1
|
Locatelli M, Farina C. Role of copper in central nervous system physiology and pathology. Neural Regen Res 2025; 20:1058-1068. [PMID: 38989937 PMCID: PMC11438321 DOI: 10.4103/nrr.nrr-d-24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024] Open
Abstract
Copper is a transition metal and an essential element for the organism, as alterations in its homeostasis leading to metal accumulation or deficiency have pathological effects in several organs, including the central nervous system. Central copper dysregulations have been evidenced in two genetic disorders characterized by mutations in the copper-ATPases ATP7A and ATP7B, Menkes disease and Wilson's disease, respectively, and also in multifactorial neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. This review summarizes current knowledge about the role of copper in central nervous system physiology and pathology, reports about unbalances in copper levels and/or distribution under disease, describes relevant animal models for human disorders where copper metabolism genes are dysregulated, and discusses relevant therapeutic approaches modulating copper availability. Overall, alterations in copper metabolism may contribute to the etiology of central nervous system disorders and represent relevant therapeutic targets to restore tissue homeostasis.
Collapse
Affiliation(s)
- Martina Locatelli
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Cinthia Farina
- Institute of Experimental Neurology, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Srivastava T, Wanjari N. Copper and its isotopes: a brief overview of its implications in geology, environmental system, and human health. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2024:1-26. [PMID: 39365695 DOI: 10.1080/10256016.2024.2410290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/19/2024] [Indexed: 10/06/2024]
Abstract
Copper, a malleable and ductile transition metal, possesses two stable isotopes. These copper isotopic composition data have recently found diverse applications in various fields and disciplines. In geology, copper isotopes serve as tracers that aid in investigating ore formation processes and the mechanisms of copper deposits Likewise, it has emerged as a valuable tracer in polluted environments. In plant biology, copper acts as an essential micronutrient crucial for photosynthesis, respiration, and growth. Copper isotopes contribute to understanding how plants uptake and dispense copper from the soil within their tissues. Similarly, in animals, copper serves as an essential trace element, playing a vital role in growth, white blood cell function, and enzyme activity. In humans, copper acts as an antioxidant, neutralising harmful free radicals within the body. It also helps in maintaining the nervous and immune system. Furthermore, copper isotopes find medical applications, particularly in cancer diagnostics, neurodegenerative diseases, and targeted radiotherapy. However, excessive copper can have detrimental effects in humans such as it can cause liver damage, nausea, and abdominal pain, whilst in plants it can affect the growth of plants, photosynthesis, and membrane permeability. This review emphasises the significance of copper and its isotopes in geology, the environment, and human health.
Collapse
|
3
|
Weishaupt AK, Ruecker L, Meiners T, Schwerdtle T, Silva Avila D, Aschner M, Bornhorst J. Copper-mediated neurotoxicity and genetic vulnerability in the background of neurodegenerative diseases in C. elegans. Toxicol Sci 2024; 201:254-262. [PMID: 39067045 PMCID: PMC11424883 DOI: 10.1093/toxsci/kfae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The mechanisms associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), have yet to be fully characterized, and genetic as well as environmental factors in their disease etiology are underappreciated. Although mutations in genes such as PARKIN and LRRK2 have been linked to PD, the idiopathic component of the disease suggests a contribution of environmental risk factors, including metals, such as copper (Cu). Cu overexposure has been reported to cause oxidative stress and neurotoxicity, but its role in neurodegenerative diseases is rarely studied. Using Caenorhabditis elegans (C. elegans) as a model organism for neurotoxicity, we assessed the effects of Cu oversupply in AD and PD models. Our findings reveal that although copper treatment did not induce neurodegeneration in wild-type worms or the AD model, it significantly exacerbated neurodegeneration in the PD-associated mutants PARKIN and LRRK2. These results suggest that genetic predisposition for PD enhances the sensitivity to copper toxicity, highlighting the multifactorial nature of neurodegenerative diseases. Furthermore, our study provides insight into the mechanisms underlying Cu-induced neurotoxicity in PD models, including disruptions in dopamine levels, altered dopamine-dependent behavior and degraded dopaminergic neurons. Overall, our novel findings contribute to a better understanding of the complex interactions between genetic susceptibility, environmental factors, and neurodegenerative disease pathogenesis, emphasizing the importance of a tightly regulated Cu homeostasis in the etiology of PD. Copper oversupply exacerbated neurodegeneration in Caenorhabditis elegans models of Parkinson's disease, highlighting the genetic susceptibility and emphasizing the crucial role of tightly regulated copper homeostasis in Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
- Ann-Kathrin Weishaupt
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
| | - Lysann Ruecker
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Torben Meiners
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Daiana Silva Avila
- Laboratory of Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, 97501-970 Uruguaiana, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Julia Bornhorst
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
| |
Collapse
|
4
|
Hossain MS, Das A, Rafiq AM, Deák F, Bagi Z, Outlaw R, Sudhahar V, Yamamoto M, Kaplan JH, Ushio-Fukai M, Fukai T. Altered copper transport in oxidative stress-dependent brain endothelial barrier dysfunction associated with Alzheimer's disease. Vascul Pharmacol 2024; 157:107433. [PMID: 39317307 DOI: 10.1016/j.vph.2024.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Oxidative stress and blood-brain barrier (BBB) disruption due to brain endothelial barrier dysfunction contribute to Alzheimer's Disease (AD), which is characterized by beta-amyloid (Aβ) accumulation in senile plaques. Copper (Cu) is implicated in AD pathology and its levels are tightly controlled by several Cu transport proteins. However, their expression and role in AD, particularly in relation to brain endothelial barrier function remains unclear. In this study, we examined the expression of Cu transport proteins in the brains of AD mouse models as well as their involvement in Aβ42-induced brain endothelial barrier dysfunction. We found that the Cu uptake transporter CTR1 was upregulated, while the Cu exporter ATP7A was downregulated in the hippocampus of AD mouse models and in Aβ42-treated human brain microvascular endothelial cells (hBMECs). In the 5xFAD AD mouse model, Cu levels (assessed by ICP-MS) were elevated in the hippocampus. Moreover, in cultured hBMECs, Aβ42-induced reactive oxygen species (ROS) production, ROS-dependent loss in barrier function (measured by transendothelial electrical resistance), and tyrosine phosphorylation of CDH5 were all inhibited by either a membrane permeable Cu chelator or by knocking down CTR1 expression. These findings suggest that dysregulated expression of Cu transport proteins may lead to intracellular Cu accumulation in the AD brain, and that Aβ42 promotes ROS-dependent brain endothelial barrier dysfunction and CDH5 phosphorylation in a CTR1-Cu-dependent manner. Our study uncovers the critical role of Cu transport proteins in oxidative stress-related loss of BBB integrity in AD.
Collapse
Affiliation(s)
- Md Selim Hossain
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912
| | - Archita Das
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30901, United States of America
| | - Ashiq M Rafiq
- Department of Neuroscience and Regenerative Medicine, Medical College of, Georgia, at Augusta University, Augusta, GA 30912
| | - Ferenc Deák
- Department of Neuroscience and Regenerative Medicine, Medical College of, Georgia, at Augusta University, Augusta, GA 30912
| | - Zsolt Bagi
- Department of Physiology, Medical College of, Georgia, at Augusta University, Augusta, GA 30912
| | - Rashelle Outlaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912
| | - Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30901, United States of America
| | - Mai Yamamoto
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, United States of America
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912; Department of Medicine (Cardiology), Medical College of Georgia at Augusta University, Augusta, GA 30912.
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912; Department of Pharmacology and Toxicology, Medical College of, Georgia, at Augusta University, Augusta, GA 30912; Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30901, United States of America.
| |
Collapse
|
5
|
Blades B, Hung YH, Belaidi AA, Volitakis I, Schultz AG, Cater MA, Cheung NS, Bush AI, Ayton S, La Fontaine S. Impaired cellular copper regulation in the presence of ApoE4. J Neurochem 2024; 168:3284-3307. [PMID: 39135362 DOI: 10.1111/jnc.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 10/04/2024]
Abstract
The strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain. Exposure of ApoE target replacement (TR) astrocytes (immortalised astrocytes from APOE knock-in mice) to elevated copper concentrations resulted in exacerbated copper accumulation in ApoE4- compared to ApoE2- and ApoE3-TR astrocytes. This effect was also observed in SH-SY5Y neuroblastoma cells treated with conditioned medium from ApoE4-TR astrocytes. Increased intracellular copper levels in the presence of ApoE4 may be explained by reduced levels and delayed trafficking of the copper transport protein, copper-transporting ATPase 1 (ATP7A/Atp7a), potentially leading to impaired cellular copper export. This new role for ApoE in copper regulation lends further biochemical insight into how APOE genotype confers risk for AD and reveals a potential contribution of ApoE4 to the copper dysregulation that is a characteristic pathological feature of the AD brain.
