1
|
Aljuwayd M, Malli IA, Olson EG, Ricke SC, Rothrock MJ, Kwon YM. Disinfectants and one health review: The role of reactive oxygen species in the bactericidal activity of chlorine against Salmonella. One Health 2025; 20:100989. [PMID: 40035020 PMCID: PMC11874720 DOI: 10.1016/j.onehlt.2025.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Salmonella are among the most common foodborne pathogens in humans, and they are associated with mild to severe diseases commonly referred to as salmonellosis. The genus resides in various animals' intestinal tracts, including humans. It is one of the most diverse genera of bacteria, including over 2500 serovars. Consumption of poultry products contaminated with Salmonella is a significant source of disease transmission in humans. Because of this food safety concern, the poultry industry and governments spend billions of dollars on Salmonella containment methods. However, a completely effective strategy is yet to be established. Chlorine has been commonly used as a disinfectant in the poultry industry. In humans, antibiotic therapy is the primary means for managing Salmonella infection. However, widespread use of both compounds at sub-inhibitory concentrations has allowed resistant strains to emerge and rapidly spread globally. Both antimicrobial compounds involve generating reactive oxygen species (ROS) as a bactericidal mechanism of action. However, ROS generation and its association with bacterial survival and growth inhibition have not been widely explored. Thus, a better understanding of ROS generation during antimicrobial treatments may help devise better Salmonella containment strategies.
Collapse
Affiliation(s)
- Mohammed Aljuwayd
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- College of Medical Applied Sciences, The Northern Border University, Arar 91431, Saudi Arabia
| | - Israa Abdullah Malli
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Michael J. Rothrock
- United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605, USA
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Poultry Science, University of Arkansas System, Division of Agriculture, Fayetteville, AR 72701, USA
| |
Collapse
|
2
|
Brinkwirth S, Dörre A, Stark K, Meinen A. The changing landscape of nontyphoidal salmonellosis: epidemiological patterns, imported cases and serovar distribution in Germany from 2012 to 2023. BMC Infect Dis 2025; 25:497. [PMID: 40211216 PMCID: PMC11984224 DOI: 10.1186/s12879-025-10907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
INTRODUCTION Nontyphoidal Salmonella is a zoonotic foodborne pathogen that represents a global public health issue. In the European Union and Economic Area, about 66,000 cases of reported nonthyphoidal salmonellosis occurred in 2022, with about 9,100 cases in Germany. The aim of this study is to analyse the incidence and epidemiological characteristics as well as trends of salmonellosis in Germany from 2012 to 2023. METHODS German national surveillance data on salmonellosis from 2012 to 2023 were analysed. Available information included demographics, notification dates, country of exposure, hospitalisation, and serovar. The incidence was calculated per 100,000 population, stratified by age, sex, and travel and hospitalisation history. A descriptive analysis was conducted. RESULTS A total of 160,782 cases of salmonellosis were reported between 2012 and 2023 in Germany, with seasonal peaks occurring during the summer months. The incidence declined from 26 per 100,000 in 2012 to 13 per 100,000 in 2023. This decline was observed across all defined age groups, sex and regions. The proportion of imported cases increased since 2012, reaching a peak of 26% (n = 1,943) in 2023. The proportion of cases that resulted in hospitalisation remained relatively constant, accounting for approximately 30% of all cases. The incidence was higher in males and children under the age of five years. The most frequent serovars were S. Enteritidis and S. Typhimurium. From 2020 onwards, there was an increase in the number of unknown serovars. CONCLUSION The analysis of these surveillance data provided a good basis to monitor trends and to identify special population groups at risk. The decrease in the incidence of salmonellosis in Germany between 2012 and 2023 might reflect a positive trend in public health efforts and food safety. The increased proportion of imported cases highlights the higher importance of monitoring and addressing travel-related exposures. Ongoing efforts are essential to mitigate both domestic and imported salmonellosis cases, particularly in young children and older adults.
Collapse
Affiliation(s)
- Simon Brinkwirth
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Zoonoses and Tropical Infections, Seestr. 10, 13353, Berlin, Germany
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch-Institute, Berlin, Germany
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Achim Dörre
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch-Institute, Berlin, Germany
- Department of Infectious Disease Epidemiology, Focal Point for the Public Health Service, Crisis Management, Outbreak Investigations and Training Programmes, Robert Koch Institute, Seestr. 10, 13353, Berlin, Germany
| | - Klaus Stark
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Zoonoses and Tropical Infections, Seestr. 10, 13353, Berlin, Germany
| | - Anika Meinen
- Department of Infectious Disease Epidemiology, Robert Koch Institute, Zoonoses and Tropical Infections, Seestr. 10, 13353, Berlin, Germany.
| |
Collapse
|
3
|
Sia CM, Pearson JS, Howden BP, Williamson DA, Ingle DJ. Salmonella pathogenicity islands in the genomic era. Trends Microbiol 2025:S0966-842X(25)00038-1. [PMID: 40210546 DOI: 10.1016/j.tim.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/29/2025] [Accepted: 02/17/2025] [Indexed: 04/12/2025]
Abstract
Serovars of Salmonella are significant bacterial pathogens and are leading contributors to the global burden of diarrhoeal disease. Salmonella pathogenicity islands (SPIs) are essential for the survival and success of this genus, enabling colonisation, invasion, and survival in hostile environments. While genomics has transformed efforts to understand the evolution, dissemination, and antimicrobial resistance of members, its use to explore virulence determinants that contribute to the pathogenicity of specific organisms and severity of infection remains varied. Here, we discuss the importance of SPIs to the evolution of Salmonella, the implications in the shift of identification of SPIs from molecular microbiology to genomic-based approaches, and examine current efforts to explore the distribution and prevalence of SPIs in large-scale datasets of Salmonella genomes.
Collapse
Affiliation(s)
- Cheryll M Sia
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia; Department of Microbiology, Monash University, Clayton, 3168, Victoria, Australia; School of Medicine, University of St Andrews, St Andrews, KY16 9TF, Fife, UK
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, 3000, Victoria, Australia
| | | | - Danielle J Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia; Centre for Pathogen Genomics, University of Melbourne, Melbourne, 3000, Victoria, Australia.
| |
Collapse
|
4
|
Cherrak Y, Younes AA, Perez-Molphe-Montoya E, Maurer L, Yilmaz K, Enz U, Zeder C, Kiefer P, Christen P, Gül E, Vorholt JA, von Mering C, Hardt WD. Neutrophil recruitment during intestinal inflammation primes Salmonella elimination by commensal E. coli in a context-dependent manner. Cell Host Microbe 2025; 33:358-372.e4. [PMID: 40023150 DOI: 10.1016/j.chom.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Foodborne bacterial diarrhea involves complex pathogen-microbiota-host interactions. Pathogen-displacing probiotics are increasingly popular, but heterogeneous patient outcomes highlighted the need to understand individualized host-probiotic activity. Using the mouse gut commensal Escherichia coli 8178 and the human probiotic E. coli Nissle 1917, we found that the degree of protection against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm) varies across mice with distinct gut microbiotas. Pathogen clearance is linked to enteropathy severity and subsequent recruitment of intraluminal neutrophils, which differs in a microbiota-dependent manner. By combining mouse knockout and antibody-mediated depletion models with bacterial genetics, we show that neutrophils and host-derived reactive oxygen species directly influence E. coli-mediated S. Tm displacement by potentiating siderophore-bound toxin killing. Our work demonstrates how host immune factors shape pathogen-displacing probiotic efficiency while also revealing an unconventional antagonistic interaction where a gut commensal and the host synergize to displace an enteric pathogen.
Collapse
Affiliation(s)
- Yassine Cherrak
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Eugenio Perez-Molphe-Montoya
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Koray Yilmaz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Science and Technology, 8092 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
5
|
Li D, Zhang K, Xue X, Bai Z, Yang L, Qi J, Suolang S. Treatment-Related Mechanisms of Tibetan Medicine Terminalia chebula (TC) Aqueous Extract Against Mouse Gastroenteritis Caused by Yak-Origin Salmonella Determined Using Intestinal Microbiome Analysis and Metabolomics. Animals (Basel) 2025; 15:755. [PMID: 40076040 PMCID: PMC11899446 DOI: 10.3390/ani15050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to evaluate the therapeutic effect of Terminalia chebula (TC) on Tibetan yak-origin Salmonella-induced diarrhea and dysentery in mice. The levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), anti-inflammatory cytokines (IL-4 and IL-10), and the oxidative stress markers malondialdehyde (MDA), superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), reduced glutathione (GSH-PX), and catalase (CAT) in the serum of mice were measured using ELISA kits. Using microbial diversity sequencing and non-targeted metabolomics detection techniques, the relevant mechanisms of TC treatment in a mouse Salmonella infection model were evaluated. The results showed the following: TC can effectively reduce the diarrhea rate; alleviate weight loss caused by Salmonella invasion; reduce the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in serum; and increase the concentrations of the anti-inflammatory cytokines IL-4 and IL-10. TC can improve the body's antioxidant levels to heal the damage caused by oxidative stress and lipid peroxidation. The histological section results show that TC can significantly improve gastric and intestinal tissue lesions and has no toxic effects on the liver and kidneys. 16S rRNA and ITS sequencing analysis suggests that Lactobacillus, Enterorhabdus, Alistipes (bacterial community), Lodderomyces, Saccharomyces, and Penicillium (fungal community) may be key functional microbial communities in TC. Non-targeted metabolomics also suggests that the antibacterial treatment of dysentery with chebulic acid may be related to regulation of the Ras signaling pathway, long-term potentiation, the MAPK signaling pathway, metabolic pathways, and gut microbiome composition. Conclusion: TC has clear clinical efficacy in treating bacterial diarrhea, presenting anti-inflammatory and antioxidant effects. Its roles in regulating the gut microbiome and metabolic pathways and products were determined as the main reason for its therapeutic effect in a mouse gastroenteritis model caused by Salmonella infection.
Collapse
Affiliation(s)
- Dengyu Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Kaiqin Zhang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Xiaofeng Xue
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Zhanchun Bai
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - La Yang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences China, Shanghai 200241, China
| | - Sizhu Suolang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
- Fourteenth Five-Year Plan China Agricultural Rural Ministry Key Laboratory, Jointly Built by the Ministry and Provincial Government, Nyingchi 860000, China
| |
Collapse
|
6
|
Zeng H, Yang D, Huang N, Li Y, Chen J, Yu Z, Tang J, Jiang Z. Prevalence and Antimicrobial Susceptibility of Salmonella in Retail Meat Collected from Different Markets in Sichuan, China. Pathogens 2025; 14:222. [PMID: 40137707 PMCID: PMC11944474 DOI: 10.3390/pathogens14030222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Salmonella is one of the most significant zoonotic and foodborne pathogens, and it is the leading cause of bacterial diarrhea. In this study, 156 retail meat samples were collected from three supermarkets and one local wet market in Sichuan, China, including 96 chicken samples and 60 pork samples. The prevalence of Salmonella in these samples was analyzed, and 91 samples (58.33%) tested positive, with 60 (62.5%) positive chicken samples and 31 (51.67%) positive pork samples. From these positive samples, 190 Salmonella isolates were confirmed by double PCR. Subsequent serotyping identified nine serovars, with the predominant ones being S. London (58.94%), S. Typhimurium (12.58%), and S. Enteritidis (10.60%). Antibiotic susceptibility test revealed that 168 isolates (88.42%) were resistant to at least one antibiotic, and 150 isolates (78.95%) were resistant to three or more antibiotics. The highest resistance rates were observed for ampicillin (83.16%), followed by tetracycline (76.31%) and trimethoprim/sulfamethoxazole (67.37%). In the disinfectant susceptibility test, Salmonella isolates exhibited higher resistance rates to benzalkonium bromide (100%) and benzalkonium chloride (97.37%), while showing a lower resistance rate to potassium monopersulfate triple salt (33.6%). These findings highlight the high prevalence of Salmonella and its significant resistance to antibiotics and disinfectants, indicating that effective measures must be implemented to ensure the microbiological safety of retail meat.
Collapse
Affiliation(s)
- Hang Zeng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Donghai Yang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Nanxi Huang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yonglin Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiazhen Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhongjia Yu
- School of Animal Science and Technology, Foshan University, Foshan 528225, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
| | - Zhenju Jiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
7
|
Shi Z, Guo Z, Li S, Jiang C, Wang J, Deng X, Liu H, Qiu J. Purpurin suppresses Salmonella invasion of host cells by reducing the secretion of T3SS-1 effector proteins. Sci Rep 2025; 15:4507. [PMID: 39915561 PMCID: PMC11802881 DOI: 10.1038/s41598-025-86822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Salmonella Typhimurium (S. Typhimurium, ST) is a food-borne pathogen that can be transmitted from animals to humans and causes symptoms such as diarrhea, fever, and vomiting. While antibiotics are commonly used to treat clinical infections, the increase in drug resistance has limited their effectiveness. Antivirulence drugs offer a new approach to treating bacterial infections by targeting specific virulence factors without affecting bacterial growth, thus helping to combat infection without exerting selective pressure on bacteria or inducing resistance. Salmonella pathogenicity island 1 (SPI-1), encoding type three secretion system 1 (T3SS-1), serves as a crucial virulence factor for the invasion of ST into host cells, making it an ideal target for screening anti-Salmonella virulence drugs. This project involved screening of ST invasion inhibitors through a gentamicin protection assay and identified purpurin (PPR) as capable of inhibiting the ST invasion of HeLa cells. Subsequent studies revealed that PPR had no effect on the natural growth of bacteria and was not cytotoxic to host cells. A mechanistic study revealed that PPR effectively inhibits the secretion of T3SS-1 in ST. The results from animal experiments indicated that PPR exhibited significant efficacy in a mouse enteritis model caused by ST infection, increasing the survival rate of mice infected with a lethal dose by 50%, reducing spleen colonization in infected mice, and alleviating tissue damage resulting from ST infection. Therefore, PPR represents a promising antivirulence drug that targets the T3SS of ST and may serve as a hit compound for the development of novel antivirulence drugs for the treatment of ST.
