1
|
Maartens M, Vlok M, van de Vyver M. Antioxidants improve the viability of diabetic bone marrow MSCs without rescuing their pro-regenerative secretome function. Mol Cell Endocrinol 2025; 601:112519. [PMID: 40057223 DOI: 10.1016/j.mce.2025.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/25/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Bone marrow mesenchymal stem cell (BM-MSC) dysfunction and poor viability are prominent in diabetes and limit their therapeutic efficacy. A proteomic investigation was performed to assess disease associated alterations and the efficacy of antioxidants to rescue cellular function. BM-MSCs were isolated from obese diabetic mice (B6.Cg-Lepob/J) cultured in the presence or absence of N-acetylcysteine (NAC) and ascorbic acid-2phosphate (AAP). Label free Liquid Chromatography and Mass Spectrometry (LC-MS) analysis detected 5079 proteins with 251 being differentially expressed between treatment groups. NAC/AAP improved cellular growth/viability post isolation by up-regulating proteins involved in redox status, ATP synthesis, Rho-GTPase signaling and modulated the immunophenotype of BM-MSCs. Despite a single application of the secretome not providing any advantage for wound bed regeneration in full thickness excisional diabetic wounds, the intracellular proteome illustrated the potential mechanisms of action by which NAC/AAP targeted the respiratory chain and modulated the immune phenotype of BM-MSCs. Given these observations, antioxidant supplementation might be more effective as prophylactic strategy to protect MSCs against functional decline instead of using it as a restorative agent and warrants further investigation.
Collapse
Affiliation(s)
- Michelle Maartens
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mare Vlok
- Proteomics Unit, Central Analytical Facility, Stellenbosch University, South Africa
| | - Mari van de Vyver
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
2
|
Mateo Orobia AJ, Benítez Del Castillo JM, Calonge M, Baudouin C, Labetoulle M. A narrative literature review about alpha-lipoic acid role in dry eye and ocular surface disease. Acta Ophthalmol 2025. [PMID: 40207422 DOI: 10.1111/aos.17486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Ocular surface diseases (OSD) include various conditions that affect the eye's surface, causing discomfort and pain. One such condition, dry eye disease (DED), is a multifactorial disorder that significantly impacts patients' quality of life, with prevalence rates ranging from 5% to 50% and higher incidence in women. DED involves tear film instability, inflammation and neurosensory abnormalities, making its management challenging due to diverse underlying mechanisms. Conventional treatments typically focus on symptom relief, but new approaches targeting the disease's pathogenesis are emerging. Alpha-lipoic acid (ALA) is gaining attention for its potential in treating OSD and DED. ALA acts as a potent antioxidant, neutralizing reactive oxygen species. It protects cell membranes by interacting with vitamin C and glutathione, potentially recycling vitamin E. Its antioxidative properties are particularly relevant in meibomian gland dysfunction, a condition implicated in DED. By scavenging free radicals and modulating redox status in the meibomian glands, ALA can reduce oxidative damage, preserve glandular function and decrease inflammation. In diabetic patients with DED, ALA administration has been found to improve tear film parameters, reduce corneal defects, enhance antioxidant status and potentially prevent diabetic retinopathy and keratopathy. Its therapeutic effects on neurosensory abnormalities, especially in diabetic polyneuropathy and other neuropathies, are primarily due to its antioxidant, anti-inflammatory and metal-chelating properties. In summary, ALA holds promise as a therapeutic agent for DED and OSD and could be a promising treatment option for diabetic retinopathy and keratopathy, although further research is needed to confirm its efficacy.
Collapse
Affiliation(s)
- Antonio J Mateo Orobia
- Hospital Universitario Miguel Servet Zaragoza, Instituto Oftalmológico Biotech-Visión. Quirónsalud Zaragoza, Zaragoza, Spain
| | | | - Margarita Calonge
- Universidad de Valladolid, Instituto Universitario de Oftalmología Aplicada Valladolid (IOBA), Valladolid, Spain
| | - Christophe Baudouin
- Department of Ophthalmology, Quinze-Vingts National OphthalmologyHospital and Vision Institute, Paris, France
| | - Marc Labetoulle
- Department of Ophthalmology, Quinze-Vingts National OphthalmologyHospital and Vision Institute, Paris, France
- Service d'Ophtalmologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Paris-Saclay University, Kremlin-Bicêtre, France
| |
Collapse
|
3
|
Goswami S, Namkoong J, El Hajoui M, Lesniak E, Wu J. In Vitro, Ex Vivo, Instrumental, and Clinical Assessment of a Novel Anti-aging Serum Targeting Oxidative Stress. J Cosmet Dermatol 2025; 24:e16664. [PMID: 40178310 PMCID: PMC11967377 DOI: 10.1111/jocd.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 04/05/2025]
Abstract
BACKGROUND Primarily driven by oxidative stress, aging results from the attrition of cells, aggravated by environmental stressors. Therefore, protection from oxidative stress is the main target of antiaging cosmetics. AIMS To evaluate the efficacy of a unique cosmetic serum combining five antioxidants and hyaluronic acid. METHODS The inactivation of reactive oxygen species by the serum was evaluated in-tubo. IL-1α release was evaluated using EpiDermTM skin models, while gene expression analysis and elastin fiber length were evaluated on human skin explants. Finally, the effect of twice daily serum application for 28 days was compared to those induced by a control serum, focusing on instrumental and assessor evaluations. RESULTS In-tubo, the serum reduces reactive oxygen species by 45.2%. A single topical application on EpiDermTM skin models limits UV-induced ROS-mediated IL-1α release. Compared to untreated explants, HB-EGF (heparin-binding epidermal growth factor) skin homeostasis marker expression increases by 22-fold with treatment. Additionally, the serum increases elastin fiber length by 40.2%. Clinically, twice daily application of the serum over a period of 7 days revealed significant improvements in clinical scoring of skin's wrinkle (-12.8%), smoothness (+12.5%), and radiance (+22.2%). The serum also leads to a rapid and long-lasting increase in skin hydration (30 min: +50.5%, 28 days: +19.9%) and reduced transepidermal water loss (30 min: -7.7%, 28 days: -8.7%). The serum is highly efficacious and well tolerated by the subjects. CONCLUSION The serum has antioxidant, soothing, photoprotective, and moisturizing properties that can be explained by the individual properties of its unique blend of actives.
Collapse
Affiliation(s)
- Sayantani Goswami
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | - Jin Namkoong
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | | | - Ewelina Lesniak
- Personal Care Product Development, Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| | - Joanna Wu
- Skin Research and Innovation, Global Personal Care and Skin Health R&DColgate‐Palmolive CompanyPiscatawayNew JerseyUSA
| |
Collapse
|
4
|
Matsumoto C. Nutrition and Hypertension Researches in 2023: focus on salt intake and blood pressure. Hypertens Res 2025; 48:1471-1476. [PMID: 39871003 PMCID: PMC11972956 DOI: 10.1038/s41440-024-02089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/29/2025]
Abstract
Hypertension is a major global health issue that contributes significantly to cardiovascular morbidity and mortality. The management and prevention of hypertension often involve nutritional and dietary modifications, which are considered effective non-pharmacological strategies. In 2023, the Hypertension Research published several papers highlighting nutrition and hypertension. In addition, multiple studies published in leading journals explored the relationship between salt intake and blood pressure (BP) in 2023. In this mini-review, we summarize the key findings of nutritional studies published in the Hypertension Research in 2023. This mini-review also highlights significant findings from the latest research on salt intake and its impact on BP. The new findings from nutritional studies will provide deeper insights on planning dietary strategies for the management of hypertension.
Collapse
Affiliation(s)
- Chisa Matsumoto
- Center for Health Surveillance & Preventive Medicine, Tokyo Medical University Hospital, Tokyo, Japan.
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
5
|
Simon P, Török É, Szalontai K, Kari B, Neuperger P, Zavala N, Kanizsai I, Puskás LG, Török S, Szebeni GJ. Nutritional Support of Chronic Obstructive Pulmonary Disease. Nutrients 2025; 17:1149. [PMID: 40218907 PMCID: PMC11990120 DOI: 10.3390/nu17071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background: COPD is a heterogenous disease of the respiratory tract caused by diverse genetic factors along with environmental and lifestyle-related effects such as industrial dust inhalation and, most frequently, cigarette smoking. These factors lead to airflow obstruction and chronic respiratory symptoms. Additionally, the increased risk of infections exacerbates airway inflammation in COPD patients. As a consequence of the complex pathomechanisms and difficulty in treatment, COPD is among the leading causes of mortality both in the western countries and in the developing world. Results: The management of COPD is still a challenge for the clinicians; however, alternative interventions such as smoking cessation and lifestyle changes from a sedentary life to moderate physical activity with special attention to the diet may ameliorate patients' health. Here, we reviewed the effects of different dietary components and supplements on the conditions of COPD. Conclusions: COPD patients are continuously exposed to heavy metals, which are commonly present in cigarette smoke and polluted air. Meanwhile, they often experience significant nutrient deficiencies, which affect the detoxification of these toxic metals. This in turn can further disrupt nutritional balance by interfering with the absorption, metabolism, and utilization of essential micronutrients. Therefore, awareness and deliberate efforts should be made to check levels of micronutrients, with special attention to ensuring adequate levels of antioxidants, vitamin D, vitamin K2, magnesium, and iron, as these may be particularly important in reducing the risk of COPD development and limiting disease severity.
Collapse
Grants
- 2023-1.1.1-PIACI_FÓKUSZ-2024-00036 National Research, Development, and Innovation Office (NKFI), Hungary
- 2020-1.1.6-JÖVŐ-2021-00003 National Research, Development, and Innovation Office (NKFI), Hungary
- 2022-1.2.6-TÉT-IPARI-TR-2022-00023 National Research, Development, and Innovation Office (NKFI), Hungary
- 142877 FK22 National Research, Development, and Innovation Office (NKFI), Hungary.
- BO/00582/22/8 János Bolyai Research Scholarship of the Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Péter Simon
- National Korányi Institute of Pulmonology, 1121 Budapest, Hungary;
| | - Éva Török
- Gastroenterology Center Buda, 1117 Budapest, Hungary;
| | - Klára Szalontai
- Department of Pulmonology, Szent-Györgyi Albert Medical Center, University of Szeged, 6772 Deszk, Hungary;
| | - Beáta Kari
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
| | - Patrícia Neuperger
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
| | - Norma Zavala
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
| | | | - László G. Puskás
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
- Anthelos Ltd., 6726 Szeged, Hungary
| | - Szilvia Török
- National Korányi Institute of Pulmonology, 1121 Budapest, Hungary;
| | - Gabor J. Szebeni
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary; (B.K.); (P.N.); (N.Z.); (L.G.P.)
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
6
|
Yang R, Lv M, Yang X, Zhai S. A Mendelian randomized study of circulating antioxidants in the diet and risk of cardiovascular disease. Sci Rep 2025; 15:10341. [PMID: 40133449 PMCID: PMC11937293 DOI: 10.1038/s41598-025-94369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Cardiovascular diseases (CVD) are a major global mortality cause, heavily impacted by diet and oxidative stress. This study investigates the causal effects of five circulatory antioxidants on various cardiovascular diseases using Mendelian randomization (MR) to mitigate confounding biases.We conducted a two-sample Mendelian Randomization (MR) analysis utilizing summary-level genome-wide association study (GWAS) data from both the UK Biobank and FinnGen. Genetic instrumental variables for antioxidants, including vitamin A, beta-carotene, vitamin C, α-tocopherol, and lycopene, were identified based on rigorous criteria. The outcomes included arrhythmia, cardiomyopathy, heart failure, myocardial infarction, pericarditis, angina pectoris and coronary atherosclerosis.Higher genetically determined levels of α-tocopherol were associated with an increased risk of myocardial infarction (OR 5.10, 95% CI 2.92-8.91, P < 0.001) and cardiac arrhythmias (OR 1.94, 95% CI 1.34-2.83, P = 0.001). Retinol was linked to heightened risks of cardiomyopathy (OR 6.38, 95% CI 1.23-33.20, P = 0.028) and heart failure (OR 2.26, 95% CI 1.01-5.07, P = 0.047). A meta-analysis corroborated the pathogenic effects of α-carotene on arrhythmias (OR, 2.00; 95% CI, 1.39-2.86; P < 0.001) and myocardial infarction (OR, 4.81; 95% CI, 2.84-8.15; P < 0.001), α-tocopherol on angina pectoris (OR: 4.33; 95% CI: 2.07-9.09; P < 0.001) and coronary atherosclerosis (OR: 5.34; 95% CI: 2.81-10.12; P < 0.001).Our study indicates that elevated levels of specific antioxidants, particularly α-tocopherol and retinol, may increase the risk of certain cardiovascular diseases. Further research is necessary to clarify the impact of these antioxidants on cardiovascular health and to explore potential gene-environment interactions.
