1
|
Shimizu H, Tanaka H, Tazaki A, Yamada K, Suzumura A, Ota J, Ushio-Watanabe N, Zheng H, Kataoka K, Hara H, Nishikawa Y, Yasukawa T, Suzuma K, Terasaki H, Nishiguchi KM, Kato M, Toyokuni S, Kaneko H. Silicone oil, an intraocular surgical adjuvant, induces retinal ferroptosis. Free Radic Biol Med 2025; 228:33-43. [PMID: 39706501 DOI: 10.1016/j.freeradbiomed.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Vitrectomy with silicone oil (SO) endotamponade is an effective treatment for vision-threatening retinal diseases. However, unexplained vision impairment has been reportedly critical side effects. Previously, we reported that the eyes with ocular toxoplasmosis showed retinal ferroptosis with the clinical sign of reduced intravitreal iron (Fe). We also found that total iron levels in sub-silicone oil fluid (SOF) in eyes with SO endotamponade were significantly reduced. We hypothesized that the cause of complications related to SO endotamponade is retinal ferroptosis and that low total iron in SOF is a secondary change that occurs similarly to the changes in ocular toxoplasmosis. In this study, we measured total iron levels in ocular fluid from patients, rabbits with SO endotamponade. Retinal iron taken up from the SOF was evaluated using laser ablation inductively coupled plasma mass spectrometry in human and rabbit eyes. Retinal ferroptosis was confirmed by immunohistochemistry of 4-hydrox-2-nonenal-modified proteins, FeRhoNox-1 staining, western blotting and RT-PCR. We found low total iron levels in the SOF, increased oxidative stress and Fe uptake from the SOF into the retinae of human and rabbit eyes, as well as decreased GPx4 expression, increased FeRhoNox-1 signals and altered Fe-related gene expression in SO-filled rabbit eyes. Of note, the target of ferroptosis was Müller cells. We generated an in vitro silicone oil-filled eye model using MIO-M1 cells (a human Müller cell line). The in vitro SO-filled eye model showed decreased GPx4 expression and increased intracellular catalytic Fe(II), an increase in ferroptosis, prevention of cell death by ferrostatin-1, a ferroptosis inhibitor, and altered Fe-related gene expression. These results indicate that the cause of complications related to SO endotamponade was the induction of retinal (Müller cell) ferroptosis, which can be prevented by ferrostatin-1.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Hiroshi Tanaka
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, 602-0841, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kazuhisa Yamada
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Junya Ota
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Nanako Ushio-Watanabe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Keiko Kataoka
- Department of Ophthalmology, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Tsutomu Yasukawa
- Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, 467-8601, Japan
| | - Kiyoshi Suzuma
- Department of Ophthalmology, Kagawa University Faculty of Medicine, 761-0793, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan; Institutes of Innovation for Future Society, Nagoya University, Nagoya, 466-8550, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan; Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3125, Japan.
| |
Collapse
|
2
|
Li J, Wang K, Starodubtseva MN, Nadyrov E, Kapron CM, Hoh J, Liu J. Complement factor H in molecular regulation of angiogenesis. MEDICAL REVIEW (2021) 2024; 4:452-466. [PMID: 39444793 PMCID: PMC11495524 DOI: 10.1515/mr-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 10/25/2024]
Abstract
Angiogenesis, the process of formation of new capillaries from existing blood vessels, is required for multiple physiological and pathological processes. Complement factor H (CFH) is a plasma protein that inhibits the alternative pathway of the complement system. Loss of CFH enhances the alternative pathway and increases complement activation fragments with pro-angiogenic capacity, including complement 3a, complement 5a, and membrane attack complex. CFH protein contains binding sites for C-reactive protein, malondialdehyde, and endothelial heparan sulfates. Dysfunction of CFH prevents its interaction with these molecules and initiates pro-angiogenic events. Mutations in the CFH gene have been found in patients with age-related macular degeneration characterized by choroidal neovascularization. The Cfh-deficient mice show an increase in angiogenesis, which is decreased by administration of recombinant CFH protein. In this review, we summarize the molecular mechanisms of the anti-angiogenic effects of CFH and the regulatory mechanisms of CFH expression. The therapeutic potential of recombinant CFH protein in angiogenesis-related diseases has also been discussed.
