1
|
Liu C, Liu J, Liu G, Song Y, Yang X, Gao H, Xiang C, Sang J, Xu T, Sang J. Clitoria ternatea L. flower-derived anthocyanins and flavonoids inhibit bladder cancer growth by suppressing SREBP1 pathway-mediated fatty acid synthesis. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39468929 DOI: 10.3724/abbs.2024192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Clitoria ternatea L. flowers are used as traditional herbal medicines and are known for their advanced pharmacological activities. Flavonoids and anthocyanins reportedly contribute to the therapeutic properties of C. ternatea flowers; however, their potential anti-bladder cancer effects and molecular mechanisms remain unknown. In this study, flavonoid- and anthocyanin-rich samples from C. ternatea flowers (DDH) are prepared via macroporous resin-based extraction coupled with an efficient and reliable two-dimensional UPLC-DAD-MS/MS method. In vitro and in vivo studies reveal that DDH can inhibit bladder cancer cell growth and enhance the anti-bladder cancer activity of cisplatin. RNA-seq combined with KEGG analysis reveals that fatty acid synthesis is closely related to the anti-bladder cancer effect of DDH. Furthermore, DDH dose-dependently reduces cellular fatty acid levels in bladder cancer cells, and the addition of fatty acids significantly mitigates DDH-induced cell growth inhibition. Subsequent findings reveal that DDH downregulates sterol regulatory element-binding protein 1 (SREBP1), a key transcriptional regulator of de novo fatty acid synthesis in cancer cells, and its downstream targets (FASN, SCD1, and ACC). Additionally, this study demonstrates that gallic acid not only enhances the stability of DDH but also synergistically potentiates its anti-bladder cancer activity. Our study suggests that targeting the SREBP1 pathway is an effective strategy in bladder cancer therapy, and the ability of DDH to induce cell death by inhibiting the SREBP1 pathway and its good tolerance in mice make it a promising strategy for preventing and treating bladder cancer.
Collapse
Affiliation(s)
- Chenkai Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jue Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Gao Liu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Yusong Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuyu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Honglei Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Sang
- School of Medicine, Ankang University, Ankang 725000, China
| | - Tianrui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun Sang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Li F, Sun Q, Chen L, Zhang R, Zhang Z. Unlocking the health potential of anthocyanins: a structural insight into their varied biological effects. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38494796 DOI: 10.1080/10408398.2024.2328176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Anthocyanins have become increasingly important to the food industry due to their colorant features and many health-promoting activities. Numerous studies have linked anthocyanins to antioxidant, anti-inflammatory, anticarcinogenic properties, as well as protection against heart disease, certain types of cancer, and a reduced risk of diabetes and cognitive disorders. Anthocyanins from various foods may exhibit distinct biological and health-promoting activities owing to their structural diversity. In this review, we have collected and tabulated the key information from various recent published studies focusing on investigating the chemical structure effect of anthocyanins on their stability, antioxidant activities, in vivo fate, and changes in the gut microbiome. This information should be valuable in comprehending the connection between the molecular structure and biological function of anthocyanins, with the potential to enhance their application as both colorants and functional compounds in the food industry.
Collapse
Affiliation(s)
- Fangfang Li
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | - Quancai Sun
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruojie Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | - Zipei Zhang
- Food Science Program, Division of Food, Nutrition & Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Caroline Paz Gonçalves G, Lizandra Gomes Rosas A, Carneiro de Sousa R, Regina Rodrigues Vieira T, César de Albuquerque Sousa T, Ramires T, Ferreira Ferreira da Silveira T, Barros L, Padilha da Silva W, Renato Guerra Dias Á, da Rosa Zavareze E, Dillenburg Meinhart A. A green method for anthocyanin extraction from Clitoria ternatea flowers cultivated in southern Brazil: Characterization, in vivo toxicity, and biological activity. Food Chem 2024; 435:137575. [PMID: 37776651 DOI: 10.1016/j.foodchem.2023.137575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023]
Abstract
This study aimed to develop a green method to obtain an anthocyanin-rich edible extract of Clitoria ternatea flowers grown in southern Brazil. The extract was characterized by UHPLC-MSn and analyzed for toxicological potential in an in vivo model, total phenolic content, and biological activities. By using a 23 multivariate design to study the effects of temperature, acidified solvent, and time on the total anthocyanin content (487.25 mg/g), total phenolic content (2242.47 mgGAE/g), it was possible to determine the optimal point (45 °C, 16 min, and 22.5 mL extraction solution). Thirteen anthocyanins and nine non-anthocyanins were quantified. In vivo toxicity assay using Galleria mellonella showed a safe concentration when administered up to 2.2 g of extract per body kg. The extract showed antioxidant activity and antibacterial action against food pathogens, the method proved to have a low environmental impact, in addition to producing an extract with potential for application in food.
Collapse
Affiliation(s)
- Glória Caroline Paz Gonçalves
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | | | - Rafael Carneiro de Sousa
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Thaís Regina Rodrigues Vieira
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | | | - Tassiana Ramires
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Tayse Ferreira Ferreira da Silveira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal; Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Wladimir Padilha da Silva
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Álvaro Renato Guerra Dias
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Elessandra da Rosa Zavareze
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil
| | - Adriana Dillenburg Meinhart
- Federal University of Pelotas (UFPel), R. Gomes Carneiro, no. 1, Balsa, Pelotas, 96010-610, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
de Moura C, Vieira do Carmo MA, Xu YQ, Azevedo L, Granato D. Anthocyanin-rich extract from purple tea: Chemical stability, cellular antioxidant activity, and protection of human erythrocytes and plasma. Curr Res Food Sci 2024; 8:100701. [PMID: 38435275 PMCID: PMC10906145 DOI: 10.1016/j.crfs.2024.100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
This study aimed to obtain an anthocyanin extract from the purple leaves of Camellia sinensis cv. Zijuan using a sustainable, non-toxic, and low-cost solid-liquid extraction, employing an aqueous citric acid solution (0.2 mol/L) as the extracting solvent, and to evaluate its chemical stability at different pH values, as well as its in vitro antioxidant properties in chemical and biological terms. The phenolic composition, in vitro antioxidant activity, and the stability of anthocyanins against pH, temperature, and light of the crude extract (CE) were evaluated, as well as the phenolic composition and bioactivity in the crude lyophilised extract (CLE). In the direct/reverse spectrophotometric titration, anthocyanins showed structural changes between pH 2 and 10, and reversibility of 80%. The antioxidant activity against the DPPH radical showed inhibition percentages of 73% (pH 4.5) to 39% (pH 10). Thermal stability was observed at 60 °C, and prolonged exposure of the extract to light caused photodegradation of the anthocyanins. Thirty-three phenolic compounds, including anthocyanins and catechins, were quantified in the CLE by UPLC-ESI-MS and HPLC, totalling 40.18 mg/g. CLE reduced cell viability (IC50 from 18.1 to 52.5 μg GAE/mL), exerted antiproliferative (GI50 from 0.0006 to 17.0 μg GAE/mL) and cytotoxic (LC50 from 33.2 to 89.9 μg GAE/mL) effects against A549 (human lung adenocarcinoma epithelial cells), HepG2 (hepatocellular carcinoma), HCT8 (ileocecal colorectal adenocarcinoma), and Eahy926 (somatic cell hybrid cells); and showed protection against oxidation of human plasma (635 ± 30 mg AAE/g). The results showed the diversity of compounds in the extracts and their potential for technological applications; however, temperature, pH, and light must be considered to avoid diminishing their bioactivity.