Collapse
Affiliation(s)
- Ruonan Yang
- Department of Medical Quality Control, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China.
| | - Mingyue Lv
- The Sixth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiujuan Yang
- Department of Medical Quality Control, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China
| | - Siwei Zhai
- Department of Medical Quality Control, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Pokushalov E, Ponomarenko A, Garcia C, Kasimova L, Pak I, Shrainer E, Romanova A, Kudlay D, Johnson M, Miller R. Assessing the combined effects of Black Cohosh, Soy Isoflavones, and SDG Lignans on menopausal symptoms: a randomized, double-blind, placebo-controlled clinical trial. Eur J Nutr 2025; 64:138. [PMID: 40131516 DOI: 10.1007/s00394-025-03588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/09/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVE This randomized, double-blind, parallel-group clinical trial aimed to evaluate the efficacy of Black Cohosh, Soy Isoflavones, and SDG Lignans in alleviating menopausal symptoms compared to a placebo. METHODS Ninety-six postmenopausal women aged 45-60 years were enrolled. Participants were randomized to receive either the study supplements or a placebo for 90 days, with Menopause Rating Scale (MRS) scores collected at baseline and every 4 weeks to monitor symptom changes. Secondary outcomes assessed included hormonal variations and the incidence of adverse symptoms. RESULTS Of the initial cohort, 90 participants completed the study with high adherence. Significant improvements were observed in the treatment group across all MRS domains: somatic (- 54.3% difference, p < 0.01), psychological (- 54.3% difference, p < 0.01), urogenital (-37.3% difference, p < 0.01), and total score (- 48.0% difference, p < 0.01). Hormonal changes were modest yet statistically significant for FSH (- 6.7% difference, p < 0.01) and estradiol (12.6% difference, p < 0.01). Adverse events were minimal, transient, and did not require cessation of supplementation. CONCLUSION Black Cohosh, Soy Isoflavones, and SDG Lignans significantly reduced menopausal symptoms with a favorable safety profile. These findings support the potential of this supplement combination as a therapeutic option for menopausal symptom management. TRIAL REGISTRATION ClinicalTrials.gov NCT06328348.
Collapse
Affiliation(s)
- Evgeny Pokushalov
- Center for New Medical Technologies, Novosibirsk, Russia.
- Scientific Research Laboratory, Triangel Scientific, San Francisco, USA.
| | - A Ponomarenko
- Center for New Medical Technologies, Novosibirsk, Russia
| | - C Garcia
- Scientific Research Laboratory, Triangel Scientific, San Francisco, USA
| | - L Kasimova
- Center for New Medical Technologies, Novosibirsk, Russia
| | - I Pak
- Center for New Medical Technologies, Novosibirsk, Russia
| | - E Shrainer
- Center for New Medical Technologies, Novosibirsk, Russia
| | - A Romanova
- Center for New Medical Technologies, Novosibirsk, Russia
| | - D Kudlay
- Center for New Medical Technologies, Novosibirsk, Russia
| | - M Johnson
- Scientific Research Laboratory, Triangel Scientific, San Francisco, USA
| | - R Miller
- Scientific Research Laboratory, Triangel Scientific, San Francisco, USA
| |
Collapse
|
8
|
Verma S, Bhatt M, Das B. Effect of carbon nanodots on the cellular redox reaction and immune system. NANOSCALE ADVANCES 2025; 7:1784-1802. [PMID: 40104603 PMCID: PMC11912505 DOI: 10.1039/d4na00860j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/01/2025] [Indexed: 03/20/2025]
Abstract
Carbon nanodots are ultra-small carbonaceous nanostructures with excellent photoluminescence and cytocompatibility properties, making them suitable for developing excellent bioimaging probes. They exhibit dual properties, generating and scavenging reactive oxygen species, and are used as photosensitizers to produce reactive oxygen species under light and as photothermal agents that transform light energy into heat. This makes it possible to use them in photothermal and photodynamic therapies to treat cancer. They may enter the body by various means, including inhalation, ingestion, or intravenous injection. Once inside, they travel through the bloodstream, infiltrating tissues where they come into contact with the immune system, similar to infectious agents. These nanodots are identified by several receptors on the surface of innate immune cells, such as monocytes and macrophages, which attempt to engulf these nanodots. This interaction can induce a pro-inflammatory (M1) or anti-inflammatory (M2) response, modulating immune activity. This review explores the immuno-toxic potential of carbon nanodots, focusing on their ability to modulate redox balance by catalase, glutathione peroxidase, and superoxide dismutase, which are examples of antioxidant enzymes. Although carbon nanodots have demonstrated a wide range of applications, their effect on the cellular immune system remains largely unexplored. In this study, we primarily addressed the sophisticated impacts of carbon nanodots on the immune system and their diverse processes, such as the many cellular redox reactions implicated in antibacterial and antiviral treatment, wound healing, drug administration, and tumor therapy. As a result, we outline the benefits and difficulties of carbon nanodots in the biomedical domain and discuss their potential in the future development of clinical medicine.
Collapse
Affiliation(s)
- Surabhi Verma
- Department of Biomedical Engineering, Indian Institute of Technology Ropar Punjab India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology Ropar Punjab India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar Punjab India
| |
Collapse
|
9
|
Soni U, Singh K, Jain D, Pujari R. Exploring Alzheimer's disease treatment: Established therapies and novel strategies for future care. Eur J Pharmacol 2025; 998:177520. [PMID: 40097131 DOI: 10.1016/j.ejphar.2025.177520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by a gradual decline in cognitive function, memory impairment, and alterations in behavior. As the predominant etiology of dementia, AD affects millions of individuals worldwide, with its hallmark pathological feature being the accumulation of amyloid beta (Aβ) plaques, which disrupt neuronal function and progressively compromise brain structure. Early clinical manifestations often include forgetfulness, disorientation, and social withdrawal. Primarily impacting the elderly population, AD significantly impairs daily functioning and diminishes overall quality of life. Current therapeutic approaches for AD mainly focus on symptomatic relief and decelerating the disease's progression. Cholinesterase inhibitors, such as donepezil and rivastigmine, increase acetylcholine (ACh) levels to enhance cognitive function in individuals with mild to moderate AD. For individuals in more advanced stages of the disease, NMDA receptor antagonists modulate glutamate activity to mitigate excitotoxicity. In addition to pharmacological interventions, lifestyle modifications such as adherence to a balanced diet, regular physical activity, and cognitive engagement are advocated to support brain health. Novel therapeutic avenues are being explored to address underlying pathophysiological mechanisms, such as metal ion dysregulation within the brain. Furthermore, non-pharmacological approaches, including cognitive-behavioral therapy and patient support groups, provide essential behavioral and emotional support. Cutting-edge research continues to investigate innovative treatments, such as immunotherapies targeting amyloid plaques and tau tangles and neuroprotective compounds derived from natural sources. The goal of these multifaceted strategies is to alleviate symptoms, enhance quality of life, and offer hope for individuals and families affected by AD. This review provides a comprehensive summary of both established and emerging therapeutic interventions for the management of AD.
Collapse
Affiliation(s)
- Urvashi Soni
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411023, Maharashtra, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| | - Rohini Pujari
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411023, Maharashtra, India.
| |
Collapse
|
10
|
Ryu T, Chae SY, Lee J, Han JW, Yang H, Chung BS, Yang K. Multivitamin supplementation and its impact in metabolic dysfunction-associated steatotic liver disease. Sci Rep 2025; 15:8675. [PMID: 40082562 PMCID: PMC11906897 DOI: 10.1038/s41598-025-92858-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging global health concern with limited therapeutic options. Multivitamins, widely consumed dietary supplements, have been proposed to modulate oxidative stress and inflammation, potentially impacting MASLD progression. However, their efficacy in reducing mortality and other complications in MASLD remains unclear. Using data from the UK Biobank with 7 years of median follow-up period, this study assessed the association between multivitamin use and health outcomes, including all-cause mortality, liver-related mortality, cardio-cerebrovascular disease (CVD), and chronic kidney disease (CKD), in individuals with MASLD and those without steatotic liver disease. Inverse probability of treatment weighting (IPTW) was employed to adjust for confounders. Multivitamin users showed a significantly lower all-cause mortality risk in the MASLD cohort both before (HR: 0.88, 95% CI 0.81-0.95, P = 0.034) and after (HR: 0.94, 95% CI 0.88-1.00, P = 0.037) IPTW adjustment. Multivitamin use was also associated with the lower risk of CVD (HR: 0.72, 95% CI 0.68-0.76, P < 0.001) and CKD (HR: 0.73, 95% CI 0.67-0.81, P < 0.001) in the MASLD cohort. No significant reduction was found for liver-related mortality or liver cirrhosis incidence. These findings suggest that multivitamins might provide broader protective effects in populations with metabolic dysfunction. Further research is needed to clarify their role in liver-specific outcomes.
Collapse
Affiliation(s)
- Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, Soonchunhyang University College of Medicine, Seoul, 04401, Republic of Korea
| | - Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaejun Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Beom Sun Chung
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, 26426, Republic of Korea
| | - Keungmo Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
11
|
Kaltchenko MV, Chien AL. Photoaging: Current Concepts on Molecular Mechanisms, Prevention, and Treatment. Am J Clin Dermatol 2025:10.1007/s40257-025-00933-z. [PMID: 40072791 DOI: 10.1007/s40257-025-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Photoaging is the consequence of chronic exposure to solar irradiation, encompassing ultraviolet (UV), visible, and infrared wavelengths. Over time, this exposure causes cumulative damage, leading to both aesthetic changes and structural degradation of the skin. These effects manifest as rhytids, dyschromia, textural changes, elastosis, volume loss, telangiectasias, and hyperkeratosis, collectively contributing to a prematurely aged appearance that exceeds the skin's chronological age. The hallmarks of photoaging vary significantly by skin phototype. Skin of color tends to exhibit dyschromia and features associated with "intrinsic" aging, such as volume loss, while white skin is more prone to "extrinsic" aging characteristics, including rhytids and elastosis. Moreover, susceptibility to different wavelengths within the electromagnetic spectrum also differs by skin phototype, influencing the clinical presentation of photoaging, as well as prevention and treatment strategies. Fortunately, photoaging-and its associated adverse effects-is largely preventable and, to some extent, reversible. However, effective prevention and treatment strategies require careful tailoring to an individual's skin type. In this review, we summarize molecular mechanisms underlying photoaging, examine its clinical manifestations, outline risk factors and prevention strategies, and highlight recent advancements in its treatment.
Collapse
Affiliation(s)
- Maria V Kaltchenko
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Uzochukwu IE, Ali LC, Amaefule BC, Okeke CC, Osita CO, Machebe NS, Yancheva V, Somogyi D, Nyeste K. Impact of vitamin E and selenium supplementation on growth, reproductive performance, and oxidative stress in dexamethasone-stressed Japanese quail cocks: Vitamin E & selenium in stressed quail cocks. Poult Sci 2025; 104:104888. [PMID: 39919567 PMCID: PMC11851230 DOI: 10.1016/j.psj.2025.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/09/2025] Open
Abstract
This study investigated the effects of dietary vitamin E (VE) and selenium (Se) supplementation on body weight changes, blood profile, and semen quality in Dexamethasone (DEX)-stressed Japanese quails. One hundred and five 10-week-old quail cocks were acclimated and divided into five treatment groups: negative control - G1, DEX-treated (20 mgL-1 of drinking water) - G2, DEX + VE (180 mg kg diet-1) - G3; DEX + Se (0.3 mg kg diet-1) - G4; and DEX + VE (180 mg kg diet-1) + Se (0.3 mg kg diet-1) - G5. The birds received their respective treatments over 21 days, and various performance, hematological, and semen quality parameters were measured. Results indicated that DEX treatment significantly reduced weight gain (WG) and feed intake (P < 0.05). Supplementation with VE and Se, individually and combined, ameliorated these effects, with groups G3, G4, and G5 showing similar WG to the control. Hematological analysis revealed significant increases (P < 0.05) in packed cell volume, hemoglobin, and white blood cell count in DEX-treated groups compared to G1. Treatment did not affect blood glucose and cholesterol levels (P ≥ 0.05). Plasma antioxidant assays showed elevated superoxide dismutase and catalase functions and reduced malondialdehyde levels in G3, G4, and G5 compared to G2, indicating reduced oxidative stress. No marked differences were seen in the plasma glutathione peroxidase activities across groups. Sperm motility was impaired in the DEX-only group but improved (P < 0.05) with antioxidant supplementation. In conclusion, dietary VE and Se effectively mitigated the negative impacts of DEX-induced stress on growth, antioxidant status, and spermatozoa motility in Japanese quail cocks. VE and Se supplementation could be beneficial in enhancing the welfare and productivity of poultry under stress.