Collapse
Affiliation(s)
- Jiang Li
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Kaili Wang
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | | | - Josephine Hoh
- Department of Ophthalmology, Yale School of Medicine, New Haven, CT, USA
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Gomel State Medical University, Gomel, Belarus
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Jiménez-Loygorri JI, Jiménez-García C, Viedma-Poyatos Á, Boya P. Fast and quantitative mitophagy assessment by flow cytometry using the mito-QC reporter. Front Cell Dev Biol 2024; 12:1460061. [PMID: 39324068 PMCID: PMC11422238 DOI: 10.3389/fcell.2024.1460061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondrial quality control is finely tuned by mitophagy, the selective degradation of mitochondria through autophagy, and mitochondrial biogenesis. Removal of damaged mitochondria is essential to preserve cellular bioenergetics and prevent detrimental events such as sustained mitoROS production, pro-apoptotic cytochrome c release or mtDNA leakage. The array of tools available to study mitophagy is very limited but in constant development. Almost a decade ago, we developed a method to assess mitophagy flux using MitoTracker Deep Red in combination with lysosomal inhibitors. Now, using the novel tandem-fluorescence reporter mito-QC (mCherry-GFP-FIS1101-152) that allows to differentiate between healthy mitochondria (mCherry+GFP+) and mitolysosomes (mCherry+GFP-), we have developed a robust and quantitative method to assess mitophagy by flow cytometry. This approach has been validated in ARPE-19 cells using PINK1/Parkin-dependent (CCCP) and PINK1/Parkin-independent (DFP) positive controls and complementary techniques. Furthermore, we show that the mito-QC reporter can be multiplexed, especially if using spectral flow cytometry, to simultaneously study other cellular parameters such as viability or ROS production. Using this technique, we evaluated and characterized two prospective mitophagy inducers and further dissected their mechanism of action. Finally, using mito-QC reporter mice, we developed a protocol to measure mitophagy levels in the retina ex vivo. This novel methodology will propel mitophagy research forward and accelerate the discovery of novel mitophagy modulators.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Carlos Jiménez-García
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Álvaro Viedma-Poyatos
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Jiménez-Loygorri JI, Viedma-Poyatos Á, Gómez-Sintes R, Boya P. Urolithin A promotes p62-dependent lysophagy to prevent acute retinal neurodegeneration. Mol Neurodegener 2024; 19:49. [PMID: 38890703 PMCID: PMC11186080 DOI: 10.1186/s13024-024-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Álvaro Viedma-Poyatos
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Raquel Gómez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
5
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
6
|
Niu T, Shi X, Liu X, Wang H, Liu K, Xu Y. Porous Se@SiO 2 nanospheres alleviate diabetic retinopathy by inhibiting excess lipid peroxidation and inflammation. Mol Med 2024; 30:24. [PMID: 38321393 PMCID: PMC10848509 DOI: 10.1186/s10020-024-00785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Lipid peroxidation is a characteristic metabolic manifestation of diabetic retinopathy (DR) that causes inflammation, eventually leading to severe retinal vascular abnormalities. Selenium (Se) can directly or indirectly scavenge intracellular free radicals. Due to the narrow distinction between Se's effective and toxic doses, porous Se@SiO2 nanospheres have been developed to control the release of Se. They exert strong antioxidant and anti-inflammatory effects. METHODS The effect of anti-lipid peroxidation and anti-inflammatory effects of porous Se@SiO2 nanospheres on diabetic mice were assessed by detecting the level of Malondialdehyde (MDA), glutathione peroxidase 4 (GPX4), decreased reduced/oxidized glutathione (GSH/GSSG) ratio, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL) -1β of the retina. To further examine the protective effect of porous Se@SiO2 nanospheres on the retinal vasculopathy of diabetic mice, retinal acellular capillary, the expression of tight junction proteins, and blood-retinal barrier destruction was observed. Finally, we validated the GPX4 as the target of porous Se@SiO2 nanospheres via decreased expression of GPX4 and detected the level of MDA, GSH/GSSG, TNF-α, IFN-γ, IL -1β, wound healing assay, and tube formation in high glucose (HG) cultured Human retinal microvascular endothelial cells (HRMECs). RESULTS The porous Se@SiO2 nanospheres reduced the level of MDA, TNF-α, IFN-γ, and IL -1β, while increasing the level of GPX4 and GSH/GSSG in diabetic mice. Therefore, porous Se@SiO2 nanospheres reduced the number of retinal acellular capillaries, depletion of tight junction proteins, and vascular leakage in diabetic mice. Further, we identified GPX4 as the target of porous Se@SiO2 nanospheres as GPX4 inhibition reduced the repression effect of anti-lipid peroxidation, anti-inflammatory, and protective effects of endothelial cell dysfunction of porous Se@SiO2 nanospheres in HG-cultured HRMECs. CONCLUSION Porous Se@SiO2 nanospheres effectively attenuated retinal vasculopathy in diabetic mice via inhibiting excess lipid peroxidation and inflammation by target GPX4, suggesting their potential as therapeutic agents for DR.
Collapse
Affiliation(s)
- Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Yupeng Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
7
|
Tolentino MJ, Tolentino AJ, Tolentino EM, Krishnan A, Genead MA. Sialic Acid Mimetic Microglial Sialic Acid-Binding Immunoglobulin-like Lectin Agonism: Potential to Restore Retinal Homeostasis and Regain Visual Function in Age-Related Macular Degeneration. Pharmaceuticals (Basel) 2023; 16:1735. [PMID: 38139861 PMCID: PMC10747662 DOI: 10.3390/ph16121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Age-related macular degeneration (AMD), a leading cause of visual loss and dysfunction worldwide, is a disease initiated by genetic polymorphisms that impair the negative regulation of complement. Proteomic investigation points to altered glycosylation and loss of Siglec-mediated glyco-immune checkpoint parainflammatory and inflammatory homeostasis as the main determinant for the vision impairing complications of macular degeneration. The effect of altered glycosylation on microglial maintained retinal para-inflammatory homeostasis and eventual recruitment and polarization of peripheral blood monocyte-derived macrophages (PBMDMs) into the retina can explain the phenotypic variability seen in this clinically heterogenous disease. Restoring glyco-immune checkpoint control with a sialic acid mimetic agonist targeting microglial/macrophage Siglecs to regain retinal para-inflammatory and inflammatory homeostasis is a promising therapeutic that could halt the progression of and improve visual function in all stages of macular degeneration.
Collapse
Affiliation(s)
- Michael J. Tolentino
- Department of Ophthalmology, University of Central Florida College of Medicine, Orlando, FL 32827, USA
- Department of Ophthalmology, Orlando College of Osteopathic Medicine, Orlando, FL 34787, USA
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | - Andrew J. Tolentino
- Department of Biology, University of California Berkeley, Berkeley, CA 94720, USA;
| | | | - Anitha Krishnan
- Aviceda Therapeutics, Cambridge, MA 02142, USA; (A.K.); (M.A.G.)
