1
|
Łozowicka B, Kaczyński P, Iwaniuk P, Rutkowska E, Socha K, Orywal K, Farhan JA, Perkowski M. Nutritional compounds and risk assessment of mycotoxins in ecological and conventional nuts. Food Chem 2024; 458:140222. [PMID: 39002506 DOI: 10.1016/j.foodchem.2024.140222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024]
Abstract
This comprehensive study aimed to determine the level of nutritional compounds (20 amino acids, 11 phenolic acids, and 8 vitamins) and hazard compounds (14 mycotoxins) in ten types of conventional and ecological nuts from 25 countries. Moreover, chronic and acute toxicological risk assessment of mycotoxins was performed. Examined constituents were determined using LC-MS/MS. Ecological pine nuts showed the highest level of amino acids (233.87 g kg-1) compared to conventional (207 g kg-1), pecans-phenolic acids (816.6 mg kg-1 in ecological and 761 mg kg-1 in conventional), while pistachios-vitamins (3471.4 mg kg-1 in ecological and 3098.4 mg kg-1 in conventional). Increased concentration of mycotoxins was determined in conventional peanuts (54 μg kg-1) and walnuts (49.9 μg kg-1). Children were the most exposed population to acute intoxication with HT-2 toxin in conventional pistachios (20.66% ARfD). The results confirmed the nutritional importance of ecological nuts and emphasized the need for continuous screening of mycotoxins.
Collapse
Affiliation(s)
- Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland
| | - Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland.
| | - Piotr Iwaniuk
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland.
| | - Ewa Rutkowska
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland
| | - Katarzyna Socha
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Bromatology, Mickiewicza 2D St., 15-222 Białystok, Poland
| | - Karolina Orywal
- Medical University of Białystok, Faculty of Pharmacy with the Division of Laboratory Medicine, Department of Biochemical Diagnostics, Waszyngtona 15A St., 15-269 Białystok, Poland
| | - Jakub Ali Farhan
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213 Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1 St., 15-213 Białystok, Poland
| |
Collapse
|
2
|
Quesada-Vázquez S, Codina Moreno R, Della Badia A, Castro O, Riahi I. Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition. Toxins (Basel) 2024; 16:434. [PMID: 39453210 PMCID: PMC11511298 DOI: 10.3390/toxins16100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, and mutagenic effects that concern the animal industry. The chronic negative effects of mycotoxins on animal health and production and the negative economic impact on the livestock industry make it crucial to develop and implement solutions to mitigate mycotoxins. In this review, we summarize the current knowledge of the mycotoxicosis effect in livestock animals as a result of their contaminated diet. In addition, we discuss the potential of five promising phytogenics (curcumin, silymarin, grape pomace, olive pomace, and orange peel extracts) with demonstrated positive effects on animal performance and health, to present them as potential anti-mycotoxin solutions. We describe the composition and the main promising characteristics of these bioactive compounds that can exert beneficial effects on animal health and performance, and how these phytogenic feed additives can help to alleviate mycotoxins' deleterious effects.
Collapse
Affiliation(s)
| | | | | | | | - Insaf Riahi
- Bionte Nutrition, 43204 Reus, Spain; (S.Q.-V.); (R.C.M.); (A.D.B.)
| |
Collapse
|
3
|
Nowak M, Bernat P, Różalska S. Mutual interaction of the entomopathogenic and endophytic fungus Metarhizium anisopliae with zearalenone as a native component of crude Fusarium extract. Sci Rep 2024; 14:22493. [PMID: 39341845 PMCID: PMC11438985 DOI: 10.1038/s41598-024-73022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
The present study revealed the consequences of the interaction of a widely used bioinsecticide and endophyte Metarhizium anisopliae with the hazardous mycotoxin zearalenone (ZEN) as a pure substance and with ZEN as a native component of a crude Fusarium extract. In the environment, microorganisms encounter a mixture of metabolites secreted by other organisms living in the same area, not single substances. The obtained results suggest that M. anisopliae, exposed to a variety of active substances produced by Fusarium graminearum, is able to eliminate ZEN. Within 14 days, M. anisopliae biotransformed 90.8% and 85.8% of ZEN as a pure substance and ZEN as a native component of the F. graminearum extract from Rice Medium (E-Fg-RM), respectively, through reduction predominantly to α-epimers of zearalenols and zearalanols, considered more estrogenic than ZEN, which can raise concerns. Compared to pure ZEN, E-Fg-RM significantly affected the production of Metarhizium secondary metabolites by increasing the destruxins amount by approximately 20-25% and reducing the swainsonine content by 96.2%. All these findings provide a possible picture of the interaction of M. anisopliae with ZEN in the wild, mainly as a result of the use of crude extract from Fusarium, which contained a mixture of different metabolites.
Collapse
Affiliation(s)
- Monika Nowak
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| |
Collapse
|
4
|
Qu M, An C, Cheng F, Zhang J. Exploration of Volatileomics and Optical Properties of Fusarium graminearum-Contaminated Maize: An Application Basis for Low-Cost and Non-Destructive Detection. Foods 2024; 13:3087. [PMID: 39410125 PMCID: PMC11475652 DOI: 10.3390/foods13193087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Fusarium graminearum (F. graminearum) in maize poses a threat to grain security. Current non-destructive detection methods face limited practical applications in grain quality detection. This study aims to understand the optical properties and volatileomics of F. graminearum-contaminated maize. Specifically, the transmission and reflection spectra (wavelength range of 200-1100 nm) were used to explore the optical properties of F. graminearum-contaminated maize. Volatile organic compounds (VOCs) of F. graminearum-contaminated maize were determined by headspace solid phase micro-extraction with gas chromatography-tandem mass spectrometry. The VOCs of normal maize were mainly alcohols and ketones, while the VOCs of severely contaminated maize became organic acids and alcohols. The ultraviolet excitation spectrum of maize showed a peak redshift as fungi grew, and the intensity decreased in the 400-600 nm band. Peak redshift and intensity changes were observed in the visible/near-infrared reflectance and transmission spectra of F. graminearum-contaminated maize. Remarkably, optical imaging platforms based on optical properties were developed to ensure high-throughput detection for single-kernel maize. The developed imaging platform could achieve more than 80% classification accuracy, whereas asymmetric polarization imaging achieved more than 93% prediction accuracy. Overall, these results can provide theoretical support for the cost-effective preparation of low-cost gas sensors and high-prediction sorting equipment for maize quality detection.
Collapse
Affiliation(s)
- Maozhen Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China; (M.Q.); (C.A.)
| | - Changqing An
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China; (M.Q.); (C.A.)
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China; (M.Q.); (C.A.)
| | - Jun Zhang
- College of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| |
Collapse
|
5
|
Giannioti Z, Suman M, Roncone A, Rollo E, Tonidandel L, Barbero A, Catellani D, Larcher R, Bontempo L. Isotopic, mycotoxin, and pesticide analysis for organic authentication along the production chain of wheat-derived products. Food Chem 2024; 452:139519. [PMID: 38728888 DOI: 10.1016/j.foodchem.2024.139519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Wheat-based products are staples in diets worldwide. Organic food frauds continuously threaten consumer trust in the agri-food system. A multi-method approach was conducted for the organic authentication and safety assessment of pasta and bakery products along their production chain. Bulk and Compound-Specific (CS) Isotope Ratio Mass Spectrometry (IRMS) suggested the δ15Nbulk, δ15Nleucine and δ15Nproline as promising organic markers, with CS able to distinguish between pairs which bulk analysis could not. Processing significantly affected the values of δ15Nleucine, δ13Cproline and δ13Cleucine. Multi-mycotoxin analysis (HT-2, T-2, DON, ZEN, OTA, AFB1) revealed higher contamination in conventional than organic samples, while both milling and baking significantly reduced mycotoxin content. Lastly, from the evaluation of 400 residues, isopyrazam was present at the highest concentration (0.12 mg/kg) in conventional wheat, exhibiting a 0.12 Processing Factor (PF), while tebuconazole levels remained unchanged in pasta production (90 °C) and reduced below LOQ in biscuits and crackers (180-250 °C).
Collapse
Affiliation(s)
- Zoe Giannioti
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy; Centre for Agriculture, Food and Environment (C3A), University of Trento and Fondazione Edmund Mach Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Michele Suman
- Advanced Laboratory Research, Barilla G. e R. Fratelli S.P.A., Parma, Italy; Department for Sustainable Food Process, Catholic University Sacred Heart, Piacenza, Italy
| | - Alberto Roncone
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Eleonora Rollo
- Advanced Laboratory Research, Barilla G. e R. Fratelli S.P.A., Parma, Italy; Department for Sustainable Food and Drug, University of Parma, Parco Area delle Scienze, 95/A-43124 Parma, Italy
| | - Loris Tonidandel
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Alice Barbero
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Dante Catellani
- Advanced Laboratory Research, Barilla G. e R. Fratelli S.P.A., Parma, Italy
| | - Roberto Larcher
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Luana Bontempo
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy.
| |
Collapse
|
6
|
Ning X, Du R, Ye Y, Ji J, Jin S, Li J, Liu T, Chen P, Cao J, Sun X. Eco-friendly one-step egg white gel preparation for sensitive detection of 13 trichothecenes in oats using UHPLC-MS/MS. Anal Bioanal Chem 2024; 416:4999-5012. [PMID: 39093417 DOI: 10.1007/s00216-024-05438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Abstract
Oat products have gained widespread recognition as a health food due to their rich and balanced nutritional profile and convenience. However, the unique matrix composition of oats, which differs significantly from other cereals, presents specific challenges for mycotoxin analysis. This study presents an ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method enhanced with an innovative egg white gel pretreatment for the simultaneous analysis of 13 regulated and unregulated trichothecenes in oats. The method demonstrated excellent performance with high accuracy (> 87.5%), repeatability (< 5.7%), and reproducibility (< 8.1%). Analysis of 100 commercial oat products revealed a concerning detection rate (78%) for at least one of the 11 trichothecenes investigated. Notably, deoxynivalenol, exceeding the standard limit in 2% of samples, exhibited the highest detection rate (62%). Additionally, concerning co-occurrence patterns and positive correlations were observed, highlighting potential synergistic effects. The first-time detection of unregulated mycotoxins (T-2 triol, 4,15-diacetoxyscirpenol, 15-acetoxyscirpenol, and neosolaniol) underscores the need for comprehensive monitoring. This method, while developed for oats, shows potential for broader application to other cereals, though further investigation and confirmation are necessary. These findings suggest a potentially underestimated risk of trichothecenes in oats, necessitating continuous monitoring to ensure consumer safety.