Collapse
Affiliation(s)
- Ifeanyi Emmanuel Uzochukwu
- Department of Animal Science, University of Nigeria, Nsukka, Enugu, Nigeria; Department of Hydrobiology, University of Debrecen, P.O. Box 57, Debrecen 4010, Hungary; Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Luke Chukwudi Ali
- Department of Animal Science, University of Nigeria, Nsukka, Enugu, Nigeria
| | | | - Chisom C Okeke
- Department of Animal Science, University of Nigeria, Nsukka, Enugu, Nigeria
| | | | | | - Vesela Yancheva
- Department of Ecology and Environmental Conservation, Faculty of Biology, Plovdiv University, Plovdiv 4000, Bulgaria
| | - Dóra Somogyi
- Department of Hydrobiology, University of Debrecen, P.O. Box 57, Debrecen 4010, Hungary.
| | - Krisztián Nyeste
- Department of Hydrobiology, University of Debrecen, P.O. Box 57, Debrecen 4010, Hungary; National Laboratory for Water Science and Water Security, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Mishra DS, Singh A, Rao VVA, Yadav V, Berwal MK, Ravat P, Sarolia DK, Rane J, Tunç Y, Khadivi A. Comparative evaluation of red and white aril genotypes of Manila tamarind for fruit physicochemical and bioactive attributes. Sci Rep 2025; 15:6865. [PMID: 40011602 DOI: 10.1038/s41598-025-90683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
The cultivation and trade of underutilized fruits are gaining prominence worldwide, largely on account of their capacity to contribute to a nutritious diet. Manila tamarind [Pithecellobium dulce (Roxb.) Benth] is a fast-growing, nitrogen-fixing tree, with a fairly high tolerance to abiotic stresses. Despite significant potential in terms of food, fodder, timber, and medicine, it has largely remained an orphan crop. There is a dearth of systematic research on the exploration, conservation, and genetic improvement of Manila tamarind. Our study aimed to assess the genetic variability for commercially important fruit, aril, and leaf attributes in 22 diverse accessions of Manila tamarind comprising both white and red aril genotypes. Precise characterization of the existing genetic resources is a requisite for the commercial cultivation of Manila tamarind. The study was conducted with 15 white and 7 red accessions of P. dulce, which were planted in a square system of planting between and within row distances of 5 m each. One of the major contributions of the present study was that we examined genotypic variations in biochemical attributes, such as TSS, acidity, TSS: acidity ratio, total sugars, ascorbic acid, protein, mineral contents, and bioactive compounds; these factors significantly improve the nutritional value and eating quality of Manila tamarind arils. Most of the traits examined by us differed remarkably (p < 0.001) among the accessions. Some economically relevant traits, such as pulp weight, aril weight, aril total phenols, aril flavonoids, aril total antioxidant activity, and leaf flavonoids exhibited a high degree of variability, indicating the scope for the selection of elite genotypes and divergent parents for future hybridization programs. The highly variable values of total soluble solids (17.33-26.46 °Brix), acidity (0.54-1.07%), ascorbic acid (82.54-138.49 mg 100 g- 1), total sugars (12.45-18.81%), and aril protein (3.15-6.32%) recorded in this study broadly meet fresh consumption and aril processing standards for Manila tamarind. A significant finding was that Manila tamarind accessions differed greatly in aril mineral contents (mg/100 g FW), including potassium (220.44-334.33), phosphorus (21.63-62.34), and calcium (14.06-39.12). Overall, two red aril genotypes (CHESM-27 and CHESM-33), and three white aril genotypes (CHESM-4, CHESM-20, and CHESM-24) were found to be particularly promising in terms of pod and aril quality attributes. Our findings are expected to pay the way for commercial cultivation of elite Manila tamarind genotypes, and their applications in pharmaceutical applications. Future studies should aim to elucidate the molecular basis of genetic diversity and relationships in Manila tamarind.
Collapse
Affiliation(s)
- D S Mishra
- ICAR-Central Horticultural Experiment Station, 389340, Vejalpur, Panchmahals, Gujarat, India.
| | - Anshuman Singh
- ICAR-Central Institute for Subtropical Horticulture, 226101, Rehmankhera, Lucknow, India
| | - V V Appa Rao
- ICAR-Central Horticultural Experiment Station, 389340, Vejalpur, Panchmahals, Gujarat, India
| | - Vikas Yadav
- ICAR-Central Horticultural Experiment Station, 389340, Vejalpur, Panchmahals, Gujarat, India
| | - M K Berwal
- ICAR-Central Institute for Arid Horticulture, 334006, Beechwal,Bikaner ,Rajasthan, India
| | - Prakashbhai Ravat
- ICAR-Central Horticultural Experiment Station, 389340, Vejalpur, Panchmahals, Gujarat, India
| | - Deepak Kumar Sarolia
- ICAR-Central Institute for Arid Horticulture, 334006, Beechwal,Bikaner ,Rajasthan, India
| | - Jagadish Rane
- ICAR-Central Institute for Arid Horticulture, 334006, Beechwal,Bikaner ,Rajasthan, India
| | - Yazgan Tunç
- Republic of Türkiye, Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Hatay Olive Research Institute Directorate, Hassa Station, 31700, Hassa, Hatay, Türkiye
| | - Ali Khadivi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349, Arak, Iran.
| |
Collapse
|
14
|
Kurhaluk N, Tkaczenko H. L-Arginine and Nitric Oxide in Vascular Regulation-Experimental Findings in the Context of Blood Donation. Nutrients 2025; 17:665. [PMID: 40004994 PMCID: PMC11858268 DOI: 10.3390/nu17040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This narrative review provides an analysis of the role of nitric oxide (NO) and its precursors, particularly L-arginine, in vascular regulation and health, with an emphasis on findings from our experimental research in animal models. NO serves as a critical mediator of vascular function, contributing to vasodilation, the regulation of blood flow, and the prevention of thrombosis. As a primary precursor of NO, L-arginine is essential for maintaining endothelial integrity, modulating mitochondrial function, and reducing oxidative damage. This review synthesises the data and contextualises these findings within the physiological challenges faced by blood donors, such as repeated blood donation and associated oxidative stress. It examines the effects of L-arginine supplementation on mitochondrial respiration, lipid peroxidation, and microsomal oxidation in different conditions, including differences in age, gender, and dietary interventions. The mechanisms by which L-arginine enhances NO production, improves vascular elasticity, and alleviates endothelial dysfunction caused by reduced NO bioavailability are also investigated. By integrating experimental findings with insights from the existing literature, this review provides a perspective on the potential of L-arginine supplementation to address the specific physiological needs of blood donors. It highlights the importance of personalised nutritional approaches in enhancing donor recovery and vascular resilience. In addition, this review assesses the wider implications of L-arginine supplementation in mitigating oxidative stress and preserving vascular function. The interplay between NO bioavailability, dietary factors, and physiological adaptation in blood donors is highlighted, along with the identification of current knowledge gaps and recommendations for future research. By presenting both original experimental evidence and a critical synthesis of the literature, this article highlights the therapeutic potential of NO precursors, particularly L-arginine, in promoting vascular health in the context of blood donation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| | | |
Collapse
|
15
|
Roşian ŞH, Boarescu I, Boarescu PM. Antioxidant and Anti-Inflammatory Effects of Bioactive Compounds in Atherosclerosis. Int J Mol Sci 2025; 26:1379. [PMID: 39941147 PMCID: PMC11818840 DOI: 10.3390/ijms26031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis, a chronic inflammatory disease characterized by the accumulation of lipids and immune cells within arterial walls, remains a leading cause of cardiovascular morbidity and mortality worldwide. Oxidative stress and inflammation are central to its pathogenesis, driving endothelial dysfunction, foam cell formation, and plaque instability. Emerging evidence highlights the potential of bioactive compounds with antioxidant and anti-inflammatory properties to mitigate these processes and promote vascular health. This review explores the mechanisms through which bioactive compounds-such as polyphenols, carotenoids, flavonoids, omega-3 fatty acids, coenzyme Q10, and other natural compounds-modulate oxidative stress and inflammation in atherosclerosis. It examines their effects on key molecular pathways, including the inhibition of reactive oxygen species (ROS) production, suppression of nuclear factor-κB (NF-κB), and modulation of inflammatory cytokines. By integrating current knowledge, this review underscores the therapeutic potential of dietary and supplemental bioactive compounds as complementary strategies for managing atherosclerosis, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Ştefan Horia Roşian
- “Niculae Stăncioiu” Heart Institute Cluj-Napoca, 400001 Cluj-Napoca, Romania;
- Cardiology Department of Heart Institute, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 400001 Cluj-Napoca, Romania
| | - Ioana Boarescu
- Neurology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
| | - Paul-Mihai Boarescu
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, 720229 Suceava, Romania;
- Cardiology Department of Clinical Emergency County Hospital Saint John the New in Suceava, 720229 Suceava, Romania
| |
Collapse
|
16
|
Grădinaru AC, Popa S. Vitamin C: From Self-Sufficiency to Dietary Dependence in the Framework of Its Biological Functions and Medical Implications. Life (Basel) 2025; 15:238. [PMID: 40003647 PMCID: PMC11856994 DOI: 10.3390/life15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Vitamin C is an organic compound biosynthesized in plants and most vertebrates. Since its discovery, the benefits of vitamin C use in the cure and prevention of various pathologies have been frequently reported, including its anti-oxidant, anti-inflammatory, anticoagulant, and immune modulatory properties. Vitamin C plays an important role in collagen synthesis and subsequent scurvy prevention. It is also required in vivo as a cofactor for enzymes involved in carnitine and catecholamine norepinephrine biosynthesis, peptide amidation, and tyrosine catabolism. Moreover, as an enzymatic cofactor, vitamin C is involved in processes of gene transcription and epigenetic regulation. The absence of the synthesis of L-gulono-1,4-lactone oxidase, a key enzyme in the pathway of vitamin C synthesis, is an inborn metabolism error in some fishes and several bird and mammalian species, including humans and non-human primates; it is caused by various changes in the structure of the original GULO gene, making these affected species dependent on external sources of vitamin C. The evolutionary cause of GULO gene pseudogenization remains controversial, as either dietary supplementation or neutral selection is evoked. An evolutionary improvement in the control of redox homeostasis was also considered, as potentially toxic H2O2 is generated as a byproduct in the vitamin C biosynthesis pathway. The inactivation of the GULO gene and the subsequent reliance on dietary vitamin C may have broader implications for aging and age-related diseases, as one of the most important actions of vitamin C is as an anti-oxidant. Therefore, an important aim for medical professionals regarding human and animal health should be establishing vitamin C homeostasis in species that are unable to synthesize it themselves, preventing pathologies such as cardiovascular diseases, cognitive decline, and even cancer.