| | | |
Collapse
|
8
|
Yamada K, Tazaki A, Ushio-Watanabe N, Usui Y, Takeda A, Matsunaga M, Suzumura A, Shimizu H, Zheng H, Ariefta NR, Yamamoto M, Hara H, Goto H, Sonoda KH, Nishiguchi KM, Kato M, Nishikawa Y, Toyokuni S, Kaneko H. Retinal ferroptosis as a critical mechanism for the induction of retinochoroiditis during ocular toxoplasmosis. Redox Biol 2023; 67:102890. [PMID: 37738924 PMCID: PMC10519826 DOI: 10.1016/j.redox.2023.102890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Toxoplasmosis is a major infectious disease, affecting approximately one-third of the world's population; its main clinical manifestation, ocular toxoplasmosis (OT), is a severe sight-threatening disease. Nevertheless, the diagnosis of OT is based on clinical findings, which needs improvement, even with biochemical tests, such as polymerase chain reaction and antibody detections. Furthermore, the efficacy of OT-targeted treatment is limited; thus, additional measures for diagnosis and treatments are needed. Here, we for the first time report a significantly reduced iron concentration in the vitreous humor (VH) of human patients infected with OT. To obtain further insights into molecular mechanisms, we established a mouse model of T. gondii infection, in which intravitreally injected tracer 57Fe, was accumulated in the neurosensory retina. T. gondii-infected eyes showed increased lipid peroxidation, reduction of glutathione peroxidase-4 expression and mitochondrial deformity in the photoreceptor as cristae loss. These findings strongly suggest the involvement of ferroptotic process in the photoreceptor of OT. In addition, deferiprone, an FDA-approved iron chelator, reduced the iron uptake but also ameliorated toxoplasma-induced retinochoroiditis by reducing retinal inflammation. In conclusion, the iron levels in the VH could serve as diagnostic markers and iron chelators as potential treatments for OT.
Collapse
Affiliation(s)
- Kazuhisa Yamada
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Nanako Ushio-Watanabe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan.
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, Tokyo, 160-8402, Japan.
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Masaaki Matsunaga
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan.
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Nanang R Ariefta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan.
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, 160-8402, Japan.
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan.
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
9
|
Jiménez-Loygorri JI, Benítez-Fernández R, Viedma-Poyatos Á, Zapata-Muñoz J, Villarejo-Zori B, Gómez-Sintes R, Boya P. Mitophagy in the retina: Viewing mitochondrial homeostasis through a new lens. Prog Retin Eye Res 2023; 96:101205. [PMID: 37454969 DOI: 10.1016/j.preteyeres.2023.101205] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial function is key to support metabolism and homeostasis in the retina, an organ that has one of the highest metabolic rates body-wide and is constantly exposed to photooxidative damage and external stressors. Mitophagy is the selective autophagic degradation of mitochondria within lysosomes, and can be triggered by distinct stimuli such as mitochondrial damage or hypoxia. Here, we review the importance of mitophagy in retinal physiology and pathology. In the developing retina, mitophagy is essential for metabolic reprogramming and differentiation of retina ganglion cells (RGCs). In basal conditions, mitophagy acts as a quality control mechanism, maintaining a healthy mitochondrial pool to meet cellular demands. We summarize the different autophagy- and mitophagy-deficient mouse models described in the literature, and discuss the potential role of mitophagy dysregulation in retinal diseases such as glaucoma, diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration. Finally, we provide an overview of methods used to monitor mitophagy in vitro, ex vivo, and in vivo. This review highlights the important role of mitophagy in sustaining visual function, and its potential as a putative therapeutic target for retinal and other diseases.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Rocío Benítez-Fernández
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Álvaro Viedma-Poyatos
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
10
|
Tong Y, Wu Y, Ma J, Ikeda M, Ide T, Griffin CT, Ding XQ, Wang S. Comparative mechanistic study of RPE cell death induced by different oxidative stresses. Redox Biol 2023; 65:102840. [PMID: 37566944 PMCID: PMC10440584 DOI: 10.1016/j.redox.2023.102840] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Oxidative stress is hypothesized to drive the progression of age-related macular degeneration (AMD). Retinal pigment epithelial (RPE) cell layer is important for supporting the function of retina and is particularly susceptible to oxidative stress-induced cell death. How RPE cells die in AMD, especially in geographic atrophy (GA), a late stage of dry AMD, is still controversial. The goal of this study is to compare the features and mechanisms of RPE cell death induced by different oxidative stresses, to identify potential universal therapeutic targets for GA. RPE cell death was induced both in vitro and ex vivo by 4-Hydroxynonenal (4-HNE), a major product of lipid peroxidation, sodium iodate (NaIO3) that has been widely used to model RPE cell death in dry AMD, a ferroptosis inducer RAS-selective lethal 3 (RSL3) or a necroptosis inducer shikonin. We found that RPE necroptosis and ferroptosis show common and distinct features. Common features include receptor-interacting protein kinase (RIPK)1/RIPK3 activation and lipid reactive oxygen species (ROS) accumulation, although lipid ROS accumulation is much milder during necroptosis. This supports cross talk between RPE ferroptosis and necroptosis pathways and is consistent with the rescue of RPE necroptosis and ferroptosis by RIPK1 inhibitor Necrostatin-1 (Nec-1) or in Ripk3-/- RPE explants. Distinct feature includes activated mixed lineage kinase domain like pseudokinase (MLKL) that is translocated to the cell membrane during necroptosis, which is not happening in ferroptosis. This is consistent with the failure to rescue RPE ferroptosis by MLKL inhibitor necrosulfonamide (NSA) or in Mlkl-/- RPE explants. Using this framework, we found that 4-HNE and NaIO3 induced RPE cell death likely through necroptosis based on the molecular features and the rescuing effect by multiple inhibitors. Our studies suggest that multiple markers and inhibitors are required to distinguish RPE necroptosis and ferroptosis, and that necroptosis inhibitor Nec-1 could be a potential therapeutic compound for GA since it inhibits RIPK1/RIPK3 activation and lipid ROS accumulation occurred in both necroptosis and ferroptosis pathways.