Collapse
Affiliation(s)
- Xiao Ning
- School of Food Science and Technology, International Joint Laboratory On Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Ranran Du
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100020, People's Republic of China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory On Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory On Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Shaoming Jin
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China
| | - Jingyun Li
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China
| | - Tongtong Liu
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China
| | - Po Chen
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China
| | - Jin Cao
- Key Laboratory of Food Quality and Safety for State Market Regulation, National Institute for Food and Drug Control, Beijing, 100050, China.
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory On Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
7
|
Marashi S, Mostarshedi P, Ghorbanikalateh S, Ghorbanikalateh S, Zoshki A, Taghavi H, Karimi E, Oskoueian E, Jahromi MF, Shokryazdan P. Dietary administration of Bacillus subtilis improves the health parameters and regulates the gene expression in mice receiving zearalenone-contaminated diet. Braz J Microbiol 2024:10.1007/s42770-024-01501-z. [PMID: 39190258 DOI: 10.1007/s42770-024-01501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
The biodegradation of mycotoxins has become a specific, efficient, and environmentally protective way to reduce the adverse effects of mycotoxins in both foods and feeds. In the current study, the effectiveness of dietary administration of Bacillus subtilis on health parameters and regulated gene expression in mice receiving zearalenone zearalenone-contaminated diet was explored. In this trial, a total of twenty-four white balb/c mice were randomly assigned to three treatments. Dietary treatments were as follows: T1: The control (fed non-zearalenone-contaminated diet), T2: fed zearalenone-contaminated diet, T3: fed zearalenone-contaminated diet + Bacillus subtilis ARKA-S-3 (1 × 109 cfu/kg) for 28 days. The results showed, B. subtilis notably degraded zearalenone in cultured media during 18 h incubation (p < 0.05). It significantly improved average daily weight gain and feed intake. Dietary B. subtilis notably reduced the adverse effects of zearalenone on serum antioxidant indices (GSH-Px, SOD, ) and saved mice from oxidative stress. Also, treatments with B. subtilis improved morphometric characteristics of the ileum ((Villus Height (µm), Villus Width (µm), and Crypt Depth (µm)) in the mice received zearalenone-contaminated diet (p < 0.05). The molecular analysis illustrated that B. subtilis has also improved the mRNA expression levels and antioxidant-related gene expression of SOD and CAT in the jejunum tissue. Moreover, it alleviated the IL-2 and IFN-γ gene profiling in the jejunum tissue. These findings illustrate that dietary administration of B. subtilis by having a degraded effect on zearalenone, possesses a protective effect on the health parameters and gene expression regulation in mice receiving a zearalenone-contaminated diet.
Collapse
Affiliation(s)
| | - Pegah Mostarshedi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Atiyeh Zoshki
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hila Taghavi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran.
| | - Mohammad Faseleh Jahromi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| | - Parisa Shokryazdan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
8
|
Battersby JL, Stevens DA, Coutts RHA, Havlíček V, Hsu JL, Sass G, Kotta-Loizou I. The Expanding Mycovirome of Aspergilli. J Fungi (Basel) 2024; 10:585. [PMID: 39194910 DOI: 10.3390/jof10080585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
Collapse
Affiliation(s)
- Josephine L Battersby
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Vladimír Havlíček
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
- Department of Analytical Chemistry, Palacky University, 17. Listopadu 2, 779 00 Olomouc, Czech Republic
| | - Joe L Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Clinical, Pharmaceutical and Biological Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
9
|
Fang J, Sheng L, Ye Y, Gao S, Ji J, Zhang Y, Sun X. Biochemical Characterization and Application of Zearalenone Lactone Hydrolase Fused with a Multifunctional Short Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18146-18154. [PMID: 39075026 DOI: 10.1021/acs.jafc.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Zearalenone (ZEN) is an estrogenic mycotoxin causing reproductive toxicity in livestock. Currently, lactone hydrolases are used in the enzymatic degradation of ZEN. However, most lactone hydrolases suffer from low degradation efficiency and poor thermal stability. ZHD518, as a documented neutral enzyme for ZEN degradation, exhibits high enzymatic activity under neutral conditions. In this study, a multifunctional peptide S1v1-(AEAEAHAH)2 was fused to the N-terminus of ZHD518. Compared with the wild-type enzyme, the peptide fusion significantly enhanced protein expression by 1.28 times, enzyme activity by 9.27 times, thermal stability by 37.08 times after incubation at 45 °C for 10 min and enzyme stability during long-term storage. Moreover, ZEN concentrations in corn bran, corn germ meal, and corn gluten powder decreased from 5.29 ± 0.04, 5.31 ± 0.03, and 5.30 ± 0.01 μg/g to 0.48 ± 0.05, 0.48 ± 0.06, and 0.21 ± 0.04 μg/g, respectively, following a 60 min treatment with S1v1-GS-ZHD518, resulting in degradation rates of 90.98, 91.00, and 95.32%, respectively. In conclusion, the properties of S1v1-GS-ZHD518, such as its efficient degradability, high temperature resistance and storage resistance, offer the possibility of its application in food or feed.
Collapse
Affiliation(s)
- Jinpei Fang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Song Gao
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu, China
- Institute of Future Food Technology, JITRI, Yixing 214200, China
| |
Collapse
|
10
|
Li T, Chang X, Qiao Z, Ren G, Zhou N, Chen J, Jiang D, Liu C. Characterization and genomic analysis of Bacillus megaterium with the ability to degrade aflatoxin B 1. Front Microbiol 2024; 15:1407270. [PMID: 39171271 PMCID: PMC11335518 DOI: 10.3389/fmicb.2024.1407270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024] Open
Abstract
Coix seed is a good product for both medicinal and food use, which is highly susceptible to aflatoxin B1 (AFB1) contamination during field transport, storage, and processing. The aim of this study is to find microbial strains that can solve the problem of contamination of coix seed. In this study, the AFB1-degrading microorganism SX1-1 was isolated and identified as a Bacillus megaterium based on morphology, microscopy, and 16S rDNA sequencing. The optimum culture conditions for SX1-1 to degrade AFB1 were determined to be 12 h. The optimum degradation conditions were 72 h, 57°C, and an initial pH of 8.0. The highest degradation of AFB1 was observed in the fermentation supernatant of the SX1-1 strain, with a degradation rate of 97.45%. In addition, whole-genome sequencing analysis of this strain revealed the presence of a number of enzymes that could potentially degrade AFB1. Importantly, SX1-1 was able to degrade AFB1-contaminated coix seed in situ by 50.06% after co-culture. In conclusion, this strain had a high AFB1 degradation ability, and has great potential and great application as a biocontrol agent for AFB1 degradation of coix seed.
Collapse
Affiliation(s)
- Ting Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Shaanxi University of Chinese Medicine, Co-Construct Collaborat Innovat Ctr Chinese Medicine Research, Xianyang, China
| | - Xiaoxi Chang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Qiao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxi Ren
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhou
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxin Chen
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Jiang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunsheng Liu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Zhu Z, Guo W, Cheng H, Zhao H, Wang J, Abdallah MF, Zhou X, Lei H, Tu W, Wang H, Yang J. Co-contamination and interactions of multiple mycotoxins and heavy metals in rice, maize, soybeans, and wheat flour marketed in Shanghai City. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134695. [PMID: 38815395 DOI: 10.1016/j.jhazmat.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Mycotoxins and heavy metals extensively contaminate grains and grain products, posing severe health risks. This work implements validated ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) methods to quantify the concentration of 12 mycotoxins and five heavy metals in rice, maize, soybeans, and wheat flour samples marketed in Shanghai. The mixed contamination characteristics were analyzed using correlation cluster analysis and co-contamination index, and the probabilities of all cross combinations of contaminations were analyzed using a self-designed JAVA language program. The results showed that grains and grain products were frequently contaminated with both mycotoxins and heavy metals, mostly with deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), 15-acetyl-deoxynivalenol (15-ADON), ochratoxin A (OTA), aflatoxins, fumonisin B1 (FB1), fumonisin B2 (FB2), fumonisin B3 (FB3), arsenic (As), chromium (Cr) and cadmium (Cd). All the samples (100 %) were contaminated with two or more contaminants, and 77.3 % of the samples were co-contaminated with more than four contaminants. In cereals and cereal products, the following combinations were closely associated: (FB3 +3-ADON), (FB1 +As), (FB1 +FB2), (DON+FB1), (DON+Cd), (As+Cd), (DON+Cd+As), (FB1 +FB2 +As), and (DON+3-ADON+15-ADON). The results indicated that mycotoxins and heavy metals frequently co-occurred in Shanghai grains and grain products, and they provided primary data for safety assessments, early warnings, and regulatory measures on these contaminants to protect public health.