Collapse
Affiliation(s)
- Andrei Cristian Grădinaru
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences, 3 M. Sadoveanu Alley, 700490 Iasi, Romania
| | - Setalia Popa
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
17
|
Kohzadi M, Kubow S, Koski KG. Fetal Growth Is Associated with Amniotic Fluid Antioxidant Capacity, Oxidative Stress, Minerals and Prenatal Supplementation: A Retrospective Study. Antioxidants (Basel) 2025; 14:184. [PMID: 40002371 PMCID: PMC11852346 DOI: 10.3390/antiox14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Associations of antioxidants in prenatal over-the-counter multivitamin-mineral (OTC MVM) supplements with in-utero oxidative stress (OS), antioxidant capacity, and fetal growth are limited. Our objectives were to determine if five fetal ultrasound measurements [biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), and estimated fetal weight] were associated with OTC MVM supplements and with minerals, biomarkers of OS, and total antioxidant capacity in amniotic fluid (AF). METHODS For this retrospective study, 176 pregnant women who had undergone age-related amniocentesis for genetic testing were included. Questionnaires recorded prenatal OTC MVM supplementation (yes, no). Ultrasound measurements for early (16-20 weeks) and late (32-36 weeks) gestation were extracted from medical charts. AF concentrations for 15 minerals and trace elements and OS biomarkers in AF [nitric oxide (NO), thiobarbituric acid-reactive substances (TBARS), and ferric-reducing antioxidant power (FRAP)] were measured at 12-20 weeks of gestation. Associations of AF minerals, OS biomarkers, and ultrasound measures were analyzed using multiple linear regressions. RESULTS Positive associations were observed between AF TBARS and seven AF minerals/elements (calcium, copper, magnesium, nickel, strontium, zinc and iron). At 16-20 weeks, AF copper, nickel, strontium, and selenium were positively associated with BPD, HC, AC, and FL, respectively, NO was positively associated with FL, and FRAP was inversely associated with estimated weight. At 32-36 weeks, calcium was positively associated with BPD and chromium and arsenic were negatively with HC. At 16-20 weeks, higher AF FRAP was inversely associated with FL and this exposure continued to be inversely associated with estimated weight at 32-36 weeks. CONCLUSIONS Concentrations of AF minerals, trace elements and biomarkers of OS and in-utero antioxidant capacity were linked to specific ultrasound measurements at different stages of gestation, suggesting a complex interplay among in utero OS, antioxidant capacity, OTC MVM supplements, and fetal growth.
Collapse
Affiliation(s)
| | | | - Kristine G. Koski
- School of Human Nutrition, McGill University, MacDonald Campus, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (M.K.); (S.K.)
| |
Collapse
|
18
|
Blanco‐Doval A, Barron LJR, Bustamante MÁ, Aldai N. Characterization and monitoring of changes during lactation in the profile of multiple bioactive compounds of milk from grazing mares. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1894-1903. [PMID: 39420862 PMCID: PMC11726596 DOI: 10.1002/jsfa.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mare milk has often been considered a food product with potential functional properties. However, the bioactive compound composition of mare milk, including vitamins and other minor bioactive compounds, as well as factors affecting this composition have scarcely been studied. Therefore, the present study aimed to characterize the changes during lactation in the content of water- and fat-soluble vitamins and total polyphenols, and the total antioxidant capacity of mare milk from semi-extensive farms. A total of 310 individual milk samples from 18 mares belonging to three commercial farms and 12 lactation times were analyzed. Ascorbic acid (vitamin C), thiamine (vitamin B1), riboflavin (vitamin B2), nicotinic acid and niacinamide (vitamins B3), pantothenic acid (vitamin B5), pyridoxal and pyridoxine (vitamins B6), folic acid (vitamin B9), cyanocobalamin (vitamin B12), tocopherols and tocotrienols (vitamin E) and retinol and retinyl esters (vitamin A) were quantified using liquid chromatography. Total polyphenols and antioxidant capacity assays were analyzed using spectrophotometry. RESULTS The concentration of most bioactive compounds tended to decline as lactation progressed, with the exception of polyphenols and the total antioxidant capacity that oscillated during lactation. On the other hand, the effect of the different semi-extensive management of the farms was only significant for vitamin B3 content. CONCLUSION To the best of our knowledge, the present study provides the most in-depth description of the vitamin profile of mare milk as well as new insights into polyphenol content and antioxidant capacity of mare milk. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Blanco‐Doval
- Lactiker Research Group, Department of Pharmacy and Food SciencesUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - Luis Javier R Barron
- Lactiker Research Group, Department of Pharmacy and Food SciencesUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - María Ángeles Bustamante
- Lactiker Research Group, Department of Pharmacy and Food SciencesUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy and Food SciencesUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
| |
Collapse
|
19
|
Chandimali N, Bak SG, Park EH, Lim HJ, Won YS, Kim EK, Park SI, Lee SJ. Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discov 2025; 11:19. [PMID: 39856066 PMCID: PMC11760946 DOI: 10.1038/s41420-024-02278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
Free radicals, characterized by the presence of unpaired electrons, are highly reactive species that play a significant role in human health. These molecules can be generated through various endogenous processes, such as mitochondrial respiration and immune cell activation, as well as exogenous sources, including radiation, pollution, and smoking. While free radicals are essential for certain physiological processes, such as cell signaling and immune defense, their overproduction can disrupt the delicate balance between oxidants and antioxidants, leading to oxidative stress. Oxidative stress results in the damage of critical biomolecules like DNA, proteins, and lipids, contributing to the pathogenesis of various diseases. Chronic conditions such as cancer, cardiovascular diseases, neurodegenerative disorders, and inflammatory diseases have been strongly associated with the harmful effects of free radicals. This review provides a comprehensive overview of the characteristics and types of free radicals, their mechanisms of formation, and biological impacts. Additionally, we explore natural compounds and extracts studied for their antioxidant properties, offering potential therapeutic avenues for managing free radical-induced damage. Future research directions are also discussed to advance our understanding and treatment of free radical-associated diseases.
Collapse
Affiliation(s)
- Nisansala Chandimali
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea
- Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Seon Gyeong Bak
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea
| | - Eun Hyun Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Korea
| | - Hyung-Jin Lim
- Scripps Korea Antibody Institute, Chuncheon, 24341, Korea
| | - Yeong-Seon Won
- Division of Research Management, Department of Bioresource Industrialization, Honam National Institute of Biological Resource, Mokpo, 58762, Korea
| | - Eun-Kyung Kim
- Nutritional Education Major, Graduate School of Education, Dong-A University, Busan, 49315, Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Korea.
| | - Seung Jae Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Korea.
- Applied Biological Engineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea.
| |
Collapse
|
20
|
Jia Y, Guo D, Liu Y, Sun L, Chang X, He Y, Shi M, Chen GC, Zhang Y, Hui L, Zhu Z. Associations between human blood metabolome and vascular dementia. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111150. [PMID: 39306224 DOI: 10.1016/j.pnpbp.2024.111150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Effective and specific biomarkers are warranted for the management of vascular dementia. We aimed to systematically screen the human blood metabolome to identify potential mediators of vascular dementia via a two-sample Mendelian randomization (MR) design. METHODS We selected 93 unique blood metabolites from 3 metabolome genome-wide association studies (GWASs) with a total of 147,827 participants of European ancestry. Summary statistics for vascular dementia originated from a European-descent GWAS dataset released by the FinnGen Study, involving 859 cases and 211,300 controls. We applied the inverse-variance weighted MR method in the main analysis to examine the causal roles of blood metabolites in vascular dementia, followed by several sensitivity analyses for robustness validation. RESULTS Genetically determined glycoproteins (OR per 1-SD increase, 0.75; 95 % CI, 0.68-0.83, P = 1.08 × 10-8) and O-methylascorbate (OR per 1-SD increase, 0.08; 95 % CI, 0.02-0.32; P = 3.74 × 10-4) levels had negative associations with the risk of vascular dementia, whereas genetically determined total cholesterol (OR per 1-SD increase, 1.77; 95 % CI, 1.32-2.38; P = 1.39 × 10-4) and low-density lipoprotein (LDL) cholesterol (OR per 1-SD increase, 1.94; 95 % CI, 1.48-2.55; P = 1.61 × 10-6) levels had positive associations with the risk of vascular dementia. MR-Egger regression suggested no directional pleiotropy for the identified associations, and sensitivity analyses with different MR models further confirmed these findings. CONCLUSION Glycoproteins, O-methylascorbate, total cholesterol, and LDL cholesterol might be promising blood markers of vascular dementia, which may provide novel insights into the prevention of vascular dementia. Further studies are warranted to replicate our findings and elucidate the potential mechanistic pathways.
Collapse
Affiliation(s)
- Yiming Jia
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Daoxia Guo
- School of Nursing, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Yi Liu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Lulu Sun
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Yu He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Li Hui
- Research Center of Biological Psychiatry, The Affiliated Guangji Hospital of Soochow University, Suzhou, China.
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China.
| |
Collapse
|
21
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
22
|
Wurlina W, Mustofa I, Meles DK, Khairullah AR, Akintunde AO, Rachmawati K, Suwasanti N, Putra DMS, Mulyati S, Utama S, Khoiriyah U, Tyarraushananda Defvyanto BR, Heriana SF, Riwu KHP, Ahmad RZ, Riwu AG. Restoration of sperm quality in lead acetate-induced rats via treatment with Moringa oleifera leaf extract. Open Vet J 2025; 15:416-427. [PMID: 40092212 PMCID: PMC11910306 DOI: 10.5455/ovj.2024.v15.i1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Background Lead intoxication triggers testicular toxicity via oxidative stress. Aim This study aimed to explore the antioxidant potential of Moringa oleifera leaf extract (MOLE) in enhancing the semen quality of rats exposed to lead acetate. Methods Twenty-five healthy rats were randomly and equally divided into five groups. Group C served as the negative control, whereas group C+ was exposed to lead acetate at 50-mg/kg body weight (BW)/day without MOLE. The T1, T2, and T3 groups were exposed to lead acetate at 50-mg/kg BW and concurrently received MOLE at doses of 200-, 316-, and 500-mg/kg BW/day, respectively, for 20 days. On the 21st day, all rats were euthanized for blood collection and testicle harvesting. Results The result showed that exposure to lead acetate at 50-mg/kg BW/day in group C+ led to significant decreases (p < 0.05) in superoxide dismutase (SOD) levels, plasma membrane integrity, Leydig and Sertoli cell counts, spermatozoa numbers, sperm motility, and live spermatozoa, as well as significant increases (p < 0.05) in malondialdehyde levels and apoptotic and necrotic sperm, compared with control group C-. The administration of MOLE to rats exposed to lead acetate resulted in improvement in all of these variables. However, SOD and testosterone levels, as well as spermatozoa numbers, viability, apoptosis, and necrosis, did not recover in group T3 (p < 0.05) compared with control group C-. Conclusion MOLE effectively restores sperm quality in lead acetate-induced rats.
Collapse
Affiliation(s)
- Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Kadek Rachmawati
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Niluh Suwasanti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Katolik Widya Mandala Surabaya, Surabaya, Indonesia
| | | | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ulul Khoiriyah
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Sila Faredy Heriana
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Audrey Gracelia Riwu
- Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| |
Collapse
|
23
|
Nath DK, Lee Y. Exploring the multifaceted functions of APPL in metabolism and memory using Drosophila melanogaster. Mol Cells 2025; 48:100163. [PMID: 39603510 PMCID: PMC11697555 DOI: 10.1016/j.mocell.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Amyloid precursor protein (APP) is a single-pass transmembrane protein abundantly expressed in the central nervous system and implicated in familial Alzheimer's disease, a progressive neurodegenerative disorder that impairs memory. Here, we investigated the role of amyloid precursor protein-like (APPL) using the model organism Drosophila melanogaster. In this study, Appl null mutants exhibited a reduced lifespan under normal conditions and increased triglyceride levels, which were mitigated by metformin treatment. Additionally, taste-associative memory impairment in Appld mutants suggested APPL's role in memory formation, which was restored by curcumin supplementation. The Appld mutants also displayed reduced climbing ability, which was improved by supplementation with vitamins C (ascorbic acid) and B2 (riboflavin). These findings suggest that APPL is involved in metabolic regulation, cognition, climbing activity, and aging in Drosophila melanogaster.