Collapse
Affiliation(s)
- Yao Tong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yinga Wu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Jing Ma
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Courtney T Griffin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Xi-Qin Ding
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA; Department of Ophthalmology, Tulane University, New Orleans, LA, 70118, USA; Tulane Personalized Health Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
12
|
Ahluwalia K, Martinez-Camarillo JC, Thomas BB, Naik A, Gonzalez-Calle A, Pollalis D, Lebkowski J, Lee SY, Mitra D, Louie SG, Humayun MS. Polarized RPE Secretome Preserves Photoreceptors in Retinal Dystrophic RCS Rats. Cells 2023; 12:1689. [PMID: 37443724 PMCID: PMC10340490 DOI: 10.3390/cells12131689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Retinal degenerative diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa, lack effective therapies. Conventional monotherapeutic approaches fail to target the multiple affected pathways in retinal degeneration. However, the retinal pigment epithelium (RPE) secretes several neurotrophic factors addressing diverse cellular pathways, potentially preserving photoreceptors. This study explored human embryonic stem cell-derived, polarized RPE soluble factors (PRPE-SF) as a combination treatment for retinal degeneration. PRPE-SF promoted retinal progenitor cell survival, reduced oxidative stress in ARPE-19 cells, and demonstrated critical antioxidant and anti-inflammatory effects for preventing retinal degeneration in the Royal College of Surgeons (RCS) rat model. Importantly, PRPE-SF treatment preserved retinal structure and scotopic b-wave amplitudes, suggesting therapeutic potential for delaying retinal degeneration. PRPE-SF is uniquely produced using biomimetic membranes for RPE polarization and maturation, promoting a protective RPE secretome phenotype. Additionally, PRPE-SF is produced without animal serum to avoid immunogenicity in future clinical development. Lastly, PRPE-SF is a combination of neurotrophic factors, potentially ameliorating multiple dysfunctions in retinal degenerations. In conclusion, PRPE-SF offers a promising therapeutic candidate for retinal degenerative diseases, advancing the development of effective therapeutic strategies for these debilitating conditions.
Collapse
Affiliation(s)
- Kabir Ahluwalia
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Juan-Carlos Martinez-Camarillo
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aditya Naik
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
| | - Alejandra Gonzalez-Calle
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dimitrios Pollalis
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane Lebkowski
- Regenerative Patch Technologies LLC, Menlo Park, CA 94028, USA;
| | - Sun Young Lee
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Physiology & Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Debbie Mitra
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Stan G. Louie
- Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (K.A.); (A.N.)
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
| | - Mark S. Humayun
- USC Ginsburg Institute of for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA; (J.-C.M.-C.); (B.B.T.); (A.G.-C.); (D.P.); (S.Y.L.); (D.M.)
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Shimizu H, Takayama K, Yamada K, Suzumura A, Sato T, Nishio Y, Ito M, Ushida H, Nishiguchi KM, Takeuchi M, Kaneko H. Dimethyl Fumarate Protects Retinal Pigment Epithelium from Blue Light-Induced Oxidative Damage via the Nrf2 Pathway. Antioxidants (Basel) 2022; 12:antiox12010045. [PMID: 36670906 PMCID: PMC9854498 DOI: 10.3390/antiox12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study is to investigate the protective effect of dimethyl fumarate (DMF), the methyl-ester of fumaric acid, against blue-light (BL) exposure in retinal pigment epithelial (RPE) cells. ARPE-19 cells, a human RPE cell line, were cultured with DMF followed by exposure to BL. Reactive oxygen species (ROS) generation, cell viability, and cell death rate were determined. Real-time polymerase chain reaction and Western blotting were performed to determine the change in nuclear factor (erythroid-derived)-like 2 (NRF2) expression. Twenty-seven inflammatory cytokines in the supernatant of culture medium were measured. BL exposure induced ROS generation in ARPE-19 cells, which DMF alleviated in a concentration-dependent manner. BL exposure increased the ARPE-19 cell death rate, which DMF alleviated. BL exposure induced ARPE-19 cell apoptosis, again alleviated by DMF. Under BL exposure, DMF increased the NRF2 mRNA level and promoted NRF2 expression in the nucleus. BL also strongly increased interleukin (IL)-1β and fibroblast growth factor (FGF) expression. BL strongly induced RPE cell damage with apoptotic change while DMF mainly reduced inflammation in BL-induced RPE damage, resulting in blockade of cell death. DMF has a protective effect in RPE cells against BL exposure via activation of the NRF2 pathway.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kei Takayama
- Department of Ophthalmology, National Defense Medical College, Tokorozawa 258-8513, Japan
| | - Kazuhisa Yamada
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Tokorozawa 258-8513, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Tokorozawa 258-8513, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa 258-8513, Japan
| | - Hiroaki Ushida
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa 258-8513, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-52-744-2275
| |
Collapse
|
14
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Feldman T, Ostrovskiy D, Yakovleva M, Dontsov A, Borzenok S, Ostrovsky M. Lipofuscin-Mediated Photic Stress Induces a Dark Toxic Effect on ARPE-19 Cells. Int J Mol Sci 2022; 23:12234. [PMID: 36293088 PMCID: PMC9602730 DOI: 10.3390/ijms232012234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2023] Open
Abstract
Lipofuscin granules from retinal pigment epithelium (RPE) cells contain bisretinoid fluorophores, which are photosensitizers and are phototoxic to cells. In the presence of oxygen, bisretinoids are oxidized to form various products, containing aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that bisretinoid oxidation and degradation products have both hydrophilic and amphiphilic properties, allowing their diffusion through the lipofuscin granule membrane into the RPE cell cytoplasm, and are thiobarbituric acid (TBA)-active. The purpose of the present study was to determine if these products exhibit a toxic effect to the RPE cell also in the absence of light. The experiments were performed using the lipofuscin-fed ARPE-19 cell culture. The RPE cell viability analysis was performed with the use of flow cytofluorimetry and laser scanning confocal microscopy. The results obtained indicated that the cell viability of the lipofuscin-fed ARPE-19 sample was clearly reduced not immediately after visible light irradiation for 18 h, but after 4 days maintaining in the dark. Consequently, we could conclude that bisretinoid oxidation products have a damaging effect on the RPE cell in the dark and can be considered as an aggravating factor in age-related macular degeneration progression.