Collapse
Affiliation(s)
- Zhenxu Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Siqi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Chenxiao Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Li D, Zhang K, Xue X, Bai Z, Yang L, Qi J, Suolang S. An Epidemiological Study on Salmonella in Tibetan Yaks from the Qinghai-Tibet Plateau Area in China. Animals (Basel) 2024; 14:3697. [PMID: 39765601 PMCID: PMC11672581 DOI: 10.3390/ani14243697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Salmonella is an important foodborne pathogen that can cause a range of illnesses in humans; it has also been a key focus for monitoring in the field of public health, including gastroenteritis, sepsis, and arthritis, and can also cause a decline in egg production in poultry and diarrhea and abortion in livestock, leading to death in severe cases, resulting in huge economic losses. This study aimed to investigate the isolation rate, antimicrobial resistance, serotypes, and genetic diversity of Salmonella isolated from yak feces in various regions on the Qinghai-Tibet Plateau. A total of 1222 samples of yak dung were collected from major cities in the Qinghai-Tibet Plateau area, and the sensitivity of the isolated bacteria to 10 major classes of antibiotics was determined using the K-B paper disk diffusion method for drug susceptibility. Meanwhile, the serotypes of the isolated bacteria were analyzed using the plate agglutination test for serum antigens, and their carriage of drug resistance and virulence genes was determined using PCR and gel electrophoresis experiments. The isolated bacteria were also classified using MLST (Multi-Locus Sequence Typing). The overall isolation rate for Salmonella was 18.25% (223/1222), and the results of the antibiotic susceptibility tests showed that 98.65% (220/223) of the isolated bacteria were resistant to multiple antibiotics. In the 223 isolates of Salmonella, eight classes of 20 different resistance genes, 30 serotypes, and 15 different types of virulence genes were detected. The MLST analysis identified 45 distinct sequence types (STs), including five clonal complexes, of which ST34, ST11, and ST19 were the most common. These findings contribute valuable information about strain resources, genetic profiles, and typing data for Salmonella in the Qinghai-Tibet Plateau area, facilitating improved bacterial surveillance, identification, and control in yak populations. They also provide certain data supplements for animal Salmonella infections globally, filling research gaps.
Collapse
Affiliation(s)
- Dengyu Li
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Kaiqin Zhang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Xiaofeng Xue
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Zhanchun Bai
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - La Yang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences China, Shanghai 200241, China
| | - Sizhu Suolang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China; (D.L.)
- “Fourteenth Five-Year Plan” China Agricultural Rural Ministry Key Laboratory (Jointly Built by the Ministry and Provincial Government), Nyingchi 860000, China
| |
Collapse
|
9
|
Quintero-Martínez LE, Canizalez-Román A, Angulo-Zamudio UA, Flores-Villaseñor H, Velázquez-Román J, Bolscher JGM, Nazmi K, León-Sicairos N. Bovine lactoferrin and chimera lactoferrin prevent and destroy Salmonella Typhimurium biofilms in Caco-2 cells. Biochem Cell Biol 2024; 102:515-525. [PMID: 39293093 DOI: 10.1139/bcb-2024-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Salmonellosis is a common foodborne disease caused by Salmonella bacteria. The emergence of multidrug-resistant (MDR) Salmonella serotypes, such as Typhimurium, and Salmonella's ability to form biofilms contribute to their resistance and persistence in host and non-host environments. New strategies are needed to treat or prevent Salmonella infections. This work aimed to determine the effect of the bovine lactoferrin (bLF) and lactoferrin chimera (LFchimera) in preventing or disrupting biofilms formed on abiotic surfaces or Caco-2 cells by S. Typhimurium ATCC 14028 or an MDR strain. The inhibitory activity of planktonic bacteria, prevention of biofilm formation, and destruction of biofilms of S. Typhimurium (ATCC 14028 or MDR strain) on the abiotic surface and Caco-2 cells of bLF and LFchimera were quantified by CFU/mL and visualized by microscopy using Giemsa-stained samples. bLF (75-1000 µM) and LFchimera (1-20 µM) inhibited more than 95% of S. Typhimurium planktonic growth cultures (ATCC 14028 and MDR). In addition, bLF (600, 800, and 1000 µM) and LFchimera (10 and 20 µM) prevented more than 98% of S. Typhimurium adherence and biofilm formation on Caco-2 cells. Finally, bLF (600 and 1000 µM) and LFchimera (10 and 20 µM) destroyed more than 80% of S. Typhimurium biofilms established on abiotic and Caco-2 cells. In conclusion, bLF and LFchimeras have the potential to inhibit and destroy S. Typhimurium biofilms.
Collapse
Affiliation(s)
| | - Adrián Canizalez-Román
- School of Medicine, Autonomous University of Sinaloa, 80019 Culiacan, Sinaloa, Mexico
- The Women's Hospital, Secretariat of Health, 80020 Culiacan, Sinaloa, Mexico
| | | | - Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, 80019 Culiacan, Sinaloa, Mexico
- The Sinaloa State Public Health Laboratory, Secretariat of Health, 80058 Culiacan, Sinaloa, Mexico
| | - Jorge Velázquez-Román
- School of Medicine, Autonomous University of Sinaloa, 80019 Culiacan, Sinaloa, Mexico
| | - Jan G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Van der Boechorststraat 7, 1081 BT Amsterdam, Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Van der Boechorststraat 7, 1081 BT Amsterdam, Netherlands
| | - Nidia León-Sicairos
- School of Medicine, Autonomous University of Sinaloa, 80019 Culiacan, Sinaloa, Mexico
- Pediatric Hospital of Sinaloa, 80200 Culiacan, Sinaloa, Mexico
| |
Collapse
|
10
|
Sheng H, Zhao L, Suo J, Yang Q, Cao C, Chen J, Cui G, Fan Y, Ma Y, Huo S, Wu X, Yang T, Cui X, Chen S, Cui S, Yang B. Niche-specific evolution and gene exchange of Salmonella in retail pork and chicken. Food Res Int 2024; 197:115299. [PMID: 39577948 DOI: 10.1016/j.foodres.2024.115299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/06/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Salmonella exhibits extensive genetic diversity, facilitated by horizontal gene transfer occurring within and between species, playing a pivotal role in this diversification. Nevertheless, most studies focus on clinical and farm animal isolates, and research on the pangenome dynamics of Salmonella isolates from retail stage of the animal food supply chain is limited. Here, we investigated the genomes of 950 Salmonella isolates recovered from retail chicken and pork meats in seven provinces and one municipality of China in 2018. We observed a strong correlation between Salmonella sublineage diversity and the accessory genome with meat type, revealing reduced diversity associated with increased resistance. Importantly, genes associated with antibiotic, biocide, and heavy metal resistance were unevenly distributed in Salmonella from retail chicken and pork. Pork Salmonella isolates showed a higher prevalence of copper and silver resistance genes, while chicken Salmonella isolates displayed a significant predominance of genetic determinants associated with cephalosporin and ciprofloxacin resistance. Moreover, co-occurrence patterns of resistance determinants and their interaction with mobile genetic elements also correlated with meat type. In summary, our findings shed light on how Salmonella achieves their ecological niche success driven by evolution and gene changes in the retail stage of the animal food supply chain.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Linna Zhao
- National Institutes for Food and Drug Control, Beijing 100050, China; Beijing AOBOXING Bio-Tech Co., Ltd., Beijing 100050, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiuping Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Guangqing Cui
- Shanxi Inspection and Testing Center, Taiyuan 030001, China
| | - Yiling Fan
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yi Ma
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430072, China
| | - Shengnan Huo
- Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Xin Wu
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang 330052, China
| | - Tao Yang
- Hunan Testing Institute of Product and Commodity, Changsha 410007, China
| | - Xuewen Cui
- Microbiological Inspection Center, Sichuan Institute for Drug Control, Chengdu 611731, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 100872, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
11
|
Yang M, Gu K, Xu Q, Wen R, Li J, Zhou C, Zhao Y, Shi M, Weng Y, Guo B, Lei C, Sun Y, Wang H. Recombinant Lactococcus lactis secreting FliC protein nanobodies for resistance against Salmonella enteritidis invasion in the intestinal tract. J Nanobiotechnology 2024; 22:629. [PMID: 39407284 PMCID: PMC11481460 DOI: 10.1186/s12951-024-02904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Salmonella Enteritidis is a major foodborne pathogen throughout the world and the increase in antibiotic resistance of Salmonella poses a significant threat to public safety. Natural nanobodies exhibit high affinity, thermal stability, ease of production, and notably higher diversity, making them widely applicable for the treatment of viral and bacterial infections. Recombinant expression using Lactococcus lactis leverages both acid resistance and mucosal colonization properties of these bacteria, allowing the effective expression of exogenous proteins for therapeutic effects. In this study, nine specific nanobodies against the flagellar protein FliC were identified and expressed. In vitro experiments demonstrated that FliC-Nb-76 effectively inhibited the motility of S. Enteritidis and inhibited its adhesion to and invasion of HIEC-6, RAW264.7, and chicken intestinal epithelial cells. Additionally, a recombinant L. lactis strain secreting the nanobody, L. lactis-Nb76, was obtained. Animal experiments confirmed that it could significantly reduce the mortality rates of chickens infected with S. Enteritidis, together with alleviating the inflammatory response caused by the pathogen. These results provide a novel strategy for the treatment of antibiotic-resistant S. Enteritidis infection in the intestinal tract.
Collapse
Affiliation(s)
- Ming Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kui Gu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qiang Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Miwan Shi
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yuan Weng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
de Almeida OGG, Bertozzi BG, de Oliveira Rocha L, von Hertwig AM, Arroyo DMD, de Martinis ECP, Nascimento MS. Genomic-wide analysis of Salmonella enterica strains isolated from peanuts in Brazil. Int J Food Microbiol 2024; 420:110767. [PMID: 38820989 DOI: 10.1016/j.ijfoodmicro.2024.110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Peanut-based products have been associated with Salmonella foodborne outbreaks and/or recalls worldwide. The ability of Salmonella to persist for a long time in a low moisture environment can contribute to this kind of contamination. The objective of this study was to analyse the genome of five S. enterica enterica strains isolated from the peanut supply chain in Brazil, as well as to identify genetic determinants for survival under desiccation and validate these findings by phenotypic test of desiccation stress. The strains were in silico serotyped using the platform SeqSero2 as Miami (M2851), Javiana (M2973), Oranienburg (M2976), Muenster (M624), and Glostrup/Chomedey (M7864); with phylogenomic analysis support. Based on Multilocus Sequence Typing (MLST) the strains were assigned to STs 140, 1674, 321, 174, and 2519. In addition, eight pathogenicity islands were found in all the genomes using the SPIFinder 2.0 (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, SPI-13, SPI-14). The absence of a SPI-4 may indicate a loss of this island in the surveyed genomes. For the pangenomic analysis, 49 S. enterica genomes were input into the Roary pipeline. The majority of the stress related genes were considered as soft-core genes and were located on the chromosome. A desiccation stress phenotypic test was performed in trypticase soy broth (TSB) with four different water activity (aw) values. M2976 and M7864, both isolated from the peanut samples with the lowest aw, showed the highest OD570nm in TSB aw 0.964 and were statistically different (p < 0.05) from the strain isolated from the peanut sample with the highest aw (0.997). In conclusion, genome analyses have revealed signatures of desiccation adaptation in Salmonella strains, but phenotypic analyses suggested the environment influences the adaptive ability of Salmonella to overcome desiccation stress.
Collapse
Affiliation(s)
- Otávio Guilherme Gonçalves de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, Brazil
| | - Bruno Gerfi Bertozzi
- Departamento de Ciência e Nutrição de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Liliana de Oliveira Rocha
- Departamento de Ciência e Nutrição de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Aline Morgan von Hertwig
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Diana Mara Dias Arroyo
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil
| | - Elaine Cristina Pereira de Martinis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto 14040-903, Brazil
| | - Maristela Silva Nascimento
- Departamento de Engenharia e Tecnologia de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato, 80, Campinas 13083-862, Brazil.
| |
Collapse
|
13
|
Abedi N, Zeinoddini M, Shoushtari M. Optimized detection of Salmonella typhimurium using aptamer lateral flow assay. Biotechnol Lett 2024; 46:583-592. [PMID: 38806936 DOI: 10.1007/s10529-024-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 05/30/2024]
Abstract
Salmonella typhimurium, a pathogenic bacterium with significant implications in medicine and the food industry, poses a substantial threat by causing foodborne illnesses such as typhoid fever. Accurate diagnosis of S. typhimurium is challenging due to its overlap symptoms with various diseases. This underscores the need for a precise and efficient diagnostic approach. In this study, we developed a biosensor using the Taguchi optimization method based on aptamer lateral flow assay (LFA) for the detection of S. typhimurium. Therefore, signal probe and nanobioprobe were designed using anti-Salmonella aptamer, conjugated with gold nanoparticles (GNPs), and used in LFA. The strategy of this test is based on a competitive format between the bacteria immobilized on the membrane and the bacteria present in the tested sample. Moreovere, the optimization of various factors affecting the aptamer LFA, including the concentration of bacteria (immobilized and into the sample) and the concentration of nanobioprop, were performed using the Taguchi test designing method. The data showed that the optimal conditions for the LFA reaction was 108 CFU/mL of immobilized bacteria and 1.5 μg/μL of nanobioprop concentration. Then, the visual detection limit of S. typhimurium was estimated as 105 CFU/mL. The reaction results were obtained within 20 min, and there were no significant cross-reactions with other food pathogens. In conclusion, the aptamer-LFA diagnostic method, optimized using the Taguchi approach, emerges as a reliable, straightforward, and accurate tool for the detection of S. typhimurium. Overall, this method can be a portable diagnostic kit for the detection and identification of bacteria.
