1
|
Kaur S, Sohnen P, Kumar S, Vohra M, Swamynathan S, Swamynathan S. The Secreted Ly6/uPAR-Related Protein-1 (SLURP1) Protects the Cornea From Oxidative Stress. Invest Ophthalmol Vis Sci 2025; 66:30. [PMID: 40094657 PMCID: PMC11925223 DOI: 10.1167/iovs.66.3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Previously, we reported that the secreted Ly6/uPAR-related protein-1 (SLURP1), abundantly expressed by the corneal epithelium (CE) and secreted into the tear fluid, suppresses NF-κB signaling in healthy corneas and is downregulated in response to a variety of stressors, allowing helpful inflammation to progress. Here we investigate whether SLURP1 manifests its broad protective effects by promoting corneal redox homeostasis. Methods Oxidative stress was induced in the wild-type (WT) and Slurp1-null (Slurp1X-/-) mouse corneas using 1350 J/m2 UV-B, and in human corneal limbal epithelial (HCLE) and SLURP1-overexpressing HCLE-SLURP1 cells with 100 J/m2 UV-B, 0.4 µg/mL mitomycin-C, or 0-100 µM H2O2. We evaluated their (i) redox status (GSH:GSSG ratio) using O-phthalaldehyde; (ii) reactive oxygen species (ROS) accumulation using 2',7'-dichlorodihydrofluorescein diacetate; (iii) antioxidants GPX4, CAT, and SOD2 expression by qRTPCR; (iv) lipid peroxidation by staining for 4-hydroxynonenol, malondialdehyde, and BODIPY-C11; and (v) DNA damage and NF-κB activation by immunostaining for γH2AX, 8-OHdG, NF-κB, and IκB. Results Slurp1 was significantly downregulated in the UV-B-irradiated WT corneas. Oxidatively stressed HCLE-SLURP1 cells displayed relatively less ROS accumulation, lipid peroxidation, DNA damage and NF-κB activation, and a higher GSH/GSSG ratio and antioxidant gene expression than the similarly treated control HCLE cells. UV-B-irradiated Slurp1X-/- corneas displayed relatively more ROS accumulation, DNA damage and less GPX4 expression than the similarly treated WT corneas. Conclusions Collectively, these results elucidate that SLURP1 serves as an insult-agnostic immunomodulator that upregulates antioxidants and suppresses ROS accumulation to promote redox homeostasis in corneal epithelial cells and protect them from diverse genotoxic stressors.
Collapse
Affiliation(s)
- Satinder Kaur
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Peri Sohnen
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Simran Kumar
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Mehak Vohra
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| | - Shivalingappa Swamynathan
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, United States
| |
Collapse
|
2
|
Moe MM, Benny J, Lee V, Tsai M, Liu J. Crosslinking pathways, dynamics, and kinetics between guanosine and lysine following one- versus two-electron oxidation of guanosine. Nucleic Acids Res 2025; 53:gkaf071. [PMID: 40037711 PMCID: PMC11879467 DOI: 10.1093/nar/gkaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
DNA-protein crosslinks (DPCs) remain as a poorly understood DNA lesion. Herein, crosslinking between guanosine and lysine was explored using a model system comprising 9-methylguanine (9MG) and CH3NH2. Crosslinking was induced by one-electron oxidized 9MG•+ radical cations and doubly oxidized [9MG - HN2]+ cations, and analyzed as a function of reaction energy using an electrospray ionization tandem mass spectrometer. Experiment was augmented by dynamics simulations and kinetics modeling. Alongside the formation of X-NH2CH3[9MG]•+ (X = C2, C8) via direct addition, 8-CH2NH2[9MG + HN7]+ was discovered as a new crosslink between 9MG•+ and CH3NH2. This crosslink results from methyl-hydrogen abstraction of CH3NH2 by the N7 of 9MG•+, followed by adding •CH2NH2 to [9MG + HN7]+. Notably, crosslinking is dramatically enhanced between [9MG - HN2]+ and CH3NH2, yielding major products X-+NH2CH3[9MG - HN2] (X = N2, N3, C5, and C8, along with their proton tautomers), which form from the direct CH3NH2 addition to [9MG - HN2]+, and minor products X-CH2NH2[9MG - HN2 + HO6]+ (X = N2, N3, C5, N7, and C8), which arise from the combination of methyl-hydrogen abstraction products. This work dissected and distinguished the roles of one- versus two-electron oxidized guanosine in DPC formation, offering novel insights into oxidative DNA damage.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, United States
- Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, 365 5th Ave., NY, NY 10016, United States
| | - Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, United States
- Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, 365 5th Ave., NY, NY 10016, United States
| | - Varonica Lee
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, United States
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, United States
- Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, 365 5th Ave., NY, NY 10016, United States
| |
Collapse
|
3
|
Liu ZS, Mao L, Huang CH, Tang TS, Chen J, Wang ZH, Chen SY, Zhang HZ, Xie LN, Sheng ZG, Zhu BZ. Molecular Mechanism of Unexpected Metal-Independent Hydroxyl Radical Production by Mercaptotriazole and H 2O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1942-1956. [PMID: 39865867 DOI: 10.1021/acs.est.3c10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
It is well known that hydroxyl radical (·OH) can be largely produced either through the classic iron-mediated inorganic-Fenton system or our recently discovered haloquinones/H2O2 organic-Fenton-like system, but rarely produced via thiol compounds. Here, unexpectedly, we found that ·OH can be unequivocally generated by incubation of H2O2 and mercaptotriazole (MTZ), a typical heterocyclic thiol which has been used as an environmentally friendly corrosion inhibitor for mild steel. By the complementary applications of HPLC-MS and oxygen-18 isotope-labeling method, MTZ-derived sulfenic (MTZ-SOH) and sulfinic acids were detected and identified as transient intermediates, and sulfonic acid as final products. More interestingly, among all the products, MTZ-SOH was found to be the critical one directly responsible for the ·OH formation. Not only MTZ, but also its derivatives can activate H2O2 to produce ·OH. Taken together, we found an unexpected sulfenic acid-dependent ·OH production from activation of H2O2 by heterocyclic thiol compounds, which may provide a new free radical perspective to further explore the environmental and biological behaviors of these widely used thiol compounds.
Collapse
Affiliation(s)
- Zhi-Sheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tian-Shu Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zi-Han Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shi-Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao-Zhe Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Nakano T, Akamatsu K, Kohzaki M, Tsuda M, Hirayama R, Sassa A, Yasui M, Shoulkamy M, Hiromoto T, Tamada T, Ide H, Shikazono N. Deciphering repair pathways of clustered DNA damage in human TK6 cells: insights from atomic force microscopy direct visualization. Nucleic Acids Res 2025; 53:gkae1077. [PMID: 39797694 PMCID: PMC11724303 DOI: 10.1093/nar/gkae1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 01/13/2025] Open
Abstract
Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs). This study investigated the repair of each type of damage in DNA-repair-deficient human TK6 cells and elucidated the association between each type of clustered DNA damage and the pathway responsible for its repair postirradiation with low linear energy transfer (LET) radiation (X-rays) and high-LET radiation (Fe-ion beams) in cells. We found that base excision repair and, surprisingly, nucleotide excision repair restored simple and complex BDCs. In addition, the number of complex DSBs in wild-type cells increases 1 h postirradiation, which was most likely caused by BDC cleavage initiated with DNA glycosylases. Furthermore, complex DSBs, which are likely associated with lethality, are repaired by homologous recombination with little contribution from nonhomologous-end joining.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Ken Akamatsu
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| | - Masaoki Kohzaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Isegaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, QST Hospital, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Sassa
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Manabu Yasui
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Mahmoud I Shoulkamy
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Department of Zoology, Faculty of Science, Minia University, El-Minia University Campus, Cairo-Aswan Road, Minia 61519, Egypt
| | - Takeshi Hiromoto
- Institute for Quantum Life Science, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Quantum Life Science Course, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, QST, 6-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Quantum Life Science Course, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Naoya Shikazono
- Kansai Institute for Photon Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan
| |
Collapse
|
5
|
Zhu Z, Ding X, Rang J, Xia L. Application and research progress of ARTP mutagenesis in actinomycetes breeding. Gene 2024; 929:148837. [PMID: 39127415 DOI: 10.1016/j.gene.2024.148837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Atmospheric and room temperature plasma (ARTP) is an emerging artificial mutagenesis breeding technology. In comparison to traditional physical and chemical methods, ARTP technology can induce DNA damage more effectively and obtain mutation strains with stable heredity more easily after screening. It possesses advantages such as simplicity, safety, non-toxicity, and cost-effectiveness, showing high application value in microbial breeding. This article focuses on ARTP mutagenesis breeding of actinomycetes, specifically highlighting the application of ARTP mutagenesis technology in improving the performance of strains and enhancing the biosynthetic capabilities of actinomycetes. We analyzed the advantages and challenges of ARTP technology in actinomycetes breeding and summarized the common features, specific mutation sites and metabolic pathways of ARTP mutagenic strains, which could give guidance for genetic modification. It suggested that the future research work should focus on the establishment of high throughput rapid screening methods and integrate transcriptomics, proteomics, metabonomics and other omics to delve into the genetic regulations and synthetic mechanisms of the bioactive substances in ARTP mutated actinomycetes. This article aims to provide new perspectives for actinomycetes breeding through the establishment and application of ARTP mutagenesis technology, thereby promoting source innovation and the sustainable industrial development of actinomycetes.