Collapse
Affiliation(s)
- Cristiane de Moura
- Department of Chemistry, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti, 4748, 84030-900, Ponta Grossa, Brazil
| | - Mariana Araújo Vieira do Carmo
- LANTIN – Laboratory of Nutritional and Toxicological Analyses in vitro and in vivo, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, 9 South Meiling Road, Hangzhou, 310008, China
| | - Luciana Azevedo
- LANTIN – Laboratory of Nutritional and Toxicological Analyses in vitro and in vivo, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Daniel Granato
- Bioactivity & Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX, Limerick, Ireland
| |
Collapse
|
5
|
do Nascimento JV, Silva KA, Giuliangeli VC, Mendes ALD, Piai LP, Michels RN, Dal Bosco TC, Ströher GR, Shirai MA. Starch-PVA based films with Clitoria ternatea flower extract: Characterization, phenolic compounds release and compostability. Int J Biol Macromol 2024; 255:128232. [PMID: 37981283 DOI: 10.1016/j.ijbiomac.2023.128232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
The kinetic release of phenolic compounds from biodegradable films with Clitoria ternatea flower extract (ECT) in different food-simulant fluids and compostability were evaluated for the first time. This work aimed to incorporate ECT in starch-PVA-based film formulations, and the antioxidant capacity, total phenolic compounds, opacity, color, mechanical properties, compostability, and polyphenol release in different fluid simulants were determined. The results obtained showed that antioxidant activity and the total phenolic compounds were ECT dose dependent. Due to its antioxidant properties, ECT interfered with the film's composting process, reaching an average weight loss of 70 %. Additionally, the addition of ECT interfered with the mechanical properties, reducing the tensile strength, probably due to the plasticizer effect. The type of simulating fluid influenced the release of polyphenols from the films, and the presence of water favored the release because it hydrated and swelled the starch-PVA matrix, facilitating diffusion. The classic zero- and first-order models were the most effective in describing the release kinetics of polyphenols from the films. The results of this study demonstrate that the antioxidant potential and the release of polyphenols from starch-PVA-based films in different simulated fluids allow their application in active packaging, making them a sustainable alternative for food preservation.
Collapse
Affiliation(s)
| | | | - Vanessa Cipriani Giuliangeli
- Post-graduate Program in Food Technology, Federal University of Technology-Paraná, Pioneiros 3131, Londrina, PR 86036-370, Brazil
| | | | - Lorena Paloma Piai
- Department of Environmental Engineering, Federal University of Technology-Paraná, Londrina, Brazil
| | - Roger Nabeyama Michels
- Department of Mechanical Engineering, Federal University of Technology-Paraná, Londrina, Brazil
| | | | - Gylles Ricardo Ströher
- Post-graduate program in Chemical Engineering, Federal University of Technology-Paraná, Apucarana, Brazil
| | - Marianne Ayumi Shirai
- Post-graduate Program in Food Technology, Federal University of Technology-Paraná, Pioneiros 3131, Londrina, PR 86036-370, Brazil.
| |
Collapse
|
6
|
Wu Y, Gao Y, Li C. Preparation and characterization of smart indicator films based on gellan gum/modified black rice anthocyanin/curcumin for improving the stability of natural anthocyanins. Int J Biol Macromol 2023; 253:127436. [PMID: 37839606 DOI: 10.1016/j.ijbiomac.2023.127436] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
In order to improve the stability of natural anthocyanins in intelligent packaging materials, this work first modified black rice anthocyanins (BRA) by acylation with acetic acid, then modified the acylated BRA by co-coloring with different ratios of curcumin (CUR), and finally added the mixed indicator to gellan gum (GG) to develop intelligent packaging films with good stability. The UV spectroscopy results showed that acetic acid had successfully modified the BRA, while the thermal, photostability and pH stability of the modified black rice anthocyanin (MBRA) were significantly enhanced. The indicators of BRA, MBRA and MBRA mixed with CUR showed excellent pH sensitivity in different buffer solutions. The SEM, FT-IR and XRD results indicated apparent crystalline aggregates on the surface of the films added with a high concentration of CUR. Compared with GG-BRA film, GG-MBRA film improved all properties except for antioxidant performance. Notably, the GG-MBRA/CUR series composite films exhibited significant improvements over the GG-BRA and GG-MBRA films in terms of optical characteristics, mechanical properties, water vapor barrier, oxidation resistance, and color stability; meanwhile, all films exhibited excellent pH sensitivity. Considering all the properties of the films, GG-MBRA/CUR3 film has tremendous potential as a smart indicator film for improving freshness accuracy.
Collapse
Affiliation(s)
- Yanglin Wu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan Gao
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
7
|
Koirala P, Sriprablom J, Winuprasith T. Anthocyanin-Rich Butterfly Pea Petal Extract Loaded Double Pickering Emulsion Containing Nanocrystalline Cellulose: Physicochemical Properties, Stability, and Rheology. Foods 2023; 12:4173. [PMID: 38002230 PMCID: PMC10671032 DOI: 10.3390/foods12224173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Butterfly pea petal extract (BPE)-loaded water-in-oil-in-water (W/O/W) emulsions were fabricated using nanocrystalline cellulose (NCC) as a hydrophilic stabilizer and polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier. The impact of different concentrations of NCC and PGPR in different phase proportions on the emulsion formation, rheology, and stability of an anthocyanin-loaded (pH ≈ 7.0) emulsion was investigated. The mean droplet size of the emulsions increased as the NCC concentration increased, while color intensity (greenness) decreased as the PGPR and NCC concentrations increased. A microscopic examination confirmed that the NCC nanoparticles stabilized the inner W1/O phase, whereas the excess concentration of non-adsorbing NCC nanoparticles was suspended in the continuous aqueous phase. The rheological results showed that robust emulsion networks were formed when the NCC concentration increased. A network structure between the droplets and the development of the NCC network during the continuous phase were attributed to a gel-like behavior. Over the course of seven days, the emulsions with a higher proportion of NCC remained stable, as in samples 3%P-%N, 5%P-2%N, and 5%P@1%N, the total anthocyanin content decreased from 89.83% to 76.49%, 89.40% to 79.65, and 86.63% to 71.40%, respectively. These findings have significant implications for the accurate formulation of particle-stabilized double emulsions for anthocyanin delivery with higher stability.