Collapse
Affiliation(s)
- Nafise Abedi
- Department of Bioscience and Biotechnology, Faculty of Passive Defense, Malek-Ashtar University of Technology, Tehran, Iran
| | - Mehdi Zeinoddini
- Department of Bioscience and Biotechnology, Faculty of Passive Defense, Malek-Ashtar University of Technology, Tehran, Iran.
| | - Mohammad Shoushtari
- Department of Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Khan MAS, Islam Z, Barua C, Sarkar MMH, Ahmed MF, Rahman SR. Phenotypic characterization and genomic analysis of a Salmonella phage L223 for biocontrol of Salmonella spp. in poultry. Sci Rep 2024; 14:15347. [PMID: 38961138 PMCID: PMC11222505 DOI: 10.1038/s41598-024-64999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
The escalating incidence of foodborne salmonellosis poses a significant global threat to food safety and public health. As antibiotic resistance in Salmonella continues to rise, there is growing interest in bacteriophages as potential alternatives. In this study, we isolated, characterized, and evaluated the biocontrol efficacy of lytic phage L223 in chicken meat. Phage L223 demonstrated robust stability across a broad range of temperatures (20-70 °C) and pH levels (2-11) and exhibited a restricted host range targeting Salmonella spp., notably Salmonella Typhimurium and Salmonella Enteritidis. Characterization of L223 revealed a short latent period of 30 min and a substantial burst size of 515 PFU/cell. Genomic analysis classified L223 within the Caudoviricetes class, Guernseyvirinae subfamily and Jerseyvirus genus, with a dsDNA genome size of 44,321 bp and 47.9% GC content, featuring 72 coding sequences devoid of antimicrobial resistance, virulence factors, toxins, and tRNA genes. Application of L223 significantly (p < 0.005) reduced Salmonella Typhimurium ATCC 14,028 counts by 1.24, 2.17, and 1.55 log CFU/piece after 2, 4, and 6 h of incubation, respectively, in experimentally contaminated chicken breast samples. These findings highlight the potential of Salmonella phage L223 as a promising biocontrol agent for mitigating Salmonella contamination in food products, emphasizing its relevance for enhancing food safety protocols.
Collapse
Affiliation(s)
| | - Zahidul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Chayan Barua
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Md Murshed Hasan Sarkar
- Genomics Research Laboratory, Bangladesh Council of Scientific and Industrial Research, BCSIR, Dhaka, 1205, Bangladesh
| | - Md Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | |
Collapse
|
15
|
Singh M, Chandra D, Jagdish S, Nandi D. Global transcriptome analysis reveals Salmonella Typhimurium employs nitrate metabolism to combat bile stress. FEBS Lett 2024; 598:1605-1619. [PMID: 38503554 DOI: 10.1002/1873-3468.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Salmonella Typhimurium is an enteric pathogen that is highly tolerant to bile. Next-generation mRNA sequencing was performed to analyze the adaptive responses to bile in two S. Typhimurium strains: wild type (WT) and a mutant lacking cold shock protein E (ΔcspE). CspE is an RNA chaperone which is crucial for survival of S. Typhimurium during bile stress. This study identifies transcriptional responses in bile-tolerant WT and bile-sensitive ΔcspE. Upregulation of several genes involved in nitrate metabolism was observed, including fnr, a global regulator of nitrate metabolism. Notably, Δfnr was susceptible to bile stress. Also, complementation with fnr lowered reactive oxygen species and enhanced the survival of bile-sensitive ΔcspE. Importantly, intracellular nitrite amounts were highly induced in bile-treated WT compared to ΔcspE. Also, the WT strain pre-treated with nitrate displayed better growth with bile. These results demonstrate that nitrate-dependent metabolism promotes adaptation of S. Typhimurium to bile.
Collapse
Affiliation(s)
- Madhulika Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Deepti Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sirisha Jagdish
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
16
|
Kang H, Kim H, Kim H, Jeon JH, Kim S, Park Y, Kim SH. Genetic Characteristics of Extended-Spectrum Beta-Lactamase-Producing Salmonella Isolated from Retail Meats in South Korea. J Microbiol Biotechnol 2024; 34:1101-1108. [PMID: 38563109 PMCID: PMC11180910 DOI: 10.4014/jmb.2312.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024]
Abstract
Earlier studies have validated the isolation of extended-spectrum beta-lactamase-producing Salmonella (ESBL-Sal) strains from food. While poultry is recognized as a reservoir for Salmonella contamination, pertinent data regarding ESBL-Sal remains limited. Consequently, the Ministry of Food and Drug Safety has isolated Salmonella spp. from retail meat and evaluated their antibiotic susceptibility and genetic characteristics via whole-genome sequencing. To further elucidate these aspects, this study investigates the prevalence, antibiotic resistance profiles, genomic characteristics, and homology of ESBL-Sal spp. obtained from livestock-derived products in South Korean retail outlets. A total of 653 Salmonella spp. were isolated from 1,876 meat samples, including 509 beef, 503 pork, 555 chicken, and 309 duck samples. The prevalence rates of Salmonella were 0.0%, 1.4%, 17.5%, and 28.2% in the beef, pork, chicken, and duck samples, respectively. ESBL-Sal was exclusively identified in poultry meat, with a prevalence of 1.4% in the chicken samples (8/555) and 0.3% in the duck samples (1/309). All ESBL-Sal strains carried the blaCTX-M-1 gene and exhibited resistance to ampicillin, ceftiofur, ceftazidime, nalidixic acid, and tetracycline. Eight ESBL-Sal isolates were identified as S. Enteritidis with sequence type (ST) 11. The major plasmid replicons of the Enteritidis-ST11 strains were IncFIB(S) and IncFII(S), carrying antimicrobial resistance genes (β-lactam, tetracycline, and aminoglycoside) and 166 virulence factor genes. The results of this study provide valuable insights for the surveillance and monitoring of ESBL-Sal in South Korean food chain.
Collapse
Affiliation(s)
- Haiseong Kang
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Hansol Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Hyochin Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Ji Hye Jeon
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Seokhwan Kim
- Food Standard Division, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Yongchjun Park
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| | - Soon Han Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Republic of Korea
| |
Collapse
|
17
|
Amare A, Asnakew F, Asressie Y, Guadie E, Tirusew A, Muluneh S, Awoke A, Assefa M, Ferede W, Getaneh A, Lemma M. Prevalence of multidrug resistance Salmonella species isolated from clinical specimens at University of Gondar comprehensive specialized hospital Northwest Ethiopia: A retrospective study. PLoS One 2024; 19:e0301697. [PMID: 38713729 DOI: 10.1371/journal.pone.0301697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/20/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Multidrug resistance Salmonellosis remains an important public health problem globally. The disease is among the leading causes of morbidity and mortality in developing countries, but there have been limited recent studies about the prevalence, antimicrobial resistance, and multidrug resistance patterns of Salmonella isolates from various clinical specimens. OBJECTIVE Aimed to assess the prevalence, antimicrobial resistance, and multidrug resistance patterns of Salmonella isolates from clinical specimens at the University of Gondar Comprehensive Specialised Hospital, northwestern Ethiopia. METHOD A retrospective hospital-based cross-sectional study was conducted to determine the prevalence, antimicrobial resistance, and multidrug resistance patterns of isolated from all clinical specimens at the University of Gondar Salmonella Comprehensive Specialised Hospital from June 1st, 2017 to June 3rd, 2022. A total of 26,154 data points were collected using a checklist of records of laboratory registration. Clinical specimens were collected, inoculated, and incubated for about a week with visual inspection for growth and gram staining. The isolates were grown on MacConkey agar and Xylose Lysine Deoxycholate agar. Pure colonies were identified with a conventional biochemical test, and those unidentified at the species level were further identified by the analytical profile index-20E. Then, antimicrobial susceptibility was determined by the Kirby-Bauer disc diffusion technique. The multidrug resistance Salmonella isolates was identified using the criteria set by Magiorakos. Finally, the data was cleaned and checked for completeness and then entered into SPSS version 26 for analysis. Then the results were displayed using tables and figures. RESULTS Of the total 26,154 Salmonella suspected clinical samples, 41 (0.16%) Salmonella species were isolated. Most of the Salmonella isolates, 19 (46.3%), were in the age group of less than 18 years, followed by the age group of 19-44 years, 11 (26.8%). In this study, S. enterica subsp. arizonae accounts for the highest 21 (51%), followed by S. paratyphi A 9 (22%). Of the Salmonella isolates, S. typhi were highly resistant to ampicillin (100%), followed by tetracycline and trimethoprim-sulfamethoxazole, each accounting for 83.3%. Furthermore, S. paratyphi A was resistant to ampicillin (100%), tetracycline (88.9%), and chloramphenicol (88.9%). The overall multi-drug resistance prevalence was 22 (53.7%; 95% CI: 39.7-61). Accordingly, S. paratyphi A was 100% multidrug-resistant, followed by S. typhi (66.6%). CONCLUSION A low prevalence of Salmonella species was observed in the past six years. Moreover, most S. typhi and S. paratyphi strains in the study area were found to be resistant to routinely recommended antibiotics like ciprofloxacin and ceftriaxone, compared to what was reported earlier. In addition, all isolates of S. paratyphi A and the majority of S. typhi were multidrug resistant. Therefore, health professionals should consider antimicrobial susceptibility tests and use antibiotics with caution for Salmonellosis management.
Collapse
Affiliation(s)
- Azanaw Amare
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fekadu Asnakew
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Asressie
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Eshetie Guadie
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Addisu Tirusew
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Silenat Muluneh
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebew Awoke
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Muluneh Assefa
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Worku Ferede
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Alem Getaneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulualem Lemma
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
18
|
Lu Y, Ma Y, Li B, Sun H. The biogenesis, identification, and functionality of circWWP2 in lipopolysaccharide stimulated macrophages. Gene 2024; 905:148240. [PMID: 38316263 DOI: 10.1016/j.gene.2024.148240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
CircRNA, a non-coding RNA, is an ideal biomarker and a suitable potential therapeutic target for various disease due to its high stability, species conservation and cell/tissue specificity. Our previous study has found a circular RNA WWP2 (circWWP2) was significantly decreased in chicken macrophages during bacterial infection. However, the function of circWWP2 in chicken macrophages remains unclear. In this study, it was demonstrated that circWWP2 was a stable circular RNA created by back-splicing of exons 2 to 4 of WWP2 via PCR amplification, Sanger sequencing, RNase R exonuclease digestion, and RT-qPCR. Moreover, bioinformatics analysis showed circWWP2 could interact with 13 miRNAs and target 3,264 genes, which were significantly enriched in lysosomes, IgA-producing intestinal immune networks for IgA production, and Notch signaling pathway. Furthermore, CCK8 and RT-qPCR indicated that overexpression of circWWP2 could promote lipopolysaccharide (LPS)-induced cellular injury by decreasing cell viability and increasing the expression levels of pro-inflammatory cytokines and pro-apoptosis genes, and NO production. CircWWP2 may exert a potential target for the treatment of bacterial infection. Further experiments are necessary to validate the specific mechanism that circWWP2 regulates LPS induced cellular immune responses.
Collapse
Affiliation(s)
- Yue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
19
|
Murphy CM, Weller DL, Strawn LK. Scale and detection method impacted Salmonella prevalence and diversity in ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167812. [PMID: 37852489 DOI: 10.1016/j.scitotenv.2023.167812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Site-specific approaches for managing food safety hazards in agricultural water require an understanding of foodborne pathogen ecology. This study identified factors associated with Salmonella contamination in Virginia ponds. Grab samples (250 mL, N = 600) were collected from 30 sites across nine ponds. Culture- and culture-independent (CIDT)-based methods were used to detect Salmonella in each sample. Salmonella isolated by culture-based methods were serotyped by Kauffman-White classification. Environmental data were collected for each sample. McNemar's χ2 was used to determine if Salmonella detection differed by testing method. Separate mixed effect models were used to identify environmental factors associated with culture and CIDT-based Salmonella detection. Separate models were built for each pond, and for all ponds combined. Salmonella detection differed significantly (p < 0.001) between CIDT (31 %; 183/600)- and culture (13 %; 77/600)-based methods. Culture-based methods yielded 11 different serovars. All cultured Salmonella samples were confirmed by CIDT; 42.1 % of CIDT Salmonella-positive samples could be cultured. Associations between environmental factors and Salmonella detection also varied substantially by pond and detection method. In the all-pond model, associations were observed for five factors (total coliforms, Escherichia coli, air temperature, UV, rain) for both culture- and CIDT-based Salmonella detection. Rain prior to sampling (24 h) increased odds of Salmonella detection for culture (OR = 5.09) and CIDT (OR = 3.62) in the all-pond model. When all the pond data were used, models masked associations at the individual pond level, as there were noticeable differences between ponds and the odds of isolating Salmonella by environmental factors. Ponds were within a 187-ha area in this study, emphasizing water management needs to be individualized (i.e., assess hazards/risks by pond). Results also highlight detection methods and scale strongly affect observed water quality and should be considered when developing monitoring programs to develop guidance for growers.