Collapse
Affiliation(s)
- Zirong Zhu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jie Rang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
6
|
Ghosh S, Orman MA. UV-Induced DNA Repair Mechanisms and Their Effects on Mutagenesis and Culturability in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623584. [PMID: 39605428 PMCID: PMC11601333 DOI: 10.1101/2024.11.14.623584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mutagenic processes drive evolutionary progress, with ultraviolet (UV) radiation significantly affecting evolution. Despite extensive research on SOS response-mediated mutagenesis, UV-induced repair mechanisms remain complex, and their effects on cell survival and mutagenesis are not fully understood. We previously observed a near-perfect correlation between RecA-mediated SOS response and mutation levels in Escherichia coli following UV treatment. However, prolonged UV exposure caused transient non-culturability and impaired SOS-mediated mutagenesis. Using fluorescent reporters, flow cytometry, promoter-reporter assays, single-gene deletions, knockouts, and clonogenic assays, we found that excessive UV exposure disrupts cellular translation, reducing SOS gene expression, albeit with minimal impact on membrane permeability or reactive oxygen species levels. While our findings underline the abundance of repair mechanisms in E. coli cells, enabling them to compensate when specific genes are disrupted, they also highlighted the differential impacts of gene deletions on mutagenesis versus culturability, leading to three major outcomes: (i) Disruption of proteins involved in DNA polymerase for translesion synthesis (UmuC and UmuD) or Holliday junction resolution (RuvC) results in significantly decreased mutagenesis levels while maintaining a transient non-culturability pattern after UV exposure. (ii) Disruption of proteins involved in homologous recombination (RecA and RecB) and nucleotide excision repair (UvrA) leads to both significantly reduced mutagenesis and a more severe transient non-culturability pattern after UV exposure, making these cells more sensitive to UV. (iii) Disruption of DNA Helicase II (UvrD), which functions in mismatch repair, does not affect mutagenesis levels from UV radiation but results in a very pronounced transient non-culturability pattern following UV exposure. Overall, our results further advance our understanding of bacterial adaptation mechanisms and the role of DNA repair pathways in shaping mutagenesis.
Collapse
Affiliation(s)
- Sreyashi Ghosh
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Mehmet A. Orman
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
7
|
Song X, Hao X, Zhu BT. Role of mitochondrial reactive oxygen species in chemically-induced ferroptosis. Free Radic Biol Med 2024; 223:473-492. [PMID: 38992393 DOI: 10.1016/j.freeradbiomed.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Ferroptosis is a form of iron-dependent regulated cell death which is different from apoptosis. Chemically-induced ferroptosis is characterized by an accumulation of lipid reactive oxygen species (ROS) in the cells. A number of earlier studies have suggested the involvement of mitochondrial ROS in ferroptosis, and the present study seeks to further investigate the role of mitochondrial ROS in the induction of chemically-induced ferroptotic cell death. We find that during erastin-induced, glutathione depletion-associated ferroptosis, mitochondrial ROS accumulation is an important late event, which likely is involved in the final execution of ferroptotic cell death. The mitochondrion-originated ROS is found to accumulate in large quantities inside the nuclei during the late phases of erastin-induced ferroptosis. Completion of the late-phase accumulation of mitochondrion-produced ROS inside the nucleus of a cell likely marks an irreversible point in the cell death process. Similarly, accumulation of large amounts of mitochondrion-produced ROS inside the nucleus is also observed in the late phases of RSL3-induced ferroptosis. The results of this study indicate that the mitochondrial ROS play an important role in the final steps of both erastin- and RSL3-induced ferroptotic cell death.
Collapse
Affiliation(s)
- Xiuhan Song
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Xiangyu Hao
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China; Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Benny J, Saito T, Liu J. Nitrosation mechanisms, kinetics, and dynamics of the guanine and 9-methylguanine radical cations by nitric oxide-Radical-radical combination at different electron configurations. J Chem Phys 2024; 161:125101. [PMID: 39319660 DOI: 10.1063/5.0230367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
As a precursor to various reactive nitrogen species formed in biological systems, nitric oxide (•NO) participates in numerous processes, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. Forming guanine radical cations is another common DNA lesion resulting from ionization and oxidation damage. As such, the interaction of •NO with guanine radical cations (G•+) may contribute to the radiosensitization of •NO. An intriguing aspect of this process is the participation of multiple spin configurations in the reaction, including open-shell singlet 1,OS[G•+(↑)⋯(↓)•NO], closed-shell singlet 1,CS[G(↑↓)⋯NO+], and triplet 3[G•+(↑)⋯(↑)•NO]. In this study, the reactions of •NO with both unsubstituted guanine radical cations (in the 9HG•+ conformation) and 9-methylguanine radical cations (9MG•+, a guanosine-mimicking model compound) were investigated in the absence and presence of monohydration of radical cations. Kinetic-energy dependent reaction product ions and cross sections were measured using an electrospray ionization guided-ion beam tandem mass spectrometer. The reaction mechanisms, kinetics, and dynamics were comprehended by interpreting the reaction potential energy surface using spin-projected density functional theory, coupled cluster theory, and multiconfiguration complete active space second-order perturbation theory, followed by RRKM kinetics modeling. The combined experimental and computational findings revealed closed-shell singlet 1,CS[7-NO-9MG]+ as the major, exothermic product and triplet 3[8-NO-9MG]+ as the minor, endothermic product. Singlet biradical products were not detected due to high reaction endothermicities, activation barriers, and inherent instability.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Toru Saito
- Department of Biomedical Information Science, Graduate School of Information Science, Hiroshima City University, 731-3194 Hiroshima, Japan
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, the Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
9
|
Kermarrec M, Dumont E, Gillet N. What tunes guanine ionization potential in a nucleosome? An all-in-one systematic QM/MM assessment. Biophys J 2024; 123:3100-3106. [PMID: 38988071 PMCID: PMC11427773 DOI: 10.1016/j.bpj.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/31/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
Guanine radical cations are precursors to oxidatively induced DNA lesions, and the determination of oxidative DNA hot spots beyond oligonucleotides remains a current challenge. In order to rationalize the finetuned ionization properties of the ∼60 guanines in a nucleosome core particle, we report a robust molecular dynamics-then-FO-DFTB/MM (fragment-orbital tight-binding density functional theory/molecular mechanics) simulation protocol spanning 20 μs. Our work allows us to identify several factors governing guanine ionization potential and map oxidative hotspots. Our results highlight the predominant role of the proximity of positively charged histone residues in the modulation of the guanine ionization potential up to 0.6 eV. Consequently, fast, long-range hole transfer in nucleosomal DNA could be tuned by the proximity of histone tails, which differs, from a biological point of view, on the chromatin state.
Collapse
Affiliation(s)
- Maxime Kermarrec
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR5182, Lyon, France
| | - Elise Dumont
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, Nice, France; Institut Universitaire de France, Paris, France
| | - Natacha Gillet
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR5182, Lyon, France.
| |
Collapse
|
10
|
Zhang Z, Wu C, Liu N, Wang Z, Pan Z, Jiang Y, Tian J, Sun M. Modified Banxiaxiexin decoction benefitted chemotherapy in treating gastric cancer by regulating multiple targets and pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118277. [PMID: 38697407 DOI: 10.1016/j.jep.2024.118277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chemotherapy tolerance weakened efficacy of chemotherapy drugs in the treating gastric cancer (GC). Banxiaxiexin decoction (BXXXD) was widely used in digestive diseases for thousands of years in Traditional Chinese medicine (TCM). In order to better treat GC, three other herbs were added to BXXXD to create a new prescription named Modified Banxiaxiexin decoction (MBXXXD). Although MBXXXD potentially treated GC by improving chemotherapy tolerance, the possible mechanisms were still unknown. AIM OF THE STUDY To explore the therapeutic effect of MBXXXD on GC patients and explore the possible anti-cancer mechanism. MATERIALS AND METHODS A randomized controlled trial (n = 146) was conducted to evaluate the clinical efficacy between MBXXXD + chemotherapy (n = 73) and placebo + chemotherapy (n = 73) in GC patients by testing overall survival, progression free survival, clinical symptoms, quality of life score, tumor markers, T cell subpopulation, and adverse reactions. Network pharmacology was conducted to discover the potential mechanism of MBXXXD in treating GC. Metabolic activity assay, cell clone colony formation and mitochondrial apoptosis were detected in human GC cell lines including AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD. Multiple pathways including P53, AKT, IκB, P65, P38, ERK, JNK p-AKT, p-P65, p-P38, p-ERK and p-JNK in AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy were also detected. RESULTS MBXXXD + chemotherapy promoted overall survival and progression free survival, improved clinical symptoms and quality of life score, increased T4 lymphocyte ratio and T8 lymphocyte ratio as well as T4/T8 lymphocyte ratio, and alleviated adverse reactions in GC patients. Network pharmacology predicted multiple targets and pathways of MBXXXD in treating GC including apoptosis, P53 pathway, AKT pathway, MAPK pathway. MBXXXD inhibited cell viability, decreased cell clone colony formation, and promoted mitochondrial apoptosis by producing reactive oxygen species (ROS), promoting mitochondrial permeability transition pore (MPTP) and the cleavage of pro-caspase-3 and pro-caspase-9, and decreasing mito-tracker red Chloromethyl-X-rosamine (CMXRos) in AGS cell, KNM-45 cell and SGC7901 cell. MBXXXD up-regulated the expression of P53 and IκB, and down-regulated the expression of p-AKT, p-P65, p-P38, p-ERK, p-JNK, AKT, P65, P38, ERK and JNK AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy. CONCLUSION MBXXXD benefitted chemotherapy for GC by regulating multiple targets and pathways.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chao Wu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ningning Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Cancer Institute of Integrative Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziyuan Wang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ziyang Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yulang Jiang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianhui Tian
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, 200071, China; Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, 200071, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
11
|
Jena NR, Shukla PK. Hydroxyl radical-induced C1'-H abstraction reaction of different artificial nucleotides. J Mol Model 2024; 30:330. [PMID: 39269493 DOI: 10.1007/s00894-024-06126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
CONTEXT Recently, a few antiviral drugs viz Molnupiravir (EIDD-1931), Favipiravir, Ribavirin, Sofosbuvir, Galidesivir, and Remdesivir are shown to be beneficial against COVID-19 disease. These drugs bind to the viral RNA single strand to inhibit the virus genome replication. Similarly, recently, some artificial nucleotides, such as P, J, B, X, Z, V, S, and K were proposed to behave as potent antiviral candidates. However, their activity in the presence of the most reactive hydroxyl (OH) radical is not yet known. Here, the possibility of RNA strand break due to the OH radical-induced C1'-hydrogen (H) abstraction reaction of the above molecules (except Remdesivir) is studied in detail by considering their nucleotide conformation. The results are compared with those of the natural RNA nucleotides (G, C, A, and U). Due to low Gibbs barrier-free energy and high exothermicity, all these nucleotides (except Remdesivir) are prone to OH radical-induced C1'-H abstraction reaction. As Remdesivir contains a C1'-CN bond, the OH radical substitution reactions at the CN and C1' sites would likely liberate the catalytically important CN group, thereby downgrading its activity. METHOD Initially, the B3LYP-D3 dispersion-corrected density functional theory method and 6-31 + G* basis set were used to optimize all reactant, transition state, and product complexes in the implicit aqueous medium. Subsequently, the structures of these complexes were further optimized by using the ωB97X-D dispersion-corrected density functional theory method and cc-PVTZ basis set in the aqueous medium. The IEFPCM method was used to model the aqueous medium.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, 482005, India.