Collapse
Affiliation(s)
- Zuoyin Zhu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wenbo Guo
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Haisheng Cheng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hanke Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Jie Wang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium; Laboratory of Human Biology and Toxicology, Faculty of Medicine and Pharmacy, University of Mons, Belgium
| | - Xinli Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hulong Lei
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Weilong Tu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Hongyang Wang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
| | - Junhua Yang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China.
| |
Collapse
|
12
|
Laouni C, Lara FJ, Messai A, Redouane-Salah S, Hernández-Mesa M, Gámiz-Gracia L, García-Campaña AM. Emerging mycotoxin occurrence in chicken feed and eggs from Algeria. Mycotoxin Res 2024; 40:447-456. [PMID: 38753281 PMCID: PMC11258080 DOI: 10.1007/s12550-024-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 07/19/2024]
Abstract
Poultry farming has developed into one of Algeria's most productive industrial farming because of the growing demand for sources of protein among Algerian society. Laying hen feed consists mainly of cereals, which can be contaminated with molds and subsequently with their secondary metabolites known as mycotoxins. These later can pose a serious danger to the production and quality of eggs in the commercial layer industry. This work focuses on the detection of emerging mycotoxins, mainly enniatins (ENNs) and beauvericin (BEA), in poultry feed and eggs from different locations in Algeria. Two different QuEChERS-based extractions were established to extract ENNs and BEA from chicken feed and eggs. The determination of mycotoxin occurrence was achieved by a UHPLC-MS/MS method using 0.1% (v/v) formic acid in water and MeOH as mobile phase, an ESI interface operating in positive mode, and a triple quadrupole mass spectrometer operating in MRM for the detection. Matrix-matched calibration curves were carried out for both matrices, obtaining good linearity (R2 > 0.99). The method performance was assessed in terms of extraction recovery (from 87 to 107%), matrix effect (from - 47 to - 86%), precision (RSD < 15%), and limits of quantitation (≤ 1.1 µg/kg for feed and ≤ 0.8 µg/kg for eggs). The analysis of 10 chicken feed samples and 35 egg samples composed of a 10-egg pool each showed that ENN B1 was the most common mycotoxin (i.e., found in 9 feed samples) with contamination levels ranging from 3.6 to 41.5 µg/kg, while BEA was detected only in one feed sample (12 µg/kg). However, eggs were not found to be contaminated with any mycotoxin at the detection limit levels. Our findings indicate that the searched mycotoxins are present in traces in feed and absent in eggs. This can be explained by the application of a mycotoxin binder. However, this does not put a stop on the conduction of additional research and ultimately setting regulations to prevent the occurrence of emerging mycotoxins.
Collapse
Affiliation(s)
- Chahinez Laouni
- DEDSPAZA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ahmed Messai
- PIARA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Sara Redouane-Salah
- PIARA Laboratory, Department of Agronomical Sciences, Faculty of Exact Sciences and Natural and Life Sciences, University of Biskra, Biskra, Algeria
| | - Maykel Hernández-Mesa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura Gámiz-Gracia
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
13
|
Wang Y, Long L, Luo Q, Huang X, Zhang Y, Meng X, Chen D. Aflatoxin B1 induces ROS-dependent mitophagy by modulating the PINK1/Parkin pathway in HepG2 cells. Basic Clin Pharmacol Toxicol 2024; 135:195-209. [PMID: 38804152 DOI: 10.1111/bcpt.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Aflatoxin B1 (AFB1) is extremely harmful to both humans and animals. Mitophagy is a selective process of self-elimination and has an important role in controlling mitochondrial quality. The present study aimed to investigate the effect of reactive oxygen species (ROS) accumulation on AFB1-induced mitophagy in HepG2 cells to provide a new perspective from which to design novel therapeutic strategies to treat AFB1 poisoning. ROS release was induced in HepG2 cells with AFB1 (10 μmol/L). Cell autophagy activity, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) levels, Parkin translocation and both the transcription and expression of mitophagy-related proteins were measured when N-acetyl-L-cysteine (NAC) partially decreased the ROS level, while the knockdown of nuclear factor erythroid 2-related factor 2 (Nrf2) resulted in a large accumulation of ROS. The results reveal that NAC pretreatment ameliorated the decline in both the MMP and the ATP levels while also activating phosphoglycerate mutase 5 (PGAM5)-PTEN-induced kinase 1 (PINK1)/Parkin, while the Nrf2 knockdown group exhibited the opposite trend. These results suggest that AFB1-induced mitophagy in HepG2 cells depends on ROS, and proper ROS activates mitophagy to play a protective role.
Collapse
Affiliation(s)
- Yuxi Wang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Long
- Deyang Center for Disease Control and Prevention, Deyang, China
| | - Qian Luo
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyi Huang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Meng
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Xu L, Qu W, Hao X, Fang M, Yang Q, Li Y, Gong Z, Li P. Immunochromatographic Strip Based on Tetrahedral DNA Immunoprobe for the Detection of Aflatoxin B 1 in Rice Bran Oil. Foods 2024; 13:2410. [PMID: 39123601 PMCID: PMC11311855 DOI: 10.3390/foods13152410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Aflatoxin B1 (AFB1), a widespread contaminant in food and feeds, poses a threat to the health of animals and humans. Consequently, it is significant to develop a rapid, precise and highly sensitive analytical method for the detection of AFB1. Herein, we developed an immunochromatographic strip (ICS) based on a tetrahedral DNA (TDN) immunoprobe for AFB1 determination in rice bran oil. Three sizes of TDN immunoprobes (AuNP-TDN13bp-mAb, AuNP-TDN17bp-mAb, AuNP-TDN26bp-mAb) were constructed, and the performance of these three immunoprobes, including the effective antibody labeling density and immunoaffinity, was measured and compared with that of the immunoprobe (AuNP-mAb) developed using the physical adsorption method. Subsequently, the optimal TDN immunoprobe, namely AuNP-TDN13bp-mAb, was selected to prepare the immunochromatographic strip (ICS) for the qualitative and quantitative detection of AFB1 in rice bran oil. The visual limits of detection (vLODs) of the ICS based on AuNP-TDN13bp-mAb and AuNP-mAb were 0.2 ng/mL and 2 ng/mL, with scanning quantitative limits (sLOQs) of 0.13 ng/mL and 1.4 ng/mL, respectively. The ICS demonstrated a wide linear range from 0.02 ng/mL to 0.5 ng/mL, with good specificity, accuracy, precision, repeatability, and stability. Moreover, a high consistency was observed between the constructed ICS and ultra-high-performance liquid chromatography (UPLC) in the quantification of AFB1. The results indicated that the introduction of TDN was beneficial for promoting efficient antibody labeling, protecting the bioactivity of immunoprobes, and increasing the sensitivity of detection, which would provide new perspectives for the achievement of the highly sensitive detection of mycotoxins.
Collapse
Affiliation(s)
- Lin Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Wenli Qu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
| | - Xiaotong Hao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
| | - Min Fang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Qing Yang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Yuzhi Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075, China
| | - Zhiyong Gong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.Q.); (X.H.); (M.F.); (Q.Y.); (Y.L.); (Z.G.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Peiwu Li
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
15
|
Qiu Z, Wang H, Li G, Liu Y, Wang X, Yang J, Wang X, He D. Lactobacillus salivarius Ameliorates AFB1-induced hepatotoxicity via PINK1/Parkin-mediated mitophagy in Geese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116574. [PMID: 38875822 DOI: 10.1016/j.ecoenv.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.
Collapse
Affiliation(s)
- Zhi Qiu
- College of Animal Science and Technology, Anhui Agricultural University,Hefei, Anhui 230036, China; Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huiying Wang
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China
| | - Guangquan Li
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China
| | - Yi Liu
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China
| | - Xianze Wang
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Junhua Yang
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University,Hefei, Anhui 230036, China.
| | - Daqian He
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China.
| |
Collapse
|
16
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
17
|
André A, Hecht K, Mischler S, Stäheli L, Kerhanaj F, Buller R, Kinner M, Freimüller Leischtfeld S, Chetschik I, Miescher Schwenninger S, Müller N. A new physical and biological strategy to reduce the content of zearalenone in infected wheat kernels: the effect of cold needle perforation, microorganisms, and purified enzyme. Food Res Int 2024; 186:114364. [PMID: 38729726 DOI: 10.1016/j.foodres.2024.114364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
With the aim of reintroducing wheat grains naturally contaminated with mycotoxins into the food value chain, a decontamination strategy was developed in this study. For this purpose, in a first step, the whole wheat kernels were pre-treated using cold needle perforation. The pore size was evaluated by scanning electron microscopy and the accessibility of enzymes and microorganisms determined using fluorescent markers in the size range of enzymes (5 nm) and microorganisms (10 μm), and fluorescent microscopy. The perforated wheat grains, as well as non-perforated grains as controls, were then incubated with selected microorganisms (Bacillus megaterium Myk145 and B. licheniformis MA572) or with the enzyme ZHD518. The two bacilli strains were not able to significantly reduce the amount of zearalenone (ZEA), neither in the perforated nor in the non-perforated wheat kernels in comparison with the controls. In contrast, the enzyme ZHD518 significantly reduced the initial concentration of ZEA in the perforated and non-perforated wheat kernels in comparison with controls. Moreover, in vitro incubation of ZHD518 with ZEA showed the presence of two non-estrogenic degradation products of ZEA: hydrolysed zearalenone (HZEA) and decarboxylated hydrolysed ZEA (DHZEA). In addition, the physical pre-treatment led to a reduction in detectable mycotoxin contents in a subset of samples. Overall, this study emphasizes the promising potential of combining physical pre-treatment approaches with biological decontamination solutions in order to address the associated problem of mycotoxin contamination and food waste reduction.