Collapse
Affiliation(s)
| | | | - Thunnalin Winuprasith
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73070, Thailand; (P.K.); (J.S.)
| |
Collapse
|
8
|
Li Q, Zhang F, Wang Z, Feng Y, Han Y. Advances in the Preparation, Stability, Metabolism, and Physiological Roles of Anthocyanins: A Review. Foods 2023; 12:3969. [PMID: 37959087 PMCID: PMC10647620 DOI: 10.3390/foods12213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Anthocyanins are natural flavonoid polyphenolic compounds widely found in fruits and vegetables. They exhibit antioxidant properties and prophylactic effects in the immune and cardiovascular systems, confer protection against cancer, and contribute to the prevention of cardiovascular diseases. Thus, their incorporation into functional foods, pharmaceuticals, supplements, and cosmetic formulations aims at promoting human well-being. This review comprehensively outlined the structural attributes of anthocyanins, expanding upon diverse methodologies employed for their extraction and production. Additionally, the stability, metabolic pathways, and manifold physiological functions of anthocyanins were discussed. However, their constrained fat solubility, susceptibility to instability, and restricted bioavailability collectively curtail their applicability and therapeutic efficacy. Consequently, a multidimensional approach was imperative, necessitating the exploration of innovative pathways to surmount these limitations, thereby amplifying the utilitarian significance of anthocyanins and furnishing pivotal support for their continual advancement and broader application.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhen Zhang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Zhenzhen Wang
- School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yaoze Feng
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
9
|
Wu T, Zhu W, Chen L, Jiang T, Dong Y, Wang L, Tong X, Zhou H, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. A review of natural plant extracts in beverages: Extraction process, nutritional function, and safety evaluation. Food Res Int 2023; 172:113185. [PMID: 37689936 DOI: 10.1016/j.foodres.2023.113185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The demand for foods and beverages with therapeutic and functional features has increased as a result of rising consumer awareness of health and wellness. In natural, plants are abundant, widespread, and inexpensive, in addition to being rich in bioactive components that are beneficial to health. The bioactive substances contained in plants include polyphenols, polysaccharides, flavonoids, aromatics, aliphatics, terpenoids, etc., which have rich active functions and application potential for plant-based beverages. In this review, various existing extraction processes and their advantages and disadvantages are introduced. The antioxidant, anti-inflammatory, intestinal flora regulation, metabolism regulation, and nerve protection effects of plant beverages are described. The biotoxicity and sensory properties of plant-based beverages are also summarized. With the diversification of the food industry and commerce, plant-based beverages may become a promising new category of health functional foods in our daily lives.
Collapse
Affiliation(s)
- Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tao Jiang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Letao Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
10
|
Yu Q, Yu F, Li Q, Zhang J, Peng Y, Wang X, Li T, Yin N, Sun G, Ouyang H, Chen Y, Mine Y, Tsao R, Zhang H. Anthocyanin-Rich Butterfly Pea Flower Extract Ameliorating Low-Grade Inflammation in a High-Fat-Diet and Lipopolysaccharide-Induced Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11941-11956. [PMID: 37526116 DOI: 10.1021/acs.jafc.3c02696] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This study aimed to explore the enhancive effects of butterfly pea flower (BF) extracts on metabolic and immune homeostasis in a low-grade inflammation mouse model. The BF extract was found to contain mainly anthocyanins among other flavonoids. BF supplementation alleviated metabolic endotoxemia by lowering the plasma glucose, lipopolysaccharide (LPS), and tumor necrosis factor-α (TNF-α) levels and restored lipid metabolism and the balance between Treg and Th17 cells, thereby inhibiting the dysfunctional liver and abdominal white adipose tissues. BF extract increased the tight junction protein expression and reduced the expression of proinflammatory cytokines, therefore sustaining the colonic mucosa structure. Furthermore, BF extracts reshaped the gut microbiota structure characterized by significantly promoted SCFA-producing gut microbiota such as Akkermansia and Butyricicoccaceae. Additionally, BF extracts enhanced fecal primary bile acid (BA) levels and modulated bile acid signaling in the liver and ileum to facilitate BA synthesis for the restoration of lipid metabolism. In summary, anthocyanin-enriched BF extracts alleviated the profound negative dietary alterations and helped maintain the metabolic health by modulating the various aspects of the gut microenvironment and enhancing hepatic bile acid synthesis.
Collapse
Affiliation(s)
- Qinqin Yu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Fengyao Yu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiong Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - You Peng
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, China
| | - Xiaoya Wang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tao Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ning Yin
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Genlin Sun
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui Ouyang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yuhuan Chen
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Rong Tsao
- Guelph Food Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
11
|
Grzebieniarz W, Tkaczewska J, Juszczak L, Kawecka A, Krzyściak P, Nowak N, Guzik P, Kasprzak M, Janik M, Jamróz E. The influence of aqueous butterfly pea (Clitoria ternatea) flower extract on active and intelligent properties of furcellaran Double-Layered films - in vitro and in vivo research. Food Chem 2023; 413:135612. [PMID: 36773363 DOI: 10.1016/j.foodchem.2023.135612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Innovative, intelligent and active double-layer films, based on furcellaran and with the addition of gelatin hydrolysates, have been obtained for the first time. An aqueous extract of clitoria flower in 3 concentrations was included in the 1st FUR layer. The films demonstrated strong antimicrobial effects, but did not exhibit fungicidal properties. The antioxidant properties of the films were within the range of 2.27-3.92 mM Trolox/mg (FRAP method) and 36.67-61.24 % (DPPH method). The films were used as active packaging materials in salmon fillets, which were stored for a period of 12 days in 4 °C. Analysis concerning microbiological properties of the stored fillets showed the possibility of extending their shelf-life by 6 days. Lipid oxidation, determined by TBARS has delayed. The obtained films are a promising material for the packaging industry. This is an important aspect within the context of global food waste and also the need to reduce synthetic materials.
Collapse
Affiliation(s)
- Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland.
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Lesław Juszczak
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej Street 13/15, PL-42-200 Częstochowa, Poland
| | - Agnieszka Kawecka
- Department of Product Packaging, Cracow University of Economics, Rakowicka Street 27, PL-31-510 Kraków, Poland
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Faculty of Medicine, Jagiellonian University Medical College, Czysta Street 18, PL-31-121 Kraków, Poland
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Paulina Guzik
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Magdalena Janik
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Kraków, Poland
| |
Collapse
|
12
|
Wang L, Yang C, Deng X, Peng J, Zhou J, Xia G, Zhou C, Shen Y, Yang H. A pH-sensitive intelligent packaging film harnessing Dioscorea zingiberensis starch and anthocyanin for meat freshness monitoring. Int J Biol Macromol 2023; 245:125485. [PMID: 37348585 DOI: 10.1016/j.ijbiomac.2023.125485] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Abundant starch was isolated from Dioscorea zingiberensis C.H. Wright, a novel and underutilized industrial crop resource. In this study, an intelligent packaging film able to indicate food freshness was developed and characterized. D. zingiberensis starch (DZS) was bleached first, and its particle size, total starch content, amylose content, and gelatinization temperature were then measured. Butterfly pea (Clitoria ternatea Linn.) flowers were selected as the source of polyphenols, which rendered the prepared film intelligent and progressively blue-violet. SEM and FT-IR analyses showed the homogeneous dispersion of butterfly pea flower extract (BPE) in the film. The BPE-loaded film showed improved flexibility and resistance to UV and oxidation while maintaining sufficient mechanical strength and physical properties. Moreover, the film underwent a distinguishable color change from red to blue-violet and finally to green-yellow with increasing pH from 2 to 13. Similar color alteration also occurred when the film was exposed to ammonia. When the film was used to monitor the freshness of chicken stored at room temperature, it exhibited an obvious color change, implying its deterioration. Therefore, the newly developed BPE-DZS film, which was produced from readily accessible natural substances, can serve as an intelligent packaging material, indicating food freshness and prolonging shelf life.