| | - P K Shukla
- Department of Physics, Assam University, Silcharm, 788011, India
| |
Collapse
|
12
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
13
|
Jie Z, Xiong B, Shi J. Allicin‒Decorated FeO 1-xOH Nanocatalytic Medicine for Fe 2+/Fe 3+ Cycling‒Promoted Efficient and Sustained Tumor Regression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402801. [PMID: 39031565 PMCID: PMC11348051 DOI: 10.1002/advs.202402801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Indexed: 07/22/2024]
Abstract
In the tumor treatment by Fenton reaction‒based nanocatalytic medicines, the gradual consumption of Fe(II) ions greatly reduces the production of hydroxyl radicals, one of the most active reactive oxygen species (ROS), leading to much deteriorated therapeutic efficacy. Meanwhile, the ROS consumption caused by the highly expressed reduced glutathione (GSH) in the tumor microenvironment further prevents tumor apoptosis. Therefore, using the highly expressed GSH in tumor tissue to promote the Fe(III) reduction to Fe(II) can not only weaken the resistance of tumor to ROS attack, but also generate enough Fe(II) to accelerate the Fenton reaction. In view of this, an allicin‒modified FeO1-xOH nanocatalyst possessing varied valence states (II, III) has been designed and synthesized. The coexistence of Fe(II)/Fe(III) enables the simultaneous occurrence of Fenton reaction and GSH oxidation, and the Fe(III) reduction by GSH oxidation results in the promoted cyclic conversion of Fe ions in tumor and positive catalytic therapeutic effects. Moreover, allicin capable of regulating cell cycle and suppressing tumor growth is loaded on FeO1-xOH nanosheets to activate immune response against tumors and inhibit tumor recurrence, finally achieving the tumor regression efficiently and sustainably. This therapeutic strategy provides an innovative approach to formulate efficient antitumor nanomedicine for enhanced tumor treatment.
Collapse
Affiliation(s)
- Zhongming Jie
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
| | - Bingyan Xiong
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
- Shanghai Institute of CeramicsChinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
14
|
Varela ELP, Gomes ARQ, Santos ASBD, Cruz JNDA, Carvalho EPDE, Prazeres BAPD, Dolabela MF, Percario S. Lycopene supplementation promoted increased survival and decreased parasitemia in mice with severe malaria: comparison with N-acetylcysteine. AN ACAD BRAS CIENC 2024; 96:e20230347. [PMID: 39046019 DOI: 10.1590/0001-3765202420230347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/29/2023] [Indexed: 07/25/2024] Open
Abstract
Oxidative stress is involved in the pathogenesis of malaria, causing anemia, respiratory complications, and cerebral malaria. To mitigate oxidative stress, we investigated the effect of nutritional supplementation whit lycopene (LYC) on the evolution of parasitemia and survival rate in mice infected with Plasmodium berghei ANKA (Pb), comparing to the effects promoted by N-acetylcysteine (NAC). Therefore, 175 mice were randomly distributed into 4 groups; Sham: untreated and uninfected animals; Pb: animals infected with Pb; LYC+Pb: animals treated with LYC and infected with Pb; NAC+Pb: animals treated with NAC and infected with Pb. The animals were followed for 12 days after infection, and survival and parasitemia rates were evaluated. There was a 40.1% increase in parasitemia in the animals of the Pb group on the 12th day, and a survival rate of 45%. LYC supplementation slowed the development of parasitemia to 19% and promoted a significative increase in the survival rate of 80% on the 12th day after infection, compared to the Pb group, effects superior to those promoted by NAC, providing strong evidence of the beneficial effect of LYC on in vivo malaria and stressing the importance of antioxidant supplementation in the treatment of this disease.
Collapse
Affiliation(s)
- Everton Luiz P Varela
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Antônio Rafael Q Gomes
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Instituto de Ciências da Saúde, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Aline S B Dos Santos
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Jorddy N DA Cruz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Instituto de Ciências da Saúde, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Eliete P DE Carvalho
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Benedito Antônio P Dos Prazeres
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Maria Fani Dolabela
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Instituto de Ciências da Saúde, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Sandro Percario
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| |
Collapse
|
15
|
Aggarwal S, Singh V, Chakraborty A, Cha S, Dimitriou A, de Crescenzo C, Izikson O, Yu L, Plebani R, Tzika AA, Rahme LG. Skeletal muscle mitochondrial dysfunction mediated by Pseudomonas aeruginosa quorum-sensing transcription factor MvfR: reversing effects with anti-MvfR and mitochondrial-targeted compounds. mBio 2024; 15:e0129224. [PMID: 38860823 PMCID: PMC11253625 DOI: 10.1128/mbio.01292-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Abstract
Sepsis and chronic infections with Pseudomonas aeruginosa, a leading "ESKAPE" bacterial pathogen, are associated with increased morbidity and mortality and skeletal muscle atrophy. The actions of this pathogen on skeletal muscle remain poorly understood. In skeletal muscle, mitochondria serve as a crucial energy source, which may be perturbed by infection. Here, using the well-established backburn and infection model of murine P. aeruginosa infection, we deciphered the systemic impact of the quorum-sensing transcription factor MvfR (multiple virulence factor regulator) by interrogating, 5 days post-infection, its effect on mitochondrial-related functions in the gastrocnemius skeletal muscle and the outcome of the pharmacological inhibition of MvfR function and that of the mitochondrial-targeted peptide, Szeto-Schiller 31 (SS-31). Our findings show that the MvfR perturbs adenosine triphosphate generation, oxidative phosphorylation, and antioxidant response, elevates the production of reactive oxygen species, and promotes oxidative damage of mitochondrial DNA in the gastrocnemius muscle of infected mice. These impairments in mitochondrial-related functions were corroborated by the alteration of key mitochondrial proteins involved in electron transport, mitochondrial biogenesis, dynamics and quality control, and mitochondrial uncoupling. Pharmacological inhibition of MvfR using the potent anti-MvfR lead, D88, we developed, or the mitochondrial-targeted peptide SS-31 rescued the MvfR-mediated alterations observed in mice infected with the wild-type strain PA14. Our study provides insights into the actions of MvfR in orchestrating mitochondrial dysfunction in the skeletal murine muscle, and it presents novel therapeutic approaches for optimizing clinical outcomes in affected patients. IMPORTANCE Skeletal muscle, pivotal for many functions in the human body, including breathing and protecting internal organs, contains abundant mitochondria essential for maintaining cellular homeostasis during infection. The effect of Pseudomonas aeruginosa (PA) infections on skeletal muscle remains poorly understood. Our study delves into the role of a central quorum-sensing transcription factor, multiple virulence factor regulator (MvfR), that controls the expression of multiple acute and chronic virulence functions that contribute to the pathogenicity of PA. The significance of our study lies in the role of MvfR in the metabolic perturbances linked to mitochondrial functions in skeletal muscle and the effectiveness of the novel MvfR inhibitor and the mitochondrial-targeted peptide SS-31 in alleviating the mitochondrial disturbances caused by PA in skeletal muscle. Inhibiting MvfR or interfering with its effects can be a potential therapeutic strategy to curb PA virulence.