Collapse
Affiliation(s)
- Amandine André
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland.
| | - Katrin Hecht
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Sandra Mischler
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Luca Stäheli
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Fllanza Kerhanaj
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rebecca Buller
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Mathias Kinner
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Susette Freimüller Leischtfeld
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Irene Chetschik
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Susanne Miescher Schwenninger
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| | - Nadina Müller
- ZHAW Zurich University of Applied Sciences, Department for Life Sciences und Facility Management, Institute of Food and Beverage Innovation, Einsiedlerstrasse 35, 8820 Wädenswil, Switzerland
| |
Collapse
|
18
|
Żybura A, Jedziniak P. The efficiency of mycotoxin binding by sorbents in the in vitro model using a naturally contaminated animal feed. J Vet Res 2024; 68:233-240. [PMID: 38947151 PMCID: PMC11210358 DOI: 10.2478/jvetres-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The productivity of domestic animals and the safety of food products derived from them are jeopardised by mycotoxins in animal feed. To control them, feed additives are used, which limit the absorption of mycotoxins in the gastrointestinal tract of animals by binding to them. The study aimed to evaluate the effectiveness of a new in vitro model in experiments on the binding of mycotoxins from buffers and contaminated feed and to confirm the effect of a single sorbent or mixture in binding them. Material and Methods Nine mineral sorbents were tested for their efficiency binding eight mycotoxins. Two in vitro experiments were conducted to indicate the mycotoxin-binding capacity of sorbents, each specifying a buffer with one of two different pH levels reflecting gastrointestinal conditions (pH 3.5 and 7.0). The first investigated the sorbent with only the buffer and mycotoxin standards, while the second did so with the sorbent, buffer and feed naturally contaminated with mycotoxins (deoxynivalenol, zearalenone, and ochratoxin A). Results The sorption was significantly lower in the trial with feed. In the first experiment at gastric pH (pH 3.5), activated charcoal bound deoxynivalenol and sepiolite bound zearalenone at 70% and 96%, respectively, whereas in the second experiment with feed, the binding was only 3% and 6%. Conclusion The study underlines the challenge of finding a feed additive that would work comprehensively, binding all mycotoxins regulated by law.
Collapse
Affiliation(s)
- Adrianna Żybura
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Piotr Jedziniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
19
|
Al-Saadi HA, Al-Sadi AM, Al-Wahaibi A, Al-Raeesi A, Al-Kindi M, Soundra Pandian SB, Al-Harrasi MMA, Al-Mahmooli IH, Velazhahan R. Rice Weevil ( Sitophilus oryzae L.) Gut Bacteria Inhibit Growth of Aspergillus flavus and Degrade Aflatoxin B1. J Fungi (Basel) 2024; 10:377. [PMID: 38921363 PMCID: PMC11205148 DOI: 10.3390/jof10060377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, bacteria residing in the gut of the rice weevils (Sitophilus oryzae L.) (Coleoptera: Curculionidae) feeding on aflatoxin-contaminated corn kernels were isolated and evaluated for their ability to suppress Aspergillus flavus and to remove/degrade aflatoxin B1 (AFB1). Four morphologically distinct S. oryzae gut-associated bacterial isolates were isolated and identified as Bacillus subtilis (RWGB1), Bacillus oceanisediminis (RWGB2), Bacillus firmus (RWGB3), and Pseudomonas aeruginosa (RWGB4) based on 16S rRNA gene sequence analysis. These bacterial isolates inhibited A. flavus growth in the dual culture assay and induced morphological deformities in the fungal hyphae, as confirmed by scanning electron microscopy. All four bacterial isolates were capable of removing AFB1 from the nutrient broth medium. In addition, culture supernatants of these bacterial isolates degraded AFB1, and the degradation of toxin molecules was confirmed by liquid chromatography-mass spectrometry. The bacterial isolates, B. subtilis RWGB1, B. oceanisediminis RWGB2, and P. aeruginosa RWGB4, were capable of producing antifungal volatile organic compounds that inhibited A. flavus growth. These results suggest that the bacterial isolates from S. oryzae gut have the potential to bind and/or degrade AFB1. Further research on their application in the food and feed industries could enhance the safety of food and feed production.
Collapse
Affiliation(s)
- Haneen Abdullah Al-Saadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Ali Al-Wahaibi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Ali Al-Raeesi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Mohamed Al-Kindi
- College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman;
| | | | - Majida Mohammed Ali Al-Harrasi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Issa Hashil Al-Mahmooli
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| | - Rethinasamy Velazhahan
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman; (H.A.A.-S.); (A.M.A.-S.); (A.A.-W.); (A.A.-R.); (M.M.A.A.-H.); (I.H.A.-M.)
| |
Collapse
|
20
|
Cervini C, Naz N, Verheecke-Vaessen C, Medina A. Impact of predicted climate change environmental conditions on the growth of Fusarium asiaticum strains and mycotoxins production on a wheat-based matrix. Int J Food Microbiol 2024; 416:110658. [PMID: 38484608 DOI: 10.1016/j.ijfoodmicro.2024.110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
Fusarium asiaticum is a predominant fungal pathogen causing Fusarium Head Blight (FHB) in wheat and barley in China and is associated with approximately £201 million in annual losses due to grains contaminated with mycotoxins. F. asiaticum produces deoxynivalenol and zearalenone whose maximum limits in cereals and cereals-derived products have been established in different countries including the EU. Few studies are available on the ecophysiological behaviour of this fungal pathogen, but nothing is known about the impact of projected climate change scenarios on its growth and mycotoxin production. Therefore, this study aimed to examine the interacting effect of i) current and increased temperature (25 vs 30 °C), ii) drought stress variation (0.98 vs 0.95 water activity; aw) and iii) existing and predicted CO2 concentrations (400 vs 1000 ppm) on fungal growth and mycotoxin production (type B trichothecenes and zearalenone) by three F. asiaticum strains (CH024b, 82, 0982) on a wheat-based matrix after 10 days of incubation. The results showed that, when exposed to increased CO2 concentration (1000 ppm) there was a significant reduction of fungal growth compared to current concentration (400 ppm) both at 25 and 30 °C, especially at 0.95 aw. The multi-mycotoxin analysis performed by LC-MS/MS qTRAP showed a significant increase of deoxynivalenol and 15-acetyldeoxynivalenol production when the CH024b strain was exposed to elevated CO2 compared to current CO2 levels. Zearalenone production by the strain 0982 was significantly stimulated by mild water stress (0.95 aw) and increased CO2 concentration (1000 ppm) regardless of the temperature. Such results highlight that intraspecies variability exist among F. asiaticum strains with some mycotoxins likely to exceed current EU legislative limits under prospected climate change conditions.
Collapse
Affiliation(s)
- Carla Cervini
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK.
| | - Naoreen Naz
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | | | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| |
Collapse
|
21
|
Sun Z, You Y, Xu H, You Y, He W, Wang Z, Li A, Xia Y. Food-Grade Expression of Two Laccases in Pichia pastoris and Study on Their Enzymatic Degradation Characteristics for Mycotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600054 DOI: 10.1021/acs.jafc.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Mycotoxin contamination poses substantial health risks to humans and animals. In this study, the two laccases PpLac1 and AoLac2 from Pleurotus pulmonarius and Aspergillus oryzae were selected and heterologously expressed in Pichia pastoris in a food-grade manner to detoxify aflatoxin B1 (AFB1), zearalenone (ZEN), and deoxynivalenol (DON). Both laccases exhibited degradation activity toward these three mycotoxins, while the efficiency of these for DON was relatively low. Therefore, molecular docking between these laccases and DON was conducted to analyze their potential interaction mechanisms. Furthermore, the degradation conditions of AFB1 and ZEN by the two laccases were optimized, and the optimal degradation rates for AFB1 and ZEN by PpLac1 reached 78.51 and 78.90%, while those for AFB1 and ZEN by AoLac2 reached 72.27 and 80.60%, respectively. The laccases PpLac1 and AoLac2 successfully transformed AFB1 and ZEN into the compounds AFQ1 and 15-OH-ZEN, which were 90 and 98% less toxic than the original compounds, respectively. Moreover, the culture supernatants demonstrated effective mycotoxin degradation results for AFB1 and ZEN in contaminated feed samples. The residual levels of AFB1 and ZEN in all samples ranged from 6.61 to 8.72 μg/kg and 3.44 to 98.15 μg/kg, respectively, and these levels were below the limit set by the European Union standards. All of the results in this study indicated that the two laccases have excellent application potential in the feed industry.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingxin You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huidong Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenjing He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aitao Li
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Logan N, Cao C, Freitag S, Haughey SA, Krska R, Elliott CT. Advancing Mycotoxin Detection in Food and Feed: Novel Insights from Surface-Enhanced Raman Spectroscopy (SERS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309625. [PMID: 38224595 DOI: 10.1002/adma.202309625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Indexed: 01/17/2024]
Abstract
The implementation of low-cost and rapid technologies for the on-site detection of mycotoxin-contaminated crops is a promising solution to address the growing concerns of the agri-food industry. Recently, there have been significant developments in surface-enhanced Raman spectroscopy (SERS) for the direct detection of mycotoxins in food and feed. This review provides an overview of the most recent advancements in the utilization of SERS through the successful fabrication of novel nanostructured materials. Various bottom-up and top-down approaches have demonstrated their potential in improving sensitivity, while many applications exploit the immobilization of recognition elements and molecular imprinted polymers (MIPs) to enhance specificity and reproducibility in complex matrices. Therefore, the design and fabrication of nanomaterials is of utmost importance and are presented herein. This paper uncovers that limited studies establish detection limits or conduct validation using naturally contaminated samples. One decade on, SERS is still lacking significant progress and there is a disconnect between the technology, the European regulatory limits, and the intended end-user. Ongoing challenges and potential solutions are discussed including nanofabrication, molecular binders, and data analytics. Recommendations to assay design, portability, and substrate stability are made to help improve the potential and feasibility of SERS for future on-site agri-food applications.