Collapse
Affiliation(s)
- Bryce Blades
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ya Hui Hung
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Abdel A Belaidi
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Irene Volitakis
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Michael A Cater
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Nam Sang Cheung
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ashley I Bush
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sharon La Fontaine
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Hossain MS, Das A, Rafiq AM, Deák F, Bagi Z, Outlaw R, Sudhahar V, Yamamoto M, Kaplan JH, Ushio-Fukai M, Fukai T. Altered Copper Transport in Oxidative Stress-Dependent Brain Endothelial Barrier Dysfunction Associated with Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610108. [PMID: 39257825 PMCID: PMC11383690 DOI: 10.1101/2024.08.28.610108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Oxidative stress and blood-brain barrier (BBB) disruption due to brain endothelial barrier dysfunction contribute to Alzheimer's Disease (AD), which is characterized by beta-amyloid (Aβ) accumulation in senile plaques. Copper (Cu) is implicated in AD pathology and its levels are tightly controlled by several Cu transport proteins. However, their expression and role in AD, particularly in relation to brain endothelial barrier function remains unclear. In this study, we examined the expression of Cu transport proteins in the brains of AD mouse models as well as their involvement in Aβ42-induced brain endothelial barrier dysfunction. We found that the Cu uptake transporter CTR1 was upregulated, while the Cu exporter ATP7A and/or ATP7B were downregulated in the hippocampus of AD mouse models, and in Aβ42-treated human brain microvascular endothelial cells (hBMECs). In the 5xFAD AD mouse model, Cu levels (assessed by ICP-MS) were elevated in the hippocampus. Moreover, Aβ42-induced reactive oxygen species (ROS) production, ROS-dependent loss in barrier function in hBMEC (measured by transendothelial electrical resistance), and tyrosine phosphorylation of VE-cadherin were all inhibited by either a membrane permeable Cu chelator or by knocking down CTR1 expression. These findings suggest that dysregulated expression of Cu transport proteins may lead to intracellular Cu accumulation in the AD brain, and that Aβ42 promotes ROS-dependent brain endothelial barrier dysfunction and VE-Cadherin phosphorylation in a CTR1-Cu-dependent manner. Our study uncovers the critical role of Cu transport proteins in oxidative stress-related loss of BBB integrity in AD. Highlights Upregulation of the Cu importer CTR1 and downregulation of the Cu exporter ATP7A in the hippocampus of AD mouse modelsAβ42 increases CTR1 expression while reduces ATP7A and ATP7B levels in human brain microvascular ECs.Aβ42 triggers increased reactive oxygen species (ROS) production in human brain microvascular ECs through a CTR1- and Cu-dependent manner.Aβ42 induces endothelial barrier dysfunction in human brain microvascular ECs through a CTR1-Cu-ROS-pendent manner.
Collapse
|
7
|
Okafor M, Champomier O, Raibaut L, Ozkan S, El Kholti N, Ory S, Chasserot-Golaz S, Gasman S, Hureau C, Faller P, Vitale N. Restoring cellular copper homeostasis in Alzheimer disease: a novel peptide shuttle is internalized by an ATP-dependent endocytosis pathway involving Rab5- and Rab14-endosomes. Front Mol Biosci 2024; 11:1355963. [PMID: 38645276 PMCID: PMC11026709 DOI: 10.3389/fmolb.2024.1355963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
CPPs, or Cell-Penetrating Peptides, offer invaluable utility in disease treatment due to their ability to transport various therapeutic molecules across cellular membranes. Their unique characteristics, such as biocompatibility and low immunogenicity, make them ideal candidates for delivering drugs, genes, or imaging agents directly into cells. This targeted delivery enhances treatment efficacy while minimizing systemic side effects. CPPs exhibit versatility, crossing biological barriers and reaching intracellular targets that conventional drugs struggle to access. This capability holds promise in treating a wide array of diseases, including cancer, neurodegenerative disorders, and infectious diseases, offering a potent avenue for innovative and targeted therapies, yet their precise mechanism of cell entry is far from being fully understood. In order to correct Cu dysregulation found in various pathologies such as Alzheimer disease, we have recently conceived a peptide Cu(II) shuttle, based on the αR5W4 CPP, which, when bound to Cu(II), is able to readily enter a neurosecretory cell model, and release bioavailable Cu in cells. Furthermore, this shuttle has the capacity to protect cells in culture against oxidative stress-induced damage which occurs when Cu binds to the Aβ peptide. The aim of this study was therefore to characterize the cell entry route used by this shuttle and determine in which compartment Cu is released. Pharmacological treatments, siRNA silencing and colocalization experiments with GFP-Rab fusion proteins, indicate that the shuttle is internalized by an ATP-dependent endocytosis pathway involving both Rab5 and Rab14 endosomes route and suggest an early release of Cu from the shuttle.
Collapse
Affiliation(s)
- Michael Okafor
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
- Institut de Chimie—UMR7177, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Olivia Champomier
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
- Institut de Chimie—UMR7177, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Laurent Raibaut
- Institut de Chimie—UMR7177, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Sebahat Ozkan
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Naima El Kholti
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Stéphane Ory
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Christelle Hureau
- Laboratoire de Chimie de Coordination, Centre National de la Recherche Scientifique UPR8241, Université de Toulouse, Toulouse, France
| | - Peter Faller
- Institut de Chimie—UMR7177, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives—Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Friese S, Heinze T, Ebert F, Schwerdtle T. Establishment of a nonradioactive DNA ligation assay and its applications in murine tissues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:106-115. [PMID: 38767089 DOI: 10.1002/em.22602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
As final process of every DNA repair pathway, DNA ligation is crucial for maintaining genomic stability and preventing DNA strand breaks to accumulate. Therefore, a method reliably assessing DNA ligation capacity in protein extracts from murine tissues was aimed to establish. To optimize applicability, the use of radioactively labeled substrates was avoided and replaced by fluorescently labeled oligonucleotides. Briefly, tissue extracts were incubated with those complementary oligonucleotides so that in an ensuing gel electrophoresis ligated strands could be separated from unconnected molecules. Originally, the method was intended for use in cerebellum tissue to further elucidate possible mechanisms of neurodegenerative diseases. However, due to its inhomogeneous anatomy, DNA ligation efficiency varied strongly between different cerebellar areas, illuminating the established assay to be suitable only for homogenous organs. Thus, for murine liver tissue sufficient intra- and interday repeatability was shown during validation. In further experiments, the established assay was applied to an animal study comprising young and old (24 and 110 weeks) mice which showed that DNA ligation efficiency was affected by neither sex nor age. Finally, the impact of in vitro addition of the trace elements copper, iron, and zinc on DNA ligation in tissue extracts was investigated. While all three metals inhibited DNA ligation, variations in their potency became evident. In conclusion, the established method can be reliably used for investigation of DNA ligation efficiency in homogenous murine tissues.
Collapse
Affiliation(s)
- Sharleen Friese
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Tom Heinze
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
9
|
Tian Y, Shang Q, Liang R, Viles JH. Copper(II) Can Kinetically Trap Arctic and Italian Amyloid-β 40 as Toxic Oligomers, Mimicking Cu(II) Binding to Wild-Type Amyloid-β 42: Implications for Familial Alzheimer's Disease. JACS AU 2024; 4:578-591. [PMID: 38425915 PMCID: PMC10900208 DOI: 10.1021/jacsau.3c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
The self-association of amyloid-β (Aβ) peptide into neurotoxic oligomers is believed to be central to Alzheimer's disease (AD). Copper is known to impact Aβ assembly, while disrupted copper homeostasis impacts phenotype in Alzheimer's models. Here we show the presence of substoichiometric Cu(II) has very different impacts on the assembly of Aβ40 and Aβ42 isoforms. Globally fitting microscopic rate constants for fibril assembly indicates copper will accelerate fibril formation of Aβ40 by increasing primary nucleation, while seeding experiments confirm that elongation and secondary nucleation rates are unaffected by Cu(II). In marked contrast, Cu(II) traps Aβ42 as prefibrillar oligomers and curvilinear protofibrils. Remarkably, the Cu(II) addition to preformed Aβ42 fibrils causes the disassembly of fibrils back to protofibrils and oligomers. The very different behaviors of the two Aβ isoforms are centered around differences in their fibril structures, as highlighted by studies of C-terminally amidated Aβ42. Arctic and Italian familiar mutations also support a key role for fibril structure in the interplay of Cu(II) with Aβ40/42 isoforms. The Cu(II) dependent switch in behavior between nonpathogenic Aβ40 wild-type and Aβ40 Arctic or Italian mutants suggests heightened neurotoxicity may be linked to the impact of physiological Cu(II), which traps these familial mutants as oligomers and curvilinear protofibrils, which cause membrane permeability and Ca(II) cellular influx.
Collapse
Affiliation(s)
- Yao Tian
- School of Biological and Behavioral
Sciences, Queen Mary University of London, London E1 4NS, U.K.
| | - Qi Shang
- School of Biological and Behavioral
Sciences, Queen Mary University of London, London E1 4NS, U.K.
| | - Ruina Liang
- School of Biological and Behavioral
Sciences, Queen Mary University of London, London E1 4NS, U.K.
| | - John H. Viles
- School of Biological and Behavioral
Sciences, Queen Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
10
|
Ban XX, Wan H, Wan XX, Tan YT, Hu XM, Ban HX, Chen XY, Huang K, Zhang Q, Xiong K. Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Curr Med Sci 2024; 44:28-50. [PMID: 38336987 DOI: 10.1007/s11596-024-2832-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024]
Abstract
Copper is an essential trace element, and plays a vital role in numerous physiological processes within the human body. During normal metabolism, the human body maintains copper homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological disorders are linked to copper homeostasis. This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
Collapse
Affiliation(s)
- Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Ya-Ting Tan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Hong-Xia Ban
- Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 430013, China.
| |
Collapse
|
11
|
Scolari Grotto F, Glaser V. Are high copper levels related to Alzheimer's and Parkinson's diseases? A systematic review and meta-analysis of articles published between 2011 and 2022. Biometals 2024; 37:3-22. [PMID: 37594582 DOI: 10.1007/s10534-023-00530-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Copper performs an important role in the brain, but in high levels it can be neurotoxic. Further, some authors have described that copper dyshomeostasis could be related with neurodegenerative diseases. Thus, this review was performed to observe whether high copper levels are related to Alzheimer's and Parkinson's diseases (AD and PD), using the literature published recently. Articles that measured copper levels in AD or PD patients was included, as well as they that measured copper levels in models used to mimic these diseases. Also, results about high copper levels effects and its relationship with AD and PD observed in laboratory animals are considered. In summary, 38 and 24 articles with AD and PD patients were included, respectively. Despite of the heterogeneity between the studies in humans, meta-analysis has demonstrated that there is an increase in free and total copper levels in the blood of AD patients compared to controls, and a decrease in copper levels in PD patients. A decrease in the metal content in postmortem brain tissue was observed in AD and PD. In manuscripts using animal models that mimic AD and PD, it was included seven and three articles, respectively. Two of them have reported an increase in copper concentrations in AD model, and one in PD model. Finally, studies with laboratory animals have concluded that high copper levels are related to oxidative stress, neuroinflammation, mitochondrial dysfunction, changes in neurotransmitter levels, cell death, and reduced both cognitive and locomotor activity, which are also described in AD or PD.