Collapse
Affiliation(s)
- Shifu Aggarwal
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Vijay Singh
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Sujin Cha
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Dimitriou
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Claire de Crescenzo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivia Izikson
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucy Yu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - A. Aria Tzika
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Pravin B, Nanaware V, Ashwini B, Wondmie GF, Jardan YAB, Bourhia M. Assessing the antioxidant properties of Naringin and Rutin and investigating their oxidative DNA damage effects in breast cancer. Sci Rep 2024; 14:15314. [PMID: 38961104 PMCID: PMC11222415 DOI: 10.1038/s41598-024-63498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
This work examines the capacity of Naringin and Rutin to influence the DNA damage response (DDR) pathway by investigating their interactions with key DDR proteins, including PARP-1, ATM, ATR, CHK1, and WEE1. Through a combination of in silico molecular docking and in vitro evaluations, we investigated the cytotoxic and genotoxic effects of these compounds on MDA-MB-231 cells, comparing them to normal human fibroblast cells (2DD) and quiescent fibroblast cells (QFC). The research found that Naringin and Rutin had strong affinities for DDR pathway proteins, indicating their capacity to specifically regulate DDR pathways in cancer cells. Both compounds exhibited preferential cytotoxicity towards cancer cells while preserving the vitality of normal 2DD fibroblast cells, as demonstrated by cytotoxicity experiments conducted at a dose of 10 µM. The comet experiments performed particularly on QFC cells provide valuable information on the genotoxic impact of Naringin and Rutin, highlighting the targeted initiation of DNA damage in cancer cells. The need to use precise cell models to appropriately evaluate toxicity and genotoxicity is emphasized by this discrepancy. In addition, ADMET and drug-likeness investigations have emphasized the pharmacological potential of these compounds; however, they have also pointed out the necessity for optimization to improve their therapeutic profiles. The antioxidant capabilities of Naringin and Rutin were assessed using DPPH and free radical scavenging assays at a concentration of 10 µM. The results confirmed that both compounds have a role in reducing oxidative stress, hence enhancing their anticancer effects. Overall, Naringin and Rutin show potential as medicines for modulating the DDR in cancer treatment. They exhibit selective toxicity towards cancer cells while sparing normal cells and possess strong antioxidant properties. This analysis enhances our understanding of the therapeutic uses of natural chemicals in cancer treatment, supporting the need for more research on their mechanisms of action and clinical effectiveness.
Collapse
Affiliation(s)
- Badhe Pravin
- Swalife Biotech Ltd Unit 3D North Point House, North Point Business Park, Cork, Ireland.
- Swalife Labs Ltd, Uxbridge, UK.
- Centre for Drug Discovery and Development, Sinhgad College of Pharmacy, Pune, India.
| | - Vivek Nanaware
- Swalife Biotech Ltd Unit 3D North Point House, North Point Business Park, Cork, Ireland
- Swalife Labs Ltd, Uxbridge, UK
| | - Badhe Ashwini
- Swalife Biotech Ltd Unit 3D North Point House, North Point Business Park, Cork, Ireland
- Swalife Labs Ltd, Uxbridge, UK
| | | | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco
| |
Collapse
|
17
|
Vijayakumar S, Yesudhason BV, Anandharaj JL, Sathyaraj WV, Selvan Christyraj JRS. Impact of double-strand breaks induced by uv radiation on neuroinflammation and neurodegenerative disorders. Mol Biol Rep 2024; 51:725. [PMID: 38851636 DOI: 10.1007/s11033-024-09693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.
Collapse
Affiliation(s)
- Srilakshmi Vijayakumar
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Jenif Leo Anandharaj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
18
|
Aggarwal S, Singh V, Chakraborty A, Cha S, Dimitriou A, de Crescenzo C, Izikson O, Yu L, Plebani R, Tzika AA, Rahme LG. Skeletal Muscle Mitochondrial Dysfunction Mediated by Pseudomonas aeruginosa Quorum Sensing Transcription Factor MvfR: Reversing Effects with Anti-MvfR and Mitochondrial-Targeted Compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592480. [PMID: 38746243 PMCID: PMC11092755 DOI: 10.1101/2024.05.03.592480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Sepsis and chronic infections with Pseudomonas aeruginosa, a leading "ESKAPE" bacterial pathogen, are associated with increased morbidity and mortality and skeletal muscle atrophy. The actions of this pathogen on skeletal muscle remain poorly understood. In skeletal muscle, mitochondria serve as a crucial energy source, which may be perturbed by infection. Here, using the well-established backburn and infection model of murine P. aeruginosa infection, we deciphered the systemic impact of the quorum sensing (QS) transcription factor MvfR by interrogating five days post-infection its effect on mitochondrial-related functions in the gastrocnemius skeletal muscle and the outcome of the pharmacological inhibition of MvfR function and that of the mitochondrial-targeted peptide, Szeto-Schiller 31 (SS-31). Our findings show that the MvfR perturbs ATP generation, oxidative phosphorylation (OXPHOS), and antioxidant response, elevates the production of reactive oxygen species, and promotes oxidative damage of mitochondrial DNA in the gastrocnemius muscle of infected mice. These impairments in mitochondrial-related functions were corroborated by the alteration of key mitochondrial proteins involved in electron transport, mitochondrial biogenesis, dynamics and quality control, and mitochondrial uncoupling. Pharmacological inhibition of MvfR using the potent anti-MvfR lead, D88, we developed, or the mitochondrial-targeted peptide SS-31 rescued the MvfR- mediated alterations observed in mice infected with the wild-type strain PA14. Our study provides insights into the actions of MvfR in orchestrating mitochondrial dysfunction in the skeletal murine muscle, and it presents novel therapeutic approaches for optimizing clinical outcomes in affected patients.
Collapse
|
19
|
van Soest DMK, Polderman PE, den Toom WTF, Keijer JP, van Roosmalen MJ, Leyten TMF, Lehmann J, Zwakenberg S, De Henau S, van Boxtel R, Burgering BMT, Dansen TB. Mitochondrial H 2O 2 release does not directly cause damage to chromosomal DNA. Nat Commun 2024; 15:2725. [PMID: 38548751 PMCID: PMC10978998 DOI: 10.1038/s41467-024-47008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of H2O2 released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach. This enabled us to precisely investigate to what extent DNA damage occurs downstream of near- and supraphysiological amounts of localized H2O2. Nuclear H2O2 gives rise to DNA damage and mutations and a subsequent p53 dependent cell cycle arrest. Mitochondrial H2O2 release shows none of these effects, even at levels that are orders of magnitude higher than what mitochondria normally produce. We conclude that H2O2 released from mitochondria is unlikely to directly damage nuclear genomic DNA, limiting its contribution to oncogenic transformation and aging.
Collapse
Affiliation(s)
- Daan M K van Soest
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Paulien E Polderman
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Wytze T F den Toom
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Janneke P Keijer
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Markus J van Roosmalen
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, 3584 CS, The Netherlands
| | - Tim M F Leyten
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Johannes Lehmann
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Sasha De Henau
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, 3584 CS, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, 3521 AL, The Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands
- Oncode Institute, Jaarbeursplein 6, Utrecht, 3521 AL, The Netherlands
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584 CG, The Netherlands.
| |
Collapse
|
20
|
Wang Y, Wei S. Influence of hydrogen bonds on the reaction of guanine and hydroxyl radical: DFT calculations in C(H +)GC motif. Phys Chem Chem Phys 2024; 26:5683-5692. [PMID: 38288746 DOI: 10.1039/d3cp05885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A comprehensive theoretical investigation was performed to illuminate the influence of hydrogen bonds (H-bonds) on the obscure reaction of a hydroxyl radical (HO˙) and guanine (G) by selecting the building block of parallel triplex DNA, C(H+)GC, as the model. By mapping the energy profiles for addition and hydrogen abstraction reactions, the favorable pathway is predicted. The results reveal that in the C(H+)GC context, barrierless hydrogen abstraction from N2 of G leading to a neutral radical G(N2-H)˙ appears to become significant, but electrophilic attack by HO˙ on C8 of G resulting in 8-oxoG is the most thermodynamically favorable course. This shows a strong structural dependence due to the context constrained by the H-bond, which is dramatically different from the situation in unencumbered G. More interestingly, it proves that the stability order of resulting adduct radicals is not altered by H-bonding, but the activity for possible sites of the hydroxylation reaction changes. The significant influence of the H-bond on elementary reactions involved in the reaction is emphasized in the C(H+)GC context but is not restricted to the H-abstraction reaction. It is greatly anticipated that the present study could provide thoughtful insights into the vague hydroxyl radical-induced oxidation chemistry.
Collapse
Affiliation(s)
- Yinghui Wang
- College of Science, Chang'an University, Xi'an 710064, China.
| | - Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| |
Collapse
|
21
|
Imran H, Tang Y, Wang S, Yan X, Liu C, Guo L, Wang E, Xu C. Optimized DOX Drug Deliveries via Chitosan-Mediated Nanoparticles and Stimuli Responses in Cancer Chemotherapy: A Review. Molecules 2023; 29:31. [PMID: 38202616 PMCID: PMC10780101 DOI: 10.3390/molecules29010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Chitosan nanoparticles (NPs) serve as useful multidrug delivery carriers in cancer chemotherapy. Chitosan has considerable potential in drug delivery systems (DDSs) for targeting tumor cells. Doxorubicin (DOX) has limited application due to its resistance and lack of specificity. Chitosan NPs have been used for DOX delivery because of their biocompatibility, biodegradability, drug encapsulation efficiency, and target specificity. In this review, various types of chitosan derivatives are discussed in DDSs to enhance the effectiveness of cancer treatments. Modified chitosan-DOX NP drug deliveries with other compounds also increase the penetration and efficiency of DOX against tumor cells. We also highlight the endogenous stimuli (pH, redox, enzyme) and exogenous stimuli (light, magnetic, ultrasound), and their positive effect on DOX drug delivery via chitosan NPs. Our study sheds light on the importance of chitosan NPs for DOX drug delivery in cancer treatment and may inspire the development of more effective approaches for cancer chemotherapy.