Collapse
Affiliation(s)
- Natasha Logan
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Cuong Cao
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Material and Advanced Technologies for Healthcare, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Stephan Freitag
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 20, Tulln, 3430, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, Austria
| | - Simon A Haughey
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Rudolf Krska
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Konrad-Lorenz-Str. 20, Tulln, 3430, Vienna, Austria
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, Austria
| | - Christopher T Elliott
- National Measurement Laboratory, Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Khong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
23
|
Haq IU, Taj R, Nafees M, Hussain A. Mycotoxin detection in selected medicinal plants using chromatographic techniques. Biomed Chromatogr 2024; 38:e5831. [PMID: 38291628 DOI: 10.1002/bmc.5831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Mycotoxins are toxic mycological products that when consumed, absorbed or inhaled cause sickness or even the death of humans. Therefore, the present study aimed to evaluate the contamination levels of mycotoxins (aflatoxins, AFB1 , AFB2 , AFG1 , AFG2 , and ochratoxin A, OTA) in selected medicinal herbs and shrubs using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). A total of 15 samples of medicinal herbs and shrubs were selected. Among them, four samples were aflatoxin contaminated while two samples were ochratoxin A contaminated. The highest level of aflatoxin was detected in Justicia adhathoda (4,704.94 ppb) through HPLC (153.4 ppb) and through TLC, while the lowest level of aflatoxin was detected in Pegnum harmala (205.1 ppb) through HPLC. Similarly, the highest level of OTA was detected in Dodonia viscosa (0.53 ppb) through HPLC (0.5 ppb) and through TLC, while the lowest level was detected in J. adhathoda (O.11 ppb) through HPLC (0.4 ppb) and through TLC. The OTA concentration was very low, being negligible and below permissible limits. The present study concludes that there is a potential risk for the consumption of herbal decoctions. Therefore, regular monitoring and proper management of mycotoxins, including aflatoxins and OTA, in herbal medicines are needed to ensure the safety of herbal drugs to protect consumers.
Collapse
Affiliation(s)
- Ihsan Ul Haq
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KPK, Pakistan
| | - Raheela Taj
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KPK, Pakistan
| | - Muhammad Nafees
- Department of Botany, University of Peshawar, Peshawar, KPK, Pakistan
| | - Arshad Hussain
- Pakistan Council of Scientific and Industrial Research, Peshawar, KPK, Pakistan
| |
Collapse
|
24
|
Veras FF, Stincone P, Welke JE, Ritter AC, Siqueira FM, Varela APM, Mayer FQ, Brandelli A. Genome analysis of Pseudomonas strain 4B with broad antagonistic activity against toxigenic fungi. Braz J Microbiol 2024; 55:269-280. [PMID: 38228937 PMCID: PMC10920548 DOI: 10.1007/s42770-024-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Pseudomonas sp. 4B isolated from the effluent pond of a bovine abattoir was investigated as antifungal against toxigenic fungi. The complete genome of Pseudomonas 4B was sequenced using the Illumina MiSeq platform. Phylogenetic analysis and genome comparisons indicated that the strain belongs to the Pseudomonas aeruginosa group. In silico investigation revealed gene clusters associated with the biosynthesis of several antifungals, including pyocyanin, rhizomide, thanamycin, and pyochelin. This bacterium was investigated through antifungal assays, showing an inhibitory effect against all toxigenic fungi tested. Bacterial cells reduced the diameter of fungal colonies, colony growth rate, and sporulation of each indicator fungi in 10-day simultaneous growing tests. The co-incubation of bacterial suspension and fungal spores in yeast extract-sucrose broth for 48 h resulted in reduced spore germination. During simultaneous growth, decreased production of aflatoxin B1 and ochratoxin A by Aspergillus flavus and Aspergillus carbonarius, respectively, was observed. Genome analysis and in vitro studies showed the ability of P. aeruginosa 4B to reduce fungal growth parameters and mycotoxin levels, indicating the potential of this bacterium to control toxigenic fungi. The broad antifungal activity of this strain may represent a sustainable alternative for the exploration and subsequent use of its possible metabolites in order to control mycotoxin-producing fungi.
Collapse
Affiliation(s)
- Flávio Fonseca Veras
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Paolo Stincone
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Carolina Ritter
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Franciele Maboni Siqueira
- Laboratório de Bacteriologia Veterinária, Departamento de Patologia Clínica Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | | | - Fabiana Quoos Mayer
- Departamento de Biologia Molecular E Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Adriano Brandelli
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|
25
|
Vörösházi J, Neogrády Z, Mátis G, Mackei M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult Sci 2024; 103:103471. [PMID: 38295499 PMCID: PMC10846437 DOI: 10.1016/j.psj.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary.
| |
Collapse
|
26
|
Shi J, Mwabulili F, Xie Y, Yang Y, Sun S, Li Q, Ma W, Jia H. Characterization, Structural Analysis, and Thermal Stability Mutation of a New Zearalenone-Degrading Enzyme Mined from Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3025-3035. [PMID: 38300990 DOI: 10.1021/acs.jafc.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Zearalenone (ZEN) is a widespread mycotoxin that causes serious damage to animal husbandry and poses a threat to human health. A screen of ZEN-degrading soil bacteria yielded Bacillus subtilis YT-4, which yielded 80% ZEN degradation after 6 h and 95% after 36 h. The gene sequence encoding the degradative enzyme ZENY was mined from the genome of YT-4 and expressed in yeast. ZENY is an α/β-hydrolase with an optimal enzyme activity at 37 °C and pH 8. By breaking the lactone ring of ZEN, it produces ZENY-C18H24O5 with a molecular weight of 320.16 g/mol. Sequence comparison and molecular docking analyses identified the catalytic ZENY triad 99S-245H-123E and the primary ZEN-binding mode within the hydrophobic pocket of the enzyme. To improve the thermal stability of the enzyme for industrial applications, we introduced a mutation at the N-terminus, specifically replacing the fifth residue N with V, and achieved a 25% improvement in stability at 45 °C. These findings aim to achieve ZEN biodegradation and provide insight into the structure and function of ZEN hydrolases.
Collapse
Affiliation(s)
- Jinghao Shi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 , P. R. China
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
27
|
Abdallah MF, Gado M, Abdelsadek D, Zahran F, El-Salhey NN, Mehrez O, Abdel-Hay S, Mohamed SM, De Ruyck K, Yang S, Gonzales GB, Varga E. Mycotoxin contamination in the Arab world: Highlighting the main knowledge gaps and the current legislation. Mycotoxin Res 2024; 40:19-44. [PMID: 38117428 DOI: 10.1007/s12550-023-00513-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Since the discovery of aflatoxins in the 1960s, knowledge in the mycotoxin research field has increased dramatically. Hundreds of review articles have been published summarizing many different aspects, including mycotoxin contamination per country or region. However, mycotoxin contamination in the Arab world, which includes 22 countries in Africa and Asia, has not yet been specifically reviewed. To this end, the contamination of mycotoxins in the Arab world was reviewed not only to profile the pervasiveness of the problem in this region but also to identify the main knowledge gaps imperiling the safety of food and feed in the future. To the best of our knowledge, 306 (non-)indexed publications in English, Arabic, or French were published from 1977 to 2021, focusing on the natural occurrence of mycotoxins in matrices of 14 different categories. Characteristic factors (e.g., detected mycotoxins, concentrations, and detection methods) were extracted, processed, and visualized. The main results are summarized as follows: (i) research on mycotoxin contamination has increased over the years. However, the accumulated data on their occurrences are scarce to non-existent in some countries; (ii) the state-of-the-art technologies on mycotoxin detection are not broadly implemented neither are contemporary multi-mycotoxin detection strategies, thus showing a need for capacity-building initiatives; and (iii) mycotoxin profiles differ among food and feed categories, as well as between human biofluids. Furthermore, the present work highlights contemporary legislation in the Arab countries and provides future perspectives to mitigate mycotoxins, enhance food and feed safety, and protect the consumer public. Concluding, research initiatives to boost mycotoxin research among Arab countries are strongly recommended.
Collapse
Affiliation(s)
- Mohamed F Abdallah
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Muhammad Gado
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Fatma Zahran
- Faculty of Pharmacy, Menoufia University, Shibin El-Kom, Menoufia, Egypt
| | - Nada Nabil El-Salhey
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ohaila Mehrez
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara Abdel-Hay
- Faculty of Pharmacy, Tanta University, Tanta, Gharbia Governorate, Egypt
| | - Sahar M Mohamed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Karl De Ruyck
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Gerard Bryan Gonzales
- Nutrition, Metabolism and Genomics Group, Wageningen University, Wageningen, Netherlands
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
28
|
Makarski M, Piotrowska K, Żbikowski A, Pawłowski K, Rygało-Galewska A, Szmidt M, Łozicki A, Niemiec T. Silica-Calcite Sedimentary Rock (Opoka) Enhances the Immunological Status and Improves the Growth Rate in Broilers Exposed to Ochratoxin A in Feed. Animals (Basel) 2023; 14:24. [PMID: 38200755 PMCID: PMC10778085 DOI: 10.3390/ani14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Mycotoxins, such as Ochratoxin A (OTA), originating from fungi like Aspergillus and Penicillium, represent serious health hazards to poultry. The use of mycotoxin-adsorbing feed additives can reduce these risks. Opoka, a porous transitional rock, shows promise as one of these additives. This study is the first to examine the effect of Opoka administered with OTA on zootechnical parameters and the immune response of chickens. A 42-day investigation examined the impact of 1% of Opoka supplementation in feed on OTA-challenged broiler chickens. Seventy-two chickens were allocated into three groups of twenty-four individuals each: a control group, an OTA-exposed (2 mg/kg feed) group, and an OTA (2 mg/kg feed) plus 1% of Opoka group. Growth and blood parameters were monitored at predetermined intervals, and comprehensive biochemical, hematological, and cytometric analyses were conducted. The study showed that OTA exposure had a negative impact on chicken weight gain. However, adding Opoka to the diet improved weight gain, indicating its potential as a protective agent. Chickens fed with Opoka also had an increased white blood cell count, which suggests an improved immune response and elevated glucose and cholesterol concentrations. These findings indicate that Opoka may be useful in mitigating health complications caused by OTA exposure in broilers.