Collapse
Affiliation(s)
- Dharmendra Kumar Nath
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
24
|
Sánchez R, Coca A, de Salazar DIM, Alcocer L, Aristizabal D, Barbosa E, Brandao AA, Diaz-Velazco ME, Hernández-Hernández R, López-Jaramillo P, López-Rivera J, Ortellado J, Parra-Carrillo J, Parati G, Peñaherrera E, Ramirez AJ, Sebba-Barroso WK, Valdez O, Wyss F, Heagerty A, Mancia G. 2024 Latin American Society of Hypertension guidelines on the management of arterial hypertension and related comorbidities in Latin America. J Hypertens 2025; 43:1-34. [PMID: 39466069 DOI: 10.1097/hjh.0000000000003899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024]
Abstract
Hypertension is responsible for more than two million deaths due to cardiovascular disease annually in Latin America (LATAM), of which one million occurs before 70 years of age. Hypertension is the main risk factor for cardiovascular morbidity and mortality, affecting between 20 and 40% of LATAM adults. Since the publication of the 2017 LASH hypertension guidelines, reports from different LATAM countries have confirmed the burden of hypertension on cardiovascular disease events and mortality in the region. Many studies in the region have reported and emphasized the dramatically insufficient blood pressure control. The extremely low rates of awareness, treatment, and control of hypertension, particularly in patients with metabolic disorders, is a recognized severe problem in LATAM. Earlier implementation of antihypertensive interventions and management of all cardiovascular risk factors is the recognized best strategy to improve the natural history of cardiovascular disease in LATAM. The 2024 LASH guidelines have been developed by a large group of experts from internal medicine, cardiology, nephrology, endocrinology, general medicine, geriatrics, pharmacology, and epidemiology of different countries of LATAM and Europe. A careful search for novel studies on hypertension and related diseases in LATAM, together with the new evidence that emerged since the 2017 LASH guidelines, support all statements and recommendations. This update aims to provide clear, concise, accessible, and useful recommendations for health professionals to improve awareness, treatment, and control of hypertension and associated cardiovascular risk factors in the region.
Collapse
Affiliation(s)
- Ramiro Sánchez
- University Hospital Fundación Favaloro, Buenos Aires, Argentina
| | | | - Dora I Molina de Salazar
- Universidad de Caldas, Centro de Investigación IPS Medicos Internistas de Caldas, Manizales, Colombia
| | - Luis Alcocer
- Mexican Institute of Cardiovascular Health, Mexico City, Mexico
| | | | | | - Andrea A Brandao
- Department of Cardiology, School of Medical Sciences. State University of Rio de Janeiro, Brazil
| | | | - Rafael Hernández-Hernández
- Hypertension and Cardiovascular Risk Factors Clinic, Health Sciences University, Centro Occidental Lisandro Alvarado, Barquisimeto, Venezuela
| | - Patricio López-Jaramillo
- Universidad de Santander (UDES), Bucaramanga, Colombia Colombia
- Facultad de Ciencias Médicas Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Jesús López-Rivera
- Unidad de Hipertensión Arterial, Universidad de los Andes, San Cristóbal, Venezuela
| | - José Ortellado
- Universidad Católica de Asunción, Universidad Uninorte, Asunción, Paraguay
| | | | - Gianfranco Parati
- Istituto Auxológico Italiano, IRCCS, San Luca Hospital
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Osiris Valdez
- Hospital Central Romana, La Romana, República Dominicana
| | - Fernando Wyss
- Cardiovascular Services and Technology of Guatemala, Guatemala City, Guatemala
| | | | | |
Collapse
|
25
|
Wurlina W, Mustofa I, Meles DK, Khairullah AR, Akintunde AO, Rachmawati K, Suwasanti N, Putra DMS, Mulyati S, Utama S, Khoiriyah U, Tyarraushananda Defvyanto BR, Heriana SF, Riwu KHP, Ahmad RZ, Riwu AG. Restoration of sperm quality in lead acetate-induced rats via treatment with Moringa oleifera leaf extract. Open Vet J 2025; 15:416-427. [PMID: 40092212 PMCID: PMC11910306 DOI: 10.5455/ovj.2025.v15.i1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/31/2024] [Indexed: 04/11/2025] Open
Abstract
Background Lead intoxication triggers testicular toxicity via oxidative stress. Aim This study aimed to explore the antioxidant potential of Moringa oleifera leaf extract (MOLE) in enhancing the semen quality of rats exposed to lead acetate. Methods Twenty-five healthy rats were randomly and equally divided into five groups. Group C served as the negative control, whereas group C+ was exposed to lead acetate at 50-mg/kg body weight (BW)/day without MOLE. The T1, T2, and T3 groups were exposed to lead acetate at 50-mg/kg BW and concurrently received MOLE at doses of 200-, 316-, and 500-mg/kg BW/day, respectively, for 20 days. On the 21st day, all rats were euthanized for blood collection and testicle harvesting. Results The result showed that exposure to lead acetate at 50-mg/kg BW/day in group C+ led to significant decreases (p < 0.05) in superoxide dismutase (SOD) levels, plasma membrane integrity, Leydig and Sertoli cell counts, spermatozoa numbers, sperm motility, and live spermatozoa, as well as significant increases (p < 0.05) in malondialdehyde levels and apoptotic and necrotic sperm, compared with control group C-. The administration of MOLE to rats exposed to lead acetate resulted in improvement in all of these variables. However, SOD and testosterone levels, as well as spermatozoa numbers, viability, apoptosis, and necrosis, did not recover in group T3 (p < 0.05) compared with control group C-. Conclusion MOLE effectively restores sperm quality in lead acetate-induced rats.
Collapse
Affiliation(s)
- Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan Remo, Nigeria
| | - Kadek Rachmawati
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Niluh Suwasanti
- Department of Clinical Pathology, Faculty of Medicine, Universitas Katolik Widya Mandala Surabaya, Surabaya, Indonesia
| | | | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ulul Khoiriyah
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Sila Faredy Heriana
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Audrey Gracelia Riwu
- Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, Indonesia
| |
Collapse
|
26
|
Dcunha R, Aravind A, Bhaskar S, Mutalik S, Mutalik S, Kalthur SG, Kumar A, Hegde P, Adiga SK, Zhao Y, Kannan N, Prasad TSK, Kalthur G. Enhanced cell survival in prepubertal testicular tissue cryopreserved with membrane lipids and antioxidants rich cryopreservation medium. Cell Tissue Res 2025; 399:97-117. [PMID: 39585364 PMCID: PMC11742869 DOI: 10.1007/s00441-024-03930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
The present study explores the advantages of enriching the freezing medium with membrane lipids and antioxidants in improving the outcome of prepubertal testicular tissue cryopreservation. For the study, testicular tissue from Swiss albino mice of prepubertal age group (2 weeks) was cryopreserved by slow freezing method either in control freezing medium (CFM; containing DMSO and FBS in DMEM/F12) or test freezing medium (TFM; containing soy lecithin, phosphatidylserine, phosphatidylethanolamine, cholesterol, vitamin C, sodium selenite, DMSO and FBS in DMEM/F12 medium) and stored in liquid nitrogen for at least one week. The tissues were thawed and enzymatically digested to assess viability, DNA damage, and oxidative stress in the testicular cells. The results indicate that TFM significantly mitigated freeze-thaw-induced cell death, DNA damage, and lipid peroxidation compared to tissue cryopreserved in CFM. Further, a decrease in Cyt C, Caspase-3, and an increase in Gpx4 mRNA transcripts were observed in tissues frozen with TFM. Spermatogonial germ cells (SGCs) collected from tissues frozen with TFM exhibited higher cell survival and superior DNA integrity compared to those frozen in CFM. Proteomic analysis revealed that SGCs experienced a lower degree of freeze-thaw-induced damage when cryopreserved in TFM, as evident from an increase in the level of proteins involved in mitigating the heat stress response, transcriptional and translational machinery. These results emphasize the beneficial role of membrane lipids and antioxidants in enhancing the cryosurvival of prepubertal testicular tissue offering a significant stride towards improving the clinical outcome of prepubertal testicular tissue cryopreservation.
Collapse
Affiliation(s)
- Reyon Dcunha
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Smitha Bhaskar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalasandra, Yelahanka, Bengaluru, 560065, Karnataka, India
| | - Sadhana Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalasandra, Yelahanka, Bengaluru, 560065, Karnataka, India
| | - Padmaraj Hegde
- Department of Urology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yulian Zhao
- Department of Obstetrics and Gynecology and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
27
|
Shirodkar SS, Babre N. The role of nutrition in neurodegeneration. THE NEURODEGENERATION REVOLUTION 2025:167-202. [DOI: 10.1016/b978-0-443-28822-7.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Rodríguez-Martín NM, Márquez-López JC, González-Jurado JA, Millán F, Pedroche J, Fernández-Pachón MS. The immunomodulatory potential of chickpea protein hydrolysate via ROS and NO pathways. Biomed Pharmacother 2025; 182:117794. [PMID: 39721324 DOI: 10.1016/j.biopha.2024.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
The uncontrolled overproduction of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) is linked to chronic inflammation, although they are also essential signaling molecules for the immune system against infectious agents. Bioactive compounds hold promise as functional bioactive nutrients, contributing to the immunomodulatory response. This study investigates the potential of chickpea protein hydrolysate to modulate ROS/RNS stress and inflammatory responses in a cellular low-grade chronic inflammatory model. This study was focused on their effects on endogenous antioxidant enzyme activities and key pro-inflammatory markers. ROS and nitric oxide (NO) production and molecular biology techniques were used to evaluate cell metabolism. Hydrolysate exposure notably increased ROS and NO release in a dose-dependent manner, while also exhibiting significant anti-inflammatory effects by inhibiting NF-κB and NLRP3 inflammasome components in treated cells. Therefore, chickpea protein hydrolysates hold promise as functional bioactive compounds for use in therapeutic applications, promoting human health and well-being.
Collapse
Affiliation(s)
| | | | - José Antonio González-Jurado
- Área de Educación Física y Deportiva, Departamento del Deporte e Informática, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville 41013, Spain.
| | - Francisco Millán
- Instituto de la Grasa-CSIC, Plant Protein Group, Seville 41013, Spain.
| | - Justo Pedroche
- Instituto de la Grasa-CSIC, Plant Protein Group, Seville 41013, Spain.
| | - María-Soledad Fernández-Pachón
- Área de Nutrición y Bromatología, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville 41013, Spain.
| |
Collapse
|
29
|
Latib F, Zafendi MAI, Mohd Lazaldin MA. The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100224. [PMID: 39415777 PMCID: PMC11481750 DOI: 10.1016/j.fochms.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E's role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.
Collapse
Affiliation(s)
- Fazira Latib
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | | |
Collapse
|
30
|
Gonçalves LA, Lorenzo JM, Bermúdez R, Pateiro M, Trindade MA. Effect of Opuntia ficus-indica Extract in Pro-Healthy Chicken Patties: Physicochemical Properties and Oxidative Stability. Foods 2024; 13:3970. [PMID: 39683043 DOI: 10.3390/foods13233970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Opuntia ficus-indica is a subtropical fruit rich in dietary fibers, carotenoids, vitamins, minerals, and polyphenols. To substitute synthetic additives, its extracts could become an interesting proposal to preserve quality while adding desirable characteristics to meat products. This study aimed to develop healthier chicken patties (with a structured animal fat replacer) added with prickly pear extract (PPE). The extract was analyzed for total phenolic content and antioxidant activity (FRAP, ABTS, DPPH, and ORAC). Four chicken patty formulations were manufactured with total replacement of animal fat by sesame oil emulsion: control, erythorbate 500 ppm, PPE 500, and PPE 750 ppm. Proximate composition and fatty acid profile were analyzed on day 1, and pH, color, and lipid oxidation on days 1, 4, 8, 12, and 16. PPE treatments showed lower TBARSs (p < 0.05) and greater pigment stability at the end of storage, corroborating its potential to delay oxidation reactions. No significant effects on chemical composition, pH, or fatty acid profile were observed (p > 0.05). Unsaturated represented 76.2% of total fatty acids. Therefore, PPE is an effective antioxidant by improving oxidative stability without promoting changes in other properties, besides adding cleaner label approaches and the use of natural ingredients to develop meat products reformulated with unsaturated oils.
Collapse
Affiliation(s)
- Leticia A Gonçalves
- School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias, Pirassununga 13635-900, Sao Paulo, Brazil
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N-4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N-4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N-4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Marco Antonio Trindade
- School of Animal Science and Food Engineering, Universidade de São Paulo, Av. Duque de Caxias, Pirassununga 13635-900, Sao Paulo, Brazil
| |
Collapse
|
31
|
Biedrzycki G, Wolszczak-Biedrzycka B, Dorf J, Maciejczyk M. The antioxidant barrier, oxidative/nitrosative stress, and protein glycation in allergy: from basic research to clinical practice. Front Immunol 2024; 15:1440313. [PMID: 39703514 PMCID: PMC11655330 DOI: 10.3389/fimmu.2024.1440313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Recent studies indicate that oxidative/nitrosative stress is involved in the pathogenesis of asthma, allergic rhinitis, atopic dermatitis, and urticaria. The article aimed to review the latest literature on disruptions in redox homeostasis and protein glycation in allergy patients. It has been shown that enzymatic and non-enzymatic antioxidant systems are impaired in allergic conditions, which increases cell susceptibility to oxidative damage. Reactive oxygen/nitrogen species exacerbate the severity of asthma symptoms by activating inflammatory mediators that cause airway smooth muscle contraction, promote mucus hypersecretion, increase the permeability of lung capillaries, and damage cell membranes. Redox biomarkers could have considerable diagnostic potential in allergy patients. There is no compelling evidence to indicate that antioxidants reduce allergy symptoms' severity or slow disease progression.