Collapse
Affiliation(s)
- HafizMuhammad Imran
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Yixin Tang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Siyuan Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Xiuzhang Yan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Lei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| | - Erlei Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.I.); (Y.T.); (S.W.); (X.Y.); (C.L.); (L.G.)
| |
Collapse
|
22
|
Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Reactive oxygen species accelerate de novo acquisition of antibiotic resistance in E. coli. iScience 2023; 26:108373. [PMID: 38025768 PMCID: PMC10679899 DOI: 10.1016/j.isci.2023.108373] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Reactive oxygen species (ROS) produced as a secondary effect of bactericidal antibiotics are hypothesized to play a role in killing bacteria. If correct, ROS may play a role in development of de novo resistance. Here we report that single-gene knockout strains with reduced ROS scavenging exhibited enhanced ROS accumulation and more rapid acquisition of resistance when exposed to sublethal levels of bactericidal antibiotics. Consistent with this observation, the ROS scavenger thiourea in the medium decelerated resistance development. Thiourea downregulated the transcriptional level of error-prone DNA polymerase and DNA glycosylase MutM, which counters the incorporation and accumulation of 8-hydroxy-2'-deoxyguanosine (8-HOdG) in the genome. The level of 8-HOdG significantly increased following incubation with bactericidal antibiotics but decreased after treatment with the ROS scavenger thiourea. These observations suggest that in E. coli sublethal levels of ROS stimulate de novo development of resistance, providing a mechanistic basis for hormetic responses induced by antibiotics.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Kulig K, Bednaruk K, Rudolphi-Szydło E, Barbasz A, Wronowska E, Barczyk-Woznicka O, Karnas E, Pyza E, Zuba-Surma E, Rapala-Kozik M, Karkowska-Kuleta J. Stress Conditions Affect the Immunomodulatory Potential of Candida albicans Extracellular Vesicles and Their Impact on Cytokine Release by THP-1 Human Macrophages. Int J Mol Sci 2023; 24:17179. [PMID: 38139005 PMCID: PMC10742962 DOI: 10.3390/ijms242417179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Human immune cells possess the ability to react complexly and effectively after contact with microbial virulence factors, including those transported in cell-derived structures of nanometer sizes termed extracellular vesicles (EVs). EVs are produced by organisms of all kingdoms, including fungi pathogenic to humans. In this work, the immunomodulatory properties of EVs produced under oxidative stress conditions or at host concentrations of CO2 by the fungal pathogen Candida albicans were investigated. The interaction of EVs with human pro-monocytes of the U-937 cell line was established, and the most notable effect was attributed to oxidative stress-related EVs. The immunomodulatory potential of tested EVs against human THP-1 macrophages was verified using cytotoxicity assay, ROS-production assay, and the measurement of cytokine production. All fungal EVs tested did not show a significant cytotoxic effect on THP-1 cells, although a slight pro-oxidative impact was indicated for EVs released by C. albicans cells grown under oxidative stress. Furthermore, for all tested types of EVs, the pro-inflammatory properties related to increased IL-8 and TNF-α production and decreased IL-10 secretion were demonstrated, with the most significant effect observed for EVs released under oxidative stress conditions.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Katarzyna Bednaruk
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, Institute of Biology, University of the National Education Commission, Podchorazych 2, 30-084 Kraków, Poland
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Olga Barczyk-Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
24
|
Moe MM, Tsai M, Liu J. Effects of Intra-Base Pair Proton Transfer on Dissociation and Singlet Oxygenation of 9-Methyl-8-Oxoguanine-1-Methyl-Cytosine Base-Pair Radical Cations. Chemphyschem 2023; 24:e202300511. [PMID: 37738022 DOI: 10.1002/cphc.202300511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
8-Oxoguanosine is the most common oxidatively generated base damage and pairs with complementary cytidine within duplex DNA. The 8-oxoguanosine-cytidine lesion, if not recognized and removed, not only leads to G-to-T transversion mutations but renders the base pair being more vulnerable to the ionizing radiation and singlet oxygen (1 O2 ) damage. Herein, reaction dynamics of a prototype Watson-Crick base pair [9MOG ⋅ 1MC]⋅+ , consisting of 9-methyl-8-oxoguanine radical cation (9MOG⋅+ ) and 1-methylcystosine (1MC), was examined using mass spectrometry coupled with electrospray ionization. We first detected base-pair dissociation in collisions with the Xe gas, which provided insight into intra-base pair proton transfer of 9MOG⋅+ ⋅ 1MC← → ${{\stackrel{ {\rightarrow} } { {\leftarrow} } } }$ [9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ and subsequent non-statistical base-pair separation. We then measured the reaction of [9MOG ⋅ 1MC]⋅+ with 1 O2 , revealing the two most probable pathways, C5-O2 addition and HN7 -abstraction at 9MOG. Reactions were entangled with the two forms of 9MOG radicals and base-pair structures as well as multi-configurations between open-shell radicals and 1 O2 (that has a mixed singlet/triplet character). These were disentangled by utilizing approximately spin-projected density functional theory, coupled-cluster theory and multi-referential electronic structure modeling. The work delineated base-pair structural context effects and determined relative reactivity toward 1 O2 as [9MOG - H]⋅>9MOG⋅+ >[9MOG - HN1 ]⋅ ⋅ [1MC+HN3' ]+ ≥9MOG⋅+ ⋅ 1MC.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
25
|
Jiang Y, Clavaguéra C, Indrajith S, Houée-Levin C, Berden G, Oomens J, Scuderi D. OH Radical-Induced Oxidation in Nucleosides and Nucleotides Unraveled by Tandem Mass Spectrometry and Infrared Multiple Photon Dissociation Spectroscopy. Chemphyschem 2023; 24:e202300534. [PMID: 37713246 DOI: 10.1002/cphc.202300534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/16/2023]
Abstract
OH⋅-induced oxidation products of DNA nucleosides and nucleotides have been structurally characterized by collision-induced dissociation tandem mass spectrometry (CID-MS2 ) and Infrared Multiple Photon Dissociation (IRMPD) spectroscopy. CID-MS2 results have shown that the addition of one oxygen atom occurs on the nucleobase moiety. The gas-phase geometries of +16 mass increment products of 2'-deoxyadenosine (dA(O)H+ ), 2'-deoxyadenosine 5'-monophosphate (dAMP(O)H+ ), 2'-deoxycytidine (dC(O)H+ ), and 2'-deoxycytidine 5'-monophosphate (dCMP(O)H+ ) are extensively investigated by IRMPD spectroscopy and quantum-chemical calculations. We show that a carbonyl group is formed at the C8 position after oxidation of 2'-deoxyadenosine and its monophosphate derivative. For 2'-deoxycytidine and its monophosphate derivative, the oxygen atom is added to the C5 position to form a C-OH group. IRMPD spectroscopy has been employed for the first time to provide direct structural information on oxidative lesions in DNA model systems.
Collapse
Affiliation(s)
- Yining Jiang
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Suvasthika Indrajith
- Stockholm University, Roslagstullsbacken 21 C, plan 4, Albano, Fysikum, 106 91, Stockholm, Sweden
| | - Chantal Houée-Levin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, Nijmegen, 6525 ED, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, Nijmegen, 6525 ED, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box, 94157, Amsterdam, 1090 GD, The Netherlands
| | - Debora Scuderi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405, Orsay, France
| |
Collapse
|
26
|
Lózsa R, Németh E, Gervai JZ, Márkus BG, Kollarics S, Gyüre Z, Tóth J, Simon F, Szüts D. DNA mismatch repair protects the genome from oxygen-induced replicative mutagenesis. Nucleic Acids Res 2023; 51:11040-11055. [PMID: 37791890 PMCID: PMC10639081 DOI: 10.1093/nar/gkad775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
DNA mismatch repair (MMR) corrects mismatched DNA bases arising from multiple sources including polymerase errors and base damage. By detecting spontaneous mutagenesis using whole genome sequencing of cultured MMR deficient human cell lines, we show that a primary role of MMR is the repair of oxygen-induced mismatches. We found an approximately twofold higher mutation rate in MSH6 deficient DLD-1 cells or MHL1 deficient HCT116 cells exposed to atmospheric conditions as opposed to mild hypoxia, which correlated with oxidant levels measured using electron paramagnetic resonance spectroscopy. The oxygen-induced mutations were dominated by T to C base substitutions and single T deletions found primarily on the lagging strand. A broad sequence context preference, dependence on replication timing and a lack of transcriptional strand bias further suggested that oxygen-induced mutations arise from polymerase errors rather than oxidative base damage. We defined separate low and high oxygen-specific MMR deficiency mutation signatures common to the two cell lines and showed that the effect of oxygen is observable in MMR deficient cancer genomes, where it best correlates with the contribution of mutation signature SBS21. Our results imply that MMR corrects oxygen-induced genomic mismatches introduced by a replicative process in proliferating cells.