Collapse
Affiliation(s)
- Mateusz Makarski
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.M.); (A.R.-G.); (A.Ł.)
| | - Klara Piotrowska
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.M.); (A.R.-G.); (A.Ł.)
| | - Artur Żbikowski
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.Ż.); (K.P.)
| | - Karol Pawłowski
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (A.Ż.); (K.P.)
| | - Anna Rygało-Galewska
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.M.); (A.R.-G.); (A.Ł.)
| | - Maciej Szmidt
- Department of Morphologic Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Andrzej Łozicki
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.M.); (A.R.-G.); (A.Ł.)
| | - Tomasz Niemiec
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.M.); (A.R.-G.); (A.Ł.)
| |
Collapse
|
29
|
Hu YM, Wang YR, Zhao WB, Ding YY, Wu ZR, Wang GH, Deng P, Zhang SY, An JX, Zhang ZJ, Luo XF, Liu YQ. Efficacy of pterostilbene suppression on Aspergillus flavus growth, aflatoxin B 1 biosynthesis and potential mechanisms. Int J Food Microbiol 2023; 404:110318. [PMID: 37454507 DOI: 10.1016/j.ijfoodmicro.2023.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/15/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Aspergillus flavus, a widespread saprotrophic filamentous fungus, could colonize agricultural crops with aflatoxin contamination, which endangers food security and the agricultural economy. A safe, effective and environmentally friendly fungicide is urgently needed. Pterostilbene, a natural phytoalexin originated from Pterocarpus indicus Willd., Vaccinium spp. and Vitis vinifera L., has been reported to possess excellent antimicrobial activity. More importantly, it is quite safe and healthy. In our screening tests of plant polyphenols for the inhibition of A. flavus, we found that pterostilbene evidently inhibited mycelial growth of Aspergillus flavus (EC50 = 15.94 μg/mL) and the inhibitory effect was better than that of natamycin (EC50 = 22.01 μg/mL), which is a natural product widely used in food preservation. Therefore, we provided insights into the efficacy of pterostilbene suppression on A. flavus growth, aflatoxin B1 biosynthesis and its potential mechanisms against A. flavus in the present study. Here, pterostilbene at concentrations of 250 and 500 μg/mL could effectively inhibit the infection of A. flavus on peanuts. And the biosynthesis of the secondary metabolite aflatoxin B1 was also inhibited. The antifungal effects of pterostilbene are exerted by inducing a large amount of intracellular reactive oxygen species production to bring the cells into a state of oxidative stress, damaging cellular biomolecules such as DNA, proteins and lipids and destroying the integrity of the cell membrane. Taken together, our study strongly supported the fact that pterostilbene could be considered a safe and effective antifungal agent against A. flavus infection.
Collapse
Affiliation(s)
- Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
30
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
31
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
32
|
Hu X, Qian Y, Gao Z, Li G, Fu F, Guo J, Shan Y. Safety evaluation and whole genome sequencing for revealing the ability of Penicillium oxalicum WX-209 to safely and effectively degrade citrus segments. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
33
|
González-Curbelo MÁ, Kabak B. Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review. Toxins (Basel) 2023; 15:576. [PMID: 37756002 PMCID: PMC10537527 DOI: 10.3390/toxins15090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Dried fruits are popular and nutritious snacks consumed worldwide due to their long shelf life and concentrated nutrient content. However, fruits can be contaminated with various toxigenic fungal species during different stages, including cultivation, harvesting, processing, drying, and storage. Consequently, these products may contain high levels of mycotoxins. This risk is particularly pronounced in developed countries due to the impact of climate change. Several factors contribute to mycotoxin production, including the type of fruit, geographical location, climate conditions, harvest treatments, and storage management practices. The main mycotoxins in dried fruits are aflatoxins (AFs) and ochratoxin A (OTA), which can induce human health problems and economic losses. Mycotoxin contamination can vary significantly depending on the geographic origin of dried fruits (vine fruits, figs, dates, apricots, prunes, and mulberries). The aim of this review was to fill the knowledge gap by consolidating data from various regions to understand the global picture and identify regions with higher contamination risks. By consolidating research from various origins and stages of the supply chain, the review intends to shed light on potential contamination events during pre-harvest, drying, storage, and trading, while also highlighting the effects of storage conditions and climate change on mycotoxin contamination.
Collapse
Affiliation(s)
- Miguel Ángel González-Curbelo
- Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Calle 79 no 11-45, Bogotá 110221, Colombia
| | - Bulent Kabak
- Department of Food Engineering, Faculty of Engineering, Hitit University, Corum 19030, Turkey
- Biotechnology Laboratory, Machinery and Manufacturing Technology Application and Research Center, Hitit University, Corum 19030, Turkey
| |
Collapse
|
34
|
Meneely J, Greer B, Kolawole O, He Q, Elliott C. Comparative Performance of Rapid Diagnostics for the Detection of T-2 and HT-2 Toxins in Oats. Molecules 2023; 28:6657. [PMID: 37764433 PMCID: PMC10537295 DOI: 10.3390/molecules28186657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The contamination of oat crops by trichothecene mycotoxins, T-2 and HT-2 is an ongoing threat to our food safety. Within the industry, there are increasing concerns about the continued and growing presence of these mycotoxins occurring in oat crops due to climate change, farming practices and the handling of crops post-harvest. To safeguard human health, monitoring these mycotoxins in foodstuffs is paramount to ensure human exposure is limited. To achieve this, effective testing regimes must be established within the industry, consisting not only of rapid, reliable, and accurate analytical methods but also efficient sampling strategies. Four commercial rapid diagnostic kits were assessed against liquid chromatography coupled to mass spectrometry and included three lateral flow devices and one enzyme-linked immunosorbent assay. One-way ANOVA showed a p-value of 0.45 indicating no significant difference between the methods assessed. Qualitative analysis revealed test kits 1, 2, 3, and 4 showed false negative/false positive rates of 1.1/2.2, 7.6/0, 2.2/0, and 6.5/0 percent, respectively. Test Kit 1, the Neogen Reveal® Q+ MAX for T-2/HT-2 Kit provided the most reliable, accurate and cost-effective results. Furthermore, its ease of use and no requirement for technical skill makes it applicable for on-site testing.
Collapse
Affiliation(s)
- Julie Meneely
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Brett Greer
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
| | - Qiqi He
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Christopher Elliott
- Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
- The International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Pahonyothin Road, Khong Luang 12120, Thailand
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Pahonyothin Road, Khong Luang 12120, Thailand
| |
Collapse
|
35
|
Hosseini S, Brenig B, Winitchakorn S, Kanmanee C, Srinual O, Tapingkae W, Gatphayak K. Genetic assessment of the effect of red yeast ( Sporidiobolus pararoseus) as a feed additive on mycotoxin toxicity in laying hens. Front Microbiol 2023; 14:1254569. [PMID: 37744913 PMCID: PMC10512063 DOI: 10.3389/fmicb.2023.1254569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Toxic fungal species produce hazardous substances known as mycotoxins. Consumption of mycotoxin contaminated feed and food causes a variety of dangerous diseases and can even lead to death of animals and humans, raising global concerns for adverse health effects. To date, several strategies have been developed to counteract with mycotoxin contamination. Red yeast as a novel biological dietary agent is a promising strategy to eliminate mycotoxicity in living organisms. Poultry are most susceptible animals to mycotoxin contamination, as they are fed a mixture of grains and are at higher risk of co-exposure to multiple toxic fungal substances. Therefore, this study investigated the genetic mechanism underlying long-term feeding with red yeast supplementation in interaction with multiple mycotoxins using transcriptome profiling (RNA_Seq) in the liver of laying hens. The results showed a high number of significantly differentially expressed genes in liver of chicken fed with a diet contaminated with mycotoxins, whereas the number of Significantly expressed genes was considerably reduced when the diet was supplemented with red yeast. The expression of genes involved in the phase I (CYP1A1, CYP1A2) and phase II (GSTA2, GSTA3, MGST1) detoxification process was downregulated in animals fed with mycotoxins contaminated diet, indicating suppression of the detoxification mechanisms. However, genes involved in antioxidant defense (GSTO1), apoptosis process (DUSP8), and tumor suppressor (KIAA1324, FBXO47, NME6) were upregulated in mycotoxins-exposed animals, suggesting activation of the antioxidant defense in response to mycotoxicity. Similarly, none of the detoxification genes were upregulated in hens fed with red yeast supplemented diet. However, neither genes involved in antioxidant defense nor tumor suppressor genes were expressed in the animals exposed to the red yeast supplemented feed, suggesting decreases the adsorption of biologically active mycotoxins in the liver of laying hens. We conclude that red yeast can act as a mycotoxin binder to decrease the adsorption of mycotoxins in the liver of laying hens and can be used as an effective strategy in the poultry feed industry to eliminate the adverse effects of mycotoxins for animals and increase food safety for human consumers.
Collapse
Affiliation(s)
- Shahrbanou Hosseini
- Molecular Biology of Livestock and Molecular Diagnostics, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | - Bertram Brenig
- Molecular Biology of Livestock and Molecular Diagnostics, Department of Animal Sciences, University of Goettingen, Göttingen, Germany
- Institute of Veterinary Medicine, University of Goettingen, Göttingen, Germany
| | | | - Chanidapha Kanmanee
- Department of Animal and Aquatic Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Orranee Srinual
- Department of Animal and Aquatic Sciences, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Wanaporn Tapingkae
- Department of Animal and Aquatic Sciences, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kesinee Gatphayak
- Department of Animal and Aquatic Sciences, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
36
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
37
|
Yu J, Pedroso IR. Mycotoxins in Cereal-Based Products and Their Impacts on the Health of Humans, Livestock Animals and Pets. Toxins (Basel) 2023; 15:480. [PMID: 37624237 PMCID: PMC10467131 DOI: 10.3390/toxins15080480] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Cereal grains are the most important food staples for human beings and livestock animals. They can be processed into various types of food and feed products such as bread, pasta, breakfast cereals, cake, snacks, beer, complete feed, and pet foods. However, cereal grains are vulnerable to the contamination of soil microorganisms, particularly molds. The toxigenic fungi/molds not only cause quality deterioration and grain loss, but also produce toxic secondary metabolites, mycotoxins, which can cause acute toxicity, death, and chronic diseases such as cancer, immunity suppression, growth impairment, and neural tube defects in humans, livestock animals and pets. To protect human beings and animals from these health risks, many countries have established/adopted regulations to limit exposure to mycotoxins. The purpose of this review is to update the evidence regarding the occurrence and co-occurrence of mycotoxins in cereal grains and cereal-derived food and feed products and their health impacts on human beings, livestock animals and pets. The effort for safe food and feed supplies including prevention technologies, detoxification technologies/methods and up-to-date regulation limits of frequently detected mycotoxins in cereal grains for food and feed in major cereal-producing countries are also provided. Some important areas worthy of further investigation are proposed.