Collapse
Affiliation(s)
| | - Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury, Olsztyn, Poland
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
32
|
Julio T, Fenerich BA, Halpern G, Carrera-Bastos P, Schor E, Kopelman A. The effects of oral nutritional supplements on endometriosis-related pain: A narrative review of clinical studies. J Gynecol Obstet Hum Reprod 2024; 53:102830. [PMID: 39067786 DOI: 10.1016/j.jogoh.2024.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Endometriosis is a condition that can cause significant pain and discomfort for women, and the clinical and surgical treatments available have variable efficacy and can have adverse effects. These drawbacks often lead to poor adherence and therapeutic failure. Consequently, there has been increasing interest in the use of nutritional supplements as an adjuvant therapy for endometriosis. To facilitate clinical decision-making in managing women with endometriosis, a narrative review of clinical studies was conducted to investigate the effects of oral nutritional supplements on endometriosis-related pain. A literature search of the English-language PubMed/MEDLINE database was performed using appropriate keywords to identify clinical studies involving oral nutritional supplements and reporting on endometriosis-related pain. This narrative review included 20 studies published between 2013 and 2023, comprising 12 randomized controlled trials, six non-comparative trials, and two observational studies. The studies investigated the effects of various nutritional supplements on endometriosis-related pain, including vitamins, fatty acids, probiotics, medicinal plants, and bioactive compounds. A significant decrease in endometriosis-related pain was found in three out of five studies on vitamins, four out of six studies on fatty acids, one study on probiotics, two studies on medicinal plants, and five out of six studies on bioactive compounds. These nutritional supplements exhibited diverse biological activities, such as anti-inflammatory, antioxidant, antiproliferative, and antiangiogenic effects, all of which are relevant for managing endometriosis. These findings suggest that oral nutritional supplements could be included as part of a multidisciplinary treatment for endometriosis to decrease pain and enhance overall medical treatment.
Collapse
Affiliation(s)
- Tamiris Julio
- Division of Nutrition, Institute of Health Sciences, Paulista University, Ribeirão Preto, São Paulo, Brazil; Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | - Bruna Alves Fenerich
- Division of Nutrition, Institute of Health Sciences, Paulista University, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela Halpern
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden; Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain; Centro de Estudios Avanzados en Nutrición (CEAN), Cádiz, Spain
| | - Eduardo Schor
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Alexander Kopelman
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Bešić E, Rajić Z, Šakić D. Advancements in electron paramagnetic resonance (EPR) spectroscopy: A comprehensive tool for pharmaceutical research. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:551-594. [PMID: 39686630 DOI: 10.2478/acph-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has long been established across various scientific disciplines for characterizing organic radicals, organometallic complexes, protein structures and dynamics, polymerization processes, and radical degradation phenomena. Despite its extensive utility in these areas, EPR spectroscopy's application within pharmaceutical science has historically been constrained, primarily due to factors such as high equipment costs, a steep learning curve, complex spectral deconvolution and analysis, and a traditional lack of emphasis on single-electron chemistry in pharmaceutical research. This review aims to provide a thorough examination of EPR spectroscopy's applications in analyzing a wide array of para-magnetic species relevant to pharmaceutical research. We detail how EPR spectroscopy can be employed to assess free radical scavenging properties in pharmaceutical compounds, elucidate drug mechanisms of action, and explore pharmacokinetics. Additionally, we investigate the role of free radicals in drug-induced toxicity and drug-membrane interactions, while also covering the application of EPR spectroscopy in drug delivery research, advanced studies of metallodrugs, and monitoring of oxygen levels in biological systems through EPR oximetry. The recent advancements in the miniaturization of EPR spectro meters have paved the way for their application in on-site and in-line mo nitoring during the manufacturing process and quality control of pharmaceutical substances and final drug formulations due to being the only direct and non-invasive detection technique for radical detection. Through these discussions, we highlight the substantial contributions of EPR spectroscopy to the advancement of pharmaceutical sciences.
Collapse
Affiliation(s)
- Erim Bešić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| | - Davor Šakić
- University of Zagreb Faculty of Pharmacy and Biochemistry 10000 Zagreb, Croatia
| |
Collapse
|
34
|
Jang Y, Kim CY. The Role of Vitamin E Isoforms and Metabolites in Cancer Prevention: Mechanistic Insights into Sphingolipid Metabolism Modulation. Nutrients 2024; 16:4115. [PMID: 39683509 DOI: 10.3390/nu16234115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Natural forms of vitamin E include four tocopherols and four tocotrienols (α, β, γ, and δ), which are essential as lipophilic antioxidants. Among these eight isoforms, α-tocopherol (αT), the predominant form of vitamin E found in tissues, has traditionally received the most attention in disease prevention research due to its robust antioxidant activity. However, recent studies suggest that other forms of vitamin E exhibit distinct and potentially more potent beneficial activities in disease prevention and treatment. These non-αT forms of vitamin E are metabolized in vivo, producing various metabolites, including 13'-carboxychromanol, though their biological roles remain largely unknown. Notably, sphingolipids, known for their significant roles in cancer biology, may be involved in the anticancer effects of vitamin E through the modulation of sphingolipid metabolism. This review focuses on the diverse biological activities of different vitamin E forms and their metabolites, particularly their anticancer effects, while highlighting the underlying mechanisms, including their novel impact on regulating sphingolipid pathways. By elucidating these interactions, we aim to provide a deeper understanding on the multifaceted roles of vitamin E in cancer prevention and therapy.
Collapse
Affiliation(s)
- Yumi Jang
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 44610, Republic of Korea
- Basic-Clinical Convergence Research Institute, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
35
|
Mecheri N, Lefrada L, Benounis M, Ben Hassine C, Berhoumi H, Mabrouk C. A novel Au-NPs/DBTTA nanocomposite-based electrochemical sensor for the detection of ascorbic acid (AA). SENSOR REVIEW 2024; 44:712-720. [DOI: 10.1108/sr-05-2024-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Purpose
Ascorbic acid, a water-soluble antioxidant, is an essential component of the human diet and is known for its potent antioxidant properties against several diseases. In recent years, there has been increasing interest in the development of nonenzymatic sensors due to their simplicity, efficiency and excellent selectivity. The aim of this study is to present a selective and sensitive method for the detection of ascorbic acid in aqueous system using a new electrochemical non-enzymatic sensor based on a gold nanoparticles Au-NPs-1,3-di(4-bromophényl)-5-tert-butyl-1,3,5-triazinane (DBTTA) composite.
Design/methodology/approach
Using the square wave voltammetry (SWV) technique, a series of Au-NPs-DBTTA composites were successfully developed and investigated. First, DBTTA was synthesized via the condensation of tert-butylamine and a4-bromoaniline. The structure obtained was identified by IR, 1H NMR and 13C NMR analysis. A glassy carbon electrode (GCE) was modified with 10–1 M DBTTA dissolved in an aqueous solution by cyclic voltammetry in the potential range of 1–1.4 V. Au-NPs were then deposited on the DBTTA/GCE by a chronoamperometric technique. SWV was used to study the electrochemical behavior of the modified electrode (DBTTA/Au-NPs/GCEs). To observe the effect of nanoparticles, ascorbic acid in a buffer solution was analyzed by SWV at the modified electrode with and without gold nanoparticles (Au-NPs).
Findings
The DBTTA/Au-NPs/GCE showed better electroanalytical results. The detection limit of 10–5 M was obtained and the electrode was proportional to the logarithm of the AA concentration in the range of 5 × 10−3 M to 1 × 10−1 with very good correlation parameters.
Originality/value
It was also found that the elaborated sensor exhibited reproducibility and excellent selectivity against interfering molecules such as uric acid, aspartic acid and glucose. The proposed sensor was tested for the recognition of AA in orange, and satisfactory results were obtained.
Collapse
|
36
|
Bilski R, Kupczyk D, Woźniak A. Oxidative Imbalance in Psoriasis with an Emphasis on Psoriatic Arthritis: Therapeutic Antioxidant Targets. Molecules 2024; 29:5460. [PMID: 39598849 PMCID: PMC11597651 DOI: 10.3390/molecules29225460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Psoriasis and psoriatic arthritis (PsA) are chronic autoimmune diseases characterized by persistent inflammation and oxidative imbalance. Oxidative stress, caused by excessive production of reactive oxygen species (ROS) and dysfunction in antioxidant mechanisms, plays a critical role in the pathogenesis of both conditions, leading to increased inflammatory processes and tissue damage. This study aims to review current antioxidant-based therapeutic options and analyze oxidative stress biomarkers in the context of psoriasis and PsA. Based on available literature, key biomarkers, such as malondialdehyde (MDA), advanced glycation end-products (AGEs), and advanced oxidation protein products (AOPP), were identified as being elevated in patients with psoriasis and PsA. Conversely, antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), showed reduced activity, correlating with symptom severity. The study also examines the efficacy of various antioxidant therapies, including curcumin, resveratrol, coenzyme Q10, and vitamins C and E, which may aid in reducing oxidative stress and alleviating inflammation. The findings indicated that antioxidants can play a significant role in alleviating symptoms and slowing the progression of psoriasis and PsA through modulation of redox mechanisms and reduction of ROS levels. Antioxidant-based therapies offer a promising direction in treating autoimmune diseases, highlighting the need for further research on their efficacy and potential clinical application.
Collapse
Affiliation(s)
- Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland
| | | | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland
| |
Collapse
|
37
|
Moustakli E, Zikopoulos A, Skentou C, Katopodis P, Domali E, Potiris A, Stavros S, Zachariou A. Impact of Reductive Stress on Human Infertility: Underlying Mechanisms and Perspectives. Int J Mol Sci 2024; 25:11802. [PMID: 39519353 PMCID: PMC11547078 DOI: 10.3390/ijms252111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Antioxidants have a well-established effect on general health and are essential in preventing oxidative damage to cells by scavenging free radicals. Free radicals are thought to be neutralized by these substances, which include polyphenols, β-carotene, and vitamins C and E, reducing cellular damage. On the other hand, recent data indicates that consuming excessive amounts of antioxidants may have side effects. Apoptosis and cell signaling are two beneficial physiological processes that are affected by excessive supplementation. Other negative effects include paradoxical enhancement of oxidative stress and unbalanced cellular redox potential. Overdosing on particular antioxidants has been associated with increased medication interactions, cancer progression, and fatality risks. Additionally, the complex impacts they may have on fertility might be both useful and adverse, depending on the quantity and duration of usage. This review delves into the dual role of antioxidants and emphasizes the importance of employing antioxidants in moderation. Antioxidant overconsumption may disrupt the oxidative balance necessary for normal sperm and oocyte function, which is one of the potential negative effects of antioxidants on fertility in both males and females that are also investigated. Although modest usage of antioxidants is generally safe and useful, high levels of antioxidants can upset hormonal balance, impair sperm motility, and negatively impact the outcomes of assisted reproductive technologies (ART). The findings emphasize the need to use antioxidant supplements in a balanced way, the importance of further research to optimize their use in fertility treatments, and the importance of supporting reproductive health to avoid adverse effects.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital Barrack Rd, Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Periklis Katopodis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
38
|
Bordoni L, Agostinho de Sousa J, Zhuo J, von Meyenn F. Evaluating the connection between diet quality, EpiNutrient intake and epigenetic age: an observational study. Am J Clin Nutr 2024; 120:1143-1155. [PMID: 39510725 DOI: 10.1016/j.ajcnut.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND DNA methylation (DNAm) has unique properties which makes it a potential biomarker for lifestyle-related exposures. Epigenetic clocks, particularly DNAm-based biological age predictors [epigenetic age (EA)], represent an exciting new area of clinical research and deviations of EA from chronological age [epigenetic age acceleration (EAA)] have been linked to overall health, age-related diseases, and environmental exposures. OBJECTIVES This observational study investigates the relationships between biological aging and various dietary factors within the LifeLines-DEEP Cohort. These factors include diet quality, processed food consumption, dietary glycemic load, and intake of vitamins involved in maintaining the epigenetic homeostasis (vitamins B-9, B-12, B-6, B-2, and C). METHODS Dietary records collected using food-frequency questionnaires were used to estimate diet quality [LifeLines Diet Score (LLDS)], measure the intake of unprocessed/ultraprocessed food according to the NOVA food classification system, and the adequacy of the dietary intake of vitamins B-9, B-12, B-2, B-6, and C. EA using Horvath, Hannum, Levine, and Horvath2 epigenetic clock models and DNAm-predicted telomere length (DNAm-TL) were calculated from DNAm data in 760 subjects. Associations between dietary factors and EAA were tested, adjusting for sex, energy intake, and body composition. RESULTS LLDS was associated with EAA (EAA_Horvath: β: -0.148; P = 1 × 10-4; EAA_Hannum: β: -0.148; P = 9 × 10-5; EAA_Levine: β: -0.174; P = 1 × 10-5; and EAA_Horvath2: β: -0.176; P = 4 × 10-6) and DNAm-TL (β: 0.116; P = 0.003). Particularly, EAA was associated with dietary glycemic load (EAA_Horvath: β: 0.476; P = 9 × 10-10; EAA_Hannum: β: 0.565; P = 1 × 10-13; EAA_Levine: β: 0.469; P = 5 × 10-9; EAA_Horvath2: β: 0.569; P = 1 × 10-13; and DNAmTL adjusted for age: β: -0.340; P = 2 × 10-5) and different measures of food processing (NOVA classes 1 and 4). Positive EAA was also associated with inadequate intake of vitamin B-12 (EAA_Horvath: β: -0.167; P = 0.002; EAA_Hannum: β: -0.144; P = 0.007; and EAA_Horvath2: β: -0.126; P = 0.019) and C (EAA_Hannum: β: -0.136; P = 0.010 and EAA_Horvath2: β: -0.151; P = 0.005). CONCLUSIONS Our findings corroborate the hypothesis that nutrition plays a pivotal role in influencing epigenetic homeostasis, especially DNAm, thereby contributing to individual health trajectories and the pace of aging.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, Italy.