Collapse
Affiliation(s)
- Rita Lózsa
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Judit Z Gervai
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Bence G Márkus
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Sándor Kollarics
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Zsolt Gyüre
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, H-1085 Budapest, Hungary
- Turbine Simulated Cell Technologies, H-1027 Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Ferenc Simon
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
27
|
Sung E, Park J, Lee H, Song G, Lim W. Bifenthrin induces cell death in bovine mammary epithelial cells via ROS generation, calcium ion homeostasis disruption, and MAPK signaling cascade alteration. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105637. [PMID: 37945236 DOI: 10.1016/j.pestbp.2023.105637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 11/12/2023]
Abstract
Bifenthrin is one of the widely used synthetic pyrethroid insecticides, employed for various purposes worldwide. As lipophilic pyrethroids can easily bind to soil particles, which is why their residues are detected in various environments. Consequently, the toxicity of bifenthrin to non-target organisms can be regarded as an environmental concern. The toxic effects of bifenthrin have been studied in various animal models and cell lines; however, its toxic effects on cattle remain unclear. In particular, gaining insights into the toxic effects of bifenthrin on the mammary lactation system is crucial for the dairy industry. Therefore, we proceeded to investigate the toxic effects of bifenthrin on the bovine mammary epithelial cells (MAC-T cells). We established that bifenthrin inhibited cell proliferation and triggered apoptosis in MAC-T cells. Additionally, bifenthrin induced mitochondrial dysfunction and altered inflammatory gene expression by disrupting mitochondrial membrane potential (MMP) and generating excessive reactive oxygen species (ROS). We also demonstrated that bifenthrin disrupted both cytosolic and mitochondrial calcium ion homeostasis. Furthermore, bifenthrin altered mitogen-activated protein kinase (MAPK) signaling cascades and downregulated casein-related genes. Collectively, we confirmed the multiple toxic effects of bifenthrin on MAC-T cells, which could potentially reduce milk yield and quality.
Collapse
Affiliation(s)
- Eunho Sung
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hojun Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
28
|
Benny J, Liu J. Spin-orbit charge transfer from guanine and 9-methylguanine radical cations to nitric oxide radicals and the induced triplet-to-singlet intersystem crossing. J Chem Phys 2023; 159:085102. [PMID: 37638623 DOI: 10.1063/5.0160921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Nitric oxide (●NO) participates in many biological activities, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. To help understand the radiosensitization of ●NO, we report reaction dynamics between ●NO and the radical cations of guanine (a 9HG●+ conformer) and 9-methylguanine (9MG●+). On the basis of the formation of 9HG●+ and 9MG●+ in the gas phase and the collisions of the radical cations with ●NO in a guided-ion beam mass spectrometer, the charge transfer reactions of 9HG●+ and 9MG●+ with ●NO were examined. For both reactions, the kinetic energy-dependent product ion cross sections revealed a threshold energy that is 0.24 (or 0.37) eV above the 0 K product 9HG (or 9MG) + NO+ asymptote. To interrogate this abnormal threshold behavior, the reaction potential energy surface for [9MG + NO]+ was mapped out at closed-shell singlet, open-shell singlet, and triplet states using density functional and coupled cluster theories. The results showed that the charge transfer reaction requires the interaction of a triplet-state surface originating from a reactant-like precursor complex 3[9MG●+(↑)⋅(↑)●NO] with a closed-shell singlet-state surface evolving from a charge-transferred complex 1[9MG⋅NO+]. During the reaction, an electron is transferred from π∗(NO) to perpendicular π∗(9MG), which introduces a change in orbital angular momentum. The latter offsets the change in electron spin angular momentum and facilitates intersystem crossing. The reaction threshold in excess of the 0 K thermochemistry and the low charge-transfer efficiency are rationalized by the vibrational excitation in the product ion NO+ and the kinetic shift arising from a long-lived triplet intermediate.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
29
|
Parveen N, Akbarsha MA, Latif Wani AB, Ansari MO, Ahmad MF, Shadab GGHA. Protective effect of quercetin and thymoquinone against genotoxicity and oxidative stress induced by ZnO nanoparticles in the Wistar rat model. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 890:503661. [PMID: 37567646 DOI: 10.1016/j.mrgentox.2023.503661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are increasingly used in a variety of consumer and other commercial products. Hence, man faces the risk of exposure to ZnO-NPs and the consequent adverse health effects. Mitigation/prevention of such effects using natural products has drawn the attention of scientists. Therefore, the aim of the present study has been to find the toxic effects associated with exposure to ZnO-NPs, and the protective role of the phytochemicals thymoquinone (TQ) and quercetin (QCT) in the rat model. ZnO-NPs were administered to male Wistar rats through oral route; TQ / QCT was concurrently administered through intra-peritoneal route. The response in the animal was analyzed adopting chromosomal aberration test, micronucleus test, and comet assay of bone marrow cells to assess the genotoxicity, and biochemical assays of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), total extractable protein of liver, and reduced glutathione (GSH) of liver homogenate to monitor the changes in the antioxidant defense mechanism in response to the oxidative stress. Treatment of 300 mg/kg body weight (bw) of ZnO-NPs produced adverse effects on all aspects analyzed viz., structural chromosomal aberrations, micronuclei formation, DNA damage, SOD, catalase, lipid peroxidation, GSH, and extractable total protein of liver. Co-treatment of TQ / QCT offered protection against the toxicity induced by ZnO-NPs. The most optimum doses of TQ and QCT that offered the best protection were 18 mg/kg bw and 500 mg/kg bw, respectively. The study reveals that TQ / QCT supplementation is beneficial in the context of toxic effects of ZnO-NPs.
Collapse
Affiliation(s)
- Nuzhat Parveen
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | | | - A B Latif Wani
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Owais Ansari
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Fahim Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - G G H A Shadab
- Cytogenetics and Molecular Toxicology Lab., Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
30
|
Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, Celik I, Yahya EB, Dubey A, Zerroug E, Kontek R. Epigallocatechin-3-Gallate Therapeutic Potential in Cancer: Mechanism of Action and Clinical Implications. Molecules 2023; 28:5246. [PMID: 37446908 PMCID: PMC10343677 DOI: 10.3390/molecules28135246] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Pola Głowacka
- Department of Medical Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 90-001 Lodz, Poland;
- Doctoral School of Medical University of Lodz, Hallera 1 Square, 90-700 Lodz, Poland
| | - Rajamanikandan Sundaraj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore 641021, India;
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey;
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India;
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Chennai 600077, India
| | - Enfale Zerroug
- LMCE Laboratory, Group of Computational and Pharmaceutical Chemistry, University of Biskra, Biskra 07000, Algeria;
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland; (M.K.); (R.K.)
| |
Collapse
|
31
|
Jia W, Song J, Wang J, Li J, Li X, Wang Q, Chen X, Liu G, Yan Q, Zhou C, Xin S, Xin Y. Fenton oxidation treatment of oxytetracycline fermentation residues: Harmless performance and bioresource properties. CHEMOSPHERE 2023:139201. [PMID: 37348618 DOI: 10.1016/j.chemosphere.2023.139201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
The pharmaceutical factories of oxytetracycline (OTC) massively produce OTC fermentation residues (OFRs). The high content of residual OTC and antibiotic resistance genes in OFRs must to be considered and controlled at an acceptable level. This study therefore investigated the applicability of Fenton oxidation in OTC degradation and resistant gene inactivation of OFRs. The results revealed that Fe2+ as catalyzer could very rapidly activate H2O2 to produce HO•, leading to instantaneous degradation of OTC. The optimum conditions for OTC removal were 60 mM H2O2 and 140 mg/L Fe2+ under pH 7. After Fenton oxidation treatment, the release of water-soluble polysaccharides, NO3-N, and PO4-P was enhanced, whereas for proteins and NH3-N were reduced. Three soluble fluorescence components (humic, tryptophan-like, and humic acid-like substances) were identified through fluorescence spectra with parallel factor analysis, and their reduction exceeded 50% after Fenton oxidation. There were twelve intermediates and three degradation pathways of OTC in OFRs during Fenton process. According to toxicity prediction, the comprehensive toxicity of OTC in OFRs was alleviated via Fenton oxidation treatment. In addition, Fenton oxidation showed the ability to reduce antibiotic resistance genes and mobile genetic elements, and even tetO, tetG, intI1, and intI2 were eliminated completely. These results suggested that Fenton oxidation treatment could be an efficient strategy for removing OTC and resistance genes in OFRs.
Collapse
Affiliation(s)
- Wenqiang Jia
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiaying Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jian Wang
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinying Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Li
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qianwen Wang
- Instrumental Analysis Center of Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiang Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuaishuai Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
32
|
Li J, Pan L, Pan W, Li N, Tang B. Recent progress of oxidative stress associated biomarker detection. Chem Commun (Camb) 2023. [PMID: 37194341 DOI: 10.1039/d3cc00878a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Oxidative stress denotes the imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses in living organisms, participating in various pathophysiological processes and mediating the occurrence of diseases. Typically, the excessive production of ROS under oxidative stress elicits oxidative modification of biomacromolecules, including lipids, proteins and nucleic acids, leading to cell dysfunction and damage. Therefore, the analysis and detection of oxidative stress-associated biomarkers are of considerable importance to accurately reflect and evaluate the oxidative stress status. This review comprehensively elucidates the recent advances and applications of imaging probes for tracking and detecting oxidative stress-related biomarkers such as lipid peroxidation, and protein and DNA oxidation. The existing challenges and future development directions in this field are also discussed.