Collapse
Affiliation(s)
- Jianmei Yu
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | | |
Collapse
|
38
|
Meng J, Li R, Huang Q, Guo D, Fan K, Zhang J, Zhu X, Wang M, Chen X, Nie D, Cao C, Zhao Z, Han Z. Survey and toxigenic abilities of Aspergillus, Fusarium, and Alternaria fungi from wheat and paddy grains in Shanghai, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1202738. [PMID: 37560029 PMCID: PMC10407302 DOI: 10.3389/fpls.2023.1202738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
A systematic study was carried out on 638 wheat and paddy grains (including fresh and stored samples) collected in 2021 from Shanghai, China, to identify the major mycobiota and their toxigenic abilities. A total of 349 fungi, namely, 252 Fusarium, 53 Aspergillus, and 44 Alternaria, were characterized by morphological and molecular identification. Fusarium and Aspergillus were more frequently isolated in paddy with Fusarium sambucinum species complex and Aspergillus section flavi as the predominant species, respectively. The genus Alternaria was the most frequently isolated fungal species in wheat. The toxin-producing potentials of the identified fungi were further evaluated in vitro. Deoxynevalenol (DON) was produced by 34.5% of Fusarium isolates and zearalenone (ZEN) was produced by 47.6% of them, and one isolate also processed the abilities for fumonisin B1 (FB1), B2 (FB2), and B3 (FB3) productions. Aflatoxin B1 (AFB1), B2 (AFB2), and G1 (AFG1) were only generated by Aspergillus section flavi, with the production rate of 65.5%, 27.6%, and 13.8%, respectively. Alternariol (AOH) was the most prevalent Alternaria toxin, which could be produced by 95.5% of the isolates, followed by alternariol monomethyl ether (AME) (72.7%), altenuene (ALT) (52.3%), tenuazonic acid (TeA) (45.5%), tentoxin (TEN) (29.5%), and altenusin (ALS) (4.5%). A combinational analysis of mycobiota and toxigenic ability allowed us to provide comprehensive information about the production mechanisms of mycotoxins in wheat and paddy in a specific geographic area, and will be helpful for developing efficient prevention and control programs.
Collapse
Affiliation(s)
- Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ruijiao Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dehua Guo
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jingya Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xueting Zhu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Min Wang
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Xinyue Chen
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chen Cao
- Technical Center for Animal Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
39
|
Kos J, Anić M, Radić B, Zadravec M, Janić Hajnal E, Pleadin J. Climate Change-A Global Threat Resulting in Increasing Mycotoxin Occurrence. Foods 2023; 12:2704. [PMID: 37509796 PMCID: PMC10379110 DOI: 10.3390/foods12142704] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
During the last decade, scientists have given increasingly frequent warnings about global warming, linking it to mycotoxin-producing moulds in various geographical regions across the world. In the future, more pronounced climate change could alter host resilience and host-pathogen interaction and have a significant impact on the development of toxicogenic moulds and the production of their secondary metabolites, known as mycotoxins. The current climate attracts attention and calls for novel diagnostic tools and notions about the biological features of agricultural cultivars and toxicogenic moulds. Since European climate environments offer steadily rising opportunities for Aspergillus flavus growth, an increased risk of cereal contamination with highly toxic aflatoxins shall be witnessed in the future. On top of that, the profile (representation) of certain mycotoxigenic Fusarium species is changing ever more substantially, while the rise in frequency of Fusarium graminearum contamination, as a species which is able to produce several toxic mycotoxins, seen in northern and central Europe, is becoming a major concern. In the following paper, a high-quality approach to a preventative strategy is tailored to put a stop to the toxicogenic mould- and mycotoxin-induced contamination of foods and feeds in the foreseeable future.
Collapse
Affiliation(s)
- Jovana Kos
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mislav Anić
- Croatian Meteorological and Hydrological Service, Ravnice 48, 10000 Zagreb, Croatia
| | - Bojana Radić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Manuela Zadravec
- Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| | - Elizabet Janić Hajnal
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelka Pleadin
- Department of Veterinary Public Health, Croatian Veterinary Institute, Savska Cesta 143, 10000 Zagreb, Croatia
| |
Collapse
|
40
|
Yang F, Zhang L, Zhang Y, Zeng Y, Li Y, Zeng P. Culture-dependent and culture-independent approaches to reveal the aflatoxin B1-producing fungi in Pixian Doubanjiang, a typical condiment in Chinese cuisine. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
41
|
Cadenillas LF, Hernandez C, Bailly S, Billerach G, Durrieu V, Bailly JD. Role of Polyphenols from the Aqueous Extract of Aloysia citrodora in the Inhibition of Aflatoxin B1 Synthesis in Aspergillus flavus. Molecules 2023; 28:5123. [PMID: 37446789 DOI: 10.3390/molecules28135123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin considered a potent carcinogen for humans that contaminates a wide range of crops. Various strategies have been established to reduce or block the synthesis of AFB1 in food and feed. The use of aqueous extracts derived from plants with high antioxidant activity has been a subject of study in recent years due to their efficacy in inhibiting AFB1. In this study, we assessed the effect of Aloysia citrodora aqueous extract on Aspergillus flavus growth and on AFB1 production. A bio-guided fractionation followed by High Performance Liquid Chromatography (HPLC) and Mass spectrometry analysis of the active fraction were applied to identify the candidate molecules responsible for the dose-effect inhibition of AFB1 synthesis. Our results revealed that polyphenols are the molecules implicated in AFB1 inhibition, achieving almost a total inhibition of the toxin production (99%). We identified luteolin-7-diglucuronide as one of the main constituents in A. citrodora extract, and demonstrated that it is able to inhibit, by itself, AFB1 production by 57%. This is the first study demonstrating the anti-Aflatoxin B1 effect of this molecule, while other polyphenols surely intervene in A. citrodora anti-AFB1 activity.
Collapse
Affiliation(s)
- Laura F Cadenillas
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Christopher Hernandez
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | | | - Guillaume Billerach
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
- UMR 1208 IATE Ingénierie des Agropolymères et Technologies Émergentes, INRAE, Institut Agro, Université de Montpellier, 2 Place Viala, 34060 Montpellier, France
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Jean-Denis Bailly
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAE, INPT, 4 Allée Emile Monso, 31030 Toulouse, France
- École Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, CEDEX, 31076 Toulouse, France
| |
Collapse
|
42
|
Lu W, Tian Y, Teng W, Qiu X, Li M. Plasmonic colorimetric immunosensor based on Poly-HRP and AuNS etching for tri-modal readout of small molecule. Talanta 2023; 265:124883. [PMID: 37393715 DOI: 10.1016/j.talanta.2023.124883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
It was urgent to improve the intuitive, portable, sensitive and multi-modal detection method for small molecules. In this study, a tri-modal readout of plasmonic colorimetric immunosensor (PCIS) for small molecule (zearalenone, ZEN, as an example) had been established based on the Poly-HRP amplification and gold nanostars (AuNS) etching. The immobilized Poly-HRP from the competitive immunoassay was used to catalyze iodide (I-) into iodine (I2), which could prevent the AuNS etching by I-. With the increasing of ZEN, the AuNS etching was enhanced, and the localized surface plasmon resonance (LSPR) peak of AuNS showed stronger blue shift, which resulted in the color changing from deep blue (no-etching) to blue violet (half-etching) and finally to shiny red (all-etching). The results of PCIS could be selectively obtained by the tri-modal readout: (1) naked eye (LOD of 0.10 ng/mL), (2) smartphone (LOD of 0.07 ng/mL) and (3) UV-spectrum (LOD of 0.04 ng/mL). The proposed PCIS had performed well in the sensitivity, specificity, accuracy and reliability. In addition, the harmless reagents were used in the overall process to further guarantee the environmental friendliness. Therefore, the PCIS might provide a novel and green avenue for the tri-modal readout of ZEN via the intuitive naked eye, portable smartphone and accurate UV-spectrum, which hold great potential for small molecule monitoring.
Collapse
Affiliation(s)
- Wenying Lu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ye Tian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Weipeng Teng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Ming Li
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
43
|
Silva LJG, Pereira AMPT, Duarte S, Pedro I, Perdigão C, Silva A, Lino CM, Almeida A, Pena A. Mycotoxins in Rice Correlate with Other Contaminants? A Pilot Study of the Portuguese Scenario and Human Risk Assessment. Toxins (Basel) 2023; 15:toxins15040291. [PMID: 37104229 PMCID: PMC10140980 DOI: 10.3390/toxins15040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023] Open
Abstract
Rice is the second most important cereal crop and is vital for the diet of billions of people. However, its consumption can increase human exposure to chemical contaminants, namely mycotoxins and metalloids. Our goal was to evaluate the occurrence and human exposure of aflatoxin B1 (AFB1), ochratoxin A (OTA), zearalenone (ZEN), and inorganic arsenic (InAs) in 36 rice samples produced and commercialized in Portugal and evaluate their correlation. The analysis of mycotoxins involved ELISA, with limits of detection (LODs) of 0.8, 1 and 1.75 μg kg-1 for OTA, AFB1, and ZEN, respectively. InAs analysis was carried out by inductively coupled plasma mass spectrometry (ICP-MS; LOD = 3.3 μg kg-1). No sample showed contamination by OTA. AFB1 was present in 2 (4.8%) samples (1.96 and 2.20 μg kg-1), doubling the European maximum permitted level (MPL). Concerning ZEN, 88.89% of the rice samples presented levels above the LOD up to 14.25 µg kg-1 (average of 2.75 µg kg-1). Regarding InAs, every sample presented concentration values above the LOD up to 100.0 µg kg-1 (average of 35.3 µg kg-1), although none surpassed the MPL (200 µg kg-1). No correlation was observed between mycotoxins and InAs contamination. As for human exposure, only AFB1 surpassed the provisional maximum tolerable daily intake. Children were recognized as the most susceptible group.