Collapse
Affiliation(s)
- Fabielly Scolari Grotto
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Rodovia Ulysses Gaboardi, Km3, Curitibanos, SC, Brazil
| | - Viviane Glaser
- Cell Biology Lab, Biological and Agronomic Sciences Department, Federal University of Santa Catarina, Rodovia Ulysses Gaboardi, Km3, Curitibanos, SC, Brazil.
| |
Collapse
|
12
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
13
|
Li X, Chen X, Gao X. Copper and cuproptosis: new therapeutic approaches for Alzheimer's disease. Front Aging Neurosci 2023; 15:1300405. [PMID: 38178962 PMCID: PMC10766373 DOI: 10.3389/fnagi.2023.1300405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Copper (Cu) plays a crucial role as a trace element in various physiological processes in humans. Nonetheless, free copper ions accumulate in the brain over time, resulting in a range of pathological changes. Compelling evidence indicates that excessive free copper deposition contributes to cognitive decline in individuals with Alzheimer's disease (AD). Free copper levels in the serum and brain of AD patients are notably elevated, leading to reduced antioxidant defenses and mitochondrial dysfunction. Moreover, free copper accumulation triggers a specific form of cell death, namely copper-dependent cell death (cuproptosis). This article aimed to review the correlation between copper dysregulation and the pathogenesis of AD, along with the primary pathways regulating copper homoeostasis and copper-induced death in AD. Additionally, the efficacy and safety of natural and synthetic agents, including copper chelators, lipid peroxidation inhibitors, and antioxidants, were examined. These treatments can restore copper equilibrium and prevent copper-induced cell death in AD cases. Another aim of this review was to highlight the significance of copper dysregulation and promote the development of pharmaceutical interventions to address it.
Collapse
Affiliation(s)
- Xiao Li
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinwang Chen
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiyan Gao
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
14
|
Billings JL, Hilton JBW, Liddell JR, Hare DJ, Crouch PJ. Fundamental Neurochemistry Review: Copper availability as a potential therapeutic target in progressive supranuclear palsy: Insight from other neurodegenerative diseases. J Neurochem 2023; 167:337-346. [PMID: 37800457 DOI: 10.1111/jnc.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
Since the first description of Parkinson's disease (PD) over two centuries ago, the recognition of rare types of atypical parkinsonism has introduced a spectrum of related PD-like diseases. Among these is progressive supranuclear palsy (PSP), a neurodegenerative condition that clinically differentiates through the presence of additional symptoms uncommon in PD. As with PD, the initial symptoms of PSP generally present in the sixth decade of life when the underpinning neurodegeneration is already significantly advanced. The causal trigger of neuronal cell loss in PSP is unknown and treatment options are consequently limited. However, converging lines of evidence from the distinct neurodegenerative conditions of PD and amyotrophic lateral sclerosis (ALS) are beginning to provide insights into potential commonalities in PSP pathology and opportunity for novel therapeutic intervention. These include accumulation of the high abundance cuproenzyme superoxide dismutase 1 (SOD1) in an aberrant copper-deficient state, associated evidence for altered availability of the essential micronutrient copper, and evidence for neuroprotection using compounds that can deliver available copper to the central nervous system. Herein, we discuss the existing evidence for SOD1 pathology and copper imbalance in PSP and speculate that treatments able to provide neuroprotection through manipulation of copper availability could be applicable to the treatment of PSP.
Collapse
Affiliation(s)
- Jessica L Billings
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - James B W Hilton
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Jeffrey R Liddell
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dominic J Hare
- School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway, Ultimo, New South Wales, Australia
| | - Peter J Crouch
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Nie B, Duan Y, Xie X, Qiu L, Shi S, Fan Z, Zheng X, Jiang L. Systematic analysis of cuproptosis-related genes in immunological characterization and predictive drugs in Alzheimer's disease. Front Aging Neurosci 2023; 15:1204530. [PMID: 37920383 PMCID: PMC10618683 DOI: 10.3389/fnagi.2023.1204530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023] Open
Abstract
Objectives This study aimed to make a systematic analysis of cuproptosis-related genes (CRGs) in immunological characterization and predictive drugs in Alzheimer's disease (AD) through bioinformatics and biological experiments. Methods The molecular clusters related to CRGs and associated immune cell infiltrations in AD were investigated. The diagnostic models were constructed for AD and different AD subtypes. Moreover, drug prediction and molecular docking were also performed. Subsequently, a molecular dynamics (MD) simulation was conducted to further verify the findings. Finally, RT-qPCR validation was performed. Results The characterization of 12 AD-related CRGs was evaluated in AD, and a diagnostic model for AD showed a satisfying discrimination power based on five CRGs by LASSO regression analysis. The dysregulated CRGs and activated immune responses partially differed between patients with AD and healthy subjects. Furthermore, two molecular subtypes (clusters A and B) with different immune infiltration characteristics in AD were identified. Similarly, a diagnostic model for different AD subtypes was built with nine CRGs, which achieved a good performance. Molecular docking revealed the optimum conformation of CHEMBL261454 and its target gene CSNK1D, which was further validated by MD simulation. The RT-qPCR results were consistent with those of the comprehensive analysis. Conclusion This study systematically elucidated the complex relationship between cuproptosis and AD, providing novel molecular targets for treatment and diagnosis biomarkers of AD.
Collapse
Affiliation(s)
- Bin Nie
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Yefen Duan
- Department of Clinical Laboratory, Yibin No. 4 People’s Hospital, Yibin, China
| | - Xuelong Xie
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Lihua Qiu
- Imaging Department, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Shaorui Shi
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Zhili Fan
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Xuxiang Zheng
- Department of Clinical Laboratory, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
- Clinical Research and Translational Center, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| | - Ling Jiang
- Department of Neurology, The Second People’s Hospital of Yibin·West China Yibin Hospital, Sichuan University, Yibin, China
| |
Collapse
|
16
|
Tabanez M, Santos IR, Ikebara JM, Camargo MLM, Dos Santos BA, Freire BM, Batista BL, Takada SH, Squitti R, Kihara AH, Cerchiaro G. The Impact of Hydroxytyrosol on the Metallomic-Profile in an Animal Model of Alzheimer's Disease. Int J Mol Sci 2023; 24:14950. [PMID: 37834398 PMCID: PMC10573659 DOI: 10.3390/ijms241914950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
It is undeniable that as people get older, they become progressively more susceptible to neurodegenerative illnesses such as Alzheimer's disease (AD). Memory loss is a prominent symptom of this condition and can be exacerbated by uneven levels of certain metals. This study used inductively coupled plasma mass spectrometry (ICP-MS) to examine the levels of metals in the blood plasma, frontal cortex, and hippocampus of Wistar rats with AD induced by streptozotocin (STZ). It also tested the effects of the antioxidant hydroxytyrosol (HT) on metal levels. The Barnes maze behavior test was used, and the STZ group showed less certainty and greater distance when exploring the Barnes maze than the control group. The results also indicated that the control group and the STZ + HT group exhibited enhanced learning curves during the Barnes maze training as compared to the STZ group. The ICP-MS analysis showed that the STZ group had lower levels of cobalt in their blood plasma than the control group, while the calcium levels in the frontal cortex of the STZ + HT group were higher than in the control group. The most important finding was that copper levels in the frontal cortex from STZ-treated animals were higher than in the control group, and that the STZ + HT group returned to equivalent levels to the control group. The antioxidant HT can restore copper levels to their basal physiological state. This finding may help explain HT's potential beneficial effect in AD-patients.
Collapse
Affiliation(s)
- Miguel Tabanez
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Ilma R. Santos
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Juliane M. Ikebara
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Mariana L. M. Camargo
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| | - Bianca A. Dos Santos
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Bruna M. Freire
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
| | - Bruno L. Batista
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
| | - Silvia H. Takada
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Rosanna Squitti
- Department of Laboratory Science, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
| | - Alexandre H. Kihara
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, SP, Brazil; (J.M.I.); (B.A.D.S.); (S.H.T.); (A.H.K.)
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil; (M.T.); (I.R.S.); (M.L.M.C.); (B.M.F.); (B.L.B.)