Collapse
Affiliation(s)
- Jingjing Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Limeng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
33
|
El-Yazbi AF, Elgammal FAH, Moneeb MS, Sabry SM. Sensitive MALDI-TOF MS and 'turn-on' fluorescent genosensor for the determination of DNA damage induced by CNS acting drugs. Int J Biol Macromol 2023; 241:124547. [PMID: 37094646 DOI: 10.1016/j.ijbiomac.2023.124547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
The genotoxic and carcinogenic adverse effects of various drugs should be considered for assessing drug benefit/risk ratio. On that account, the scope of this study is to examine the kinetics of DNA damage triggered by three CNS acting drugs; carbamazepine, quetiapine and desvenlafaxine. Two precise, simple and green approaches were proposed for probing drug induced DNA impairment; MALDI-TOF MS and terbium (Tb3+) fluorescent genosensor. The results revealed that all the studied drugs induced DNA damage manifested by the MALDI-TOF MS analysis as a significant disappearance of the DNA molecular ion peak with the appearance of other peaks at smaller m/z indicating the formation of DNA strand breaks. Moreover, significant enhancement of Tb3+ fluorescence occurred, proportional to the amount of DNA damage, upon incubation of each drug with dsDNA. Furthermore, the DNA damage mechanism is examined. The proposed Tb3+ fluorescent genosensor showed superior selectivity and sensitivity and is significantly simpler and less expensive than other methods reported for the detection of DNA damage. Moreover, the DNA damaging potency of these drugs was studied using calf thymus DNA in order to clarify the potential safety hazards associated with the studied drugs on natural DNA.
Collapse
Affiliation(s)
- Amira F El-Yazbi
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt.
| | - Feda A H Elgammal
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Marwa S Moneeb
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| | - Suzy M Sabry
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria 21521, Egypt
| |
Collapse
|
34
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
35
|
Abdel-Mobdy YE, Abdel-Mobdy AE, Al-Farga A. Evaluation of therapeutic effects of camel milk against the hepatotoxicity and nephrotoxicity induced by fipronil and lead acetate and their mixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44746-44755. [PMID: 36697983 PMCID: PMC10076416 DOI: 10.1007/s11356-022-25092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/28/2022] [Indexed: 06/09/2023]
Abstract
Elevated environmental pollution of lead and fipronil is blamed for chronic toxicity. Fipronil and lead acetate are commonly used, but now no adequate data is available concerning the harmful side effects of their mixture. The present work investigated the curative effects of camel milk against lead and fipronil subchronic toxicity individually and as mixture with different doses (1/30 and 1/60 LD50) on male albino rats by oral ingestion. Rats were divided into eight groups; the first group (G1) was the normal health control. G2, G4, G6, and G8 are the normal health groups camel milk. G3 and G4 are ingested by 1/30 LD50 of the fipronil formulation. G5 and G6 are ingested by 1/30 LD50 of lead acetate. G7 and G8 are ingested by 1/60 LD50 of lead acetate and 1/60 LD50 of fipronil formulation. The lead acetate or fipronil and their mixture significantly induced destructive damage to the kidneys and liver function parameters as well as lipid profile and oxidative stress in both organs. Serum LDH activity increased under the same conditions. Most harmful effects were clearly observed in G7 followed by G3 and G5. Histological examination revealed hepatic degeneration and nephropathy in intoxicated rats relative to normal health control, as shown by hypertrophy of hepatocytes in addition to karyomegaly, binucleation, and mild individual cell coagulative and mild hypertrophy, as well as a vacuolar degeneration of tubular epithelium in the kidneys. Both toxicants in their mixture showed more harmful than those of their individual ones. Camel milk treatments into intoxicated animals (lead, fipronil, and mixture groups) attenuated all evaluated parameters, alleviated the harmful influences of the mixture of lead acetate and fipronil, and improved the biomarkers of their oxidative stress.
Collapse
Affiliation(s)
- Yasmin E Abdel-Mobdy
- Entomology and Pesticide Department, Faculty of Agriculture, Cairo University, Gamma St, Cairo, 12613, Egypt.
| | - Ahmed E Abdel-Mobdy
- Dairy Science Department, Faculty of Agriculture, Cairo University, Gamma St, Cairo, 12613, Egypt
| | - Ammar Al-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, Kontek R. Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023; 12:659. [PMID: 36831326 PMCID: PMC9954613 DOI: 10.3390/cells12040659] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Doxorubicin (DOX) constitutes the major constituent of anti-cancer treatment regimens currently in clinical use. However, the precise mechanisms of DOX's action are not fully understood. Emerging evidence points to the pleiotropic anticancer activity of DOX, including its contribution to DNA damage, reactive oxygen species (ROS) production, apoptosis, senescence, autophagy, ferroptosis, and pyroptosis induction, as well as its immunomodulatory role. This review aims to collect information on the anticancer mechanisms of DOX as well as its influence on anti-tumor immune response, providing a rationale behind the importance of DOX in modern cancer therapy.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, 90-136 Lodz, Poland
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
37
|
Souris JS, Leoni L, Zhang HJ, Pan A, Tanios E, Tsai HM, Balyasnikova IV, Bissonnette M, Chen CT. X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:673. [PMID: 36839041 PMCID: PMC9962876 DOI: 10.3390/nano13040673] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator-photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented.
Collapse
Affiliation(s)
- Jeffrey S. Souris
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah J. Zhang
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Ariel Pan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Eve Tanios
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
38
|
Yang C, Yi K, Zhu M, Yang J, Wei Y, Shang Y, Xu X. Photosensitive damage of dipeptides: mechanism and influence of structure. Phys Chem Chem Phys 2023; 25:4923-4928. [PMID: 36722384 DOI: 10.1039/d2cp05047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We illustrate the influence of the dipeptide structure on photosensitive damage and the kinetic mechanism was investigated using acenaphthenequinone (ACQ) as a triplet photosensitizer. With tyrosine (Tyr) serving as the core structure, two classic dipeptides with double (trptophan-tyrosine, Trp-Tyr) and single (tyrosine-alanine, Tyr-Ala and Ala-Tyr) active reaction sites were constructed, and the underlying photodamage mechanisms were investigated carefully. According to the experimental results, the proton-coupled electron transfer processes between ACQ and numerous Trp-Tyr reaction sites have independent reaction properties. The bimolecular quenching rate (kq) value is roughly equivalent to the sum of the rates of two amino acid monomers, and a novel intramolecular dynamic channel between Trp/N˙-Tyr and Trp-Tyr/O˙ was observed. The ACQ/Tyr-Ala system demonstrated the key role of steric hindrance on the kq in bimolecular reactions.
Collapse
Affiliation(s)
- Cheng Yang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Kai Yi
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Meirou Zhu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Jiangxue Yang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Yaxiong Wei
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xinsheng Xu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
39
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
40
|
Novoselova EG, Glushkova OV, Sharapov MG, Khrenov MO, Parfenyuk SB, Lunin SM, Novoselova TV, Mubarakshina AK, Goncharov RG, Fesenko EE. Geldanamycin Enhances the Radioprotective Effect of Peroxyredoxin 6 in Irradiated 3T3 Fibroblasts. DOKL BIOCHEM BIOPHYS 2022; 506:202-205. [DOI: 10.1134/s160767292205012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/05/2022]
|
41
|
Sharma M, Nair DT. Pfprex from
Plasmodium falciparum
can bypass oxidative stress‐induced DNA lesions. FEBS J 2022; 289:5218-5240. [DOI: 10.1111/febs.16414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/13/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Minakshi Sharma
- Regional Centre for Biotechnology Faridabad India
- Kalinga Institute of Industrial Technology Bhubaneshwar India
| | | |
Collapse
|
42
|
Moe MM, Saito T, Tsai M, Liu J. Singlet O 2 Oxidation of the Radical Cation versus the Dehydrogenated Neutral Radical of 9-Methylguanine in a Watson-Crick Base Pair. Consequences of Structural Context. J Phys Chem B 2022; 126:5458-5472. [PMID: 35849846 DOI: 10.1021/acs.jpcb.2c03748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In DNA, guanine is the most susceptible to oxidative damage by exogenously and endogenously produced electronically excited singlet oxygen (1O2). The reaction mechanism and the product outcome strongly depend on the nucleobase ionization state and structural context. Previously, exposure of a monomeric 9-methylguanine radical cation (9MG•+, a model guanosine compound) to 1O2 was found to result in the formation of an 8-peroxide as the initial product. The present work explores the 1O2 oxidation of 9MG•+ and its dehydrogenated neutral form [9MG - H]• within a Watson-Crick base pair consisting of one-electron-oxidized 9-methylguanine-1-methylcytosine [9MG·1MC]•+. Emphasis is placed on entangling the base pair structural context and intra-base pair proton transfer with and consequences thereof on the singlet oxygenation of guanine radical species. Electrospray ionization coupled with guided-ion beam tandem mass spectrometry was used to study the formation and reaction of guanine radical species in the gas phase. The 1O2 oxidation of both 9MG•+ and [9MG - H]• is exothermic and proceeds barrierlessly either in an isolated monomer or within a base pair. Single- and multi-referential theories were tested for treating spin contaminations and multi-configurations occurring in radical-1O2 interactions, and reaction potential energy surfaces were mapped out to support experimental findings. The work provides a comprehensive profile for the singlet oxygenation of guanine radicals in different charge states and in the absence and the presence of base pairing. All results point to an 8-peroxide as the major oxidation product in the experiment, and the oxidation becomes slightly more favorable in a neutral radical form. On the basis of a variety of reaction pathways and product profiles observed in the present and previous studies, the interplay between guanine structure, base pairing, and singlet oxygenation and its biological implications are discussed.
