(s)
- Oludoyinmola O. Ojifinni
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Latifat Ibisomi
- Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
- Monitoring and Evaluation Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| |
Collapse
|
43
|
Lefebvre T, Fréour T, Duval G, Ploteau S, Marchand P, Le Bizec B, Antignac JP, Cano-Sancho G. Associations between internal concentrations of fluorinated and organochlorinated chemicals in women and in vitro fertilization outcomes: A multi-pollutant study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120087. [PMID: 36087895 DOI: 10.1016/j.envpol.2022.120087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The impact of persistent organic pollutants (POPs) on reproductive health is still poorly understood, even though infertility management has high associated societal and economical costs. The aims of this study were to characterize the internal levels of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and perfluoroalkylated substances (PFAS) in women undergoing in vitro fertilization (IVF); and evaluate their association with IVF outcomes, individually and as mixtures in a combined multipollutant approach. Thus, 136 women undergoing IVF treatment at Nantes University Hospital (France) were prospectively recruited between 2019 and 2020. Serum samples were analyzed using liquid chromatography with tandem-mass spectrometry for 14 PFAS. Follicular fluid was analyzed with gas chromatography coupled to high resolution mass spectrometry for 14 PCBs and 25 OCPs. Intermediate and clinical IVF outcomes were ascertained by embryologists and clinicians using standardized protocols. Multivariate Poisson regression models and Bayesian Kernel Machine Regressions (BKMR) were used to identify individual and joint associations between POPs and IVF outcomes adjusting for age, body mass index (BMI) and anti-Müllerian hormone. The results showed that most POPs were widely present in women, and globally not associated with clinically relevant IVF outcomes, like live birth rates. Nonetheless, negative associations between PCB138 and trans-nonachlor with useable blastocysts were identified, β -0.28 (95%CI [-0.52; -0.04] p = 0.02) and β -0.22 (95%CI [-0.40; -0.03] p = 0.02). Conversely, PCB28 showed positive associations with the number of useable blastocysts, pregnancy rate and live birth rate. The BKMR analysis suggested the lack of association of the mixture with intermediate and clinical outcomes. The study supports the need of conducting further studies in a larger population sample in order to ensure sufficient statistical power to identify modest effects and a robust stratification analysis to account for the large underlying disease heterogeneity.
Collapse
Affiliation(s)
- Tiphaine Lefebvre
- LABERCA, Oniris, INRAE, Nantes, France; CHU Nantes, Nantes Université, Service de Médecine et Biologie de La Reproduction, Gynécologie Médicale, 38 Bd Jean Monnet, Nantes, France; Faculty of Medicine, Nantes Université, France
| | - Thomas Fréour
- CHU Nantes, Nantes Université, Service de Médecine et Biologie de La Reproduction, Gynécologie Médicale, 38 Bd Jean Monnet, Nantes, France; Faculty of Medicine, Nantes Université, France; Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Gauthier Duval
- CHU Nantes, Nantes Université, Service de Médecine et Biologie de La Reproduction, Gynécologie Médicale, 38 Bd Jean Monnet, Nantes, France
| | - Stéphane Ploteau
- CHU Nantes, Nantes Université, Service de Médecine et Biologie de La Reproduction, Gynécologie Médicale, 38 Bd Jean Monnet, Nantes, France; CHU Nantes, Department of Gynecology and Obstetrics, 38 Bd Jean Monnet, Nantes, France
| | | | | | | | | |
Collapse
|
44
|
Mancuso AC, Mengeling MA, Holcombe A, Ryan GL. Lifetime infertility and environmental, chemical, and hazardous exposures among female and male US veterans. Am J Obstet Gynecol 2022; 227:744.e1-744.e12. [PMID: 35841935 DOI: 10.1016/j.ajog.2022.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Veterans experience many potentially hazardous exposures during their service, but little is known about the possible effect of these exposures on reproductive health. OBJECTIVE This study aimed to assess the association between infertility and environmental, chemical, or hazardous material exposures among US veterans. STUDY DESIGN This study examined self-reported cross-sectional data from a national sample of female and male US veterans aged 20 to 45 years separated from service for ≤10 years. Data were obtained via a computer-assisted telephone interview lasting an average of 1 hour and 27 minutes that assessed demographics, general and reproductive health, and lifetime and military exposures. Logistic regression models were used to evaluate associations between exposures to environmental, chemical, and hazardous materials and infertility as defined by 2 different definitions: unprotected