Collapse
Affiliation(s)
- Liwei Wang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Chengyu Yang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaoli Deng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jiangsong Peng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jinwei Zhou
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Guohua Xia
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yuping Shen
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Huan Yang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Xie C, Li J, Fang Y, Ma R, Dang Z, Yang F. Proanthocyanins and anthocyanins in chestnut (Castanea mollissima) shell extracts: biotransformation in the simulated gastrointestinal model and interaction with gut microbiota in vitro. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3659-3673. [PMID: 36754602 DOI: 10.1002/jsfa.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/20/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chestnut (Castanea mollissima) shell is rich in flavonoids and our previous studies showed that proanthocyanins and anthocyanins were the two markedly varied flavonoids in chestnut shell extracts (CSE) during digestion. Here, the biotransformation of proanthocyanins and anthocyanins in a simulated gastrointestinal model, and the interactions between non-absorption CSE (NACSE) and gut microbiota in vitro, were investigated by ultra-high-performance liquid chromatography combined with triple-quadrupole mass spectrometry and 16S rRNA sequencing. RESULTS Chestnut shell was richer in proanthocyanins and anthocyanins, while the loss of proanthocyanins was greater after digestion. Additionally, the content of anthocyanin decreased after gastric digestion but increased after intestinal digestion and remained stable after fermentation. After fermentation, delphinidin-3-O-sambubioside and pelargonidin-3-O-galactoside were newly formed. Furthermore, microbiome profiling indicated that NACSE promoted the proliferation of beneficial bacteria, while inhibiting pathogenic bacteria. CONCLUSION All these data suggest that CSE may be a promising candidate to protect gut health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenyang Xie
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jie Li
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yihe Fang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Renyi Ma
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhixiong Dang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Fang Yang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, China
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
14
|
Shiau SY, Yu Y, Li J, Huang W, Feng H. Phytochemical-Rich Colored Noodles Fortified with an Aqueous Extract of Clitoria ternatea Flowers. Foods 2023; 12:foods12081686. [PMID: 37107480 PMCID: PMC10137818 DOI: 10.3390/foods12081686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Clitoria ternatea (CT) flowers are rich in phytochemicals. An innovative approach was taken to utilize CT flower extract (CTFE) as a functional ingredient with natural pigment by incorporating it into noodles. The aim of this study was to examine the effect of the CTFE amount (0-30%) on the color, texture, phytochemicals, and sensory quality of both dried and cooked noodles. Dried noodles with 30% CTFE had the highest total anthocyanins (9.48 μg/g), polyphenols (612 μg/g), DPPH radical scavenging capacity (165 μg TE/g), and reducing power (2203 μg TE/g). Cooking resulted in a significant decrease in the anthocyanin levels and blue color, while also increasing the greenness of the noodle. Both dried and cooked noodles with 20-30% CTFE showed a significantly higher color preference compared to the control sample. Despite a significant reduction in the cutting force, tensile strength, and extensibility of cooked noodles with 20-30% CTFE, the sensory attributes such as flavor, texture, and overall preferences were similar to those of noodles with 0-30% CTFE. Blue noodles with high phytochemicals, antioxidant activities, and desirable sensory qualities can be produced by the incorporation of 20-30% CTFE.
Collapse
Affiliation(s)
- Sy-Yu Shiau
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
- Department of Food Science and Technology, Tajen University, Pingtung County 90741, Taiwan
| | - Yanli Yu
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
| | - Jing Li
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
| | - Wenbo Huang
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
| | - Haixia Feng
- Department of Food Nutrition and Safety, Sanda University, Shanghai 201209, China
| |
Collapse
|
15
|
Zhang W, Zhu H, Rong L, Chen Y, Yu Q, Shen M, Xie J. Purple red rice bran anthocyanins reduce the digestibility of rice starch by forming V-type inclusion complexes. Food Res Int 2023; 166:112578. [PMID: 36914341 DOI: 10.1016/j.foodres.2023.112578] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Purple red rice bran, a by-product of the rice polishing process, contained abundant anthocyanins. However, most of them were discarded resulting in a waste of resources. This study investigated the effects of purple red rice bran anthocyanin extracts (PRRBAE) on the physicochemical properties and digestive properties of rice starch and its mechanism of action. Infrared spectroscopy and X-ray diffraction indicated that PRRBAE could interact with rice starch through non-covalent bonds to form intrahelical V-type complexes. The DPPH and ABTS+ assays showed that PRRBAE could confer better antioxidant activity on rice starch. In addition, the PRRBAE could increase the resistant starch content and decrease the enzyme activities by changing the tertiary and secondary structure of starch-digesting enzymes. Further, molecular docking suggested that aromatic amino acids play a key role in the interaction of starch-digesting enzymes with PRRBAE. These findings will contribute to a better understanding of the mechanism of PRRBAE reducing starch digestibility, and to the development of high value-added products and low glycemic index (GI) foods.
Collapse
Affiliation(s)
- Weidong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Haibin Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
16
|
Wu Y, Li C. A double-layer smart film based on gellan gum/modified anthocyanin and sodium carboxymethyl cellulose/starch/Nisin for application in chicken breast. Int J Biol Macromol 2023; 232:123464. [PMID: 36720329 DOI: 10.1016/j.ijbiomac.2023.123464] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
In order to overcome this challenge of poor stability of natural anthocyanins in intelligent packaging materials, roselle anthocyanin (RA) was first modified by acetic acid, and then a double-layer smart indication antimicrobial film was developed using modified roselle anthocyanin (MRA)-gellan gum (GG) as the inner layer and sodium carboxymethyl cellulose (CMC)-starch (ST)-Nisin as the outer layer. UV spectra revealed that acetic acid was successfully grafted onto RA, which dramatically improved their thermal stability, antioxidant capabilities, photostability, and pH stability. The bilayer films were successfully prepared, as revealed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction measurements. In comparison to GG-MRA and CMC-ST-Nisin films, the water content, water solubility, mechanical characteristics, water vapor barrier, oxygen barrier, and hydrophobicity of GG-MRA@CMC-ST-Nisin films were significantly enhanced. The presence of the outer layer films significantly enhanced the UV-vis light barrier, opacity, antioxidant and antibacterial properties of the inner layer films. When the films were applied to chicken breast, it was found that the indicator films not only monitored the freshness of the chicken in real-time but also that the GG-MRA film and the double-layer film were effective in extending the shelf life of the chicken by 1 and 2 days, respectively, compared to the control group.
Collapse
Affiliation(s)
- Yanglin Wu
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
17
|
Nikolaichuk H, Choma IM, Morlock GE. Effect-Directed Profiling of Akebia quinata and Clitoria ternatea via High-Performance Thin-Layer Chromatography, Planar Assays and High-Resolution Mass Spectrometry. Molecules 2023; 28:molecules28072893. [PMID: 37049655 PMCID: PMC10096148 DOI: 10.3390/molecules28072893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Two herbal plants, Akebia quinata D. leaf/fruit and Clitoria ternatea L. flower, well-known in traditional medicine systems, were investigated using a non-target effect-directed profiling. High-performance thin-layer chromatography (HPTLC) was combined with 11 different effect-directed assays, including two multiplex bioassays, for assessing their bioactivity. Individual active zones were heart-cut eluted for separation via an orthogonal high-performance liquid chromatography column to heated electrospray ionization high-resolution mass spectrometry (HPLC-HESI-HRMS) for tentative assignment of molecular formulas according to literature data. The obtained effect-directed profiles provided information on 2,2-diphenyl-1-picrylhydrazyl scavenging, antibacterial (against Bacillus subtilis and Aliivibrio fischeri), enzyme inhibition (tyrosinase, α-amylase, β-glucuronidase, butyrylcholinesterase, and acetylcholinesterase), endocrine (agonists and antagonists), and genotoxic (SOS-Umu-C) activities. The main bioactive compound zones in A. quinata leaf were tentatively assigned to be syringin, vanilloloside, salidroside, α-hederin, cuneataside E, botulin, and oleanolic acid, while salidroside and quinatic acids were tentatively identified in the fruit. Taraxerol, kaempherol-3-rutinoside, kaempferol-3-glucoside, quercetin-3-rutinoside, and octadecenoic acid were tentatively found in the C. ternatea flower. This straightforward hyphenated technique made it possible to correlate the biological properties of the herbs with possible compounds. The meaningful bioactivity profiles contribute to a better understanding of the effects and to more efficient food control and food safety.