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| | - Toru Saito
- Department of Biomedical Information Science, Graduate School of Information Science, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, 731-3194 Hiroshima, Japan
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Avenue, Long Island City, New York 11101, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
43
|
Hou W, Shi G, Wu S, Mo J, Shen L, Zhang X, Zhu Y. Application of Fullerenes as Photosensitizers for Antimicrobial Photodynamic Inactivation: A Review. Front Microbiol 2022; 13:957698. [PMID: 35910649 PMCID: PMC9329950 DOI: 10.3389/fmicb.2022.957698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a newly emerged treatment approach that can effectively address the issue of multidrug resistance resulting from the overuse of antibiotics. Fullerenes can be used as promising photosensitizers (PSs) for aPDI due to the advantages of high triplet state yields, good photostability, wide antibacterial spectrum, and permissibility of versatile functionalization. This review introduces the photodynamic activities of fullerenes and the up-to-date understanding of the antibacterial mechanisms of fullerene-based aPDI. The most recent works on the functionalization of fullerenes and the application of fullerene derivatives as PSs for aPDI are also summarized. Finally, certain remaining challenges are emphasized to provide guidance on future research directions for achieving clinical application of fullerene-based aPDI.
Collapse
Affiliation(s)
- Wenjia Hou
- School of Medicine, Ningbo University, Ningbo, China
| | - Guorui Shi
- School of Medicine, Ningbo University, Ningbo, China
| | - Songze Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Jiayi Mo
- School of Medicine, Ningbo University, Ningbo, China
| | - Lan Shen
- School of Medicine, Ningbo University, Ningbo, China
| | - Xiuqiang Zhang
- Ningbo Key Laboratory of Hearing and Balance Medicine, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
44
|
Chen T, Yang D, Lei S, Liu J, Song Y, Zhao H, Zeng X, Dan H, Chen Q. Photodynamic therapy-a promising treatment of oral mucosal infections. Photodiagnosis Photodyn Ther 2022; 39:103010. [PMID: 35820633 DOI: 10.1016/j.pdpdt.2022.103010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
The treatment of oral mucosal infections is increasingly challenging owing to antibiotic resistance. Therefore, alternative antimicrobial strategies are urgently required. Photodynamic therapy (PDT) has attracted attention for the treatment of oral mucosal infections because of its ability to effectively inactivate drug-resistant bacteria, completely heal clinical infectious lesions and usually offers only mild adverse reactions. This review briefly summarizes relevant scientific data and published papers and discusses the potential mechanism and application of PDT in the treatment of oral mucosal infections.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yansong Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
45
|
Kumar S, Ben Chouikha I, Kerkeni B, García G, Limão-Vieira P. Bound Electron Enhanced Radiosensitisation of Nimorazole upon Charge Transfer. Molecules 2022; 27:molecules27134134. [PMID: 35807379 PMCID: PMC9268075 DOI: 10.3390/molecules27134134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
This novel work reports nimorazole (NIMO) radiosensitizer reduction upon electron transfer in collisions with neutral potassium (K) atoms in the lab frame energy range of 10–400 eV. The negative ions formed in this energy range were time-of-flight mass analyzed and branching ratios were obtained. Assignment of different anions showed that more than 80% was due to the formation of the non-dissociated parent anion NIMO•− at 226 u and nitrogen dioxide anion NO2− at 46 u. The rich fragmentation pattern revealed that significant collision induced the decomposition of the 4-nitroimidazole ring, as well as other complex internal reactions within the temporary negative ion formed after electron transfer to neutral NIMO. Other fragment anions were only responsible for less than 20% of the total ion yield. Additional information on the electronic state spectroscopy of nimorazole was obtained by recording a K+ energy loss spectrum in the forward scattering direction (θ ≈ 0°), allowing us to determine the most accessible electronic states within the temporary negative ion. Quantum chemical calculations on the electronic structure of NIMO in the presence of a potassium atom were performed to help assign the most significant lowest unoccupied molecular orbitals participating in the collision process. Electron transfer was shown to be a relevant process for nimorazole radiosensitisation through efficient and prevalent non-dissociated parent anion formation.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Islem Ben Chouikha
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia;
| | - Boutheïna Kerkeni
- Département de Physique, LPMC, Faculté des Sciences de Tunis, Université de Tunis el Manar, Tunis 2092, Tunisia;
- ISAMM, Université de La Manouba, La Manouba 2010, Tunisia
- Correspondence: (B.K.); (P.L.-V.)
| | - Gustavo García
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 113-bis, 28006 Madrid, Spain;
| | - Paulo Limão-Vieira
- Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
- Correspondence: (B.K.); (P.L.-V.)
| |
Collapse
|
46
|
Han D, Zhang C. The Oxidative Damage and Inflammation Mechanisms in GERD-Induced Barrett's Esophagus. Front Cell Dev Biol 2022; 10:885537. [PMID: 35721515 PMCID: PMC9199966 DOI: 10.3389/fcell.2022.885537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022] Open
Abstract
Barrett's esophagus is a major complication of gastro-esophageal reflux disease and an important precursor lesion for the development of Barrett's metaplasia and esophageal adenocarcinoma. However, the cellular and molecular mechanisms of Barrett's metaplasia remain unclear. Inflammation-associated oxidative DNA damage could contribute to Barrett's esophagus. It has been demonstrated that poly(ADP-ribose) polymerases (PARPs)-associated with ADP-ribosylation plays an important role in DNA damage and inflammatory response. A previous study indicated that there is inflammatory infiltration and oxidative DNA damage in the lower esophagus due to acid/bile reflux, and gastric acid could induce DNA damage in culture esophageal cells. This review will discuss the mechanisms of Barrett's metaplasia and adenocarcinoma underlying oxidative DNA damage in gastro-esophageal reflux disease patients based on recent clinical and basic findings.
Collapse
Affiliation(s)
- Deqiang Han
- Department of General Surgery, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China.,Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chao Zhang
- Department of General Surgery, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Wang L, Xi K, Zhu L, Da LT. DNA Deformation Exerted by Regulatory DNA-Binding Motifs in Human Alkyladenine DNA Glycosylase Promotes Base Flipping. J Chem Inf Model 2022; 62:3213-3226. [PMID: 35708296 DOI: 10.1021/acs.jcim.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human alkyladenine DNA glycosylase (AAG) is a key enzyme that corrects a broad range of alkylated and deaminated nucleobases to maintain genomic integrity. When encountering the lesions, AAG adopts a base-flipping strategy to extrude the target base from the DNA duplex to its active site, thereby cleaving the glycosidic bond. Despite its functional importance, the detailed mechanism of such base extrusion and how AAG distinguishes the lesions from an excess of normal bases both remain elusive. Here, through the Markov state model constructed on extensive all-atom molecular dynamics simulations, we find that the alkylated nucleobase (N3-methyladenine, 3MeA) everts through the DNA major groove. Two key AAG motifs, the intercalation and E131-N146 motifs, play active roles in bending/pressing the DNA backbone and widening the DNA minor groove during 3MeA eversion. In particular, the intercalated residue Y162 is involved in buckling the target site at the early stage of 3MeA eversion. Our traveling-salesman based automated path searching algorithm further revealed that a non-target normal adenine tends to be trapped in an exo site near the active site, which however barely exists for a target base 3MeA. Collectively, these results suggest that the Markov state model combined with traveling-salesman based automated path searching acts as a promising approach for studying complex conformational changes of biomolecules and dissecting the elaborate mechanism of target recognition by this unique enzyme.
Collapse
Affiliation(s)
- Lingyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Xi
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
48
|
Nichols F, Ozoemena KI, Chen S. Electrocatalytic generation of reactive species and implications in microbial inactivation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63941-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Tashiro R, Sugiyama H. Photoreaction of DNA Containing 5-Halouracil and its Products. Photochem Photobiol 2022; 98:532-545. [PMID: 34543451 PMCID: PMC9197447 DOI: 10.1111/php.13521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
5-Halouracil, which is a DNA base analog in which the methyl group at the C5 position of thymine is replaced with a halogen atom, has been used in studies of DNA damage. In DNA strands, the uracil radical generated from 5-halouracil causes DNA damage via a hydrogen-abstraction reaction. We analyzed the photoreaction of 5-halouracil in various DNA structures and revealed that the reaction is DNA structure-dependent. In this review, we summarize the results of the analysis of the reactivity of 5-halouracil in various DNA local structures. Among the 5-halouracil molecules, 5-bromouracil has been used as a probe in the analysis of photoinduced electron transfer through DNA. The analysis of groove-binder/DNA and protein/DNA complexes using a 5-bromouracil-based electron transfer system is also described.
Collapse
Affiliation(s)
- Ryu Tashiro
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-Cyo, Suzuka, Mie, 513-8670, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
50
|
Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, Kumar S, Bhatti GK, Reddy PH. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184:114-134. [DOI: https:/doi.org/10.1016/j.freeradbiomed.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|