Collapse
Affiliation(s)
- Tatiana Feldman
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Dmitriy Ostrovskiy
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Sergey Borzenok
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Mikhail Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
16
|
Feldman TB, Dontsov AE, Yakovleva MA, Ostrovsky MA. Photobiology of lipofuscin granules in the retinal pigment epithelium cells of the eye: norm, pathology, age. Biophys Rev 2022; 14:1051-1065. [PMID: 36124271 PMCID: PMC9481861 DOI: 10.1007/s12551-022-00989-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Lipofuscin granules (LGs) are accumulated in the retinal pigment epithelium (RPE) cells. The progressive LG accumulation can somehow lead to pathology and accelerate the aging process. The review examines composition, spectral properties and photoactivity of LGs isolated from the human cadaver eyes. By use of atomic force microscopy and near-field microscopy, we have revealed the fluorescent heterogeneity of LGs. We have discovered the generation of reactive oxygen species by LGs, and found that LGs and melanolipofuscin granules are capable of photoinduced oxidation of lipids. It was shown that A2E, as the main fluorophore (bisretinoid) of LGs, is much less active as an oxidation photosensitizer than other fluorophores (bisretinoids) of LGs. Photooxidized products of bisretinoids pose a much greater danger to the cell than non-oxidized one. Our studies of the fluorescent properties of LGs and their fluorophores (bisretinoids) showed for the first time that their spectral characteristics change (shift to the short-wavelength region) in pathology and after exposure to ionizing radiation. By recording the fluorescence spectra and fluorescence decay kinetics of oxidized products of LG fluorophores, it is possible to improve the methods of early diagnosis of degenerative diseases. Lipofuscin ("aging pigment") is not an inert "slag". The photoactivity of LGs can pose a significant danger to the RPE cells. Fluorescence characteristics of LGs are a tool to detect early stages of degeneration in the retina and RPE.
Collapse
Affiliation(s)
- T. B. Feldman
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - A. E. Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Yako T, Otsu W, Nakamura S, Shimazawa M, Hara H. Lipid Droplet Accumulation Promotes RPE Dysfunction. Int J Mol Sci 2022; 23:ijms23031790. [PMID: 35163712 PMCID: PMC8836556 DOI: 10.3390/ijms23031790] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
Non-exudative age-related macular degeneration (AMD) is an irreversibly progressive retinal degenerative disease characterized by dysfunction and loss of retinal pigment epithelium (RPE). It has been suggested that impaired phagocytosis of the RPE is involved in the progression of non-exudative AMD, but the mechanism is not fully clear. In this study, we investigated the effect of lipid droplet accumulation on RPE function. Compared to young mice, the expression of lipid droplet-associated proteins increased in the RPE-choroidal complex, and lipid droplet in the RPE was observed in aged pigmented mice (12-month-old). Repeated treatment of the photoreceptor outer segment against ARPE-19 resulted in lipid droplets in ARPE-19 cells in vitro. Oleic acid treatment for ARPE-19 cells to form intracellular lipid droplet reduced the POS uptake into the ARPE-19 cells without causing a decrease in cell viability. The suppression of the POS uptake by lipid droplet formation improved by inhibiting lipid droplet formation using triacsin C. Moreover, the amount of intracellular reactive oxygen species was suppressed by the triacsin C treatment. These results indicate that lipid droplet is involved in the RPE dysfunction, and inhibiting lipid droplet formation may be a target for preventing and treating non-exudative AMD.
Collapse
Affiliation(s)
- Tomohiro Yako
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan;
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan;
- Laboratory of Collaborative Research for Innovative Drug Discovery, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
- Correspondence:
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (T.Y.); (S.N.); (H.H.)
- Laboratory of Collaborative Research for Innovative Drug Discovery, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
18
|
Chen Y, Zhu X, Ye F, Wang H, Wan X, Zhang T, Wang Y, Wang Y, Zhao X, Bai X, Xiao Y, Sun X. Malondialdehyde-Modified Photoreceptor Outer Segments Promote Choroidal Neovascularization in Mice. Transl Vis Sci Technol 2022; 11:12. [PMID: 35015060 PMCID: PMC8762676 DOI: 10.1167/tvst.11.1.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aimed to establish a novel choroidal neovascularization (CNV) mouse model through subretinally injecting malondialdehyde (MDA)-modified photoreceptor outer segments (POS), which was more consistent with the pathogenesis of wet age-related macular degeneration (AMD). Methods MDA-modified POS were subretinally injected in C57BL/6J mice. Four weeks later, to assess the volume of CNV and the morphology of retinal pigment epithelium (RPE), isolectin B4 and zonula occludens-1 antibody were used for immunostaining. Fundus fluorescent angiography and optical coherence tomography imaging were used to describe the morphologic features of CNV. Transepithelial resistance was measured on polarized ARPE-19 cells. Vascular endothelial growth factor levels in the cell culture medium were detected by enzyme-linked immunosorbent assay. The protein and messenger RNA expression levels of autophagy markers were measured using Western blot and quantitative polymerase chain reaction. Results CNV and RPE atrophy were successfully induced in the mouse model. MDA-modified POS also significantly increased the expression of vascular endothelial growth factor and disrupted cell junctions in RPE cells. In addition, MDA-modified POS induced autophagy–lysosomal impairment in RPE cells. Conclusions Subretinal injection of MDA-modified POS may generate a feasible CNV model that simulates the AMD pathological process. Translational Relevance This study expands the understanding of the role of MDA in AMD pathogenesis, which provides a potential therapeutic target of AMD.