Collapse
Affiliation(s)
- Claire M Murphy
- Department of Food Science and Technology, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA
| | - Daniel L Weller
- Department of Food Science and Technology, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA; Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 265 Crittenden Boulevard, Rochester, NY 14642, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, 1230 Washington Street SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
20
|
Daniel IK, Njue OM, Sanad YM. Antimicrobial Effects of Plant-Based Supplements on Gut Microbial Diversity in Small Ruminants. Pathogens 2023; 13:31. [PMID: 38251338 PMCID: PMC10819137 DOI: 10.3390/pathogens13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Every year in the United States, approximately 48 million people are affected by bacterial illnesses that are transmitted through food, leading to 3000 fatalities. These illnesses typically stem from food animals and their by-products, which may harbor dangerous pathogens like Salmonella enterica, Listeria monocytogenes, enterohemorrhagic Escherichia coli O157:H7, and Campylobacter jejuni. Factors that contribute to contamination include manure used as a soil amendment, exposure to polluted irrigation water, and contact with animals. To improve food safety, researchers are studying pre-slaughter intervention methods to eliminate bacterial contamination in live animals. While small ruminants are vital to global agriculture and income generation for small farms, traditional feeding practices involve supplements and antibiotics to boost performance, which contributes to antibiotic resistance. Hence, researchers are looking for friendly bacterial strains that enhance both animal and human health without impacting livestock productivity. The global trend is to minimize the use of antibiotics as feed supplements, with many countries prohibiting or limiting their use. The aim of this review is to provide a comprehensive insight on the antioxidant capabilities, therapeutic attributes, and applications of bioactive compounds derived from sweet potato tops (SPTs), rice bran (RB) and radish tops (RTs). This overview provides an insight on plant parts that are abundant in antioxidant and prebiotic effects and could be used as value-added products in animal feed and pharmaceutical applications. This review was based on previous findings that supplementation of basal diets with natural supplements represents a multifaceted intervention that will become highly important over time. By remarkably reducing the burden of foodborne pathogens, they apply to multiple species, are cheap, do not require withdrawal periods, and can be applied at any time in food animal production.
Collapse
Affiliation(s)
- Ian K. Daniel
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
- Department of Veterinary Pathobiology, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Obadiah M. Njue
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
| | - Yasser M. Sanad
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR 71601, USA
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
21
|
Yang W, Feng Y, Yan J, Kang C, Yao T, Sun H, Cheng Z. Phosphate (Pi) Transporter PIT1 Induces Pi Starvation in Salmonella-Containing Vacuole in HeLa Cells. Int J Mol Sci 2023; 24:17216. [PMID: 38139044 PMCID: PMC10743064 DOI: 10.3390/ijms242417216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium), an important foodborne pathogen, causes diarrheal illness and gastrointestinal diseases. S. Typhimurium survives and replicates in phagocytic and non-phagocytic cells for acute or chronic infections. In these cells, S. Typhimurium resides within Salmonella-containing vacuoles (SCVs), in which the phosphate (Pi) concentration is low. S. Typhimurium senses low Pi and expresses virulence factors to modify host cells. However, the mechanism by which host cells reduce the Pi concentration in SCVs is not clear. In this study, we show that through the TLR4-MyD88-NF-κB signaling pathway, S. Typhimurium upregulates PIT1, which in turn transports Pi from SCVs into the cytosol and results in Pi starvation in SCVs. Immunofluorescence and western blotting analysis reveal that after the internalization of S. Typhimurium, PIT1 is located on SCV membranes. Silencing or overexpressing PIT1 inhibits or promotes Pi starvation, Salmonella pathogenicity island-2 (SPI-2) gene expression, and replication in SCVs. The S. Typhimurium ΔmsbB mutant or silenced TLR4-MyD88-NF-κB pathway suppresses the expression of the SPI-2 genes and promotes the fusion of SCVs with lysosomes. Our results illustrate that S. Typhimurium exploits the host innate immune responses as signals to promote intracellular replication, and they provide new insights for the development of broad-spectrum therapeutics to combat bacterial infections.
Collapse
Affiliation(s)
- Wen Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Yingxing Feng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Yan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Chenbo Kang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Ting Yao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Hongmin Sun
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin 300457, China
| | - Zhihui Cheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (W.Y.); (Y.F.); (J.Y.); (C.K.); (T.Y.); (H.S.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Splichalova A, Kindlova Z, Killer J, Neuzil Bunesova V, Vlkova E, Valaskova B, Pechar R, Polakova K, Splichal I. Commensal Bacteria Impact on Intestinal Toll-like Receptor Signaling in Salmonella-Challenged Gnotobiotic Piglets. Pathogens 2023; 12:1293. [PMID: 38003758 PMCID: PMC10675043 DOI: 10.3390/pathogens12111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Gnotobiotic (GN) animals with simple and defined microbiota can help to elucidate host-pathogen interferences. Hysterectomy-derived germ-free (GF) minipigs were associated at 4 and 24 h post-hysterectomy with porcine commensal mucinolytic Bifidobacterium boum RP36 (RP36) strain or non-mucinolytic strain RP37 (RP37) or at 4 h post-hysterectomy with Lactobacillus amylovorus (LA). One-week-old GN minipigs were infected with Salmonella Typhimurium LT2 strain (LT2). We monitored histological changes in the ileum, mRNA expression of Toll-like receptors (TLRs) 2, 4, and 9 and their related molecules lipopolysaccharide-binding protein (LBP), coreceptors MD-2 and CD14, adaptor proteins MyD88 and TRIF, and receptor for advanced glycation end products (RAGE) in the ileum and colon. LT2 significantly induced expression of TLR2, TLR4, MyD88, LBP, MD-2, and CD14 in the ileum and TLR4, MyD88, TRIF, LBP, and CD14 in the colon. The LT2 infection also significantly increased plasmatic levels of inflammatory markers interleukin (IL)-6 and IL-12/23p40. The previous colonization with RP37 alleviated damage of the ileum caused by the Salmonella infection, and RP37 and LA downregulated plasmatic levels of IL-6. A defined oligo-microbiota composed of bacterial species with selected properties should probably be more effective in downregulating inflammatory response than single bacteria.
Collapse
Affiliation(s)
- Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Zdislava Kindlova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vera Neuzil Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
| | - Barbora Valaskova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Radko Pechar
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic; (J.K.); (V.N.B.); (E.V.); (R.P.)
- Department of Research, Food Research Institute Prague, 102 00 Prague, Czech Republic
| | - Katerina Polakova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.K.); (B.V.); (K.P.)
| |
Collapse
|
23
|
Luo Q, Wu Y, Bao D, Xu L, Chen H, Yue M, Draz MS, Kong Y, Ruan Z. Genomic epidemiology of mcr carrying multidrug-resistant ST34 Salmonella enterica serovar Typhimurium in a one health context: The evolution of a global menace. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165203. [PMID: 37406695 DOI: 10.1016/j.scitotenv.2023.165203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
The rapid global dissemination of Salmonella enterica sequence type 34 (ST34) has sparked significant concern due to its resistance to critical antimicrobials and its ability to spread across various sectors. In order to investigate the evolution and transmission dynamics of this epidemic clonal lineage, as well as the horizontal transfer of mcr-carrying plasmids within the One Health framework, we conducted a comprehensive genomic epidemiological study. This study focused on the 11 mcr-carrying S. enterica isolates obtained from clinical settings in China, while also considering 2337 publicly available genomes of mcr-carrying S. enterica collected from 20 countries and diverse sources spanning over a 22-year period. Among the mcr-positive Salmonella isolates, ST34 was found to be the predominant lineage, comprising 30.12 % (704/2337) of the total collection. These isolates were identified as either serovar Typhimurium or its monophasic variant, which were obtained from both clinical and non-clinical sources. Phylogeographic analyses traced the global spread of the mcr-carrying ST34 lineage, which was divided into three distinct clusters, with 83.10 % of them carrying mcr-1 or/and mcr-9 genes. Notably, the mcr-1 positive ST34 isolates were primarily found in China (190/298, 63.76 %), with only four from the United States. Conversely, mcr-9 positive ST34 isolates were predominantly identified in the United States (261/293, 89.08 %), while none were observed in China. The mcr-1 positive ST34 isolates was predicted to have originated from clinical sources in United Kingdom, whereas mcr-9 positive ST34 isolates was likely derived from environmental sources in Germany. The most recent common ancestor for mcr-1 and mcr-9 carrying ST34 S. enterica was estimated to have emerged around 1983 and 1951. These findings provided thorough and intuitive insights into the intercontinental spread of mcr-carrying S. enterica ST34 lineage in a One Health context. Ongoing surveillance is crucial for effectively monitoring the worldwide dissemination of this multidrug-resistant high-risk clone.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuye Wu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danni Bao
- Department of Clinical Laboratory, Sanmen People's Hospital, Taizhou, China
| | - Linna Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; School of Laboratory Medicine and Biotechnology, Hangzhou Medical College, Hangzhou, China
| | - Hangfei Chen
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meina Yue
- Department of Clinical Laboratory, Hangzhou Children's Hospital, Hangzhou, China
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | - Yingying Kong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
24
|
Sheng H, Suo J, Dai J, Wang S, Li M, Su L, Cao M, Cao Y, Chen J, Cui S, Yang B. Prevalence, antibiotic susceptibility and genomic analysis of Salmonella from retail meats in Shaanxi, China. Int J Food Microbiol 2023; 403:110305. [PMID: 37421839 DOI: 10.1016/j.ijfoodmicro.2023.110305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Salmonella is a major foodborne pathogen that poses a substantial risk to food safety and public health. This study aimed to assess the prevalence, antibiotic susceptibility, and genomic features of Salmonella isolates recovered from 600 retail meat samples (300 pork, 150 chicken and 150 beef) from August 2018 to October 2019 in Shaanxi, China. Overall, 40 (6.67 %) of 600 samples were positive to Salmonella, with the highest prevalence in chicken (21.33 %, 32/150), followed in pork (2.67 %, 8/300), while no Salmonella was detected in beef. A total of 10 serotypes and 11 sequence types (STs) were detected in 40 Salmonella isolates, with the most common being ST198 S. Kentucky (n = 15), ST13 S. Agona (n = 6), and ST17 S. Indiana (n = 5). Resistance was most commonly found to tetracycline (82.50 %), followed by to ampicillin (77.50 %), nalidixic acid (70.00 %), kanamycin (57.50 %), ceftriaxone (55.00 %), cefotaxime (52.50 %), cefoperazone (52.50 %), chloramphenicol (50.00 %), levofloxacin (57.50 %), cefotaxime (52.50 %), kanamycin (52.50 %), chloramphenicol (50.00 %), ciprofloxacin (50.00 %), and levofloxacin (50.00 %). All ST198 S. Kentucky isolates showed multi-drug resistance (MDR; ≥3 antimicrobial categories) pattern. Genomic analysis showed 56 distinct antibiotic resistance genes (ARGs) and 6 target gene mutations of quinolone resistance determining regions (QRDRs) in 40 Salmonella isolates, among which, the most prevalent ARG types were related to aminoglycosides and β-lactams resistance, and the most frequent mutation in QRDRs was GyrA (S83F) (47.5 %). The number of ARGs in Salmonella isolates showed a significant positive correlation with the numbers of insert sequences (ISs) and plasmid replicons. Taken together, our findings indicated retail chickens were seriously contaminated, while pork and beef are rarely contaminated by Salmonella. Antibiotic resistance determinants and genetic relationships of the isolates provide crucial data for food safety and public health safeguarding.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siyue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanwei Cao
- Hebei Quality Inspection and Testing Center of Forest, Grass and Flower, Shijiazhuang 050081, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Huang W, Chen W, Chen Y, Fang S, Huang T, Chang P, Chang Y. Salmonella YqiC exerts its function through an oligomeric state. Protein Sci 2023; 32:e4749. [PMID: 37555831 PMCID: PMC10503411 DOI: 10.1002/pro.4749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
Protein oligomerization occurs frequently both in vitro and in vivo, with specific functionalities associated with different oligomeric states. The YqiC protein from Salmonella Typhimurium forms a homotrimer through its C-terminal coiled-coil domain, and the protein is closely linked to the colonization and invasion of the bacteria to the host cells. To elucidate the importance of the oligomeric state of YqiC in vivo and its relation with bacterial infection, we mutated crucial residues in YqiC's coiled-coil region and confirmed the loss of trimer formation using chemical crosslinking and size exclusion chromatography coupled with multiple angle light scattering (SEC-MALS) techniques. The yqiC-knockout strain complemented with mutant YqiC showed significantly reduced colonization and invasion of Salmonella to host cells, demonstrating the critical role of YqiC oligomerization in bacterial pathogenesis. Furthermore, we conducted a protein-protein interaction study of YqiC using a pulled-down assay coupled with mass spectrometry analysis to investigate the protein's role in bacterial virulence. The results reveal that YqiC interacts with subunits of Complex II of the electron transport chain (SdhA and SdhB) and the β-subunit of F0 F1 -ATP synthase. These interactions suggest that YqiC may modulate the energy production of Salmonella and subsequently affect the assembly of crucial virulence factors, such as flagella. Overall, our findings provide new insights into the molecular mechanisms of YqiC's role in S. Typhimurium pathogenesis and suggest potential therapeutic targets for bacterial infections.