intercourse for ≥12 months without conception and trying to conceive for ≥12 months without conception. RESULTS Of the veterans included in this study, 592 of 1194 women (49.6%) and 727 of 1407 men (51.7%) met the unprotected intercourse definition for infertility, and 314 of 781 women (40.2%) and 270 of 775 men (34.8%) met the trying to conceive definition for infertility. Multiple individual exposure rates were found to be higher in women and men veterans with self-reported infertility, including petrochemicals and polychlorinated biphenyls, which were higher in both the men and women groups reporting infertility by either definition. Importantly, there was no queried exposure self-reported at higher rates in the noninfertile groups. Moreover, veterans reporting infertility reported a higher number of total exposures with a mean±standard deviation of 7.61±3.87 exposures for the women with infertility vs 7.13±3.67 for the noninfertile group (P=.030) and 13.17±4.19 for veteran men with infertility vs 12.54±4.10 for the noninfertile group (P=.005) using the unprotected intercourse definition and 7.69±3.79 for the women with infertility vs 7.02±3.57 for the noninfertile group (P=.013) and 13.77±4.17 for the veteran men with infertility vs 12.89±4.08 for the noninfertile group (P=.005) using the trying to conceive definition. CONCLUSION The data identified an association between infertility and environmental, chemical, and hazardous materials that the veterans were exposed to during military service. Although this study was limited by the self-reported and unblinded data collection from a survey, and causation between exposures and infertility cannot be proven, it does show that veterans encounter many exposures during their service and calls for further research into the possible link between veteran exposures and reproductive health.
Collapse
Affiliation(s)
- Abigail C Mancuso
- Center for Access and Delivery Research and Evaluation, Iowa City Veterans Affairs Health Care System, Iowa City, IA; Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA.
| | - Michelle A Mengeling
- Center for Access and Delivery Research and Evaluation, Iowa City Veterans Affairs Health Care System, Iowa City, IA; Department of General Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrea Holcombe
- Center for Access and Delivery Research and Evaluation, Iowa City Veterans Affairs Health Care System, Iowa City, IA
| | - Ginny L Ryan
- VA Puget Sound Health Care System, Women's Health, Seattle, WA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
45
|
Silva EL, Walker DI, Coates Fuentes Z, Pinto-Pacheco B, Metz CN, Gregersen PK, Mahalingaiah S. Untargeted metabolomics reveals that multiple reproductive toxicants are present at the endometrium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157005. [PMID: 35772554 PMCID: PMC10989715 DOI: 10.1016/j.scitotenv.2022.157005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent epidemiologic research shows many environmental chemicals exhibit endocrine disrupting effects on the female reproductive system. Few studies have examined exposure at reproductive organs. Our aim was to perform a preliminary untargeted metabolomic characterization of menstrual blood, a novel biofluid, to identify environmental toxins present in the endometrium and evaluate the suitability of this sample type for exposome research. METHODS Whole blood menstrual samples were collected from four women using a menstrual cup. Samples were analyzed for small molecules that include both environmental chemicals and endogenous metabolites using untargeted liquid chromatography with high-resolution mass spectrometry (LC-HRMS). Principal component analysis (PCA) and ANOVA was used to identify differences within and between individuals' menstrual blood metabolomic profiles, and the influence of the sample processing method. To assess the presence of environmental exposures, LC-HRMS chemical profiles were matched to the ToxCast chemical database, which includes 4557 commonly used commercial chemicals. Select compounds were confirmed by comparison to reference standards. RESULTS PCA of metabolome profiles showed analysis of menstrual blood samples were highly reproducible, with high variability in detected metabolites between participants and low variability between analytical replicates of an individual's sample. Endogenous metabolites detected in menstrual blood samples achieved good coverage of the human blood metabolome. We found 1748 annotations for environmental chemicals, including suspected reproductive toxicants such as phenols, parabens, phthalates, and organochlorines. Storage temperature for the first 24 h did not significantly influence global metabolomic profiles. CONCLUSION Our results show chemical exposures linked to reproductive toxicity and endocrine disruption are present in menstrual blood, a sampling medium for the endometrium.