Collapse
Affiliation(s)
- Yuhong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xinyue Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Fuxiang Ye
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Hong Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Ting Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Yuwei Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Yimin Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xiaohuan Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xinyue Bai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Yushu Xiao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
19
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
20
|
Chiang YW, Su CH, Sun HY, Chen SP, Chen CJ, Chen WY, Chang CC, Chen CM, Kuan YH. Bisphenol A induced apoptosis via oxidative stress generation involved Nrf2/HO-1 pathway and mitochondrial dependent pathways in human retinal pigment epithelium (ARPE-19) cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:131-141. [PMID: 34664771 DOI: 10.1002/tox.23384] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 05/21/2023]
Abstract
Bisphenol A (BPA) is an estrogen-like compound, and an environmental hormone, that is commonly used in daily life. Therefore, it may enter the human body through food or direct contact, causing BPA residues in blood and urine. Because most studies focused on the analysis of BPA in reproductive cells or tissues, regarding evidence the effect of BPA on human retinal pigment epithelium (ARPE-19) cells unavailable. Accordingly, the present study explored the cytotoxicity of BPA on ARPE-19 cells. After BPA treatment, the expression of Bcl-XL an antiapoptotic protein, in the mitochondria decreased, and the expression of Bax, a proapoptotic protein increased. Then the mitochondrial membrane potential was affected. BPA changed in mitochondrial membrane potential led to the release of cytochrome C, which activated caspase-9 to promote downstream caspase-3 leading to cytotoxicity. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1) pathway play a major role in age-related macular degeneration. Our results showed that expression of HO-1 and Nrf2 suppressed by BPA. Superoxide dismutase and catalase, which Nrf2 downstream antioxidants, were degraded by BPA. AMP-activated kinase (AMPK), which can regulate the phosphorylation of Nrf2, and the phosphorylation of AMPK expression was reduced by BPA. Finally, BPA-induced ROS generation and cytotoxicity were reduced by N-acetyl-l-cysteine. Taken together, these results suggest that BPA induced ARPE-19 cells via oxidative stress, which was associated with down regulated Nrf2/HO-1 pathway, and the mitochondria dependent apoptotic signaling pathway.
Collapse
Affiliation(s)
- Yun-Wei Chiang
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
- Department of Optometry, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Han-Yin Sun
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Pin Chen
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
21
|
Villarejo-Zori B, Jiménez-Loygorri JI, Zapata-Muñoz J, Bell K, Boya P. New insights into the role of autophagy in retinal and eye diseases. Mol Aspects Med 2021; 82:101038. [PMID: 34620506 DOI: 10.1016/j.mam.2021.101038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is a fundamental homeostatic pathway that mediates the degradation and recycling of intracellular components. It serves as a key quality control mechanism, especially in non-dividing cells such as neurons. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. The retina is a light-sensitive tissue located in the back of the eye that detects and processes visual images. Vision is a highly demanding process, making the eye one of the most metabolically active tissues in the body and photoreceptors display glycolytic metabolism, even in the presence of oxygen. The retina and eye are also exposed to other stressors that can impair their function, including genetic mutations and age-associated changes. Autophagy, among other pathways, is therefore a key process for the preservation of retinal homeostasis. Here, we review the roles of both canonical and non-canonical autophagy in normal retinal function. We discuss the most recent studies investigating the participation of autophagy in eye diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy and its role protecting photoreceptors in several forms of retinal degeneration. Finally, we consider the therapeutic potential of strategies that target autophagy pathways to treat prevalent retinal and eye diseases.
Collapse
Affiliation(s)
- Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Katharina Bell
- Singapore Eye Research Institute, Singapore National Eye Centre, Republic of Singapore
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Yousefi H, Komaki A, Shahidi S, Habibi P, Sadeghian R, Ahmadiasl N, Daghigh F. Diabetic neovascularization defects in the retina are improved by genistein supplementation in the ovariectomized rat. Inflammopharmacology 2021; 29:1579-1586. [PMID: 34581950 DOI: 10.1007/s10787-021-00852-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/18/2021] [Indexed: 11/28/2022]
Abstract
Genistein seems to have a protective and therapeutic effect on conditions associated with neovascular growth in the retina. This study investigated the angiogenesis, antioxidant, and anti-inflammatory effect of genistein on the retinas in ovariectomized diabetic rats. In this study, 40 female albino Wistar rats were divided into four groups (n = 8 per group): sham, ovariectomized group (OVX), OVX + diabetes (OVX.D), and OVX.D + genistein (OVX.D.G). OVX induced by removal of bilateral ovaries and then high-fat diet (HFD) and a low dose of streptozotocin (STZ) (1 mg/kg; intraperitoneal (IP) injection) was used for diabetes induction (OVX.D) with 8 weeks of genistein treatment (OVX.D.G). At the end of 8 weeks, the retina was removed under anesthesia. The samples were used to measure extracellular signal-regulated kinase (ERK), matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGF), and nuclear factor NF-kappa-B (NF-κB) by western blotting and inflammatory factors ELISA and oxidative stress. Measurements of glutathione (GSH) and malondialdehyde (MDA) showed that OVX and especially OVX.D significantly decreased GSH and increased MDA level in the retina, but genistein reversed these effects in OVX.D.G groups. Also, OVX and OVX.D significantly increased VEGF, MMP-2, p-ERK, NF-κB, interleukin-1beta (IL-1β), and tumor necrosis factor alpha (TNFα) expression in the retina of OVX and OVX.D groups in comparison to the sham group (p < 0.05). However, a significant reduction of these proteins was observed in the genistein-treated group (p < 0.05). In conclusion, bilateral ovariectomy and subsequently estrogen deficiency caused the development of inflammation, neovascularization, and then retinopathy in STZ-induced diabetic ovariectomized rats. On the basis of the results, genistein administration may be a practical approach for improving symptoms and complications of ovariectomized diabetic retinopathy.