Collapse
Affiliation(s)
- Wei‐Chun Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Wai‐Ting Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yueh‐Chen Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Shiuh‐Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
- Department of Pediatrics, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Master Program for Clinical Genomics and Proteomics, College of PharmacyTaipei Medical UniversityTaipeiTaiwan
| | - Tzu‐Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Pei‐Ru Chang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho HospitalTaipei Medical UniversityTaipeiTaiwan
- Department of Pediatrics, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Yu‐Chu Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Medical Sciences, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- International PhD Program in Cell Therapy and Regenerative Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
26
|
Jia M, Li P, Zhang J, Chen Z, Gao L, Sun Y, Zhang X, Yan Y, Zhu G. Characteristics of Two mcr-1-Harboring IncHI2 Plasmids from Clinical Salmonella Isolates in Jiaxing City. Foodborne Pathog Dis 2023; 20:467-476. [PMID: 37699240 DOI: 10.1089/fpd.2023.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Salmonella is a primary cause of foodborne diseases, and the increasing prevalence of mcr-1-carrying plasmids, which confer colistin resistance to Salmonella, poses significant global health concerns. As the frequency of occurrence of the mcr-1 gene is increasing globally, we studied the prevalence of mcr-1 in clinical Salmonella isolates by analyzing 195 clinical strains isolated in 2020. Of the 195 Salmonella isolates, 41 isolates were resistant to colistin. We found mcr-1 in two strains (Salmonella Typhimurium ZJJX20006 and Salmonella Kentucky ZJJX20014), which we analyzed in detail via whole-genome sequencing and antibiotic susceptibility testing. Two strains displayed resistance to ampicillin, ampicillin-sulbactam, tetracycline, chloramphenicol, and cotrimoxazole, while ZJJX20006 displayed resistance to colistin and ZJJX20014 was sensitive. Genomic analysis revealed that these strains had plasmid-encoded mcr-1 in IncHI2 plasmids, which were not similar to the mcr-1-IncX4 identified in 2016. These two strains also harbored other drug resistance genes, including blaOXA-1 and blaCTX-M-14. Our findings may help clarify the molecular mechanisms of mcr-1 dissemination among Salmonella strains in Jiaxing City and offer insights into the evolution of mcr-1 in Salmonella.
Collapse
Affiliation(s)
- Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Ping Li
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Junyan Zhang
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhongwen Chen
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Lei Gao
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Yangming Sun
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Xiaofei Zhang
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Yong Yan
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| | - Guoying Zhu
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, China
| |
Collapse
|
27
|
Wang S, Wang S, Hao T, Zhu S, Qiu X, Li Y, Yang X, Wu S. Detection of Salmonella DNA and drug-resistance mutation by PCR-based CRISPR-lbCas12a system. AMB Express 2023; 13:100. [PMID: 37750967 PMCID: PMC10522547 DOI: 10.1186/s13568-023-01588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Salmonella is an important foodborne pathogen, which can cause serious public health problems. Rapid and accurate detection of Salmonella infection and drug resistance mutations in patients will provide timely guidance for clinical treatment and avoid disease progression and other related clinical problems. Here, we established a highly sensitive and quick method for Salmonella and drug resistance mutation detection based on polymerase chain reaction (PCR) and CRISPR-lbCas12a system and evaluated its practicability with clinical samples.Specific CRISPR RNAs (crRNAs) and primers are designed for Salmonella DNA and parC gene S80I mutation diagnosis. CrRNAs with and without phosphorylated modification and different crRNA preparation methods are used to assess the effect on the detection system. After optimization, we detected as low as one copy of Salmonella DNA and drug resistance mutation parC S80I with the Salmonella DNA standard. For 94 clinical samples, this method also showed high sensitivity (100%, 95% CI: 84.98-100%) and specificity (98.48%, 95% CI: 90.73-99.92%) with less time (3 h) than plate culture (16 h) and conventional antimicrobial susceptibility testing (over 16 h). Besides, one parC S80I mutant strain was detected, which is consistent with the result of DNA sequencing. Taken together, we established a highly sensitive and specific method for Salmonella infection and parC S80I drug resistance mutation detection with fewer reagents and ordinary instruments. This assay has wide application prospects for fast detection of pathogen (bacterium and virus) infection, drug resistance determination, and proper treatment guidance.
Collapse
Affiliation(s)
- Shan Wang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shang Wang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tongyu Hao
- Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Shimao Zhu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
- South China Hospital of Shenzhen University, Shenzhen, China
| | - Xinying Qiu
- Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Yuqing Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
- South China Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoxu Yang
- Department of Biology and Genetics, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China.
- South China Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
28
|
Zhang G, Liu J, He Y, Du Y, Xu L, Chen T, Guo Y, Fu H, Li A, Tian Y, Hu Y, Yang C, Lu M, Deng X, Wang J, Lu N. Modifying Escherichia coli to mimic Shigella for medical microbiology laboratory teaching: a new strategy to improve biosafety in class. Front Cell Infect Microbiol 2023; 13:1257361. [PMID: 37780843 PMCID: PMC10533986 DOI: 10.3389/fcimb.2023.1257361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Laboratory teaching of medical microbiology involves highly pathogenic microorganisms, thus posing potential biosafety risks to the students and the teacher. To address these risks, non/low-pathogenic microorganisms were modified to mimic highly pathogenic ones or highly pathogenic microorganisms were attenuated directly using the CRISPR/Cas9 technology. This study describes the modification of Escherichia coli DH5α to mimic Shigella and its evaluation as a safe alternative for medical laboratory teaching. Methods To generate E. coli DH5α△FliC△tnaA2a, the tnaA and FliC genes in E. coli DH5α were knocked out using CRISPR/Cas9 technology; a plasmid bearing the O-antigen determinant of S. flexneri 2a was then constructed and transformed. Acid tolerance assays and guinea pig eye tests were used to assess the viability and pathogenicity, respectively. Questionnaires were used to analyze teaching effectiveness and the opinions of teachers and students. Results The survey revealed that most teachers and students were inclined towards real-time laboratory classes than virtual classes or observation of plastic specimens. However, many students did not abide by the safety regulations, and most encountered potential biosafety hazards in the laboratory. E. coli DH5α△FliC△tnaA2a was biochemically and antigenically analogous to S. flexneri 2a and had lower resistance to acid than E. coli. There was no toxicity observed in guinea pigs. Most of teachers and students were unable to distinguish E. coli DH5α△FliC△tnaA2a from pure S. flexneri 2a in class. Students who used E. coli DH5α△FliC△tnaA2a in their practice had similar performance in simulated examinations compared to students who used real S. flexneri 2a, but significantly higher than the virtual experimental group. Discussion This approach can be applied to other high-risk pathogenic microorganisms to reduce the potential biosafety risks in medical laboratory-based teaching and provide a new strategy for the development of experimental materials.
Collapse
Affiliation(s)
- Guangyuan Zhang
- Chongqing Medical University, Basic Medical School, Department of Pathogen Biology, Chongqing, China
- Chongqing Medical University, Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing, China
| | - Jia Liu
- Chongqing Medical University, Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing, China
| | - Yonglin He
- Chongqing Medical University, Basic Medical School, Department of Pathogen Biology, Chongqing, China
| | - Yuheng Du
- Department for Rehabilitation Medicine, The Second College of Clinical Medicine of Chongqing Medical University, Chongqing, China
| | - Lei Xu
- Chongqing Medical University, Basic Medical School, Department of Pathogen Biology, Chongqing, China
| | - Tingting Chen
- Chongqing Medical University, Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing, China
| | - Yanan Guo
- Chongqing Medical University, International Medical College, Chongqing, China
| | - Huichao Fu
- Chongqing Medical University, Basic Medical School, Department of Pathogen Biology, Chongqing, China
| | - Anlong Li
- Chongqing Medical University, Basic Medical School, Department of Pathogen Biology, Chongqing, China
| | - Yunbo Tian
- Chongqing Blood Center, Quality Management Section, Chongqing, China
| | - Yan Hu
- Tuberculosis Reference Laboratory, Chongqing Tuberculosis Control Institute, Chongqing, China
| | - Chun Yang
- Chongqing Medical University, Basic Medical School, Department of Pathogen Biology, Chongqing, China
| | - Mingqi Lu
- Chongqing Medical University, Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing, China
| | - Xichuan Deng
- Chongqing Medical University, Pathogen Biology and Immunology Laboratory and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing, China
| | - Jingsong Wang
- R&D Department, Chongqing Kebilong Biotechnology Co., Ltd., Chongqing, China
| | - Nan Lu
- Chongqing Medical University, Basic Medical School, Department of Pathogen Biology, Chongqing, China
| |
Collapse
|
29
|
Indrajith S, Natarajan S, Thangasamy S, Natesan S. Drug Resistance, Characterization and Phylogenetic Discrepancy of Salmonella enterica Isolates from Distinct Sources. Curr Microbiol 2023; 80:314. [PMID: 37544954 DOI: 10.1007/s00284-023-03343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/23/2023] [Indexed: 08/08/2023]
Abstract
Salmonella enterica is one of the foodborne pathogens that can infect humans, spreading from one person to another by contaminated food and water. To identify the pathogenic S. enterica from the contaminated food product, culture-based and molecular identifications, drug resistance profiling, virulence and genetic traits of the strains have been used. Herein, different animal products was subjected to screen for S. enterica prevalence, pathogenic characterization and compared with clinical Salmonella isolates (human). A total of 173 isolates from animal products and 51 isolates from clinical samples were collected. S. Typhi, S. Agona and S. Ohio were predominant serovars in blood, stool and different animal products. Both, clinical [37% (n = 19/51)] and animal product-associated isolates [21% (n = 37/173)] expressed their highest resistance to nalidixic acid. Thirty-one percentage of (n = 16/51) clinical isolates and 12% (n = 21/173) animal food-associated isolates were resistant to multiple classes of antibiotics. Class 1 integrons encoded by S. Typhi, S. Infantis and S. Emek were screened for sequence analysis, the result revealed that the cassettes encoded-aminoglycoside acetyltransferase and dihydrofolate reductase enzymes. Salmonella pathogenicity island-1 encoded-hilA gene was detected most frequently in all the isolates. PFGE profile revealed the genetic traits of the isolates which were closely linked with antibiotic-resistant properties and virulent characteristics. Only S. Enteritidis, collected from different samples had clonal similarities. In summary, drug-resistant pathogenic Salmonella prevalence was observed in the animal product that could be an important alarm to consumers with the risk of enteric fever and it causes the potential risk to public health.
Collapse
Affiliation(s)
- Sureka Indrajith
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sisubalan Natarajan
- Department of Botany, Bishop Heber College (Autonomous), Affi. To Bharathidasan University, Trichy, Tamil Nadu, 620017, India
| | - Selvankumar Thangasamy
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637501, India
| | - Sivakumar Natesan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
30
|
Zhou Q, Zhong YJ, Shan ZZ, Pan XX, Huang JY, Xiang JS, Zhang DZ, Li WW, Li J, Liu Y, Li SJ, Zhou L. Etiological Survey and Traceability Analysis of a Foodborne Disease Outbreak of Salmonella Senftenberg in Guizhou Province. Foodborne Pathog Dis 2023; 20:351-357. [PMID: 37471209 DOI: 10.1089/fpd.2023.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
To conduct a study that examined the molecular epidemiology and pathogenesis of Salmonella Senftenberg isolates associated with an outbreak of foodborne disease in Guizhou Province and to provide a reference basis for the traceability of foodborne salmonellosis outbreaks and clinical diagnosis and treatment in the province. Fourteen strains of suspected Salmonella isolated from patient stool and food samples were used for pathogenic identification and serotyping by biochemical and mass spectrometry methods. Fourteen types of antibiotics were tested for drug sensitivity by the microbroth dilution method, and molecular typing was performed by pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS). After the sequencing data were spliced by SPAdes, the gene protein sequences were compared with the Comprehensive Antibiotic Research Database and Virulence Factor Database, drug resistance and virulence genes were predicted, and whole genome multilocus sequence typing (wgMLST) was performed. The results were compared with those for Salmonella strains of the same serotype from the past 5 years in China detailed on the TraNet website. All 14 strains were identified as Salmonella Senftenberg (with the antigenic formula 1,3,19:g,s,t:-), and in the PFGE cluster tree, the strains were divided into two band types, with a similarity of 88.9%. The 14 strains were sensitive to the 14 antibiotics. WGS analysis showed that the 14 strains carried the same drug resistance and virulence genes and that all strains carried 3 aminoglycoside and lipopeptide drug resistance genes, including 114 virulence genes. The wgMLST results showed that the strains were distributed on the same small branch as those obtained from previous outbreaks of infection in Tianjin and Jilin. Salmonella Senftenberg, which caused the outbreak, carries a variety of virulence genes, which suggests that the strain is highly pathogenic. These pathogenic bacteria may be associated with the Salmonella strain in Tianjin, Jilin, and other places and have caused foodborne disease outbreaks as a result of imported contamination.