Collapse
Affiliation(s)
- Liliana J G Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - André M P T Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Sofia Duarte
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
- Department of Veterinary Sciences, Vasco da Gama Research Center, Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Inês Pedro
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Catarina Perdigão
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Alexandra Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Celeste M Lino
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| | - Anabela Almeida
- Department of Veterinary Sciences, Vasco da Gama Research Center, Vasco da Gama University School, 3020-210 Coimbra, Portugal
- CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta. Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
44
|
Tran TM, Atanasova V, Tardif C, Richard-Forget F. Stilbenoids as Promising Natural Product-Based Solutions in a Race against Mycotoxigenic Fungi: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5075-5092. [PMID: 36951872 DOI: 10.1021/acs.jafc.3c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exposure to mycotoxins can pose a variety of adverse health effects to mammals. Despite dozens of mycotoxin decontamination strategies applied from pre- to postharvest stages, it is always challenging to guarantee a safe level of these natural toxic compounds in food and feedstuffs. In the context of the increased occurrence of drug-resistance strains of mycotoxin-producing fungi driven by the overuse of fungicides, the search for new natural-product-based solutions is a top priority. This review aims to shed a light on the promising potential of stilbenoids extracted from renewable agricultural wastes (e.g., grape canes and forestry byproducts) as antimycotoxin agents. Deeper insights into the mode of actions underlying the bioactivity of stilbenoid molecules against fungal pathogens, together with their roles in plant defense responses, are provided. Safety aspects of these natural compounds on humans and ecology are discussed. Perspectives on the development of stilbenoid-based formulations using encapsulation technology, which allows the bypassing of the limitations related to stilbenoids, particularly low aqueous solubility, are addressed. Optimistically, the knowledge gathered in the present review supports the use of currently underrated agricultural byproducts to produce stilbenoid-abundant extracts with a high efficiency in the mitigation of mycotoxins in food and feedstuffs.
Collapse
Affiliation(s)
- Trang Minh Tran
- RU 1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d'Ornon, France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d'Ornon, France
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Univ. Bordeaux, 33882 Villenave d'Ornon, France
| | | |
Collapse
|
45
|
Mycotoxins in Seafood: Occurrence, Recent Development of Analytical Techniques and Future Challenges. SEPARATIONS 2023. [DOI: 10.3390/separations10030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
The co-occurrence of mycotoxigenic fungi and mycotoxins in aquatic food commodities has recently become a source of severe worldwide food insecurity since these toxicants may damage human health. The consumption of aquatic food itself represents a relatively novel and non-negligible source of mycotoxins. Mycotoxins in seafood lead to important human genotoxins, carcinogens, and immunosuppressors. Consequently, it is crucial to quantify and characterize these contaminants in aquatic food products subject to extensive consumption and develop new regulations. The present paper provides an overview of recent advancements in liquid chromatography and mass spectrometry and the coupling of these techniques for identifying and characterizing mycotoxins in various fresh, comestible, and treated marine products. The disposable data display that a multiplicity of fungal species and further mycotoxins have been detected in seafood, comprising aflatoxins, ochratoxins, fumonisins, deoxynivalenol, zearalenone, and trichothecenes. In addition, a wider and up-to-date overview of global occurrence surveys of mycotoxin occurrence in seafood in 2017–2022 is explored. In this regard, the predominant occurrence of enniatins has been documented in seafood products. Likewise, special attention has been given to current EU seafood legal and existing national regulations of mycotoxins in seafood. In this way, rigorous national and international guidelines are needed for palpable and effective measures in the future. Nevertheless, controlling mycotoxins in aquatic foods is an ambitious aim for scientists and industry stakeholders to ensure sustainable global food safety.
Collapse
|
46
|
Teixido-Orries I, Molino F, Femenias A, Ramos AJ, Marín S. Quantification and classification of deoxynivalenol-contaminated oat samples by near-infrared hyperspectral imaging. Food Chem 2023; 417:135924. [PMID: 36934710 DOI: 10.1016/j.foodchem.2023.135924] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Deoxynivalenol (DON) is the most occurring mycotoxin in oat and oat-based products. Near-infrared hyperspectral imaging (NIR-HSI) has been proposed as a promising methodology for analysing DON contamination in the food industry. The present study aims to apply NIR-HSI for DON detection in oat kernels and to quantify and classify naturally DON-contaminated oat samples. Unground and ground oat samples were scanned by NIR-HSI before their DON content was determined by HPLC. The data were pre-treated and analysed by PLS regression and four classification methods. The most efficient DON prediction model was for unground samples (R2 = 0.75 and RMSEP = 403.18 μg/kg), using twelve characteristic wavelengths with a special interest in 1203 and 1388 nm. The random forest algorithm of unground samples according to the EU maximum limit for unprocessed oats (1750 μg/kg) achieved a classification accuracy of 77.8 %. These findings indicate that NIR-HSI is a promising tool for detecting DON in oats.
Collapse
Affiliation(s)
- Irene Teixido-Orries
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XIA, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Francisco Molino
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XIA, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Antoni Femenias
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XIA, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Sonia Marín
- Applied Mycology Unit, Food Technology Department, University of Lleida, UTPV-XIA, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
47
|
Lu T, Guo Y, Zeng Z, Wu K, Li X, Xiong Y. Identification and detoxification of AFB1 transformation product in the peanut oil refining process. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
48
|
Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. and their main mycotoxins. Int J Food Microbiol 2023; 387:110054. [PMID: 36525768 DOI: 10.1016/j.ijfoodmicro.2022.110054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/10/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
The occurrence of fungi and mycotoxins in foods is a serious global problem. Most of the regulated mycotoxins in food are produced by Fusarium spp. This work aimed to assess the antifungal activity of selected lactic acid bacteria (LAB) strains against the main toxigenic Fusarium spp. isolated from cereals. Various machine learning (ML) algorithms such as neural networks (NN), random forest (RF), extreme gradient boosted trees (XGBoost), and multiple linear regression (MLR), were applied to develop models able to predict the percentage of fungal growth inhibition caused by the LAB strains tested. In addition, the ability of the assayed LAB strains to reduce/inhibit the production of the main mycotoxins associated with these fungi was studied by UPLC-MS/MS. All assays were performed at 20, 25, and 30 °C in dual culture (LAB plus fungus) on MRS agar-cereal-based media. All factors and their interactions very significantly influenced the percentage of growth inhibition compared to controls. The efficacy of LAB strains was higher at 20 °C followed by 30 °C and 25 °C. Overall, the order of susceptibility of the fungi to LAB was F. oxysporum > F. poae = F. culmorum ≥ F. sporotrichioides > F. langsethiae > F. graminearum > F. subglutinans > F. verticillioides. In general, the most effective LAB was Leuconostoc mesenteroides ssp. mesenteroides (T3Y6b), and the least effective were Latilactobacillus sakei ssp. carnosus (T3MM1 and T3Y2). XGBoost and RF were the algorithms that produced the most accurate predicting models of fungal growth inhibition. Mycotoxin levels were usually lower when fungal growth decreased. In the cultures of F. langsethiae treated with LAB, T-2 and HT-2 toxins were not detected except in the treatments with Pediococcus pentosaceus (M9MM5b, S11sMM1, and S1M4). These three strains of P. pentosaceus, L. mesenteroides ssp. mesenteroides (T3Y6b) and L. mesenteroides ssp. dextranicum (T2MM3) inhibited fumonisin production in cultures of F. proliferatum and F. verticillioides. In F. culmorum cultures, zearalenone production was inhibited by all LAB strains, except L. sakei ssp. carnosus (T3MM1) and Companilactobacillus farciminis (T3Y6c), whereas deoxynivalenol and 3-acetyldeoxynivalenol were only detected in cultures of L. sakei ssp. carnosus (T3MM1). The results show that an appropriate selection and use of LAB strains can be one of the most impacting tools in the control of toxigenic Fusarium spp. and their mycotoxins in food and therefore one of the most promising strategies in terms of efficiency, positive impact on the environment, food safety, food security, and international economy.
Collapse
|
49
|
Cheli F, Ottoboni M, Fumagalli F, Mazzoleni S, Ferrari L, Pinotti L. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins (Basel) 2023; 15:146. [PMID: 36828460 PMCID: PMC9958648 DOI: 10.3390/toxins15020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxin risk in the feed supply chain poses a concern to animal and human health, economy, and international trade of agri-food commodities. Mycotoxin contamination in feed and food is unavoidable and unpredictable. Therefore, monitoring and control are the critical points. Effective and rapid methods for mycotoxin detection, at the levels set by the regulations, are needed for an efficient mycotoxin management. This review provides an overview of the use of the electronic nose (e-nose) as an effective tool for rapid mycotoxin detection and management of the mycotoxin risk at feed business level. E-nose has a high discrimination accuracy between non-contaminated and single-mycotoxin-contaminated grain. However, the predictive accuracy of e-nose is still limited and unsuitable for in-field application, where mycotoxin co-contamination occurs. Further research needs to be focused on the sensor materials, data analysis, pattern recognition systems, and a better understanding of the needs of the feed industry for a safety and quality management of the feed supply chain. A universal e-nose for mycotoxin detection is not realistic; a unique e-nose must be designed for each specific application. Robust and suitable e-nose method and advancements in signal processing algorithms must be validated for specific needs.
Collapse
Affiliation(s)
- Federica Cheli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Francesca Fumagalli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luca Ferrari
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| |
Collapse
|
50
|
An electrochemical apta-assay based on hybridization chain reaction and aflatoxin B1-driven Ag-DNAzyme as amplification strategy. Bioelectrochemistry 2023; 149:108322. [DOI: 10.1016/j.bioelechem.2022.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|