- Metal Biochemistry and Oxidative Stress Laboratory, Center for Natural Sciences and Humanities, Federal University of ABC, Santo André 09210-580, SP, Brazil
| |
Collapse
|
17
|
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci 2023; 13:911. [PMID: 37371389 DOI: 10.3390/brainsci13060911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Recent data on the distribution and influence of copper, zinc and cadmium in glial cells are summarized. This review also examines the relationship between those metals and their role in neurodegenerative diseases like Alzheimer disease, multiple sclerosis, Parkinson disease and Amyotrophic lateral sclerosis, which have become a great challenge for today's physicians. The studies suggest that among glial cells, iron has the highest concentration in oligodendrocytes, copper in astrocytes and zinc in the glia of hippocampus and cortex. Previous studies have shown neurotoxic effects of copper, iron and manganese, while zinc can have a bidirectional effect, i.e., neurotoxic but also neuroprotective effects depending on the dose and disease state. Recent data point to the association of metals with neurodegeneration through their role in the modulation of protein aggregation. Metals can accumulate in the brain with aging and may be associated with age-related diseases.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | | | - Renata Markiewicz
- Department of Psychiatric Nursing, Medical University of Lublin, 18 Szkolna St., 20-124 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Student Scientific Group at the Department of Family Medicine, 6a (SPSK1) Langiewicza St., 20-032 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
| |
Collapse
|
18
|
Song M, Fan X. Systemic Metabolism and Mitochondria in the Mechanism of Alzheimer's Disease: Finding Potential Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098398. [PMID: 37176104 PMCID: PMC10179273 DOI: 10.3390/ijms24098398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Elderly people over the age of 65 are those most likely to experience Alzheimer's disease (AD), and aging and AD are associated with apparent metabolic alterations. Currently, there is no curative medication against AD and only several drugs have been approved by the FDA, but these drugs can only improve the symptoms of AD. Many preclinical and clinical trials have explored the impact of adjusting the whole-body and intracellular metabolism on the pathogenesis of AD. The most recent evidence suggests that mitochondria initiate an integrated stress response to environmental stress, which is beneficial for healthy aging and neuroprotection. There is also an increasing awareness of the differential risk and potential targeting strategies related to the metabolic level and microbiome. As the main participants in intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been regarded as potential therapeutic targets for AD. This review summarizes and highlights these advances.
Collapse
Affiliation(s)
- Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
19
|
Lee H, Liu Z, Dong L, Lee DY, Yoon D, Oh H, Kim YC, An RB, Lee DS. Anti-Neuroinflammatory and Neuroprotective Effect of Intermedin B Isolated from the Curcuma longa L. via NF-κB and ROS Inhibition in BV2 Microglia and HT22 Hippocampal Cells. Int J Mol Sci 2023; 24:ijms24087390. [PMID: 37108568 PMCID: PMC10138482 DOI: 10.3390/ijms24087390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Compounds derived from Curcuma longa L. (C. longa) have been extensively studied and reported to be effective and safe for the prevention and treatment of various diseases, but most research has been focused on curcuminoids derived from C. longa. As neurodegenerative diseases are associated with oxidation and inflammation, the present study aimed to isolate and identify active compounds other than curcuminoids from C. longa to develop substances to treat these diseases. Seventeen known compounds, including curcuminoids, were chromatographically isolated from the methanol extracts of C. longa, and their chemical structures were identified using 1D and 2D NMR spectroscopy. Among the isolated compounds, intermedin B exhibited the best antioxidant effect in the hippocampus and anti-inflammatory effect in microglia. Furthermore, intermedin B was confirmed to inhibit the nuclear translocation of NF-κB p-65 and IκBα, exerting anti-inflammatory effects and inhibiting the generation of reactive oxygen species, exerting neuroprotective effects. These results highlight the research value of active components other than curcuminoids in C. longa-derived compounds and suggest that intermedin B may be a promising candidate for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hwan Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Zhiming Liu
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Linsha Dong
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong 27709, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Ren-Bo An
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
20
|
Hosseinpour Mashkani SM, Bishop DP, Raoufi-Rad N, Adlard PA, Shimoni O, Golzan SM. Distribution of Copper, Iron, and Zinc in the Retina, Hippocampus, and Cortex of the Transgenic APP/PS1 Mouse Model of Alzheimer's Disease. Cells 2023; 12:cells12081144. [PMID: 37190053 DOI: 10.3390/cells12081144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
A mis-metabolism of transition metals (i.e., copper, iron, and zinc) in the brain has been recognised as a precursor event for aggregation of Amyloid-β plaques, a pathological hallmark of Alzheimer's disease (AD). However, imaging cerebral transition metals in vivo can be extremely challenging. As the retina is a known accessible extension of the central nervous system, we examined whether changes in the hippocampus and cortex metal load are also mirrored in the retina. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualise and quantify the anatomical distribution and load of Cu, Fe, and Zn in the hippocampus, cortex, and retina of 9-month-old Amyloid Precursor Protein/Presenilin 1 (APP/PS1, n = 10) and Wild Type (WT, n = 10) mice. Our results show a similar metal load trend between the retina and the brain, with the WT mice displaying significantly higher concentrations of Cu, Fe, and Zn in the hippocampus (p < 0.05, p < 0.0001, p < 0.01), cortex (p < 0.05, p = 0.18, p < 0.0001) and the retina (p < 0.001, p = 0.01, p < 0.01) compared with the APP/PS1 mice. Our findings demonstrate that dysfunction of the cerebral transition metals in AD is also extended to the retina. This could lay the groundwork for future studies on the assessment of transition metal load in the retina in the context of early AD.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseinpour Mashkani
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory (HyMaS), School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Newsha Raoufi-Rad
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Olga Shimoni
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| | - S Mojtaba Golzan
- Vision Science Group, Graduate School of Health (GSH), University of Technology Sydney, 15 Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
21
|
The Relationships Among Metal Homeostasis, Mitochondria, and Locus Coeruleus in Psychiatric and Neurodegenerative Disorders: Potential Pathogenetic Mechanism and Therapeutic Implications. Cell Mol Neurobiol 2023; 43:963-989. [PMID: 35635600 DOI: 10.1007/s10571-022-01234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
While alterations in the locus coeruleus-noradrenergic system are present during early stages of neuropsychiatric disorders, it is unclear what causes these changes and how they contribute to other pathologies in these conditions. Data suggest that the onset of major depressive disorder and schizophrenia is associated with metal dyshomeostasis that causes glial cell mitochondrial dysfunction and hyperactivation in the locus coeruleus. The effect of the overactive locus coeruleus on the hippocampus, amygdala, thalamus, and prefrontal cortex can be responsible for some of the psychiatric symptoms. Although locus coeruleus overactivation may diminish over time, neuroinflammation-induced alterations are presumably ongoing due to continued metal dyshomeostasis and mitochondrial dysfunction. In early Alzheimer's and Parkinson's diseases, metal dyshomeostasis and mitochondrial dysfunction likely induce locus coeruleus hyperactivation, pathological tau or α-synuclein formation, and neurodegeneration, while reduction of glymphatic and cerebrospinal fluid flow might be responsible for β-amyloid aggregation in the olfactory regions before the onset of dementia. It is possible that the overactive noradrenergic system stimulates the apoptosis signaling pathway and pathogenic protein formation, leading to further pathological changes which can occur in the presence or absence of locus coeruleus hypoactivation. Data are presented in this review indicating that although locus coeruleus hyperactivation is involved in pathological changes at prodromal and early stages of these neuropsychiatric disorders, metal dyshomeostasis and mitochondrial dysfunction are critical factors in maintaining ongoing neuropathology throughout the course of these conditions. The proposed mechanistic model includes multiple pharmacological sites that may be targeted for the treatment of neuropsychiatric disorders commonly.
Collapse
|
22
|
Ambi A, Stanisavljevic A, Victor TW, Lowery AW, Davis J, Van Nostrand WE, Miller LM. Evaluation of Copper Chelation Therapy in a Transgenic Rat Model of Cerebral Amyloid Angiopathy. ACS Chem Neurosci 2023; 14:378-388. [PMID: 36651175 DOI: 10.1021/acschemneuro.2c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of the amyloid β (Aβ) protein in blood vessels and leads to hemorrhages, strokes, and dementia in elderly individuals. Recent reports have shown elevated copper levels colocalized with vascular amyloid in human CAA and Alzheimer's disease patients, which have been suggested to contribute to cytotoxicity through the formation of reactive oxygen species. Here, we treated a transgenic rat model of CAA (rTg-DI) with the copper-specific chelator, tetrathiomolybdate (TTM), via intraperitoneal (IP) administration for 6 months to determine if it could lower copper content in vascular amyloid deposits and modify CAA pathology. Results showed that TTM treatment led to elevated Aβ load in the hippocampus of the rTg-DI rats and increased microbleeds in the wild type (WT) animals. X-ray fluorescence microscopy was performed to image the distribution of copper and revealed a surprising increase in copper colocalized with Aβ aggregates in TTM-treated rTg-DI rats. Unexpectedly, we also found an increase in the copper content in unaffected vessels of both rTg-DI and WT animals. These results show that IP administration of TTM was ineffective in removing copper from vascular Aβ aggregates in vivo and increased the development of disease pathology in CAA.