Collapse
Affiliation(s)
- Qian Zhou
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Yu-Jing Zhong
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhu-Zhou Shan
- Qiandongnan Centre for Disease Control and Prevention, Kaili, Guizhou, China
| | - Xue-Xue Pan
- Qiandongnan Centre for Disease Control and Prevention, Kaili, Guizhou, China
| | - Jing-Yu Huang
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Jing-Shu Xiang
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China
| | - De-Zhu Zhang
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Wei-Wei Li
- National Centre for Food Safety Risk Assessment, Beijing, China
| | - Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Liu
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China
| | - Shi-Jun Li
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Li Zhou
- Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
31
|
Amory H, Cesarini C, De Maré L, Loublier C, Moula N, Detilleux J, Saulmont M, Garigliany MM, Lecoq L. Relationship between the Cycle Threshold Value (Ct) of a Salmonella spp. qPCR Performed on Feces and Clinical Signs and Outcome in Horses. Microorganisms 2023; 11:1950. [PMID: 37630510 PMCID: PMC10459194 DOI: 10.3390/microorganisms11081950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this retrospective study was to evaluate the clinical significance of fecal quantitative real-time polymerase chain reaction (qPCR) Salmonella results when taking the cycle threshold values (Ct) into account. The study included 120 Salmonella qPCR-positive fecal samples obtained from 88 hospitalized horses over a 2-year period. The mean Ct of the qPCR test was evaluated in regard to (1) clinical outcome and (2) systemic inflammatory response syndrome (SIRS) status (no SIRS, moderate SIRS, or severe SIRS) of the sampled horses. An ROC analysis was performed to establish the optimal cut-off Ct values associated with severe SIRS. The mean ± SD Ct value was significantly lower in samples (1) from horses with a fatal issue (27.87 ± 5.15 cycles) than in surviving horses (31.75 ± 3.60 cycles), and (2) from horses with severe SIRS (27.87 ± 2.78 cycles) than from horses with no (32.51 ± 3.59 cycles) or moderate (31.54 ± 3.02 cycles) SIRS. In the ROC analysis, the optimal cut-off value of Ct associated with a severe SIRS was 30.40 cycles, with an AUC value of 0.84 [95% confidence interval 0.76-0.91] and an OR of 0.64 [0.51-0.79]. Results suggest that including the Ct value in the interpretation of fecal qPCR results could improve the diagnostic value of this test for clinical salmonellosis in horses.
Collapse
Affiliation(s)
- Hélène Amory
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Carla Cesarini
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Lorie De Maré
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Clémence Loublier
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Nassim Moula
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
- Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium
| | - Johann Detilleux
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| | - Marc Saulmont
- Regional Animal Health and Identification Association (ARSIA), 2 Allée des Artisans, ZA du Biron, 5590 Ciney, Belgium
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
- Department of Morphology and Pathology, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium
| | - Laureline Lecoq
- Equine Clinical Department, Faculty of Veterinary Medicine, Bât. B41, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.C.); (L.D.M.); (C.L.); (J.D.)
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, 4000 Liège, Belgium; (N.M.); (M.-M.G.)
| |
Collapse
|
32
|
Zhou L, Zhang TJ, Zhang W, Xie C, Yang Y, Chen X, Wang Q, Wang HN, Lei CW. Prevalence and genetic diversity of multidrug-resistant Salmonella Typhimurium monophasic variant in a swine farm from China. Front Microbiol 2023; 14:1200088. [PMID: 37396383 PMCID: PMC10311412 DOI: 10.3389/fmicb.2023.1200088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Salmonella 4,[5],12:i:-, a monophasic variant of S. Typhimurium, has become a global serovar causing animal and human infections since its first emergence in the late 1980's. Several previous studies showed the increasing prevalence of S. 4,[5],12:i:- in China, most of which were from swine with multidrug resistance (MDR) profiles. However, the molecular characteristic and evolution of S. 4,[5],12:i:- in the same swine farm are still unknown. In this study, a total of 54 S. enterica strains were isolated from different fattening pigs aged 1, 3, and 6 months, most of which belonged to S. 4,[5],12:i:-. Whole-genome sequencing revealed that all 45 S. 4,[5],12:i:- strains belonged to ST34 and were further divided into two different ribosomal STs and nine different core-genome STs. Phylogenetic analysis of 286 S. 4,[5],12:i:- strains in China, including 241 from the EnteroBase Salmonella database, revealed the genetic diversity of S. 4,[5],12:i:- and indicated that S. 4,[5],12:i:- in this swine farm might have multiple origins. Three different IncHI2 plasmids carrying various resistance genes were characterized by nanopore sequencing and could be conjugated to Escherichia coli. The colistin resistance gene mcr-1 and ESBLs gene blaCTX - M-14 were co-located on the chromosome of one strain. The dynamic changes in antimicrobial resistance regions and transferability of IncHI2 plasmids, as well as the chromosomal location of resistance genes, facilitated the diversity of the antimicrobial resistance characteristics in S. 4,[5],12:i:-. Since the swine farm is regarded as the important reservoir of MDR S. 4,[5],12:i:-, the prevalence and evolution of S. 4,[5],12:i:- from swine farms to pig products and humans should be continually monitored.
Collapse
|
33
|
Boss S, Stephan R, Horlbog JA, Magouras I, Colon VA, Lugsomya K, Stevens MJA, Nüesch-Inderbinen M. Serotypes, Antimicrobial Resistance Profiles, and Virulence Factors of Salmonella Isolates in Chinese Edible Frogs ( Hoplobatrachus rugulosus) Collected from Wet Markets in Hong Kong. Foods 2023; 12:foods12112245. [PMID: 37297489 DOI: 10.3390/foods12112245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Salmonella is an important agent of gastrointestinal disease in humans. While livestock, such as cattle, poultry, and pigs, are well-recognised animal reservoirs of Salmonella, there is a lack of data on Salmonella in edible frogs, even though frog meat is a popular food worldwide. In this study, 103 live edible Chinese frogs (Hoplobatrachus rugulosus) were collected from wet markets throughout Hong Kong. After euthanasia, faeces or cloacal swabs were examined for Salmonella. Overall, Salmonella spp. were isolated from 67 (65%, CI: 0.554-0.736) of the samples. The serotypes included S. Saintpaul (33%), S. Newport (24%), S. Bareilly (7%), S. Braenderup (4%), S. Hvittingfoss (4%), S. Stanley (10%), and S. Wandsworth (16%). Many isolates were phylogenetically related. A high number of genes encoding for resistance to clinically relevant antimicrobials, and a high number of virulence determinants, were identified. Antimicrobial susceptibility testing (AST) identified multidrug resistance (MDR) in 21% of the isolates. Resistance to ampicillin, ciprofloxacin, nalidixic acid, and tetracycline was common. These results demonstrate that a high percentage of live frogs sold for human consumption in wet markets are carriers of multidrug-resistant Salmonella. Public health recommendations for handling edible frogs should be considered, to mitigate the risk of Salmonella transmission to humans.
Collapse
Affiliation(s)
- Sara Boss
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Jule Anna Horlbog
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Ioannis Magouras
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Violaine Albane Colon
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | | |
Collapse
|
34
|
Janecko N, Zamudio R, Palau R, Bloomfield SJ, Mather AE. Repeated cross-sectional study identifies differing risk factors associated with microbial contamination in common food products in the United Kingdom. Food Microbiol 2023; 111:104196. [PMID: 36681400 DOI: 10.1016/j.fm.2022.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/01/2022] [Accepted: 11/26/2022] [Indexed: 11/30/2022]
Abstract
All foods carry microbes, many of which are harmless, but foods can also carry pathogens and/or microbial indicators of contamination. Limited information exists on the co-occurrence of microbes of food safety concern and the factors associated with their presence. Here, a population-based repeated cross-sectional design was used to determine the prevalence and co-occurrence of Escherichia coli, Klebsiella spp., Salmonella spp. and Vibrio spp. in key food commodities - chicken, pork, prawns, salmon and leafy greens. Prevalence in 1,369 food samples for these four target bacterial genera/species varied, while 25.6% of all samples had at least two of the target bacteria and eight different combinations of bacteria were observed as co-occurrence profiles in raw prawns. Imported frozen chicken was 6.4 times more likely to contain Salmonella than domestic chicken, and imported salmon was 5.5 times more likely to be contaminated with E. coli. Seasonality was significantly associated with E. coli and Klebsiella spp. contamination in leafy greens, with higher detection in summer and autumn. Moreover, the odds of Klebsiella spp. contamination were higher in summer in chicken and pork samples. These results provide insight on the bacterial species present on foods at retail, and identify factors associated with the presence of individual bacteria, which are highly relevant for food safety risk assessments and the design of surveillance programmes.
Collapse
Affiliation(s)
- Nicol Janecko
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Roxana Zamudio
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Raphaëlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Samuel J Bloomfield
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom; University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
35
|
Bassal R, Davidovich-Cohen M, Yakunin E, Rokney A, Ken-Dror S, Strauss M, Wolf T, Sagi O, Amit S, Moran-Gilad J, Treygerman O, Karyo R, Keinan-Boker L, Cohen D. Trends in the Epidemiology of Non-Typhoidal Salmonellosis in Israel between 2010 and 2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095626. [PMID: 37174146 PMCID: PMC10178198 DOI: 10.3390/ijerph20095626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Non-typhoidal salmonellosis (NTS) is one of the most common foodborne diseases worldwide. In this study, we aimed to analyze trends in the epidemiology of NTS in the last decade in Israel. Laboratory-confirmed cases of NTS at eight sentinel laboratories were reported to the Israel Sentinel Laboratory-Based Surveillance Network, integrated with the serotype identification performed at the Salmonella National Reference Laboratory of the Ministry of Health. The decrease in NTS incidence since 1999 continued between 2010 and 2014 (16.1 per 100,000 in 2014) and was interrupted by a rise between 2015 and 2017 (39.1 per 100,000 in 2017) associated with outbreaks of Salmonella Enteritidis. The incidence of NTS dropped again thereafter (21.4 per 100,000 in 2021). The 0-4 age group was the most affected by NTS (55.5% of the cases) throughout the surveillance period. The age-adjusted incidence rates were consistently high in the summer months (June-September) and low in the winter months (December-February). The overall decrease in the incidence of NTS in Israel since 1999 was temporarily interrupted in the last decade by country-wide outbreaks involving emerging or re-emerging Salmonella serotypes. Control measures should be enhanced for all risk points of food chain transmission of Salmonella spp. to further reduce the NTS morbidity in Israel.
Collapse
Affiliation(s)
- Ravit Bassal
- Israel Center for Disease Control, Ministry of Health, Sheba Medical Center, Ramat Gan 52621, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maya Davidovich-Cohen
- Salmonella National Reference Center, Public Health Laboratories-Jerusalem (PHL-J) Public Health Services, Ministry of Health, Jerusalmem 34410, Israel
| | - Eugenia Yakunin
- Salmonella National Reference Center, Public Health Laboratories-Jerusalem (PHL-J) Public Health Services, Ministry of Health, Jerusalmem 34410, Israel
| | - Assaf Rokney
- Salmonella National Reference Center, Public Health Laboratories-Jerusalem (PHL-J) Public Health Services, Ministry of Health, Jerusalmem 34410, Israel
| | - Shifra Ken-Dror
- Microbiology Laboratory, Haifa and Western Gallilee, Clalit Health Services, Nesher 36888, Israel
| | - Merav Strauss
- Microbiology Laboratory, Emek Medical Center, Afula 18341, Israel
| | - Tamar Wolf
- Central Laboratory, Maccabi Health Services, Rehovot 76703, Israel
| | - Orli Sagi
- Clinical Microbiology Laboratory, Soroka University Medical Center, Beer-Sheva 84105, Israel
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sharon Amit
- Microbiology Laboratories, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Jacob Moran-Gilad
- Clinical Microbiology Laboratory, The Department of Clinical Microbiology and Infectious Diseases, Hadassah University Hospital, Jerusalem 91120, Israel
| | - Orit Treygerman
- Central Laboratory, Meuhedet Health Services, Lod 71293, Israel
| | - Racheli Karyo
- Central Laboratory, Clalit Health Services, Tel Aviv 61581, Israel
| | - Lital Keinan-Boker
- Israel Center for Disease Control, Ministry of Health, Sheba Medical Center, Ramat Gan 52621, Israel
- School of Public Health, University of Haifa, Haifa 34988, Israel
| | - Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
36
|
Wang Y, Xuan G, Lin H, Fei Z, Wang J. Phage resistance of Salmonella enterica obtained by transposon Tn5-mediated SefR gene silent mutation. J Basic Microbiol 2023; 63:530-541. [PMID: 37032321 DOI: 10.1002/jobm.202200532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/05/2023] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
Salmonella enterica contamination is a primary cause of global food poisoning. Using phages as bactericidal alternatives to antibiotics could confront the issue of drug resistance. However, the problem of phage resistance, especially mutant strains with multiple phage resistance, is a critical barrier to the practical application of phages. In this study, a library of EZ-Tn5 transposable mutants of susceptible host S. enterica B3-6 was constructed. After the infestation pressure of a broad-spectrum phage TP1, a mutant strain with resistance to eight phages was obtained. Analysis of the genome resequencing results revealed that the SefR gene was disrupted in the mutant strain. The mutant strain displayed a reduced adsorption rate of 42% and a significant decrease in swimming and swarming motility, as well as a significantly reduced expression of the flagellar-related FliL and FliO genes to 17% and 36%, respectively. An uninterrupted form of the SefR gene was cloned into vector pET-21a (+) and used for complementation of the mutant strain. The complemented mutant exhibited similar adsorption and motility as the wild-type control. These results suggest that the disrupted flagellar-mediated SefR gene causes an adsorption inhibition, which is responsible for the phage-resistant phenotype of the S. enterica transposition mutant.