Collapse
Affiliation(s)
- Hanna Nikolaichuk
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- Department of Chromatography, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20031 Lublin, Poland
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Jaczewskiego St. 8b, 20090 Lublin, Poland
| | - Irena M Choma
- Department of Chromatography, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20031 Lublin, Poland
| | - Gertrud E Morlock
- Chair of Food Science, Institute of Nutritional Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
18
|
Câmara JS, Locatelli M, Pereira JAM, Oliveira H, Arlorio M, Fernandes I, Perestrelo R, Freitas V, Bordiga M. Behind the Scenes of Anthocyanins-From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022; 14:5133. [PMID: 36501163 PMCID: PMC9738495 DOI: 10.3390/nu14235133] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anthocyanins are widespread and biologically active water-soluble phenolic pigments responsible for a wide range of vivid colours, from red (acidic conditions) to purplish blue (basic conditions), present in fruits, vegetables, and coloured grains. The pigments' stability and colours are influenced mainly by pH but also by structure, temperature, and light. The colour-stabilizing mechanisms of plants are determined by inter- and intramolecular co-pigmentation and metal complexation, driven by van der Waals, π-π stacking, hydrogen bonding, and metal-ligand interactions. This group of flavonoids is well-known to have potent anti-inflammatory and antioxidant effects, which explains the biological effects associated with them. Therefore, this review provides an overview of the role of anthocyanins as natural colorants, showing they are less harmful than conventional colorants, with several technological potential applications in different industrial fields, namely in the textile and food industries, as well as in the development of photosensitizers for dye-sensitized solar cells, as new photosensitizers in photodynamic therapy, pharmaceuticals, and in the cosmetic industry, mainly on the formulation of skin care formulations, sunscreen filters, nail colorants, skin & hair cleansing products, amongst others. In addition, we will unveil some of the latest studies about the health benefits of anthocyanins, mainly focusing on the protection against the most prevalent human diseases mediated by oxidative stress, namely cardiovascular and neurodegenerative diseases, cancer, and diabetes. The contribution of anthocyanins to visual health is also very relevant and will be briefly explored.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Monica Locatelli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marco Arlorio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, Natural Products Research Group, Campus Universitário da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
19
|
Wang Y, Liu T, Xie Y, Li N, Liu Y, Wen J, Zhang M, Feng W, Huang J, Guo Y, Kabbas Junior T, Wang D, Granato D. Clitoria ternatea blue petal extract protects against obesity, oxidative stress, and inflammation induced by a high-fat, high-fructose diet in C57BL/6 mice. Food Res Int 2022; 162:112008. [DOI: 10.1016/j.foodres.2022.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
|
20
|
Netravati, Gomez S, Pathrose B, N MR, P MJ, Kuruvila B. Comparative evaluation of anthocyanin pigment yield and its attributes from Butterfly pea (Clitorea ternatea L.) flowers as prospective food colorant using different extraction methods. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
Naji AM, Başyiğit B, Alaşalvar H, Salum P, Berktaş S, Erbay Z, Çam M. Instant soluble roselle (Hibiscus sabdariffa L.) powder rich in bioactive compounds: Effect of the production process on volatile compounds. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Jeyaraj EJ, Lim YY, Choo WS. Antioxidant, cytotoxic, and antibacterial activities of Clitoria ternatea flower extracts and anthocyanin-rich fraction. Sci Rep 2022; 12:14890. [PMID: 36050436 PMCID: PMC9436976 DOI: 10.1038/s41598-022-19146-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Clitoria ternatea flower is a traditional medicinal herb that has been used as a natural food colourant. As there are limited studies on investigating the bioactivities of the anthocyanin-rich fraction of Clitoria ternatea flower, this study aimed to determine an efficient column chromatography method to obtain the anthocyanin-rich fraction from this flower and characterise its composition, antioxidant, antibacterial, and cytotoxic activities. Amberlite XAD-16 column chromatography was more efficient in enriching the total anthocyanin content (TAC) of the fraction with the highest TAC to total phenolic content (TPC) ratio of 1:6 than that using C18-OPN. A total of 11 ternatin anthocyanins were characterised in the anthocyanin-rich fraction by LC–MS analysis. The antioxidant activity of the anthocyanin-rich fraction was more potent in the chemical-based assay with an IC50 value of 0.86 ± 0.07 mg/mL using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay than cellular antioxidant assay using RAW 264.7 macrophages. In vitro cytotoxicity assay using human embryonic kidney HEK-293 cell line showed the anthocyanin-rich fraction to be more toxic than the crude extracts. The anthocyanin-rich fraction had more potent antibacterial activity than the crude extracts against Bacillus cereus, Bacillus subtilis, and Escherichia coli. The anthocyanin-rich fraction of C. ternatea has the potential to be used and developed as a functional food ingredient or nutraceutical agent.
Collapse
Affiliation(s)
- Ethel Jeyaseela Jeyaraj
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yau Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
23
|
Qi D, Xiao Y, Xia L, Li L, Jiang S, Jiang S, Wang H. Colorimetric films incorporated with nisin and anthocyanins of pomegranate/Clitoria ternatea for shrimp freshness monitoring and retaining. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Purple red rice anthocyanins alleviate intestinal damage in cyclophosphamide-induced mice associated with modulation of intestinal barrier function and gut microbiota. Food Chem 2022; 397:133768. [PMID: 35908466 DOI: 10.1016/j.foodchem.2022.133768] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
The regulatory effects of purple red rice bran anthocyanins (PRBA) on intestinal barrier function and gut microbiota in mice were investigated. Results showed that PRBA had an ameliorative effect on intestinal barrier damage, including restoration of villus length, improvement in the number of cupped cells and promotion of sIgA secretion. PRBA stimulated the production of cytokines, reduced the levels of endotoxin (ET) and lipopolysaccharide binding protein (LBP) in serum, as well as upregulated the expression of tight junction proteins (TJs) and NF-κB pathway proteins. Furthermore, PRBA not only promoted the production of short-chain fatty acids (SCFAs), but also regulated the intestinal microbiota by increasing beneficial bacteria (Lachnospiraceae, Bacteroidaceae, Ruminococcaceae) and reducing pathogenic bacteria (Shigella) to maintained intestinal homeostasis. Above results indicated that PRBA could ameliorate cyclophosphamide-induced impairment of intestinal barrier function and dysregulation of the gut microbiota, which provides a new idea for broadening the exploitation of PRBA.