Collapse
Affiliation(s)
- Ashwin Ambi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.,National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Aleksandra Stanisavljevic
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Tiffany W Victor
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adam W Lowery
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Judianne Davis
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - William E Van Nostrand
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lisa M Miller
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.,National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
23
|
More SJ, Bampidis V, Benford D, Bragard C, Halldorsson TI, Hernández‐Jerez AF, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter JR, Schrenk D, Turck D, Younes M, Boon P, Ferns GAA, Lindtner O, Smolders E, Wilks M, Bastaki M, de Sesmaisons‐Lecarré A, Ferreira L, Greco L, Kass GEN, Riolo F, Leblanc J. Re-evaluation of the existing health-based guidance values for copper and exposure assessment from all sources. EFSA J 2023; 21:e07728. [PMID: 36694841 PMCID: PMC9843535 DOI: 10.2903/j.efsa.2023.7728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Copper is an essential micronutrient and also a regulated product used in organic and in conventional farming pest management. Both deficiency and excessive exposure to copper can have adverse health effects. In this Scientific Opinion, the EFSA 2021 harmonised approach for establishing health-based guidance values (HBGVs) for substances that are regulated products and also nutrients was used to resolve the divergent existing HBGVs for copper. The tightly regulated homeostasis prevents toxicity manifestation in the short term, but the development of chronic copper toxicity is dependent on copper homeostasis and its tissue retention. Evidence from Wilson disease suggests that hepatic retention is indicative of potential future and possibly sudden onset of copper toxicity under conditions of continuous intake. Hence, emphasis was placed on copper retention as an early marker of potential adverse effects. The relationships between (a) chronic copper exposure and its retention in the body, particularly the liver, and (b) hepatic copper concentrations and evidence of toxicity were examined. The Scientific Committee (SC) concludes that no retention of copper is expected to occur with intake of 5 mg/day and established an Acceptable Daily Intake (ADI) of 0.07 mg/kg bw. A refined dietary exposure assessment was performed, assessing contribution from dietary and non-dietary sources. Background copper levels are a significant source of copper. The contribution of copper from its use as plant protection product (PPP), food and feed additives or fertilisers is negligible. The use of copper in fertilisers or PPPs contributes to copper accumulation in soil. Infant formula and follow-on formula are important contributors to dietary exposure of copper in infants and toddlers. Contribution from non-oral sources is negligible. Dietary exposure to total copper does not exceed the HBGV in adolescents, adults, elderly and the very elderly. Neither hepatic copper retention nor adverse effects are expected to occur from the estimated copper exposure in children due to higher nutrient requirements related to growth.
Collapse
|
24
|
Elevated hippocampal copper in cases of type 2 diabetes. EBioMedicine 2022; 86:104317. [DOI: 10.1016/j.ebiom.2022.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
|
25
|
Mangalmurti A, Lukens JR. How neurons die in Alzheimer's disease: Implications for neuroinflammation. Curr Opin Neurobiol 2022; 75:102575. [PMID: 35691251 PMCID: PMC9380082 DOI: 10.1016/j.conb.2022.102575] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Despite the long-standing observation of vast neuronal loss in Alzheimer's disease (AD) our understanding of how and when neurons are eliminated is incomplete. While previous investigation has focused on apoptosis, several novel forms of cell death (i.e. necroptosis, parthanatos, ferroptosis, cuproptosis) have emerged that require further investigation. This review aims to collect evidence for different modes of neuronal cell death in AD and to also discuss how these different forms of cell death may impact the neuroinflammatory environment that prevails in the AD brain. Improved understanding of how neurons die may help to delineate disease pathogenesis, provide insights toward treatment, and aid in the development of improved animal models of AD.
Collapse
Affiliation(s)
- Aman Mangalmurti
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA; Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA; Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
26
|
Zubillaga M, Rosa D, Astiz M, Tricerri MA, Arnal N. Effect of Sublethal Copper Overload on Cholesterol De Novo Synthesis in Undifferentiated Neuronal Cells. ACS OMEGA 2022; 7:25022-25030. [PMID: 35910134 PMCID: PMC9330139 DOI: 10.1021/acsomega.2c00703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although copper (Cu) is an essential trace metal for cells, it can induce harmful effects as it participates in the Fenton reaction. Involuntary exposure to Cu overload is much more common than expected and has been linked with neurodegeneration, particularly with Alzheimer's disease (AD) evidenced by a positive correlation between free Cu in plasma and the severity of the disease. It has been suggested that Cu imbalance alters cholesterol (Chol) homeostasis and that high membrane Chol promotes the amyloidogenic processing of the amyloid precursor protein (APP) secreting the β-amyloid (Aβ) peptide. Despite the wide knowledge on the effects of Cu in mature brain metabolism, the consequence of its overload on immature neurons remains unknown. Therefore, we used an undifferentiated human neuroblastoma cell line (SH-SY5Y) to analyze the effect of sublethal concentrations of Cu on 1- de novo Chol synthesis and membrane distribution; 2-APP levels in cells and its distribution in membrane rafts; 3-the levels of Aβ in the culture medium. Our results demonstrated that Cu increases reactive oxygen species (ROS) and favors Chol de novo synthesis in both ROS-dependent and independent manners. Also, at least part of these effects was due to the activation of 3-hydroxy-3-methyl glutaryl CoA reductase (HMGCR). In addition, Cu increases the Chol/PL ratio in the cellular membranes, specifically Chol content in membrane rafts. We found no changes in total APP cell levels; however, its presence in membrane rafts increases with the consequent increase of Aβ in the culture medium. We conclude that Cu overload favors Chol de novo synthesis in both ROS-dependent and independent manners, being at least in part, responsible for the high Chol levels found in the cell membrane and membrane rafts. These may promote the redistribution of APP into the rafts, favoring the amyloidogenic processing of this protein and increasing the levels of Aβ.
Collapse
Affiliation(s)
- Marlene Zubillaga
- Laboratorio
de Neurociencia, Instituto de Investigaciones Bioquímicas de
La Plata (INIBIOLP), CONICET (Consejo Nacional
de Investigaciones Científicas y Técnicas)—UNLP
(Universidad Nacional de La Plata), Calle 60 y 120, CP 1900 La Plata, Argentina
| | - Diana Rosa
- Laboratorio
de Nutrición Mineral, Fac. Cs Veterinarias, UNLP (Universidad Nacional de La Plata). Calle 60 CP 1900 La Plata, Argentina
| | - Mariana Astiz
- Institute
of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Strasse, 23562 Lübeck, Germany
| | - M. Alejandra Tricerri
- Laboratorio
de Neurociencia, Instituto de Investigaciones Bioquímicas de
La Plata (INIBIOLP), CONICET (Consejo Nacional
de Investigaciones Científicas y Técnicas)—UNLP
(Universidad Nacional de La Plata), Calle 60 y 120, CP 1900 La Plata, Argentina
| | - Nathalie Arnal
- Laboratorio
de Neurociencia, Instituto de Investigaciones Bioquímicas de
La Plata (INIBIOLP), CONICET (Consejo Nacional
de Investigaciones Científicas y Técnicas)—UNLP
(Universidad Nacional de La Plata), Calle 60 y 120, CP 1900 La Plata, Argentina
| |
Collapse
|
27
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
28
|
Coelho FC, Cerchiaro G, Araújo SES, Daher JPL, Cardoso SA, Coelho GF, Guimarães AG. Is There a Connection between the Metabolism of Copper, Sulfur, and Molybdenum in Alzheimer’s Disease? New Insights on Disease Etiology. Int J Mol Sci 2022; 23:ijms23147935. [PMID: 35887282 PMCID: PMC9324259 DOI: 10.3390/ijms23147935] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) and other forms of dementia was ranked 3rd in both the Americas and Europe in 2019 in a World Health Organization (WHO) publication listing the leading causes of death and disability worldwide. Copper (Cu) imbalance has been reported in AD and increasing evidence suggests metal imbalance, including molybdenum (Mo), as a potential link with AD occurrence.We conducted an extensive literature review of the last 60 years of research on AD and its relationship with Cu, sulfur (S), and Mo at out of range levels.Weanalyzed the interactions among metallic elements’ metabolisms;Cu and Mo are biological antagonists, Mo is a sulfite oxidase and xanthine oxidase co-factor, and their low activities impair S metabolism and reduce uric acid, respectively. We found significant evidence in the literature of a new potential mechanism linking Cu imbalance to Mo and S abnormalities in AD etiology: under certain circumstances, the accumulation of Cu not bound to ceruloplasmin might affect the transport of Mo outside the blood vessels, causing a mild Mo deficiency that might lowerthe activity of Mo and S enzymes essential for neuronal activity. The current review provides an updated discussion of the plausible mechanisms combining Cu, S, and Mo alterations in AD.
Collapse
Affiliation(s)
- Fábio Cunha Coelho
- Laboratório de Fitotecnia (LFIT), Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, Brazil
- Correspondence: ; Tel.: +55-22-998509469
| | - Giselle Cerchiaro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, Bl. B, Santo André 09210-170, Brazil;
| | - Sheila Espírito Santo Araújo
- Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, Brazil; (S.E.S.A.); (A.G.G.)
| | - João Paulo Lima Daher
- Departamento de Patologia, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói 24210-350, Brazil;
| | - Silvia Almeida Cardoso
- Departamento de Medicina e Enfermagem (DEM), Universidade Federal de Viçosa, Viçosa 36579-900, Brazil;
| | - Gustavo Fialho Coelho
- Instituto de Ciências Médicas, Universidade Federal do Rio de Janeiro, Macaé 27930-560, Brazil;
| | - Arthur Giraldi Guimarães
- Laboratório de Biologia Celular e Tecidual (LBCT), Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF, Campos dos Goytacazes 28013-602, Brazil; (S.E.S.A.); (A.G.G.)
| |
Collapse
|
29
|
Ho T, Ahmadi S, Kerman K. Do glutathione and copper interact to modify Alzheimer's disease pathogenesis? Free Radic Biol Med 2022; 181:180-196. [PMID: 35092854 DOI: 10.1016/j.freeradbiomed.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first described in 1906 that is currently estimated to impact ∼40 million people worldwide. Extensive research activities have led to a wealth of information on the pathogenesis, hallmarks, and risk factors of AD; however, therapeutic options remain extremely limited. The large number of pathogenic factors that have been reported to potentially contribute to AD include copper dyshomeostasis as well as increased oxidative stress, which is related to alterations to molecular antioxidants like glutathione (GSH). While the individual roles of GSH and copper in AD have been studied by many research groups, their interactions have received relatively little attention, although they appear to interact and affect each other's regulation. Existing knowledge on how GSH-copper interactions may affect AD is sparse and lacks focus. This review first highlights the most relevant individual roles that GSH and copper play in physiology and AD, and then collects and assesses research concerning their interactions, in an effort to provide a more accessible and understandable picture of the role of GSH, copper, and their interactions in AD.