Collapse
Affiliation(s)
- Yinfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Guanhua Xuan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Zhenhong Fei
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
37
|
Wang J, Guo K, Li S, Liu D, Chu X, Wang Y, Guo W, Du C, Wang X, Hu Z. Development and Application of Real-Time PCR Assay for Detection of Salmonella Abortusequi. J Clin Microbiol 2023; 61:e0137522. [PMID: 36856425 PMCID: PMC10035326 DOI: 10.1128/jcm.01375-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Abortusequi is a major pathogen in horse and donkey herds, causing abortion in pregnant equids and resulting in enormous economic losses. A rapid and reliable method is urgently needed to detect S. Abortusequi in herds where the disease is suspected. To achieve this goal, a TaqMan-based real-time PCR assay targeting the gene for the flagellin protein phase 2 antigen FljB was developed. This real-time PCR assay had high specificity, sensitivity, and reproducibility. The detection limit of the assay was 30 copies/μL of standard plasmid and 10 CFU/μL of bacterial DNA. Furthermore, 540 clinical samples, including 162 tissue, 192 plasma, and 186 vaginal swab samples collected between 2018 and 2021 in China, were tested to assess the performance of the developed assay. Compared to the gold standard method of bacterial isolation, the real-time PCR assay exhibited 100% positive agreement for all tissue, plasma and vaginal swab tests. Additionally, this assay detected DNA from S. Abortusequi from 56.7% (34/60) culture-negative tissue and 22.9% (41/179) culture-negative vaginal swab samples from infected equids. Receiver operating characteristic analysis demonstrated that the results of the developed real-time PCR assays were in significant agreement with those of the culture method. The real-time PCR assay can be completed within 45 min of extraction of DNA from samples. Our results show that this assay could serve as a reliable tool for the rapid detection of S. Abortusequi in tissue, plasma, and vaginal swab clinical samples.
Collapse
Affiliation(s)
- Jinhui Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kui Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuaijie Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyu Chu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yaoxin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
38
|
Abdelsattar AS, Yakoup AY, Khaled Y, Safwat A, El-Shibiny A. The synergistic effect of using bacteriophages and chitosan nanoparticles against pathogenic bacteria as a novel therapeutic approach. Int J Biol Macromol 2023; 228:374-384. [PMID: 36581028 DOI: 10.1016/j.ijbiomac.2022.12.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Public health and environmental security are seriously at risk due to the growing contamination of pathogenic microorganisms. Therefore, effective antimicrobials are urgently needed. In our study, the antimicrobial effects of three types of nanoparticles were investigated with phage. The biosynthesis of nanoparticles was confirmed based on the color change and shapes, which tended to be mono-dispersed with a spherical shape with a size range of 20-35 nm for Ag-CS-NPs; 15-30 nm for Phage-CS-NPs (Ph-CS-NPs); and 5-35 nm for Propolis-CS-NPs (Pro-CS-NPs). Nanoparticles displayed peaks between 380-420 nm, 335-380 nm, and below 335 nm for Ag-CS-NPs, Pro-CS-NPs, and Ph-CS NPs, respectively. Throughout the three synthesized nanoparticles, AgCs NPs represented a higher antibacterial effect in combination with phages. It showed MIC against S. sciuri, S. Typhimurium, and P. aeruginosa between 31.2 and 62.2 μg/mL and MBC at 500, 62.5, and 31.2 μg/mL, respectively, while in combination with phages showed MIC at 62.2, 31.2, and 15.6 μg/mL, respectively and MBC at 125, 62.2, and 15.6 μg/mL, respectively. Furthermore, a significant killing efficiency was observed with 16.5-30.1 μg/mL of Ag-CS NPs combined with phages. In conclusion, Ag-CS-NPs with phages present potential bactericidal and inhibitory effects against Gram-positive and Gram-negative bacteria, as well as against the production of biofilms.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Aghapy Yermans Yakoup
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Yousef Khaled
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt.
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt.
| |
Collapse
|
39
|
A Small RNA, SaaS, Promotes Salmonella Pathogenicity by Regulating Invasion, Intracellular Growth, and Virulence Factors. Microbiol Spectr 2023; 11:e0293822. [PMID: 36688642 PMCID: PMC9927236 DOI: 10.1128/spectrum.02938-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is a common foodborne pathogen that infects both humans and animals. The S. Enteritidis virulence regulation network remains largely incomplete, and knowledge regarding the specific virulence phenotype of small RNAs (sRNAs) is limited. Here, we investigated the role of a previously identified sRNA, Salmonella adhesive-associated sRNA (SaaS), in the virulence phenotype of S. Enteritidis by constructing mutant (ΔsaaS) and complemented (ΔsaaS/psaaS) strains. SaaS did not affect S. Enteritidis; it was activated in the simulated intestinal environment (SIE), regulating the expression of virulence target genes. We discovered that it directly binds ssaV mRNA. Caco-2 and RAW 264.7 cell assays revealed that SaaS promoted S. Enteritidis invasion and damage to epithelial cells while suppressing macrophage overgrowth and destruction. Furthermore, a BALB/c mouse model demonstrated that the deletion of SaaS significantly reduced mortality and attenuated the deterioration of pathophysiology, bacterial dissemination into systemic circulation, and systemic inflammation. Our findings indicate that SaaS is required for S. Enteritidis virulence and further highlight its biological role in bacterial pathogenesis. IMPORTANCE Salmonella is a zoonotic pathogen with high virulence worldwide, and sRNAs have recently been discovered to play important roles. We explored the biological characteristics of the sRNA SaaS and developed two cell infection models and a mouse infection model. SaaS is an SIE-responsive sRNA that regulates the expression of virulence-targeted genes. Additionally, it differentially mediates invasion and intracellular growth for survival and infection of the epithelium and macrophages. We further found that SaaS enhanced bacterial virulence by promoting lethality, colonization, and inflammatory response. These findings provide a better understanding of the critical role of sRNA in bacterial virulence.
Collapse
|
40
|
Wang CC, Hung YT, Chou CY, Hsuan SL, Chen ZW, Chang PY, Jan TR, Tung CW. Using random forest to predict antimicrobial minimum inhibitory concentrations of nontyphoidal Salmonella in Taiwan. Vet Res 2023; 54:11. [PMID: 36747286 PMCID: PMC9903507 DOI: 10.1186/s13567-023-01141-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/13/2023] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global health issue and surveillance of AMR can be useful for understanding AMR trends and planning intervention strategies. Salmonella, widely distributed in food-producing animals, has been considered the first priority for inclusion in the AMR surveillance program by the World Health Organization (WHO). Recent advances in rapid and affordable whole-genome sequencing (WGS) techniques lead to the emergence of WGS as a one-stop test to predict the antimicrobial susceptibility. Since the variation of sequencing and minimum inhibitory concentration (MIC) measurement methods could result in different results, this study aimed to develop WGS-based random forest models for predicting MIC values of 24 drugs using data generated from the same laboratories in Taiwan. The WGS data have been transformed as a feature vector of 10-mers for machine learning. Based on rigorous validation and independent tests, a good performance was obtained with an average mean absolute error (MAE) less than 1 for both validation and independent test. Feature selection was then applied to identify top-ranked 10-mers that can further improve the prediction performance. For surveillance purposes, the genome sequence-based machine learning methods could be utilized to monitor the difference between predicted and experimental MIC, where a large difference might be worthy of investigation on the emerging genomic determinants.
Collapse
Affiliation(s)
- Chia-Chi Wang
- grid.19188.390000 0004 0546 0241Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 106 Taiwan
| | - Yu-Ting Hung
- grid.482517.dAnimal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, 300 Taiwan ,grid.260542.70000 0004 0532 3749Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402 Taiwan
| | - Che-Yu Chou
- grid.412896.00000 0000 9337 0481Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 106 Taiwan
| | - Shih-Ling Hsuan
- grid.260542.70000 0004 0532 3749Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 402 Taiwan
| | - Zeng-Weng Chen
- grid.482517.dAnimal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City, 300 Taiwan
| | - Pei-Yu Chang
- grid.59784.370000000406229172Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350 Taiwan
| | - Tong-Rong Jan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan.
| | - Chun-Wei Tung
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, 106, Taiwan. .,Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 350, Taiwan.
| |
Collapse
|
41
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Antibiofilm Action of Plant Terpenes in Salmonella Strains: Potential Inhibitors of the Synthesis of Extracellular Polymeric Substances. Pathogens 2022; 12:pathogens12010035. [PMID: 36678383 PMCID: PMC9864247 DOI: 10.3390/pathogens12010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella can form biofilms that contribute to its resistance in food processing environments. Biofilms are a dense population of cells that adhere to the surface, creating a matrix composed of extracellular polymeric substances (EPS) consisting mainly of polysaccharides, proteins, and eDNA. Remarkably, the secreted substances, including cellulose, curli, and colanic acid, act as protective barriers for Salmonella and contribute to its resistance and persistence when exposed to disinfectants. Conventional treatments are mostly ineffective in controlling this problem; therefore, exploring anti-biofilm molecules that minimize and eradicate Salmonella biofilms is required. The evidence indicated that terpenes effectively reduce biofilms and affect their three-dimensional structure due to the decrease in the content of EPS. Specifically, in the case of Salmonella, cellulose is an essential component in their biofilms, and its control could be through the inhibition of glycosyltransferase, the enzyme that synthesizes this polymer. The inhibition of polymeric substances secreted by Salmonella during biofilm development could be considered a target to reduce its resistance to disinfectants, and terpenes can be regarded as inhibitors of this process. However, more studies are needed to evaluate the effectiveness of these compounds against Salmonella enzymes that produce extracellular polymeric substances.
Collapse
|
43
|
Fan HH, Fang SB, Chang YC, Huang ST, Huang CH, Chang PR, Chang WC, Yang LTL, Lin PC, Cheng HY. Effects of colonization-associated gene yqiC on global transcriptome, cellular respiration, and oxidative stress in Salmonella Typhimurium. J Biomed Sci 2022; 29:102. [PMID: 36457101 PMCID: PMC9714038 DOI: 10.1186/s12929-022-00885-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND yqiC is required for colonizing the Salmonella enterica serovar Typhimurium (S. Typhimurium) in human cells; however, how yqiC regulates nontyphoidal Salmonella (NTS) genes to influence bacteria-host interactions remains unclear. METHODS The global transcriptomes of S. Typhimurium yqiC-deleted mutant (ΔyqiC) and its wild-type strain SL1344 after 2 h of in vitro infection with Caco-2 cells were obtained through RNA sequencing to conduct comparisons and identify major yqiC-regulated genes, particularly those involved in Salmonella pathogenicity islands (SPIs), ubiquinone and menaquinone biosynthesis, electron transportation chains (ETCs), and carbohydrate/energy metabolism. A Seahorse XFp Analyzer and assays of NADH/NAD+ and H2O2 were used to compare oxygen consumption and extracellular acidification, glycolysis parameters, adenosine triphosphate (ATP) generation, NADH/NAD+ ratios, and H2O2 production between ΔyqiC and SL1344. RESULTS After S. Typhimurium interacts with Caco-2 cells, yqiC represses gene upregulation in aspartate carbamoyl transferase, type 1 fimbriae, and iron-sulfur assembly, and it is required for expressing ilvB operon, flagellin, tdcABCD, and dmsAB. Furthermore, yqiC is required for expressing mainly SPI-1 genes and specific SPI-4, SPI-5, and SPI-6 genes; however, it diversely regulates SPI-2 and SPI-3 gene expression. yqiC significantly contributes to menD expression in menaquinone biosynthesis. A Kyoto Encyclopedia of Genes and Genomes analysis revealed the extensive association of yqiC with carbohydrate and energy metabolism. yqiC contributes to ATP generation, and the analyzer results demonstrate that yqiC is required for maintaining cellular respiration and metabolic potential under energy stress and for achieving glycolysis, glycolytic capacity, and glycolytic reserve. yqiC is also required for expressing ndh, cydA, nuoE, and sdhB but suppresses cyoC upregulation in the ETC of aerobically and anaerobically grown S. Typhimurium; priming with Caco-2 cells caused a reversed regulation of yiqC toward upregulation in these ETC complex genes. Furthermore, yqiC is required for maintaining NADH/NAD+ redox status and H2O2 production. CONCLUSIONS Specific unreported genes that were considerably regulated by the colonization-associated gene yqiC in NTS were identified, and the key role and tentative mechanisms of yqiC in the extensive modulation of virulence factors, SPIs, ubiquinone and menaquinone biosynthesis, ETCs, glycolysis, and oxidative stress were discovered.