Collapse
|
25
|
Shiau S, Yu Y, Pan W, Li G. Colorful and health improving Chinese steamed bread fortified by anthocyanin‐rich extract of butterfly pea flower. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Yan‐Li Yu
- Department of Food Nutrition and Safety Sanda University Shanghai China
| | - Wei‐Chen Pan
- Department of Food Science and Technology Tajen University Pingtung ROC Taiwan
| | - Guan‐Hua Li
- Department of Food Science and Technology, Jiangsu Agri‐animal Husbandry Vocational College Taizhou Jiangsu China
| |
Collapse
|
26
|
Chen T, Lu H, Shen M, Yu Q, Chen Y, Wen H, Xie J. Phytochemical composition, antioxidant activities and immunomodulatory effects of pigment extracts from Wugong Mountain purple red rice bran. Food Res Int 2022; 157:111493. [PMID: 35761713 DOI: 10.1016/j.foodres.2022.111493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The study was to investigate the phytochemical composition, antioxidant activities and the immunomodulatory effects on cyclophosphamide-induced (cy-induced) immunosuppressed mice of purple red rice bran pigment extracts (PRBP). The phytochemical composition of total anthocyanins, total phenolic and total flavonoid contents were evaluated. Moreover, UV-Vis, FT-IR and UPLC-ESI-QTOF-MS spectra analysis identified for the first time the presence of seventeen anthocyanins in PRBP, including five anthocyanin aglycones and twelve acetylated anthocyanins, suggesting that PRBP were a highly acylated anthocyanin profile. The DPPH, ABTS+, hydroxyl radical scavenging activity and FRAP assays showed that PRBP had excellent antioxidant activities. Further, the results of animal experiments showed that PRBP alleviated immune organ damage and recovered damaged immune function, such as preventing the reduction of body weight, spleen and thymus organ indexes, and significantly increasing the levels of TNF-α, IL-6 and IL-1β in spleen which indicated that PRBP alleviated immunosuppression in Cy-induced mice. The immunomodulatory activity of PRBP was reflected by the upregulation of MAPK signaling pathways after gavage. Taken together, these results suggest that PRBP possessed a certain antioxidant and immunomodulatory abilities. These findings will lead to a better understanding of the biological properties of PRBP and broaden its utilization in food processing.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hanyu Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
27
|
Vidana Gamage GC, Lim YY, Choo WS. Sources and relative stabilities of acylated and nonacylated anthocyanins in beverage systems. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:831-845. [PMID: 35185195 PMCID: PMC8814286 DOI: 10.1007/s13197-021-05054-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Anthocyanins are considered as the largest group of water-soluble pigments found in the vacuole of plant cells, displaying range of colors from pink, orange, red, purple and blue. They belong to flavonoids, a polyphenolic subgroup. Application of anthocyanins in food systems as natural food colourants is limited due to the lack of stability under different environmental conditions such as light, pH, heat etc. Anthocyanins esterified with one or more acid groups are referred as acylated anthocyanins. Based on the presence or absence of acyl group, anthocyanins are categorized as acylated and nonacylated anthocyanins. Acylated anthocyanins are further classified as mono, di, tri, tetra acylated anthocyanins according to the number of acyl groups present in the anthocyanin. This review classifies common anthocyanin sources into non-acylated, mono-, di-, tri- and tetra-acylated anthocyanins based on the major anthocyanins present in these sources. The relative stabilities of these anthocyanins with respect to thermal, pH and photo stress in beverage systems are specifically discussed. Common anthocyanin sources such as elderberry, blackberry, and blackcurrant mainly contain nonacylated anthocyanins. Red radish, purple corn, black carrot also mainly contain mono acylated anthocyanins. Red cabbage and purple sweet potato have both mono and diacylated anthocyanins. Poly acylated anthocyanins show relatively higher stability compared with nonacylated and monoacylated anthocyanins. Several techniques such as addition of sweeteners, co-pigmentation and acylation techniques could enhance the stability of nonacylated anthocyanins. Flowers are main sources of polyacylated anthocyanins having higher stability, yet they have not been commercially exploited for their anthocyanins.
Collapse
Affiliation(s)
| | - Yau Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
28
|
An K, Jialu J, Qin L, Xianjie S, Yan C, Jiani T, Liu L, Weixing S, DongXin T, Haibo C, Dongdong S. Characterization of the chemical constituents and in vivo metabolic profile of Scutellaria barbata D. Don by ultra-high performance liquid chromatography-high resolution mass spectrometry. J Sep Sci 2022; 45:1600-1609. [PMID: 35192736 DOI: 10.1002/jssc.202100852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/06/2022]
Abstract
Scutellaria barbata D. Don (S. barbata) is one of the most frequently used anticancer herb medicine in China. Mechanistic understanding of the biological activities of S. barbata is hindered by limited knowledge regarding its components and metabolic profile. In this study, ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry (quadrupole time-of-flight mass spectrometry,) was used to identify the chemical constituents in S. barbata and their metabolic profiles in rats. By applying cleavage rules and comparison with reference substances, 89 components were identified, which included 45 flavonoids, 28 diterpenoids, 10 phenolics, and 6 others. A total of 110 compounds, including 32 prototype compounds and 78 metabolites, were identified or tentatively characterized in vivo. Methylation, sulfonation, and glucuronidation were the main metabolic pathways, which could be attributed to the fact that several of the compounds in S. barbata have phenolic hydroxyl groups. This is the first systematic study on the chemical constituents and in vivo metabolic profile of S. barbata. The analytical method features a quick and comprehensive dissection of the chemical composition and metabolic profile of S. barbata and provides a basis for exploring its various biological activates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kang An
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang Jialu
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Qin
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sheng Xianjie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tan Jiani
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Liu
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shen Weixing
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tang DongXin
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Cheng Haibo
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Research Center for Pathogenesis Theory of Cancerous Toxin and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sun Dongdong
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Research Center for Pathogenesis Theory of Cancerous Toxin and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
29
|
Idham Z, Putra NR, Aziz AHA, Zaini AS, Rasidek NAM, Mili N, Yunus MAC. Improvement of extraction and stability of anthocyanins, the natural red pigment from roselle calyces using supercritical carbon dioxide extraction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Vidana Gamage GC, Lim YY, Choo WS. Anthocyanins From Clitoria ternatea Flower: Biosynthesis, Extraction, Stability, Antioxidant Activity, and Applications. FRONTIERS IN PLANT SCIENCE 2021; 12:792303. [PMID: 34975979 PMCID: PMC8718764 DOI: 10.3389/fpls.2021.792303] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/25/2021] [Indexed: 05/02/2023]
Abstract
Clitoria ternatea plant is commonly grown as an ornamental plant and possesses great medicinal value. Its flower is edible and also known as blue pea or butterfly pea flower. The unique feature of anthocyanins present in blue pea flowers is the high abundance of polyacylated anthocyanins known as ternatins. Ternatins are polyacylated derivatives of delphinidin 3,3',5'-triglucoside. This review covers the biosynthesis, extraction, stability, antioxidant activity, and applications of anthocyanins from Clitoria ternatea flower. Hot water extraction of dried or fresh petals of blue pea flower could be employed successfully to extract anthocyanins from blue pea flower for food application. Blue pea flower anthocyanins showed good thermal and storage stability, but less photostability. Blue pea flower anthocyanins also showed an intense blue colour in acidic pH between pH 3.2 to pH 5.2. Blue pea flower anthocyanin extracts demonstrate significant in vitro and cellular antioxidant activities. Blue pea flower anthocyanins could be used as a blue food colourant in acidic and neutral foods. The incorporation of blue pea flower anthocyanins in food increased the functional properties of food such as antioxidant and antimicrobial properties. Blue pea flower anthocyanins have also been used in intelligent packaging. A comparison of blue pea flower anthocyanins with two other natural blue colouring agents used in the food industry, spirulina or phycocyanin and genipin-derived pigments is also covered. Anthocyanins from blue pea flowers are promising natural blue food colouring agent.