Collapse
Affiliation(s)
- Talia Ho
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Soha Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
30
|
Probable Reasons for Neuron Copper Deficiency in the Brain of Patients with Alzheimer’s Disease: The Complex Role of Amyloid. INORGANICS 2022. [DOI: 10.3390/inorganics10010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease is a progressive neurodegenerative disorder that eventually leads the affected patients to die. The appearance of senile plaques in the brains of Alzheimer’s patients is known as a main symptom of this disease. The plaques consist of different components, and according to numerous reports, their main components include beta-amyloid peptide and transition metals such as copper. In this disease, metal dyshomeostasis leads the number of copper ions to simultaneously increase in the plaques and decrease in neurons. Copper ions are essential for proper brain functioning, and one of the possible mechanisms of neuronal death in Alzheimer’s disease is the copper depletion of neurons. However, the reason for the copper depletion is as yet unknown. Based on the available evidence, we suggest two possible reasons: the first is copper released from neurons (along with beta-amyloid peptides), which is deposited outside the neurons, and the second is the uptake of copper ions by activated microglia.
Collapse
|
31
|
Caetano-Silva ME, Rund LA, Vailati-Riboni M, Pacheco MTB, Johnson RW. Copper-Binding Peptides Attenuate Microglia Inflammation through Suppression of NF-kB Pathway. Mol Nutr Food Res 2021; 65:e2100153. [PMID: 34532985 PMCID: PMC8612997 DOI: 10.1002/mnfr.202100153] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/12/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Activation of microglia, the resident immune cells of the central nervous system, has been related to the etiology and progression of neurodegenerative diseases; thus, finding novel approaches to suppress the neuroinflammatory process is of utmost relevance. METHODS AND RESULTS The anti-inflammatory activity of whey Cu-, Fe-, and Zn-binding peptides and their possible underlying mechanism of action were evaluated in microglia. Whey metal-binding peptides decreased nitric oxide production and tumor necrosis factor α (TNF-α) at mRNA and protein levels by stimulated BV-2 microglia in comparison to the control with no peptide treatment. The hydrophobicity, specific sequences, and possible synergistic effects seem to play a role. Cu-binding peptides (Cu-bp) presented anti-inflammatory activity both in BV-2 and primary microglia cultures. These peptides exert their action by suppressing nuclear factor kappa B (NF-kB) pathway since nuclear translocation of NF-kB p65 is decreased by roughly 30% upon Cu-bp treatment. Specific sequences identified in Cu-bp showed high affinity to bind NF-kB p65 by molecular docking (up to -8.8 kcal mol-1 ), corroborating the immunofluorescence studies. CONCLUSION Cu-bp represent food-derived peptides that may be useful for neuroprotective purposes. Chelation of copper excess in the CNS and the bioavailability of such peptides, as well as their behavior in in vivo models, deserve further research for future applications.
Collapse
Affiliation(s)
- Maria Elisa Caetano-Silva
- Center of Food Science and Quality (CCQA), Institute of Food Technology (Ital), Campinas, SP 13070-178, Brazil
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
32
|
Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis. Biomolecules 2021; 11:1598. [PMID: 34827595 PMCID: PMC8615684 DOI: 10.3390/biom11111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Evidence of copper's (Cu) involvement in Alzheimer's disease (AD) is available, but information on Cu involvement in microglia and astrocytes during the course of AD has yet to be structurally discussed. This review deals with this matter in an attempt to provide an updated discussion on the role of reactive glia challenged by excess labile Cu in a wide picture that embraces all the major processes identified as playing a role in toxicity induced by an imbalance of Cu in AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, AIIMS, Kalyani 741245, West Bengal, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala 133207, Haryana, India;
| | - Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India;
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| |
Collapse
|
33
|
Squitti R, Ventriglia M, Granzotto A, Sensi SL, Rongioletti MCA. Non-Ceruloplasmin Copper as a Stratification Biomarker of Alzheimer's Disease Patients: How to Measure and Use It. Curr Alzheimer Res 2021; 18:533-545. [PMID: 34674622 DOI: 10.2174/1567205018666211022085755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a type of dementia very common in the elderly. A growing body of recent evidence has linked AD pathogenesis to copper (Cu) dysmetabolism in the body. In fact, a subset of patients affected either by AD or by its prodromal form known as Mild Cognitive Impairment (MCI) have been observed to be unable to maintain a proper balance of Cu metabolism and distribution and are characterized by the presence in their serum of increased levels of Cu not bound to ceruloplasmin (non-ceruloplasmin Cu). Since serum non-ceruloplasmin Cu is a biomark- er of Wilson's disease (WD), a well-known condition of Cu-driven toxicosis, in this review, we pro- pose that in close analogy with WD, the assessment of non-ceruloplasmin Cu levels can be exploit- ed as a cost-effective stratification and susceptibility/risk biomarker for the identification of some AD/MCI individuals. The approach can also be used as an eligibility criterion for clinical trials aim- ing at investigating Cu-related interventions against AD/MCI.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia. Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebene-fratelli Hospital, Isola Tiberina, Rome. Italy
| | - Alberto Granzotto
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti. Italy
| | - Stefano L Sensi
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti. Italy
| | - Mauro Ciro Antonio Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome. Italy
| |
Collapse
|
34
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer's disease. Rev Neurosci 2021; 31:233-243. [PMID: 31747384 DOI: 10.1515/revneuro-2019-0052] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/24/2019] [Indexed: 12/24/2022]
Abstract
The disruption of homeostasis of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of many neurodegenerative diseases, such as amyotrophic lateral sclerosis, Wilson's, Creutzfeldt-Jakob, Parkinson's, and Alzheimer's diseases (AD), and traumatic brain injury (TBI). The last two pathological conditions of the brain are the most common; moreover, it is possible that TBI is a risk factor for the development of AD. Disruptions of Zn2+ and Cu2+ homeostasis play an important role in the mechanisms of pathogenesis of both TBI and AD. This review attempts to summarize and systematize the currently available research data on this issue. The neurocytotoxicity of Cu2+ and Zn2+, the synergism of the toxic effect of calcium and Zn2+ ions on the mitochondria of neurons, and the interaction of Zn2+ and Cu2+ with β-amyloid (Abeta) and tau protein are considered.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, N.A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow 119991, Russia.,Research Center of Neurology, Moscow 125367, Russia
| | | | | |
Collapse
|
35
|
Squitti R, Faller P, Hureau C, Granzotto A, White AR, Kepp KP. Copper Imbalance in Alzheimer's Disease and Its Link with the Amyloid Hypothesis: Towards a Combined Clinical, Chemical, and Genetic Etiology. J Alzheimers Dis 2021; 83:23-41. [PMID: 34219710 DOI: 10.3233/jad-201556] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cause of Alzheimer's disease (AD) is incompletely defined. To date, no mono-causal treatment has so far reached its primary clinical endpoints, probably due to the complexity and diverse neuropathology contributing to the neurodegenerative process. In the present paper, we describe the plausible etiological role of copper (Cu) imbalance in the disease. Cu imbalance is strongly associated with neurodegeneration in dementia, but a complete biochemical etiology consistent with the clinical, chemical, and genetic data is required to support a causative association, rather than just correlation with disease. We hypothesize that a Cu imbalance in the aging human brain evolves as a gradual shift from bound metal ion pools, associated with both loss of energy production and antioxidant function, to pools of loosely bound metal ions, involved in gain-of-function oxidative stress, a shift that may be aggravated by chemical aging. We explain how this may cause mitochondrial deficits, energy depletion of high-energy demanding neurons, and aggravated protein misfolding/oligomerization to produce different clinical consequences shaped by the severity of risk factors, additional comorbidities, and combinations with other types of pathology. Cu imbalance should be viewed and integrated with concomitant genetic risk factors, aging, metabolic abnormalities, energetic deficits, neuroinflammation, and the relation to tau, prion proteins, α-synuclein, TAR DNA binding protein-43 (TDP-43) as well as systemic comorbidity. Specifically, the Amyloid Hypothesis is strongly intertwined with Cu imbalance because amyloid-β protein precursor (AβPP)/Aβ are probable Cu/Zn binding proteins with a potential role as natural Cu/Zn buffering proteins (loss of function), and via the plausible pathogenic role of Cu-Aβ.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Alberto Granzotto
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Anthony R White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
36
|
Squitti R, Ventriglia M, Simonelli I, Bonvicini C, Costa A, Perini G, Binetti G, Benussi L, Ghidoni R, Koch G, Borroni B, Albanese A, Sensi SL, Rongioletti M. Copper Imbalance in Alzheimer's Disease: Meta-Analysis of Serum, Plasma, and Brain Specimens, and Replication Study Evaluating ATP7B Gene Variants. Biomolecules 2021; 11:960. [PMID: 34209820 PMCID: PMC8301962 DOI: 10.3390/biom11070960] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Evidence indicates that patients with Alzheimer's dementia (AD) show signs of copper (Cu) dyshomeostasis. This study aimed at evaluating the potential of Cu dysregulation as an AD susceptibility factor. We performed a meta-analysis of 56 studies investigating Cu biomarkers in brain specimens (pooled total of 182 AD and 166 healthy controls, HC) and in serum/plasma (pooled total of 2929 AD and 3547 HC). We also completed a replication study of serum Cu biomarkers in 97 AD patients and 70 HC screened for rs732774 and rs1061472 ATP7B, the gene encoding for the Cu transporter ATPase7B. Our meta-analysis showed decreased Cu in AD brain specimens, increased Cu and nonbound ceruloplasmin (Non-Cp) Cu in serum/plasma samples, and unchanged ceruloplasmin. Serum/plasma Cu excess was associated with a three to fourfold increase in the risk of having AD. Our replication study confirmed meta-analysis results and showed that carriers of the ATP7B AG haplotype were significantly more frequent in the AD group. Overall, our study shows that AD patients fail to maintain a Cu metabolic balance and reveals the presence of a percentage of AD patients carrying ATP7B AG haplotype and presenting Non-Cp Cu excess, which suggest that a subset of AD subjects is prone to Cu imbalance. This AD subtype can be the target of precision medicine-based strategies tackling Cu dysregulation.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy; (M.V.); (I.S.)
| | - Ilaria Simonelli
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy; (M.V.); (I.S.)