Collapse
Affiliation(s)
- Hadi Yousefi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Habibi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nasser Ahmadiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
23
|
Mano F, Sakata S, Chang KC, Mano T. Effects of Zinc Acetate Hydrate Treatment on Serum Oxidative Stress Markers in Patients with Macular Drusen. J Ocul Pharmacol Ther 2021; 37:518-524. [PMID: 34558962 DOI: 10.1089/jop.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: To measure the serum levels of the oxidative stress markers superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPx) and compare them before and after zinc supplementation in patients with early age-related macular degeneration (AMD). Methods: We measured serum zinc levels in 65 patients with early AMD. Of these, 29 patients with macular drusen and a serum zinc level <80 μg/dL received oral zinc acetate dihydrate (50 mg/day). Serum trace metal levels (zinc and copper) and oxidative stress marker levels (SOD, MDA, and GPx) were measured at baseline and 12 weeks after the treatment. The macular drusen areas and best-corrected visual acuity were evaluated in 24 participants who attended the 3-month follow-up. Results: MDA level was significantly decreased from baseline to 12 weeks after zinc administration (170.5 ± 100.9 vs. 148.3 ± 57.9 pmol/mL, P = 0.03), while SOD was significantly increased from baseline to 12 weeks after zinc intake (4.2 ± 0.9 vs. 4.6 ± 0.9 U/mL, P = 0.03). The serum zinc level was significantly correlated with the MDA level (P = 0.03, ρ = -0.26). The area of soft drusen was significantly decreased after zinc treatment (1,936,654.9 ± 1,348,267.6 vs. 966,883.9 ± 719,938.1 μmm2, P = 0.04). Conclusions: The levels of oxidative stress markers MDA and SOD decreased and increased, respectively, after oral zinc administration to 24 patients with AMD. The therapeutic effect of zinc treatment on drusen area might differ depending on the drusen phenotype in early AMD.
Collapse
Affiliation(s)
- Fukutaro Mano
- Department of Ophthalmology and Kindai University Faculty of Medicine, Osakasayama, Japan.,Suita Tokushukai Hospital Eye Center, Suita, Japan
| | - Shoei Sakata
- Center for Instrumental Analysis, Kindai University Faculty of Medicine, Osakasayama, Japan
| | | | - Tomiya Mano
- Suita Tokushukai Hospital Eye Center, Suita, Japan
| |
Collapse
|
24
|
Toma C, De Cillà S, Palumbo A, Garhwal DP, Grossini E. Oxidative and Nitrosative Stress in Age-Related Macular Degeneration: A Review of Their Role in Different Stages of Disease. Antioxidants (Basel) 2021; 10:antiox10050653. [PMID: 33922463 PMCID: PMC8145578 DOI: 10.3390/antiox10050653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Although the exact pathogenetic mechanisms leading to age-related macular degeneration (AMD) have not been clearly identified, oxidative damage in the retina and choroid due to an imbalance between local oxidants/anti-oxidant systems leading to chronic inflammation could represent the trigger event. Different in vitro and in vivo models have demonstrated the involvement of reactive oxygen species generated in a highly oxidative environment in the development of drusen and retinal pigment epithelium (RPE) changes in the initial pathologic processes of AMD; moreover, recent evidence has highlighted the possible association of oxidative stress and neovascular AMD. Nitric oxide (NO), which is known to play a key role in retinal physiological processes and in the regulation of choroidal blood flow, under pathologic conditions could lead to RPE/photoreceptor degeneration due to the generation of peroxynitrite, a potentially cytotoxic tyrosine-nitrating molecule. Furthermore, the altered expression of the different isoforms of NO synthases could be involved in choroidal microvascular changes leading to neovascularization. The purpose of this review was to investigate the different pathways activated by oxidative/nitrosative stress in the pathogenesis of AMD, focusing on the mechanisms leading to neovascularization and on the possible protective role of anti-vascular endothelial growth factor agents in this context.
Collapse
Affiliation(s)
- Caterina Toma
- Eye Clinic, University Hospital Maggiore Della Carità, 28100 Novara, Italy; (C.T.); (S.D.C.); (A.P.)
| | - Stefano De Cillà
- Eye Clinic, University Hospital Maggiore Della Carità, 28100 Novara, Italy; (C.T.); (S.D.C.); (A.P.)
- Department of Health Sciences, University East Piedmont “A. Avogadro”, 28100 Novara, Italy
| | - Aurelio Palumbo
- Eye Clinic, University Hospital Maggiore Della Carità, 28100 Novara, Italy; (C.T.); (S.D.C.); (A.P.)