Collapse
Affiliation(s)
| | | | - Wee Sim Choo
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
31
|
Fu X, Wu Q, Wang J, Chen Y, Zhu G, Zhu Z. Spectral Characteristic, Storage Stability and Antioxidant Properties of Anthocyanin Extracts from Flowers of Butterfly Pea ( Clitoria ternatea L.). Molecules 2021; 26:molecules26227000. [PMID: 34834097 PMCID: PMC8622631 DOI: 10.3390/molecules26227000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022] Open
Abstract
Anthocyanins from flowers of the butterfly pea (Clitoria ternatea L.) are promising edible blue food colorants. Food processing often faces extreme pHs and temperatures, which greatly affects the color and nutritional values of anthocyanins. This study explored the color, spectra, storage stability, and antioxidant properties of C. ternatea anthocyanin extract (CTAE) at different pHs. The color and absorption spectra of CTAEs at a pH of 0.5–13 were shown, with their underlying structures analyzed. Then, the storage stability of CTAEs were explored under a combination of pHs and temperatures. The stability of CTAE declines with the increase in temperature, and it can be stored stably for months at 4 °C. CTAEs also bear much resistance to acidic and alkaline conditions but exhibit higher thermal stability at pH 7 (blue) than at pH 0.5 (magenta) or pH 10 (blue-green), which is a great advantage in food making. Antioxidant abilities for flower extracts from the butterfly pea were high at pH 4–7, as assessed by DPPH free radical scavenging assays, and decreased sharply when the pH value exceeded 7. The above results provide a theoretical basis for the application of butterfly pea flowers and imply their great prospect in the food industry.
Collapse
Affiliation(s)
- Xueying Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
| | - Qiang Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
| | - Jian Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou 570228, China;
| | - Yanli Chen
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
| | - Zhixin Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China; (X.F.); (Q.W.); (Y.C.); (G.Z.)
- Correspondence:
| |
Collapse
|
32
|
Fidelis M, Granato D. Technological applications of phenolic-rich extracts for the development of non-dairy foods and beverages. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:101-123. [PMID: 34507640 DOI: 10.1016/bs.afnr.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Fruits and other vegetables are sources of bioactive compounds, especially carotenoids, terpenoids, and phenolic compounds. With the focus on sustainability, these compounds' recovery has become a research trend in the last 20 years. However, the correct use of solvents and the steps required to assess the extracts' suitability to be added in food models have been poorly described. Thus, in this review, we attempt to show the pathways and provide guidance on the tailored-made use of solvents for recovering bioactive polyphenolic compounds from food matrices. Special attention is given to the toxicological safety of polyphenol-rich extracts and also their impacts on bioactivity and sensory acceptance of foods and beverages. Practical examples are described and commented on the applications of polyphenol-rich extracts in non-dairy foods and beverages. In summary, the alliance among food science, food technologies, biochemistry, and pharmacology are required to make the development of non-dairy polyphenol-rich foods feasible.
Collapse
Affiliation(s)
- Marina Fidelis
- Food Processing and Quality, Production Systems Unit, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
33
|
Oancea S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants (Basel) 2021; 10:1337. [PMID: 34572968 PMCID: PMC8468304 DOI: 10.3390/antiox10091337] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
Anthocyanins are colored valuable biocompounds, of which extraction increases globally, although functional applications are restrained by their limited environmental stability. Temperature is a critical parameter of food industrial processing that impacts on the food matrix, particularly affecting heat-sensitive compounds such as anthocyanins. Due to the notable scientific progress in the field of thermal stability of anthocyanins, an analytical and synthetic integration of published data is required. This review focuses on the molecular mechanisms and the kinetic parameters of anthocyanin degradation during heating, both in extracts and real food matrices. Several kinetic models (Arrhenius, Eyring, Ball) of anthocyanin degradation were studied. Crude extracts deliver more thermally stable anthocyanins than purified ones. A different anthocyanin behavior pattern within real food products subjected to thermal processing has been observed due to interactions with some nutrients (proteins, polysaccharides). The most recent studies on the stabilization of anthocyanins by linkages to other molecules using classical and innovative methods are summarized. Ensuring appropriate thermal conditions for processing anthocyanin-rich food will allow a rational design for the future development of stable functional products, which retain these bioactive molecules and their functionalities to a great extent.
Collapse
Affiliation(s)
- Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550024 Sibiu, Romania
| |
Collapse
|
34
|
Thuy NM, Minh VQ, Ben TC, Thi Nguyen MT, Ha HTN, Tai NV. Identification of Anthocyanin Compounds in Butterfly Pea Flowers ( Clitoria ternatea L.) by Ultra Performance Liquid Chromatography/Ultraviolet Coupled to Mass Spectrometry. Molecules 2021; 26:molecules26154539. [PMID: 34361692 PMCID: PMC8348707 DOI: 10.3390/molecules26154539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/04/2022] Open
Abstract
Butterfly pea flower have great sensory attraction, but they have not yet been used widely in Vietnam. Extracts of butterfly pea flowers can be used conveniently as a natural blue colorant for food products. In this study, the identification of anthocyanin compounds in butterfly pea flowers was performed by UPLC coupled with a UV and Mass spectrometer instrument. Positive and negative ion electrospray MS/MS chromatograms and spectra of the anthocyanin compounds were determined. By analyzing the chromatograms and spectra for each ion, five anthocyanins were identified in the butterfly pea flower extract; these were delphinidin-3-(6″-p-coumaroyl)-rutinoside, cyanidin 3-(6″-p-coumaroyl)-rutinoside, delphinidin-3-(p-coumaroyl) glucose in both cis- and trans- isomers, cyanidin-3-(p-coumaroyl-glucoside) and delphinidin-3-pyranoside. Additionally, based on their intensity, it was determined that cyanidin-3-(p-coumaroyl-glucoside) was the most abundant anthocyanin, followed by cyanidin 3-(6″-p-coumaroyl)-rutinoside, delphinidin-3-(p-coumaroyl-glucoside), delphinidin-3-(6″-p-coumaroyl)-rutinoside and delphinidin-3-pyranoside. In this study, cyanidin derivatives were discovered in butterfly pea flower extract, where these compounds had not been detected in previous studies.
Collapse
Affiliation(s)
- Nguyen Minh Thuy
- Department of Food Technology, College of Agriculture, Can Tho University, Can Tho City 900000, Vietnam; (T.C.B.); (M.T.T.N.); (N.V.T.)