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Alfredo Costa
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.C.); (G.P.)
- Department of Brain and Behavior, University of Pavia, 27100 Pavia, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.C.); (G.P.)
- Department of Brain and Behavior, University of Pavia, 27100 Pavia, Italy
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.B.); (L.B.); (R.G.)
| | - Giacomo Koch
- Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy;
- Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Alberto Albanese
- Department of Neurology, IRCCS, Istituto Clinico Humanitas, Rozzano, 20089 Milan, Italy;
| | - Stefano L. Sensi
- Department of Neuroscience, Imaging and Clinical Science, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Mind Impairments and Neurological Disorders—iMIND, University of California—Irvine, Irvine, CA 92697, USA
- Molecular Neurology Units, Center for Advanced Studies and Technology (CAST), University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| |
Collapse
|
37
|
Mao XY, Yin XX, Guan QW, Xia QX, Yang N, Zhou HH, Liu ZQ, Jin WL. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021; 226:107861. [PMID: 33901506 DOI: 10.1016/j.pharmthera.2021.107861] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Adequate food intake and relative abundance of dietary nutrients have undisputed effects on the brain function. There is now substantial evidence that dietary nutrition aids in the prevention and remediation of neurologic symptoms in diverse pathological conditions. The newly described influences of dietary factors on the alterations of mitochondrial dysfunction, epigenetic modification and neuroinflammation are important mechanisms that are responsible for the action of nutrients on the brain health. In this review, we discuss the state of evidence supporting that distinct dietary interventions including dietary supplement and dietary restriction have the ability to tackle neurological disorders using Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis as examples. Additionally, it is also highlighting that diverse potential mechanisms such as metabolic control, epigenetic modification, neuroinflammation and gut-brain axis are of utmost importance for nutrient supply to the risk of neurologic condition and therapeutic response. Finally, we also highlight the novel concept that dietary nutrient intervention reshapes metabolism-epigenetics-immunity cycle to remediate brain dysfunction. Targeting metabolism-epigenetics-immunity network will delineate a new blueprint for combating neurological weaknesses.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Qin-Xuan Xia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
38
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2020; 296:100105. [PMID: 33219130 PMCID: PMC7948403 DOI: 10.1074/jbc.rev120.008207] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Treatments for Alzheimer’s disease (AD) directed against the prominent amyloid plaque neuropathology are yet to be proved effective despite many phase 3 clinical trials. There are several other neurochemical abnormalities that occur in the AD brain that warrant renewed emphasis as potential therapeutic targets for this disease. Among those are the elementomic signatures of iron, copper, zinc, and selenium. Here, we review these essential elements of AD for their broad potential to contribute to Alzheimer’s pathophysiology, and we also highlight more recent attempts to translate these findings into therapeutics. A reinspection of large bodies of discovery in the AD field, such as this, may inspire new thinking about pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
40
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
41
|
Zubčić K, Hof PR, Šimić G, Jazvinšćak Jembrek M. The Role of Copper in Tau-Related Pathology in Alzheimer's Disease. Front Mol Neurosci 2020; 13:572308. [PMID: 33071757 PMCID: PMC7533614 DOI: 10.3389/fnmol.2020.572308] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
All tauopathies, including Alzheimer's disease (AD), are characterized by the intracellular accumulation of abnormal forms of tau protein in neurons and glial cells, which negatively affect microtubule stability. Under physiological conditions, tubulin-associated unit (Tau) protein is intrinsically disordered, almost without secondary structure, and is not prone to aggregation. In AD, it assembles, and forms paired helical filaments (PHFs) that further build-up neurofibrillary tangles (NFTs). Aggregates are composed of hyperphosphorylated tau protein that is more prone to aggregation. The pathology of AD is also linked to disturbed copper homeostasis, which promotes oxidative stress (OS). Copper imbalance is widely observed in AD patients. Deregulated copper ions may initiate and exacerbate tau hyperphosphorylation and formation of β-sheet-rich tau fibrils that ultimately contribute to synaptic failure, neuronal death, and cognitive decline observed in AD patients. The present review summarizes factors affecting the process of tau aggregation, conformational changes of small peptide sequences in the microtubule-binding domain required for these motifs to act as seeding sites in aggregation, and the role of copper in OS induction, tau hyperphosphorylation and tau assembly. A better understanding of the various factors that affect tau aggregation under OS conditions may reveal new targets and novel pharmacological approaches for the therapy of AD.
Collapse
Affiliation(s)
- Klara Zubčić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goran Šimić
- Laboratory for Developmental Neuropathology, Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.,Department of Psychology, Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
42
|
Zinc Therapy in Early Alzheimer's Disease: Safety and Potential Therapeutic Efficacy. Biomolecules 2020; 10:biom10081164. [PMID: 32784855 PMCID: PMC7466035 DOI: 10.3390/biom10081164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Zinc therapy is normally utilized for treatment of Wilson disease (WD), an inherited condition that is characterized by increased levels of non-ceruloplasmin bound ('free') copper in serum and urine. A subset of patients with Alzheimer's disease (AD) or its prodromal form, known as Mild Cognitive Impairment (MCI), fail to maintain a normal copper metabolic balance and exhibit higher than normal values of non-ceruloplasmin copper. Zinc's action mechanism involves the induction of intestinal cell metallothionein, which blocks copper absorption from the intestinal tract, thus restoring physiological levels of non-ceruloplasmin copper in the body. On this basis, it is employed in WD. Zinc therapy has shown potential beneficial effects in preliminary AD clinical trials, even though the studies have missed their primary endpoints, since they have study design and other important weaknesses. Nevertheless, in the studied AD patients, zinc effectively decreased non-ceruloplasmin copper levels and showed potential for improved cognitive performances with no major side effects. This review discusses zinc therapy safety and the potential therapeutic effects that might be expected on a subset of individuals showing both cognitive complaints and signs of copper imbalance.
Collapse
|
43
|
Odai T, Terauchi M, Suzuki R, Kato K, Hirose A, Miyasaka N. Severity of subjective forgetfulness is associated with high dietary intake of copper in Japanese senior women: A cross-sectional study. Food Sci Nutr 2020; 8:4422-4431. [PMID: 32884722 PMCID: PMC7455963 DOI: 10.1002/fsn3.1740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 06/06/2020] [Indexed: 01/31/2023] Open
Abstract
This study investigated the relationship between subjective forgetfulness and the dietary intake of various nutrients in middle-aged and senior women. A cross-sectional study of the first-visit records of 245 Japanese women aged 40 or over was performed. The severity of subjective forgetfulness was classified according to the Menopausal Health-Related Quality of Life Questionnaire: none and mild ("unforgetful") or moderate and severe ("forgetful"). Dietary consumption of nutrients was estimated using the brief-type self-administered diet history questionnaire. The associations between the severity of subjective forgetfulness and intake of 43 major nutrients were evaluated using multivariate logistic regression analysis separately performed for two age groups: middle-aged (40-54 years, N = 166) and senior (55 years or over, N = 79). No nutrients were found to be significantly associated with subjective forgetfulness in the middle-aged group. In senior women, a significant positive relationship between the intake of copper and forgetfulness was found (adjusted odds ratio per 10 mg/kJ increase in copper intake: 1.25; 95% confidence interval: 1.08-1.50). Thus, high copper intake is positively associated with the severity of forgetfulness in Japanese senior women. Reducing copper consumption could help improve this symptom in this population.