| | - João Agostinho de Sousa
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Jingran Zhuo
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Switzerland.
| |
Collapse
|
39
|
Wang T, Liu H, Wei X. Association between the Composite Dietary Antioxidant Index and Stroke: A cross-sectional Study. Biol Trace Elem Res 2024; 202:4335-4344. [PMID: 38153669 DOI: 10.1007/s12011-023-04011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The composite dietary antioxidant index (CDAI) is indeed a valuable nutritional tool used to evaluate the overall antioxidant capacity of an individual's daily food consumption. The CDAI was calculated from the intake of six antioxidant components in the diet, including vitamin A, vitamin C and vitamin E, carotenoids, selenium, and zinc. This study aimed to determine the association between CDAI and stroke. Utilizing data from the 2003-2018 NHANES dataset, CDAI was computed by summarizing the intake of six dietary antioxidants based on 24-hour dietary recall interviews. The relationship between CDAI and stroke was examined using multivariate logistic regression and restricted cubic spline analysis. This study ultimately included 39,432 participants, of whom 1,527 (3.87%) had a stroke. The multivariate logistic regression model 3 that fully adjusted all confounding variables showed a negative association between CDAI and stroke (OR = 0.97; 95% CI:0.95, 0.99). The highest tertile of CDAI saw a 23% drop in the prevalence of stroke compared to the lowest tertile (OR = 0.77; 95%CI: 0.64,0.92). Restricted cubic spline suggested that this negative correlation was nonlinear with an inflection point of -2.99. Subgroup analyses and interaction tests showed that this negative correlation was more applicable in patients with prediabetes (P < 0.05). There was a non-linear negative correlation between CDAI level and stroke prevalence, and this correlation was more significant in people with pre-diabetes. Appropriate CDAI levels may contribute to the management of stroke risk.
Collapse
Affiliation(s)
- Ting Wang
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiyan Liu
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiue Wei
- Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
40
|
El Mostafi H, Elhessni A, Doumar H, Touil T, Mesfioui A. Behavioral and Amygdala Biochemical Damage Induced by Alternating Mild Stress and Ethanol Intoxication in Adolescent Rats: Reversal by Argan Oil Treatment? Int J Mol Sci 2024; 25:10529. [PMID: 39408860 PMCID: PMC11476757 DOI: 10.3390/ijms251910529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Adolescence is a critical period when the effects of ethanol and stress exposure are particularly pronounced. Argan oil (AO), a natural vegetable oil known for its diverse pharmacological benefits, was investigated for its potential to mitigate addictive-like behaviors and brain damage induced by adolescent intermittent ethanol intoxication (IEI) and unpredictable mild stress (UMS). From P30 to P43, IEI rats received a daily ip ethanol (3 g/kg) on a two-day on/two-day off schedule. On alternate days, the rats were submitted to UMS protocol. Next, a two-bottle free access paradigm was performed over 10 weeks to assess intermittent 20% ethanol voluntary consumption. During the same period, the rats were gavaged daily with AO (15 mL/kg). Our results show that IEI/UMS significantly increased voluntary alcohol consumption (from 3.9 g/kg/24 h to 5.8 g/kg/24 h) and exacerbated withdrawal signs and relapse-like drinking in adulthood. Although AO treatment slightly reduced ethanol intake, it notably alleviated withdrawal signs during abstinence and relapse-like drinking in adulthood. AO's effects were associated with its modulation of the HPA axis (elevated serum corticosterone), restoration of amygdala oxidative balance, BDNF levels, and attenuation of neurodegeneration. These findings suggest that AO's neuroprotective properties could offer a potential therapeutic avenue for reducing ethanol/stress-induced brain damage and addiction. Further research is needed to explore its mechanisms and therapeutic potential in alcohol use disorders.
Collapse
Affiliation(s)
- Hicham El Mostafi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| | - Hanane Doumar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| | - Tarik Touil
- Higher Institute of Nursing and Health Professions of Rabat, Rabat 4502, Morocco;
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14 000, Morocco; (A.E.); (H.D.); (A.M.)
| |
Collapse
|
41
|
Maity J, Pal P, Ghosh M, Naskar B, Chakraborty S, Pal R, Mukhopadhyay PK. Molecular Dissection of the Arsenic-Induced Leukocyte Incursion into the Inflamed Thymus and Spleen and Its Amelioration by Co-supplementation of L-Ascorbic Acid and α-Tocopherol. Biol Trace Elem Res 2024:10.1007/s12011-024-04378-z. [PMID: 39325335 DOI: 10.1007/s12011-024-04378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Arsenic, a surreptitious presence in our environment, perpetuates a persistent global menace with its deleterious impacts. It possesses the capability to trigger substantial immunosuppression by instigating inflammation in critical organs like the thymus and spleen. L-Ascorbic acid (L-AA) exhibits robust immunoregulatory prowess by orchestrating the epigenetic terrain through TET and JHDM pathways. Conversely, α-tocopherol (α-T) demonstrates the capacity to dampen the production of pro-inflammatory cytokines by modulating the PI3K-Akt axis. Given these insights, this inquiry embarks on exploring the mitigative potential of L-AA and α-T co-supplementation at the transcriptome level within leukocytes under arsenic exposure. Concurrently, the research endeavours to unravel the potent anti-inflammatory effects of administering α-T and L-AA, alleviating inflammation within the spleen and thymus amidst arsenic-induced insult and delving deeply into their immunomodulatory mechanisms. The rats were randomly allocated into eight distinct groups for subsequent experimentation: (I) the control group was administered solely with distilled water as the vehicle (control); (II) NaAsO2-treated group (As); (III) NaAsO2 treated along with L-ascorbic acid and α-tocopherol supplemented group (As + L-AA + α-T); (IV) L-ascorbic acid and α-tocopherol supplemented group (L-AA + α-T); (V) NaAsO2 treated along with L-ascorbic acid supplemented group (As + L-AA); (VI) only L-ascorbic acid supplemented group (L-AA); (VII) NaAsO2 treated along with α-tocopherol supplemented group (As + α-T); (VIII) only α-tocopherol supplemented group (α-T). Rats treated with NaAsO2 exhibited an increased neutrophil count in their bloodstream, as revealed by a comprehensive transcriptomic analysis showcasing heightened expressions of ItgaM, MMP9, and Itga4 within circulating leukocytes under arsenic exposure. Concurrently, arsenic heightened the expression of pro-inflammatory cytokines within the thymus and spleen. This elevated cytokine activity promoted the upregulation of ICAM-1 on vascular endothelial cells, facilitating the infiltration of Ly6g + leukocytes into the afflicted thymus and spleen. Remarkably, the combination of L-AA acid and α-T demonstrated substantial therapeutic efficacy, adeptly reducing the influx of Ly6g + leukocytes into these immune sites and subsequent reduction of excessive collagen deposition. The dynamic duo of L-AA and α-T achieved this amelioration by suppressing the expression of ItgaM, MMP9, and Itga4 mRNA within circulating leukocytes and moderating tissue levels of pro-inflammatory cytokines in arsenic-exposed thymus and spleen.
Collapse
Affiliation(s)
- Jeet Maity
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
- School of Life Science, Department of Biotechnology, Swami Vivekananda University, Barrackpore, India
| | - Madhurima Ghosh
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Bhagyashree Naskar
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Ranjana Pal
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | |
Collapse
|
42
|
Kilicarslan You D, Fuwad A, Lee KH, Kim HK, Kang L, Kim SM, Jeon TJ. Evaluation of the Protective Role of Vitamin E against ROS-Driven Lipid Oxidation in Model Cell Membranes. Antioxidants (Basel) 2024; 13:1135. [PMID: 39334794 PMCID: PMC11428522 DOI: 10.3390/antiox13091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are chemically reactive oxygen-containing compounds generated by various factors in the body. Antioxidants mitigate the damaging effects of ROS by playing a critical role in regulating redox balance and signaling. In this study, the interplay between reactive oxygen species (ROS) and antioxidants in the context of lipid dynamics were investigated. The interaction between hydrogen peroxide (H2O2) as an ROS and vitamin E (α-tocopherol) as an antioxidant was examined. Model membranes containing both saturated and unsaturated lipids served as experimental platforms to investigate the influence of H2O2 on phospholipid unsaturation and the role of antioxidants in this process. The results demonstrated that H2O2 has a negative effect on membrane stability and disrupts the lipid membrane structure, whereas the presence of antioxidants protects the lipid membrane from the detrimental effects of ROS. The model membranes used here are a useful tool for understanding ROS-antioxidant interactions at the molecular level in vitro.
Collapse
Affiliation(s)
- Dilara Kilicarslan You
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Ki Hyok Lee
- Department of Materials Research Center, Genpeau Corporation, Incheon 21990, Republic of Korea
| | - Hyung Kyo Kim
- Department of Materials Research Center, Genpeau Corporation, Incheon 21990, Republic of Korea
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Sydney, NSW 2006, Australia
- Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
43
|
Tee CA, Roxby DN, Othman R, Denslin V, Bhat KS, Yang Z, Han J, Tucker-Kellogg L, Boyer LA. Metabolic modulation to improve MSC expansion and therapeutic potential for articular cartilage repair. Stem Cell Res Ther 2024; 15:308. [PMID: 39285485 PMCID: PMC11406821 DOI: 10.1186/s13287-024-03923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Articular cartilage degeneration can result from injury, age, or arthritis, causing significant joint pain and disability without surgical intervention. Currently, the only FDA cell-based therapy for articular cartilage injury is Autologous Chondrocyte Implantation (ACI); however, this procedure is costly, time-intensive, and requires multiple treatments. Mesenchymal stromal cells (MSCs) are an attractive alternative autologous therapy due to their availability and ability to robustly differentiate into chondrocytes for transplantation with good safety profiles. However, treatment outcomes are variable due to donor-to-donor variability as well as intrapopulation heterogeneity and unstandardized MSC manufacturing protocols. Process improvements that reduce cell heterogeneity while increasing donor cell numbers with improved chondrogenic potential during expansion culture are needed to realize the full potential of MSC therapy. METHODS In this study, we investigated the potential of MSC metabolic modulation during expansion to enhance their chondrogenic commitment by varying the nutrient composition, including glucose, pyruvate, glutamine, and ascorbic acid in culture media. We tested the effect of metabolic modulation in short-term (one passage) and long-term (up to seven passages). We measured metabolic state, cell size, population doubling time, and senescence and employed novel tools including micro-magnetic resonance relaxometry (µMRR) relaxation time (T2) to characterize the effects of AA on improved MSC expansion and chondrogenic potential. RESULTS Our data show that the addition of 1 mM L-ascorbic acid-2-phosphate (AA) to cultures for one passage during MSC expansion prior to initiation of differentiation improves chondrogenic differentiation. We further demonstrate that AA treatment reduced the proportion of senescent cells and cell heterogeneity also allowing for long-term expansion that led to a > 300-fold increase in yield of MSCs with enhanced chondrogenic potential compared to untreated cells. AA-treated MSCs with improved chondrogenic potential showed a robust shift in metabolic profile to OXPHOS and higher µMRR T2 values, identifying critical quality attributes that could be implemented in MSC manufacturing for articular cartilage repair. CONCLUSIONS Our results suggest an improved MSC manufacturing process that can enhance chondrogenic potential by targeting MSC metabolism and integrating process analytic tools during expansion.