- Correspondence: ; Tel.: +84-918-391-270
| | - Vo Quang Minh
- Department of Land Resources, College of Environment and Natural Resources, Can Tho University, Can Tho City 900000, Vietnam;
| | - Tran Chi Ben
- Department of Food Technology, College of Agriculture, Can Tho University, Can Tho City 900000, Vietnam; (T.C.B.); (M.T.T.N.); (N.V.T.)
| | - My Tuyen Thi Nguyen
- Department of Food Technology, College of Agriculture, Can Tho University, Can Tho City 900000, Vietnam; (T.C.B.); (M.T.T.N.); (N.V.T.)
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Ho Thi Ngan Ha
- Faculty of Agriculture and Natural Resources, An Giang University, Long Xuyen City 90100, Vietnam;
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Ngo Van Tai
- Department of Food Technology, College of Agriculture, Can Tho University, Can Tho City 900000, Vietnam; (T.C.B.); (M.T.T.N.); (N.V.T.)
| |
Collapse
|
35
|
Safflomin A: A novel chemical marker for Carthamus tinctorius L. (Safflower) monofloral honey. Food Chem 2021; 366:130584. [PMID: 34293541 DOI: 10.1016/j.foodchem.2021.130584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022]
Abstract
Monofloral safflower honey (MSH), produced from nectar of the medicinal Carthamus tinctorius L., has been shown with excellent nutritional value and biological activity. However, current MSH authenticity verification is insufficient. Herein, we fully characterized MSH from a metabolomic perspective and proposed a chemical marker for its authentication. Using palynological analysis, we confirmed the botanical origin of MSH. Ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) was applied further to compare MSH/safflower components. MSH and safflowers shared 1297 tentatively identified compounds, of which safflomin A was identified as a reliable characteristic indicator. When applied to commercial non-safflower honeys, none tested safflomin A positive. Solid phase extraction coupled UHPLC/Q-TOF-MS method revealed the LOD and LOQ of safflomin A in MSH to be 0.006 and 0.02 mg/kg, respectively, with concentrations ranging from 0.86 to 3.91 mg/kg. Collectively, safflomin A can be applied as a chemical marker for fingerprinting the botanical origin of safflower honey.
Collapse
|
36
|
Maneesai P, Iampanichakul M, Chaihongsa N, Poasakate A, Potue P, Rattanakanokchai S, Bunbupha S, Chiangsaen P, Pakdeechote P. Butterfly Pea Flower ( Clitoria ternatea Linn.) Extract Ameliorates Cardiovascular Dysfunction and Oxidative Stress in Nitric Oxide-Deficient Hypertensive Rats. Antioxidants (Basel) 2021; 10:523. [PMID: 33801631 PMCID: PMC8065438 DOI: 10.3390/antiox10040523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, we examine whether Clitoria ternatea Linn. (CT) can prevent Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced cardiac and vascular dysfunction in rats. Male Sprague Dawley rats were given L-NAME (40 mg/kg, drinking water) and orally administered with CT extract (300 mg/kg/day) or lisinopril (2.5 mg/kg/day) for 5 weeks. The main phytochemical components of the CT extract were found to be flavonoids. The CT extract alleviated the high blood pressure in rats receiving L-NAME. Decreased vasorelaxation responses to acetylcholine and enhanced contractile responses to sympathetic nerve stimulation in aortic rings and mesenteric vascular beds of L-NAME treated rats were ameliorated by CT extract supplementation. Left ventricular hypertrophy and dysfunction were developed in L-NAME rats, which were partially prevented by CT extract treatment. The CT extract alleviated upregulated endothelial nitric oxide synthase expression, decreased plasma nitrate/nitrite levels, and increased oxidative stress in L-NAME rats. It suppressed high levels of serum angiotensin-converting enzyme activity, plasma angiotensin II, and cardiac angiotensin II type 1 receptor, NADPH oxidases 2, nuclear factor-kappa B, and tumor necrosis factor-alpha expression. The CT extract, therefore, partially prevented L-NAME-induced hypertension and cardiovascular alterations in rats. These effects might be related to a reduction in the oxidative stress and renin-angiotensin system activation due to L-NAME in rats.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Nisita Chaihongsa
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Anuson Poasakate
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
| | | | - Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | | | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (P.M.); (M.I.); (N.C.); (A.P.); (P.P.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
37
|
Moccia F, Martín MÁ, Ramos S, Goya L, Marzorati S, DellaGreca M, Panzella L, Napolitano A. A new cyanine from oxidative coupling of chlorogenic acid with tryptophan: Assessment of the potential as red dye for food coloring. Food Chem 2021; 348:129152. [PMID: 33515953 DOI: 10.1016/j.foodchem.2021.129152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
A red pigment was prepared by reaction of chlorogenic acid (CGA) with tryptophan (TRP) in air at pH 9 (37% w/w yield) and evaluated as food dye. The main component of pigment was formulated as an unusual benzochromeno[2,3-b]indole linked to a TRP unit, featuring a cyanine type chromophore (λmax 542, 546 nm, 1% extinction coefficient of the sodium salt = 244 ± 2). The chromophore showed a minimal pH dependence and proved stable for at least 3 h at 90 °C, both at pH 3.6 or 7.0, whereas red wine anthocyanins showed a substantial (30%) and betanin a complete abatement after 1 h at the acidic pHs. An intense coloring of different food matrices was obtained with the pigment at 0.01 % w/w. No toxicity was observed up to 0.2 mg/mL on hepatic and colonic cell lines. These data make this dye a promising alternative for red coloring of food.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, ICTAN, CSIC, José Antonio Novais 10, 28040 Madrid, Spain.
| | - Sonia Ramos
- Department of Metabolism and Nutrition, ICTAN, CSIC, José Antonio Novais 10, 28040 Madrid, Spain.
| | - Luis Goya
- Department of Metabolism and Nutrition, ICTAN, CSIC, José Antonio Novais 10, 28040 Madrid, Spain.
| | - Stefania Marzorati
- Department of Environmental Science and Policy, via Celoria 2, University of Milan, 20133 Milano, Italy.
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| |
Collapse
|
38
|
Zhao Q, Ma C, Liu J, Chen Z, Zhao H, Li B, Yang X. Synthesis of magnetic covalent organic framework molecularly imprinted polymers at room temperature: A novel imprinted strategy for thermo-sensitive substance. Talanta 2020; 225:121958. [PMID: 33592713 DOI: 10.1016/j.talanta.2020.121958] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Molecularly imprinted polymers (MIPs) with specific selective recognition have shown excellent performance in the rapid and efficient separation and enrichment of targets in complex systems. Unfortunately, it is not suitable for thermosensitive substances with biological functions. To this end, an imine-linked MIPs with covalent organic frameworks and magnetic nanoparticles was developed by using a room temperature synthesis strategy for the purification of Cyaninin-3-O-glucoside (C3G) from black chokeberry. The prepared material recognized C3G through π-π interaction, assisted by hydrogen bond, and will not be disturbed by water environment. The adsorption capacity and equilibrium binding constant were 86.92 mg g-1 and 1.46 L mg-1, respectively. Based on this special structure, it can also act as a "protective umbrella" and improve the stability of C3G. Furthermore, it exhibited high selectivity compared with dummy template imprinting technique. After purification, the purity of C3G was obviously improved (from 11.96% to 84.72%). This work provided a new strategy for the selective separation of anthocyanin and a method to develop MIPs for thermosensitive substances.
Collapse
Affiliation(s)
- Qianyu Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Jingyi Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Zilong Chen
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, 330004, China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Bin Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Jiangxi, Nanchang, 330004, China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Dazhi Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|