Collapse
Affiliation(s)
- Hung-Hao Fan
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412955.e0000 0004 0419 7197Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shiuh-Bin Fang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chu Chang
- grid.412896.00000 0000 9337 0481Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Tung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Hung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Pei-Ru Chang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Lauderdale Tsai-Ling Yang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Chun Lin
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| | - Hung-Yen Cheng
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| |
Collapse
|
44
|
The Occurrence and Genomic Characteristics of mcr-1-Harboring Salmonella from Retail Meats and Eggs in Qingdao, China. Foods 2022; 11:foods11233854. [PMID: 36496661 PMCID: PMC9739812 DOI: 10.3390/foods11233854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Salmonella are widely distributed foodborne pathogens and are often associated with food animal products. Colistin resistance mediated by mcr-1 is an increasing threat; however, data on the characteristics of mcr-1-harboring Salmonella among retail foods are still lacking. In this study, retail meats from 24 supermarkets and eggs from nine markets in Qingdao city were investigated to determine the presence and genomic characteristics of mcr-1-harboring Salmonella. We found the retail meats and eggs were highly contaminated by Salmonella, with detection rates of 17.5% (31/177) and 12.3% (16/130), respectively. A total of 76 Salmonella isolates were obtained in this study, and 77.6% showed multidrug resistance (MDR). The MDR proportion of egg isolates (97.5%) was significantly higher than that in meat isolates (55.6%) (p < 0.05). The most prevalent Salmonella serotypes were Typhimurium (56.6%) and Enteritidis (17.1%). Of the 76 Salmonella isolates, 40 possessed mcr-1. All 40 mcr-1-positive isolates were ST34 S. Typhimurium and were from eggs of eight brands. Different mcr-1-harboring isolates existed in the same egg, and some isolates from different egg samples or brands showed clonal relationships. The mcr-1 was located on similar IncHI2/HI2A MDR non-conjugative plasmids lacking transfer region, resulting in the failure of conjugation. The phylogenetic tree using genome sequences showed that the mcr-1-positive isolates from eggs clustered together with mcr-1-positive isolates from chicken and humans in China, revealing that mcr-1-positive egg-borne Salmonella might be derived from chicken and could potentially trigger outbreaks in humans. The high occurrence of mcr-1-harboring Salmonella in fresh eggs is alarming, and there is an urgent need to monitor mcr-1-harboring Salmonella in retail meats and eggs. We report for the first time the role of retail eggs in disseminating mcr-1-positive Salmonella and the risk of transmission of these MDR pathogens from retail food to humans should be evaluated comprehensively.
Collapse
|
45
|
Gorzynski J, Wee B, Llano M, Alves J, Cameron R, McMenamin J, Smith A, Lindsay D, Fitzgerald JR. Epidemiological analysis of Legionnaires' disease in Scotland: a genomic study. THE LANCET. MICROBE 2022; 3:e835-e845. [PMID: 36240833 DOI: 10.1016/s2666-5247(22)00231-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Legionella pneumophila is the main cause of a severe pneumonic illness known as Legionnaires' disease and is a global public health threat. Whole-genome sequencing (WGS) can be applied to trace environmental origins of L pneumophila infections, providing information to guide appropriate interventions. We aim to explore the evolutionary and epidemiological relationships in a 36-year Scottish L pneumophila reference isolate collection. METHODS We investigated the genomic epidemiology of Legionnaires' disease over 36 years in Scotland, comparing genome sequences for all clinical L pneumophila isolates (1984-2020) with a sequence dataset of 3211 local and globally representative isolates. We used a stratified clustering approach to capture epidemiological relationships by core genome Multi-locus Sequence Typing, followed by high-resolution phylogenetic analysis of clusters to measure diversity and evolutionary relatedness in context with epidemiological metadata. FINDINGS Clustering analysis showed that 111 (57·5 %) of 193 of L pneumophila infections in Scotland were caused by ten endemic lineages with a wide temporal and geographical distribution. Phylogenetic analysis of L pneumophila identified hospital-associated sublineages that had been detected in the hospital environment up to 19 years. Furthermore, 12 (30·0%) of 40 community-associated infections (excluding a single, large outbreak) that occurred over a 13 year period (from 2000 to 2013) were caused by a single widely distributed endemic clone (ST37), consistent with enhanced human pathogenicity. Finally, our analysis revealed clusters linked by national or international travel to distinct geographical regions, indicating several previously unrecognised travel links between closely related isolates (fewer than five single nucleotide polymorphisms) connected by geography. INTERPRETATION Our analysis reveals the existence of previously undetected endemic clones of L pneumophila that existed for many years in hospital, community, and travel-associated environments. In light of these findings, we propose that cluster and outbreak definitions should be reconsidered, and propose WGS-based surveillance as a critical public health tool for real-time identification and mitigation of clinically important endemic clones. FUNDING Chief Scientist Office, Biotechnology and Biological Sciences Research Council (UK), Medical Research Council Precision Medicine Doctoral Training Programme, Wellcome Trust, and Medical Research Council (UK).
Collapse
Affiliation(s)
- Jamie Gorzynski
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Bryan Wee
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Joana Alves
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Andrew Smith
- Scottish Microbiology Reference Laboratory, Glasgow Royal Infirmary, Glasgow, UK; College of Medical, Veterinary & Life Sciences, Glasgow Dental Hospital and School, University of Glasgow, Glasgow, UK
| | - Diane Lindsay
- Scottish Microbiology Reference Laboratory, Glasgow Royal Infirmary, Glasgow, UK
| | | |
Collapse
|
46
|
Cecropin a Improves the Antibacterial Activity of Hen Egg White Lysozyme against Challenging Salmonella enterica Serovars. Pharmaceutics 2022; 14:pharmaceutics14102201. [PMID: 36297635 PMCID: PMC9610619 DOI: 10.3390/pharmaceutics14102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of multidrug-resistant Salmonella enterica among animal- and plant-derived food products threatens global healthcare and economic sectors. Hen egg white lysozyme is widely exploited as a food preservative against Gram-positive pathogens. Nevertheless, its limited penetration of the outer membrane renders it ineffective against Gram-negative bacteria. Herein, we present a safe and effective approach to facilitate HEWL access to peptidoglycan layers using cecropin A. In silico analysis of cecropin A peptide revealed an amphipathic α-helical peptide with potential outer membrane permeabilizing activity through its interaction with both hydrophobic and ionic stabilizing forces. Evaluation of HEWL/cecropin A combination showed a cecropin A dose-dependent bacterial count reduction up to 4.16 and 3.18 ± 0.26 log units against Salmonella enterica ATCC 35664 at the logarithmic and stationary growth phases, respectively. Moreover, the combination displayed antibacterial activity of 2.1 ± 0.31 and ~1 log-unit reductions against Salmonella enterica serovars Kentucky, Typhimurium, and Enteritidis, respectively, whereas Hato and Shangani were found irresponsive. The cytotoxicity assay revealed compatibility of cecropin A with oral epithelial cells. These observations suggest HEWL/cecropin A combination as an effective and safe alternative to lysozyme against Salmonella enterica.
Collapse
|
47
|
Peruzy MF, Proroga YTR, Capuano F, Mancusi A, Montone AMI, Cristiano D, Balestrieri A, Murru N. Occurrence and distribution of Salmonella serovars in carcasses and foods in southern Italy: Eleven-year monitoring (2011-2021). Front Microbiol 2022; 13:1005035. [PMID: 36274687 PMCID: PMC9582760 DOI: 10.3389/fmicb.2022.1005035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the most common agents of foodborne illness. The genus Salmonella includes two species (Salmonella bongori and S. enterica) and six subspecies (enterica I, salamae II, arizonae IIIa, diarizonae IIIb, houtenae IV, and indica VI), each of which contains multiple serotypes associated with animal and human infections. The aim of the study was to evaluate the presence of Salmonella spp. in carcasses of food-producing animals and foods in southern Italy and the serovar distribution among different sources. From 2011 to 2021, a total of 12,246 foods and 982 samples from animal carcasses were collected and analyzed. The overall percentage of positive samples was 5.84% (N = 773) and a significant increase in prevalence was observed by comparing the years 2011-2015 (257, 3.27%) and 2016-2021 (516, 9.61%; p < 0.05). The highest percentage of positive food samples was observed in "Meat and Meat Products" (N = 327/2,438, 13.41%) followed by "Fish and fishery products" (N = 115/1,915, 6.01%). In carcasses, the highest percentage of positive samples was reported from broilers (N = 42/81, 51.85%) followed by buffalo (N = 50/101, 49.50%) and pork (N = 140/380, 36.84%). After typing, the isolates were assigned to the species S. enterica and to the subspecies: enterica (N = 760, 98.32%), diarizonae (N = 8, 1.03%), salamae (N = 3, 0.39%) and houtenae (N = 2, 0.26%). S. Infantis was the most frequently detected (N = 177, 24.76%), followed by S. Derby (N = 77, 10.77%), monophasic S. Typhimurium (N = 63, 8.81%), S. Typhimurium (N = 54, 7.55%), and S. Rissen (N = 47, 6.57%). By comparing the sampling period 2011-2015 with that of 2016-2021, an increase in the prevalence of S. Infantis and monophasic S. Typhimurium and a decrease of S. Typhimurium were recorded (p < 0.05). Thus, present data suggest that, despite the implementation of national and European control strategies to protect against Salmonella, the prevalence of this pathogen in southern Italy is still increasing and a change of national control programs to protect against Salmonella are necessary.
Collapse
Affiliation(s)
- Maria Francesca Peruzy
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | - Federico Capuano
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | | | - Daniela Cristiano
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Anna Balestrieri
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Nicoletta Murru
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
48
|
Chen J, Ed-Dra A, Zhou H, Wu B, Zhang Y, Yue M. Antimicrobial resistance and genomic investigation of non-typhoidal Salmonella isolated from outpatients in Shaoxing city, China. Front Public Health 2022; 10:988317. [PMID: 36176509 PMCID: PMC9513250 DOI: 10.3389/fpubh.2022.988317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
Human non-typhoidal salmonellosis is among the leading cause of morbidity and mortality worldwide, resulting in huge economic losses and threatening the public health systems. To date, epidemiological characteristics of non-typhoidal Salmonella (NTS) implicated in human salmonellosis in China are still obscure. Herein, we investigate the antimicrobial resistance and genomic features of NTS isolated from outpatients in Shaoxing city in 2020. Eighty-seven Salmonella isolates were recovered and tested against 28 different antimicrobial agents, representing 12 categories. The results showed high resistance to cefazolin (86.21%), streptomycin (81.61%), ampicillin (77.01%), ampicillin-sulbactam (74.71%), doxycycline (72.41%), tetracycline (71.26%), and levofloxacin (70.11%). Moreover, 83.91% of isolates were resistant to ≥3 categories, which were considered multi-drug resistant (MDR). Whole-genome sequencing (WGS) combined with bioinformatic analysis was used to predict serovars, MLST types, plasmid replicons, antimicrobial resistance genes, and virulence genes, in addition to the construction of phylogenomic to determine the epidemiological relatedness between isolates. Fifteen serovars and 16 STs were identified, with the dominance of S. I 4, [5], 12:i:- ST34 (25.29%), S. Enteritidis ST11 (22.99%), and S. Typhimurium ST19. Additionally, 50 resistance genes representing ten categories were detected with a high prevalence of aac(6')-Iaa (100%), bla TEM-1B (65.52%), and tet(A) (52.87%), encoding resistance to aminoglycosides, β-lactams, and tetracyclines, respectively; in addition to chromosomic mutations affecting gyrA gene. Moreover, we showed the detection of 18 different plasmids with the dominance of IncFIB(S) and IncFII(S) (39.08%). Interestingly, all isolates harbor the typical virulence genes implicated in the virulence mechanisms of Salmonella, while one isolate of S. Jangwani contains the cdtB gene encoding typhoid toxin production. Furthermore, the phylogenomic analysis showed that all isolates of the same serovar are very close to each other and clustered together in the same clade. Together, we showed a high incidence of MDR among the studied isolates which is alarming for public health services and is a major threat to the currently available treatments to deal with human salmonellosis; hence, efforts should be gathered to further introduce WGS in routinely monitoring of AMR Salmonella in the medical field in order to enhance the effectiveness of surveillance systems and to limit the spread of MDR clones.
Collapse
Affiliation(s)
- Jiancai Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Haiyang Zhou
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yunyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China,*Correspondence: Yunyi Zhang
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China,Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Min Yue
| |
Collapse
|
49
|
Sturgill L, Fadil A, Hinthorn D, Schrepfer T. Salmonella Retropharyngeal Abscess Linked to Backyard Poultry Exposure in a 12-Month-Old Girl. Cureus 2022; 14:e28375. [PMID: 36171844 PMCID: PMC9508688 DOI: 10.7759/cureus.28375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
We report a rare complication of nontyphoidal Salmonella infection in a 12-month-old girl with a retropharyngeal abscess. The patient presented with a four-day history of nasal congestion, cough, decreased oral intake, and increased irritability. She was admitted for a suspected deep neck infection. Computed tomography confirmed a retropharyngeal abscess with airway narrowing. Incision and drainage was performed, and intraoperative cultures grew nontyphoidal Salmonella. Epidemiologic investigation revealed exposure to a backyard flock of chickens. The patient had little direct contact with chickens but did go with family to collect eggs, riding on a vehicle that likely became contaminated. This case highlights the risks to infants and young children in contact with live poultry or contaminated environments.
Collapse
|
50
|
Zhou C, Huang D, Wang Z, Shen P, Wang P, Xu Z. CRISPR Cas12a‐based “sweet” biosensor coupled with personal glucose meter readout for the point‐of‐care testing of
Salmonella. J Food Sci 2022; 87:4137-4147. [DOI: 10.1111/1750-3841.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Chi Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou China
| | - Di Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Ziyi Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Peijie Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Pu Wang
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Biological Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| |
Collapse
|