Collapse
Affiliation(s)
- Tamami Odai
- Department of Obstetrics and GynecologyTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Masakazu Terauchi
- Department of Women’s HealthTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Risa Suzuki
- Department of Obstetrics and GynecologyTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Kiyoko Kato
- Department of Women’s HealthTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Asuka Hirose
- Department of Obstetrics and GynecologyTokyo Medical and Dental UniversityBunkyoTokyoJapan
- Department of Women’s HealthTokyo Medical and Dental UniversityBunkyoTokyoJapan
| | - Naoyuki Miyasaka
- Department of Obstetrics and GynecologyTokyo Medical and Dental UniversityBunkyoTokyoJapan
| |
Collapse
|
44
|
Tan X, Guan H, Yang Y, Luo S, Hou L, Chen H, Li J. Cu(II) disrupts autophagy-mediated lysosomal degradation of oligomeric Aβ in microglia via mTOR-TFEB pathway. Toxicol Appl Pharmacol 2020; 401:115090. [DOI: 10.1016/j.taap.2020.115090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 01/02/2023]
|
45
|
Coelho FC, Squitti R, Ventriglia M, Cerchiaro G, Daher JP, Rocha JG, Rongioletti MCA, Moonen AC. Agricultural Use of Copper and Its Link to Alzheimer's Disease. Biomolecules 2020; 10:E897. [PMID: 32545484 PMCID: PMC7356523 DOI: 10.3390/biom10060897] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Copper is an essential nutrient for plants, animals, and humans because it is an indispensable component of several essential proteins and either lack or excess are harmful to human health. Recent studies revealed that the breakdown of the regulation of copper homeostasis could be associated with Alzheimer's disease (AD), the most common form of dementia. Copper accumulation occurs in human aging and is thought to increase the risk of AD for individuals with a susceptibility to copper exposure. This review reports that one of the leading causes of copper accumulation in the environment and the human food chain is its use in agriculture as a plant protection product against numerous diseases, especially in organic production. In the past two decades, some countries and the EU have invested in research to reduce the reliance on copper. However, no single alternative able to replace copper has been identified. We suggest that agroecological approaches are urgently needed to design crop protection strategies based on the complementary actions of the wide variety of crop protection tools for disease control.
Collapse
Affiliation(s)
- Fábio C. Coelho
- Phytotechnics Laboratory, Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF; Campos dos Goytacazes, RJ 28013-602, Brazil;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefrate lli, 25125 Brescia, Italy
| | - Mariacarla Ventriglia
- Fatebenefratelli Foundation for Health Research and Education, AFaR Division, 00186 Rome, Italy;
| | - Giselle Cerchiaro
- Center for Natural Science and Humanities, Federal University of ABC—UFABC, Santo André, SP 09210-580, Brazil;
| | - João P. Daher
- Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ 24210-350, Brazil;
| | - Jaídson G. Rocha
- Phytotechnics Laboratory, Universidade Estadual do Norte Fluminense Darcy Ribeiro—UENF; Campos dos Goytacazes, RJ 28013-602, Brazil;
| | - Mauro C. A. Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Anna-Camilla Moonen
- Land Lab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| |
Collapse
|
46
|
McCann CJ, Jayakanthan S, Siotto M, Yang N, Osipova M, Squitti R, Lutsenko S. Single nucleotide polymorphisms in the human ATP7B gene modify the properties of the ATP7B protein. Metallomics 2020; 11:1128-1139. [PMID: 31070637 DOI: 10.1039/c9mt00057g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Single nucleotide polymorphisms (SNPs) are the largest source of sequence variation in the human genome. However, their functional significance is not well understood. We show that SNPs in the Wilson disease gene, ATP7B, that produce amino-acid substitutions K832R and R952K, modulate ATP7B properties in vitro and influence serum copper (Cu) status in vivo. The presence of R832 is associated with a lower ATP7B abundance and a diminished trafficking in response to elevated Cu. The K832R substitution alters surface exposure of amino acid residues in the actuator domain and increases its conformational flexibility. All SNP-related ATP7B variants (R832/R952, R832/K952, K832/K952, and K832/R952) have Cu-transport activity. However, the activity of ATP7B-K832/K952 is lower compared to other variants. In humans, the presence of K952 is associated with a higher fraction of exchangeable Cu in serum. Thus, SNPs may modulate the properties of ATP7B and the organism Cu status.
Collapse
Affiliation(s)
- Courtney J McCann
- Department of Physiology, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Atrián-Blasco E, Cerrada E, Faller P, Laguna M, Hureau C. Role of PTA in the prevention of Cu(amyloid-β) induced ROS formation and amyloid-β oligomerisation in the presence of Zn. Metallomics 2020; 11:1154-1161. [PMID: 31098605 DOI: 10.1039/c9mt00011a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-targeting drugs are being widely explored as a possible treatment for Alzheimer's disease, but most of these ligands are developed to coordinate Cu(ii). In a previous communication (E. Atrián-Blasco, E. Cerrada, A. Conte-Daban, D. Testemale, P. Faller, M. Laguna and C. Hureau, Metallomics, 2015, 7, 1229-1232) we showed another strategy where Cu(i) was targeted with the PTA (1,3,5-triaza-7-phosphaadamantane) ligand that is able to target Cu(ii) as well, reduce it and keep it in a safe complexed species. Removal of Cu(ii) from the amyloid-β peptide prevents the stabilization of oligomers and protofibrils and the complexation of Cu(i) also stops the formation of reactive oxygen species. Besides, zinc, which is found in the synaptic cleft at a higher concentration than copper, can hamper the ability of metal-targeting drug candidates, an issue that is still poorly considered and studied. Here we show that PTA fully retains the above described properties even in the presence of zinc, thus fulfilling an additional pre-requisite for its use as a model of Cu(i)-targeting drug candidates in the Alzheimer's disease context.
Collapse
|
48
|
Rao SS, Lago L, Gonzalez de Vega R, Bray L, Hare DJ, Clases D, Doble PA, Adlard PA. Characterising the spatial and temporal brain metal profile in a mouse model of tauopathy. Metallomics 2020; 12:301-313. [PMID: 31904058 DOI: 10.1039/c9mt00267g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A dysregulation in the homeostasis of metals such as copper, iron and zinc is speculated to be involved in the pathogenesis of tauopathies, which includes Alzheimer's disease (AD). In particular, there is a growing body of evidence to support a role for iron in facilitating the hyperphosphorylation and aggregation of the tau protein into neurofibrillary tangles (NFTs) - a primary neuropathological hallmark of tauopathies. Therefore, the aim of this study was to characterize the spatial and temporal brain metallomic profile in a mouse model of tauopathy (rTg(tauP301L)4510), so as to provide some insight into the potential interaction between tau pathology and iron. Using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), our results revealed an age-dependent increase in brain iron levels in both WT and rTg(tauP301L)4510 mice. In addition, size exclusion chromatography-ICP-MS (SEC-ICP-MS) revealed significant age-related changes in iron bound to metalloproteins such as ferritin. The outcomes from this study may provide valuable insight into the inter-relationship between iron and tau in ageing and neurodegeneration.
Collapse
Affiliation(s)
- Shalini S Rao
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - Larissa Lago
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | | | - Lisa Bray
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia
| | - Philip A Doble
- The Atomic Medicine Initiative, University of Technology Sydney, Sydney, NSW, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, The Melbourne Dementia Research Centre, Parkville, Victoria, Australia.
| |
Collapse
|
49
|
Costa M, Josselin R, Silva DF, Cardoso SM, May NV, Chaves S, Santos MA. Donepezil-based hybrids as multifunctional anti-Alzheimer's disease chelating agents: Effect of positional isomerization. J Inorg Biochem 2020; 206:111039. [PMID: 32171933 DOI: 10.1016/j.jinorgbio.2020.111039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
The intricate and multifactorial nature of Alzheimer's disease (AD) requires the development of compounds able to hit different pathophysiological targets, such as cholinergic dysfunction, deposits of amyloid beta (Aβ) peptide and metal dyshomeostasis. In order to continue the search for new anti-AD drugs, a design strategy was once more followed based on repositioning donepezil (DNP) drug, by ortho-attaching a benzylpiperidine mimetic of DNP moiety to a hydroxyphenyl-benzimidazole (BIM) chelating unit (compound 1). Herein, compound 1 and a positional isomer 2 are compared in terms of their potential multiple properties: both present good acetylcholinesterase (AChE) inhibition (low μmolar range) and are moderate/good inhibitors of Aβ self- and Cu-mediated aggregation, the inhibition process being mainly due to ligand intercalation between the β-sheets of the fibrils; compound 1 has a higher chelating capacity towards Cu2+ and Zn2+ (pCu = 14.3, pZn = 6.4, pH 7.4, CL/CM = 10, CM = 10-6 M) than 2 (pCu = 10.7, pZn = 6.3), attributed to its ability to establish a tridentate (N,O,O) coordination to the metal ion. Both compounds are eligible as drug candidates for oral administration but compound 1 shows improved neuroprotective role by completely preventing Aβ-induced cell toxicity.
Collapse
Affiliation(s)
- Marina Costa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Romane Josselin
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Diana F Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Institute of Molecular and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nóra V May
- Research Centre for Natural Sciences, 1117 Magyar tudósok körútja 2, Budapest, Hungary
| | - Sílvia Chaves
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - M Amélia Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| |
Collapse
|
50
|
Baldari S, Di Rocco G, Toietta G. Current Biomedical Use of Copper Chelation Therapy. Int J Mol Sci 2020; 21:E1069. [PMID: 32041110 PMCID: PMC7037088 DOI: 10.3390/ijms21031069] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Copper is an essential microelement that plays an important role in a wide variety of biological processes. Copper concentration has to be finely regulated, as any imbalance in its homeostasis can induce abnormalities. In particular, excess copper plays an important role in the etiopathogenesis of the genetic disease Wilson's syndrome, in neurological and neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases, in idiopathic pulmonary fibrosis, in diabetes, and in several forms of cancer. Copper chelating agents are among the most promising tools to keep copper concentration at physiological levels. In this review, we focus on the most relevant compounds experimentally and clinically evaluated for their ability to counteract copper homeostasis deregulation. In particular, we provide a general overview of the main disorders characterized by a pathological increase in copper levels, summarizing the principal copper chelating therapies adopted in clinical trials.
Collapse
Affiliation(s)
- Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
- Department of Medical Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
| |
Collapse
|