Collapse
Affiliation(s)
- Emily L Silva
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, 665 Huntington Avenue Building 1, Boston, MA 02115, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zoe Coates Fuentes
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christine N Metz
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA; Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Peter K Gregersen
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA; Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Shruthi Mahalingaiah
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, 665 Huntington Avenue Building 1, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Ebdrup NH, Schullehner J, Knudsen UB, Liew Z, Thomsen AML, Lyngsø J, Bay B, Arendt LH, Clemmensen PJ, Sigsgaard T, Hansen B, Ramlau-Hansen CH. Drinking water nitrate and risk of pregnancy loss: a nationwide cohort study. Environ Health 2022; 21:87. [PMID: 36114546 PMCID: PMC9479399 DOI: 10.1186/s12940-022-00897-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/01/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Nitrate contamination is seen in drinking water worldwide. Nitrate may pass the placental barrier. Despite suggestive evidence of fetal harm, the potential association between nitrate exposure from drinking water and pregnancy loss remains to be studied. We aimed to investigate if nitrate in drinking water was associated with the risk of pregnancy loss. METHODS We conducted a nationwide cohort study of 100,410 pregnancies (enrolled around gestational week 11) in the Danish National Birth Cohort (DNBC) during 1996-2002. Spontaneous pregnancy losses before gestational week 22 were ascertained from the Danish National Patient Registry and DNBC pregnancy interviews. Using the national drinking water quality-monitoring database Jupiter, we estimated the individual and time-specific nitrate exposure by linking geocoded maternal residential addresses with water supply areas. The nitrate exposure was analyzed in spline models using a log-transformed continuous level or classified into five categories. We used Cox proportional hazards models to estimate associations between nitrate and pregnancy loss and used gestational age (days) as the time scale, adjusting for demographic, health, and lifestyle variables. RESULTS No consistent associations were found when investigating the exposure as a categorical variable and null findings were also found in trimester specific analyses. In the spline model using the continuous exposure variable, a modestly increased hazard of pregnancy loss was observed for the first trimester at nitrate exposures between 1 and 10 mg/L, with the highest. adjusted hazard ratio at 5 mg/L of nitrate of 1.16 (95% CI: 1.01, 1.34). This trend was attenuated in the higher exposure ranges. CONCLUSION No association was seen between drinking water nitrate and the risk of pregnancy loss when investigating the exposure as a categorical variable. When we modelled the exposure as a continuous variable, a dose-dependent association was found between drinking water nitrate exposure in the first trimester and the risk of pregnancy loss. Very early pregnancy losses were not considered in this study, and whether survival bias influenced the results should be further explored.
Collapse
Affiliation(s)
- Ninna Hinchely Ebdrup
- Department of Obstetrics and Gynecology, Horsens Fertility Clinic, Horsens, Denmark.