Collapse
Affiliation(s)
- Ching Ann Tee
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Daniel Ninio Roxby
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Rashidah Othman
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Vinitha Denslin
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore, 117510, Republic of Singapore
| | - Kiesar Sideeq Bhat
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Zheng Yang
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore, 117510, Republic of Singapore
- Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block 11, Singapore, 119288, Republic of Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar St, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lisa Tucker-Kellogg
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore.
- Cancer and Stem Cell Biology and Centre for Computational Biology, Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Republic of Singapore.
| | - Laurie A Boyer
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
44
|
Santos DF, Simão S, Nóbrega C, Bragança J, Castelo-Branco P, Araújo IM. Oxidative stress and aging: synergies for age related diseases. FEBS Lett 2024; 598:2074-2091. [PMID: 39112436 DOI: 10.1002/1873-3468.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 10/04/2024]
Abstract
Aging is characterized by a progressive decline in physiological function and underlies several disabilities, including the increased sensitivity of cells and tissues to undergo pathological oxidative stress. In recent years, efforts have been made to better understand the relationship between age and oxidative stress and further develop therapeutic strategies to minimize the impact of both events on age-related diseases. In this work, we review the impact of the oxidant and antioxidant systems during aging and disease development and discuss the crosstalk of oxidative stress and other aging processes, with a focus on studies conducted in elderly populations.
Collapse
Affiliation(s)
- Daniela F Santos
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
| | - Sónia Simão
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
| | - José Bragança
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Inês M Araújo
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
45
|
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, Duttaroy AK, Jena AB. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother 2024; 178:117177. [PMID: 39053423 DOI: 10.1016/j.biopha.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cytokines regulate immune responses essential for maintaining immune homeostasis, as deregulated cytokine signaling can lead to detrimental outcomes, including inflammatory disorders. The antioxidants emerge as promising therapeutic agents because they mitigate oxidative stress and modulate inflammatory pathways. Antioxidants can potentially ameliorate inflammation-related disorders by counteracting excessive cytokine-mediated inflammatory responses. A comprehensive understanding of cytokine-mediated inflammatory pathways and the interplay with antioxidants is paramount for developing natural therapeutic agents targeting inflammation-related disorders and helping to improve clinical outcomes and enhance the quality of life for patients. Among these antioxidants, curcumin, vitamin C, vitamin D, propolis, allicin, and cinnamaldehyde have garnered attention for their anti-inflammatory properties and potential therapeutic benefits. This review highlights the interrelationship between cytokines-mediated disorders in various diseases and therapeutic approaches involving antioxidants.
Collapse
Affiliation(s)
- Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | | | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Umesh Chandra Dash
- Environmental Biotechnology Laboratory, KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Rakesh Ranjan Ojha
- Department of Bioinformatics, BJB (A) College, Bhubaneswar, Odisha-751014, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
46
|
Rahman M, Khatun A, Liu L, Barkla BJ. Brassicaceae Mustards: Phytochemical Constituents, Pharmacological Effects, and Mechanisms of Action against Human Disease. Int J Mol Sci 2024; 25:9039. [PMID: 39201724 PMCID: PMC11354652 DOI: 10.3390/ijms25169039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The Brassicaceae genus consists of many economically important mustards of value for food and medicinal purposes, namely Asian mustard (Brassica juncea), ball mustard (Neslia paniculata), black mustard (B. nigra), garlic mustard (Alliaria petiolata), hedge mustard (Sisymbrium officinale), Asian hedge mustard (S. orientale), oilseed rape (B. napus), rapeseed (B. rapa), treacle mustard (Erysimum repandum), smooth mustard (S. erysimoides), white ball mustard (Calepina irregularis), white mustard (Sinapis alba), and Canola. Some of these are commercially cultivated as oilseeds to meet the global demand for a healthy plant-derived oil, high in polyunsaturated fats, i.e., B. napus and B. juncea. Other species are foraged from the wild where they grow on roadsides and as a weed of arable land, i.e., E. repandum and S. erysimoides, and harvested for medicinal uses. These plants contain a diverse range of bioactive natural products including sulfur-containing glucosinolates and other potentially valuable compounds, namely omega-3-fatty acids, terpenoids, phenylpropanoids, flavonoids, tannins, S-methyl cysteine sulfoxide, and trace-elements. Various parts of these plants and many of the molecules that are produced throughout the plant have been used in traditional medicines and more recently in the mainstream pharmaceutical and food industries. This study relates the uses of mustards in traditional medicines with their bioactive molecules and possible mechanisms of action and provides an overview of the current knowledge of Brassicaceae oilseeds and mustards, their phytochemicals, and their biological activities.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Amina Khatun
- Southern Cross Analytical Services, Southern Cross University, Lismore, NSW 2480, Australia; (M.R.); (A.K.)
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Bronwyn J. Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia;
| |
Collapse
|
47
|
Shukla S, Shrivastava D. Nutritional Deficiencies and Subfertility: A Comprehensive Review of Current Evidence. Cureus 2024; 16:e66477. [PMID: 39246987 PMCID: PMC11380699 DOI: 10.7759/cureus.66477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Subfertility, a condition marked by a reduced capacity to conceive naturally, affects a significant proportion of couples globally. Nutrition is a fundamental aspect of reproductive health, with various nutrients essential in maintaining optimal reproductive function. This comprehensive review explores the intricate relationship between nutritional deficiencies and subfertility. It examines key micronutrients such as vitamins D, E, C, and B12, as well as minerals such as zinc, iron, selenium, and magnesium, and their impacts on fertility. The review also considers macronutrients and the importance of a balanced diet in supporting reproductive health. Drawing on an extensive body of clinical evidence and studies, this review highlights how deficiencies in these nutrients can lead to hormonal imbalances, impaired gametogenesis, and suboptimal pregnancy outcomes. It discusses the efficacy of nutritional interventions, including dietary supplements and lifestyle modifications, in improving fertility. Furthermore, it addresses the emerging research on personalized nutrition and its potential to enhance reproductive outcomes. The review underscores the necessity for healthcare providers to assess and address the nutritional status of patients with subfertility. It provides practical recommendations for developing nutritional plans, counseling patients, and integrating nutritional interventions into fertility treatments. By offering a comprehensive synthesis of current evidence, this review aims to inform clinical practice and promote further research into the role of nutrition in enhancing fertility.
Collapse
Affiliation(s)
- Swasti Shukla
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Deepti Shrivastava
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
48
|
Wang F, Wang RY, Zhong DB, Zhao P, Xia QY. Highly efficient expression of human extracellular superoxide dismutase (rhEcSOD) with ultraviolet-B-induced damage-resistance activity in transgenic silkworm cocoons. INSECT SCIENCE 2024; 31:1150-1164. [PMID: 38010045 DOI: 10.1111/1744-7917.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 11/29/2023]
Abstract
Extracellular superoxide dismutase (EcSOD) protects tissues from oxidative stress, and thus is considered as a therapeutic agent for many diseases such as atherosclerosis, hypertension, and cancer. However, cost-effective production of bioactive recombinant human EcSOD (rhEcSOD) remains a challenge. Herein, we developed an efficient strategy for producing active rhEcSOD by transgenic silkworms. rhEcSOD was successfully synthesized as homodimers and homotetramers in the middle silk gland and spun into the cocoons with a concentration of 9.48 ± 0.21 mg/g. Purification of rhEcSOD from the cocoons could be conveniently achieved with a purity of 99.50% and a yield of 3.5 ± 0.5 mg/g. Additionally, N-glycosylation at the only site of N89 in rhEcSOD with 10 types were identified. The purified rhEcSOD gained the potent enzymatic activity of 4 162 ± 293 U/mg after Cu/Zn ions incorporation. More importantly, rhEcSOD was capable of penetrating and accumulating in the nuclei of cells to maintain cell morphology and attenuate ultraviolet B-induced cell apoptosis by eliminating reactive oxygen species and inhibiting the C-Jun N-terminal kinase signaling pathway. These results demonstrated that the transgenic silkworm could successfully produce rhEcSOD with enzymatic and biological activities for biomedical applications.
Collapse
Affiliation(s)
- Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ri-Yuan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - De-Bin Zhong
- Century Legend Biotechnology Research Institute (Chongqing) Co., Ltd., Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qing-You Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
49
|
DiPasquale M, Marquardt D. Perceiving the functions of vitamin E through neutron and X-ray scattering. Adv Colloid Interface Sci 2024; 330:103189. [PMID: 38824717 DOI: 10.1016/j.cis.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Take your vitamins, or don't? Vitamin E is one of the few lipophilic vitamins in the human diet and is considered an essential nutrient. Over the years it has proven to be a powerful antioxidant and is commercially used as such, but this association is far from linear in physiology. It is increasingly more likely that vitamin E has multiple legitimate biological roles. Here, we review past and current work using neutron and X-ray scattering to elucidate the influence of vitamin E on key features of model membranes that can translate to the biological function(s) of vitamin E. Although progress is being made, the hundred year-old mystery remains unsolved.
Collapse
Affiliation(s)
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
50
|
Yadav DK, Somagond YM, Das P, Lathwal SS, Kamboj A, Alhussien MN, Dang AK. Injection of antioxidant trace minerals/vitamins into peripartum crossbred cows improves the nutritional and immunological properties of colostrum/milk and the health of their calves under heat stress conditions. Trop Anim Health Prod 2024; 56:225. [PMID: 39066797 DOI: 10.1007/s11250-024-04084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Multimineral and vitamin injections can provide better nutrient availability at the cellular level, which is essential for mitigating transition period stress and improving the wellbeing and productivity of dairy cows. The present study was conducted to assess the colostrum quality and calf health after intramuscular injection of multi-minerals (MM) and multi-vitamins (MV) to peripartum cows during winter (THI = 58 to 66) and summer (THI = 78 to 82) months. In each season, twenty-four pregnant crossbred Karan Fries cows were grouped into four, each consisting of six cows. Group I, referred to as the Control, received solely the basal diet, without any additional supplements. Groups II, III, and IV were administered additional MM (T1), MV (T2), and a combined MM and MV (T3) along with their basal diet, starting 30 days before calving and continuing for 30 days after calving. Blood samples were collected from the calves, while colostrum/milk samples were obtained from the cows on days 1, 3, 7, and 15 after calving. The somatic cell counts (SCC) in the milk were determined using a cell counter. Cortisol, IgG, IGF1 and total immunoglobulins (TIG) in whey and plasma from cow colostrum/milk or calf blood samples were estimated by ELISA. Cows that calved in the summer exhibited notably reduced levels (P < 0.05) of IgG, milk, and plasma IGF1, along with lower calf body weights, in comparison to those calving in the winter season. Furthermore, the summer months saw significant increases (P < 0.05) in plasma and milk cortisol levels, as well as total somatic cell counts (SCC) in both colostrum and milk samples. Maximum beneficial effect was observed in T3 group. Results indicate that injections to peripartum cows could be an important strategy for improving colostrum quality and calf health during the summer seasons.
Collapse
Affiliation(s)
- Dhawal Kant Yadav
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Yallappa M Somagond
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
- Animal Physiology and Reproduction, ICAR-National Research Centre on Mithun, Medziphema, Nagaland, 797106, India
| | - Pravasini Das
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Surender Singh Lathwal
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Aarti Kamboj
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Mohanned Naif Alhussien
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, 85354, Freising, Germany
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|