- Department of Public Health, Aarhus University, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Jörg Schullehner
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Geological Survey of Denmark and Greenland, Aarhus, Denmark
| | - Ulla Breth Knudsen
- Department of Obstetrics and Gynecology, Horsens Fertility Clinic, Horsens, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Anne Marie Ladehoff Thomsen
- Department of Public Health, Aarhus University, Aarhus, Denmark
- DEFACTUM - Public Health & Health Services Research, Central Denmark Region, Aarhus, Denmark
| | - Julie Lyngsø
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjørn Bay
- Department of Obstetrics and Gynecology, Horsens Fertility Clinic, Horsens, Denmark
- Maigaard Fertility Clinic, Aarhus, Denmark
| | - Linn Håkonsen Arendt
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Torben Sigsgaard
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-Based Research Aarhus University, Aarhus, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
47
|
Batra V, Norman E, Morgan HL, Watkins AJ. Parental Programming of Offspring Health: The Intricate Interplay between Diet, Environment, Reproduction and Development. Biomolecules 2022; 12:biom12091289. [PMID: 36139133 PMCID: PMC9496505 DOI: 10.3390/biom12091289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
As adults, our health can be influenced by a range of lifestyle and environmental factors, increasing the risk for developing a series of non-communicable diseases such as type 2 diabetes, heart disease and obesity. Over the past few decades, our understanding of how our adult health can be shaped by events occurring before birth has developed into a well-supported concept, the Developmental Origins of Health and Disease (DOHaD). Supported by epidemiological data and experimental studies, specific mechanisms have been defined linking environmental perturbations, disrupted fetal and neonatal development and adult ill-health. Originally, such studies focused on the significance of poor maternal health during pregnancy. However, the role of the father in directing the development and well-being of his offspring has come into recent focus. Whereas these studies identify the individual role of each parent in shaping the long-term health of their offspring, few studies have explored the combined influences of both parents on offspring well-being. Such understanding is necessary as parental influences on offspring development extend beyond the direct genetic contributions from the sperm and oocyte. This article reviews our current understanding of the parental contribution to offspring health, exploring some of the mechanisms linking parental well-being with gamete quality, embryo development and offspring health.
Collapse
|
48
|
Nouiakh N, Sunyach C, Jos SL, Sari-Minodier I, Metzler-Guillemain C, Courbiere B, Bretelle F, Perrin J. Subfertile patients underestimate their risk factors of reprotoxic exposure. Basic Clin Androl 2022; 32:11. [PMID: 35787783 PMCID: PMC9254517 DOI: 10.1186/s12610-022-00161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Exposure of men and women to environmental reprotoxic agents is associated with impaired fertility and pregnancy rates after assisted reproductive treatment (ART). Nevertheless, such exposures are generally not systematically assessed in current practice before ART and subfertile men are generally less explored than women. Our objective was to study subfertile men and women’s level of knowledge about reprotoxic agents, their perception of their own risk factors and the correlation between perceived and identified circumstances of exposure. Results In our public university hospital, 390 subfertile patients (185 men and 185 women) requiring assisted reproduction technique (ART) treatment, completed a self-report questionnaire before consultation, in order to assess patients’ knowledge of reprotoxic exposures, sources of information about them and perception of their own circumstances of exposure. Then a standardized questionnaire was used by the physician during the consultation to estimate domestic, environmental and occupational risk factors of reprotoxic exposures (RFRE). We compared the patients’ perception of exposure with the estimated RFRE. The reprotoxic agents knowledge score of patients was 61%. Their main sources of information were the media (40%), the internet (22%) and gynecologists (15%). The standardized questionnaire identified RFRE in 265/390 patients (68%); risk factor was statistically more frequent in men (77%) than in women (59%) (p < 0.05). In total, 141 of the 265 patients with identified RFRE (53%) were aware of their risk factor of reprotoxic exposure. Conclusion We identified risk factors of reprotoxic exposures in the majority of subfertile patients, more frequently in men than in women, and half of patients were not aware of their exposures. Patients’ main sources of information were extra medical. Efforts should be made to inform patients, especially men, about potential reprotoxic exposure and to enhance medical training about reprotoxic agents, as recommended by international guidelines. The detection and correction of environmental exposures in subfertile men could improve their fecundity, but also their general health, which has been shown to be poorer than health of fertile men. Supplementary Information The online version contains supplementary material available at 10.1186/s12610-022-00161-z.
Collapse
Affiliation(s)
- Nadia Nouiakh
- Centre Clinico-Biologique d'AMP-CECOS, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France
| | - Claire Sunyach
- Plateforme CREER, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France
| | - Sarah-Lyne Jos
- Centre Clinico-Biologique d'AMP-CECOS, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France
| | - Irène Sari-Minodier
- Plateforme CREER, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France.,Service de Médecine et Santé au Travail, AP-HM La Timone University Hospital, 145 rue St Pierre, 13005, Marseille, France.,Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 27 bd J Moulin, 13385, Marseille, France
| | - Catherine Metzler-Guillemain
- Centre Clinico-Biologique d'AMP-CECOS, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France.,Aix Marseille Univ, Inserm, MMG, U1251, Marseille Medical Genetics, 27 bd J Moulin, 13385, Marseille, France
| | - Blandine Courbiere
- Centre Clinico-Biologique d'AMP-CECOS, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France.,Plateforme CREER, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France.,Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 27 bd J Moulin, 13385, Marseille, France
| | - Florence Bretelle
- Plateforme CREER, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France.,Aix Marseille Univ, IRD, AP-HM,MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Jeanne Perrin
- Centre Clinico-Biologique d'AMP-CECOS, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France. .,Plateforme CREER, AP-HM La Conception University Hospital, 147 bd Baille, 13005, Marseille, France. .,Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 27 bd J Moulin, 13385, Marseille, France.
| |
Collapse
|
49
|
Vessa B, Perlman B, McGovern PG, Morelli SS. Endocrine disruptors and female fertility: a review of pesticide and plasticizer effects. F S Rep 2022; 3:86-90. [PMID: 35789730 PMCID: PMC9250118 DOI: 10.1016/j.xfre.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022] Open
Abstract
An ongoing interest in environmental exposures and female fertility has led to an increasing number of studies focusing on endocrine-disrupting chemicals (EDCs). Both natural and synthetic compounds have the ability to impact reproductive health by altering the structure and/or function of genes and proteins that facilitate normal ovarian and endometrial functions. This mini-review aims to summarize the effects of some of the most common EDCs on female fertility, including the effects of pesticides and plasticizer alternatives (phthalates, bisphenol A), based on available data in human studies. A literature search was performed using the key words “pesticides, fertility, reproduction, plasticizers, bisphenol A, phthalate, miscarriage, and in vitro fertilization.” The data supporting EDCs’ role in female infertility remain limited, but existing evidence suggests that exposure may have an adverse impact. Accumulating evidence in animal studies provides important insights into the mechanisms underlying EDC effects. As dose-response dynamics are better elucidated, understanding the effects of EDCs on female fertility will help in the development of guidelines for both industry and individuals.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Climate change is the biggest public health threat of the twenty-first century but its impact on the perinatal period has only recently received attention. This review summarizes recent literature regarding the impacts of climate change and related environmental disasters on pregnancy health and provides recommendations to inform future adaptation and mitigation efforts. RECENT FINDINGS Accumulating evidence suggests that the changing climate affects pregnancy health directly via discrete environmental disasters (i.e., wildfire, extreme heat, hurricane, flood, and drought), and indirectly through changes in the natural and social environment. Although studies vary greatly in design, analytic methods, and assessment strategies, they generally converge to suggest that climate-related disasters are associated with increased risk of gestational complication, pregnancy loss, restricted fetal growth, low birthweight, preterm birth, and selected delivery/newborn complications. Window(s) of exposure with the highest sensitivity are not clear, but both acute and chronic exposures appear important. Furthermore, socioeconomically disadvantaged populations may be more vulnerable. Policy, clinical, and research strategies for adaptation and mitigation should be continued, strengthened, and expanded with cross-disciplinary efforts. Top priorities should include (a) reinforcing and expanding policies to further reduce emission, (b) increasing awareness and education resources for healthcare providers and the public, (c) facilitating access to quality population-based data in low-resource areas, and (d) research efforts to better understand mechanisms of effects, identify susceptible populations and windows of exposure, explore interactive impacts of multiple exposures, and develop novel methods to better quantify pregnancy health impacts.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, 5200 N Lake Rd, Merced, CA, 95343, USA.
| |
Collapse
|