| | - Divya Praveen Garhwal
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University East Piedmont “A. Avogadro”, 28100 Novara, Italy;
| | - Elena Grossini
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University East Piedmont “A. Avogadro”, 28100 Novara, Italy;
- Correspondence: ; Tel.:+39-0321-660526
| |
Collapse
|
25
|
Shimizu H, Yamada K, Suzumura A, Kataoka K, Takayama K, Sugimoto M, Terasaki H, Kaneko H. Caveolin-1 Promotes Cellular Senescence in Exchange for Blocking Subretinal Fibrosis in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:21. [PMID: 32926104 PMCID: PMC7490224 DOI: 10.1167/iovs.61.11.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To determine whether caveolin-1 (i) prevents epithelial–mesenchymal transition in the RPE and laser-induced subretinal fibrosis and (ii) promotes or inhibits cellular senescence in the RPE. Methods We examined laser-induced subretinal fibrosis and RPE cell contraction in wild-type and Caveolin-1 knockout (Cav-1−/−) mice treated with or without cavtratin, a cell-permeable peptide of caveolin-1. The senescence marker p16INK4a was measured in RPE tissues from patients with geographic atrophy and aged mice, laser-induced subretinal fibrosis, and primary human RPE cells. Human RPE was examined by TUNEL staining, reactive oxygen species generation, cell viability, and senescence-associated β-galactosidase staining. Results The volume of subretinal fibrosis was significantly smaller in cavtratin-injected eyes from wild-type mice than in control eyes from wild-type, P = 0.0062, and Cav-1−/− mice, P = 0.0095. Cavtratin treatment produced significant improvements in primary RPE cell contraction in wild-type, P = 0.04, and Cav-1−/− mice, P = 0.01. p16INK4a expression in the RPE was higher in patients with than without geographic atrophy. p16INK4a was expressed in 18-month-old but not 2-month-old wild-type mouse eyes. p16INK4a and collagen type I antibodies showed co-localization in subretinal fibrosis. Cavtratin did not affect RPE cell apoptosis or reactive oxygen species generation, but decreased cell viability and increased senescence-associated β-galactosidase–positive cells. Conclusions Enhanced expression of caveolin-1 successfully blocked epithelial–mesenchymal transition of RPE and the reduction of subretinal fibrosis in mice. Nevertheless, in exchange for blocking subretinal fibrosis, caveolin-1 promotes RPE cellular senescence and might affect the progression of geographic atrophy in AMD.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhisa Yamada
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Kataoka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Takayama
- Department of Ophthalmology, National Defense Medical College, Japan
| | - Masataka Sugimoto
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
Heesterbeek TJ, Rouhi-Parkouhi M, Church SJ, Lechanteur YT, Lorés-Motta L, Kouvatsos N, Clark SJ, Bishop PN, Hoyng CB, den Hollander AI, Unwin RD, Day AJ. Association of plasma trace element levels with neovascular age-related macular degeneration. Exp Eye Res 2020; 201:108324. [PMID: 33098886 PMCID: PMC7773981 DOI: 10.1016/j.exer.2020.108324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Although the triggers causing angiogenesis in the context of neovascular age-related macular degeneration (nAMD) are not fully understood, oxidative stress is likely involved. Oxidative stress in the eye can occur through exposure of macular tissues to sunlight and local or systemic exposure to oxidative stressors associated with environmental or lifestyle factors. Because trace elements have been implicated as regulators of oxidative stress and cellular antioxidant defense mechanisms, we hypothesized that they may play a role as a risk factor, modifying the progression toward nAMD. Herein, we determined whether levels of human plasma trace elements are different in 236 individuals with nAMD compared to 236 age-matched controls without AMD. Plasma levels of 16 trace elements including arsenic, barium, calcium, cadmium, cobalt, chromium, copper, iron, magnesium, manganese, molybdenum, lead, antimony, selenium, vanadium and zinc were measured using inductively coupled plasma mass spectrometry. Associations of trace elements with demographic, environmental and lifestyle factors and AMD-associated genetic variants were assessed. Elevated levels of barium and cadmium and reduced levels of chromium were observed in nAMD patients compared to controls. Mean plasma concentrations of barium were 1.35 μg/L (standard deviation [SD] 0.71) in nAMD and 1.15 μg/L (SD 0.63) in controls (P = 0.001). Mean levels of chromium were 0.37 μg/L (SD 0.22) in nAMD and 0.46 μg/L (SD 0.34) in controls (P = 0.001). Median levels for cadmium, which were not normally distributed, were 0.016 μg/L (interquartile range [IQR] 0.001-0.026) in nAMD and 0.012 μg/L (IQR 0.001-0.022) in controls (P = 0.002). Comparison of the Spearman's correlation coefficients between nAMD patients and controls identified a difference in correlations for 8 trace elements. Cadmium levels were associated with the smoking status (P < 0.001), while barium levels showed a trend of association with the usage of antihypertensive drugs. None of the AMD-associated genetic variants were associated with any trace element levels. In conclusion, in this case-control study we detected elevated plasma levels of barium and cadmium and reduced plasma levels of chromium in nAMD patients. An imbalance in plasma trace elements, which is most likely driven by environmental and lifestyle factors, might have a role in the pathogenesis of AMD. These trace elements may be incorporated as biomarkers into models for prediction of disease risk and progression. Additionally, population-based preventive strategies to decrease Cd exposure, especially by the cessation of smoking, could potentially reduce the burden of nAMD. Future studies are warranted to investigate whether supplementation of Cr would have a beneficial effect on nAMD.
Collapse
Affiliation(s)
- Thomas J Heesterbeek
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mansour Rouhi-Parkouhi
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK
| | - Stephanie J Church
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester, M13 9NT, UK
| | - Yara T Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laura Lorés-Motta
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nikolaos Kouvatsos
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK
| | - Simon J Clark
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK; Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076, Tübingen, Germany
| | - Paul N Bishop
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK; Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Richard D Unwin
- Stoller Biomarker Discovery Centre and Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, The University of Manchester, CityLabs 1.0 (3rd Floor), Nelson Street, Manchester, M13 9NQ, UK
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
27
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res 2020; 79:100858. [PMID: 32298788 PMCID: PMC7650008 DOI: 10.1016/j.preteyeres.2020.100858] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Szabolcs Felszeghy
- Department of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA, 90033, USA
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, PA 15224, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA
| | - Deborah Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Zor RK, Erşan S, Küçük E, Yıldırım G, Sarı İ. Serum malondialdehyde, monocyte chemoattractant protein-1, and vitamin C levels in wet type age-related macular degeneration patients. Ther Adv Ophthalmol 2020; 12:2515841420951682. [PMID: 33062929 PMCID: PMC7536475 DOI: 10.1177/2515841420951682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose: The purpose of this study was to investigate the serum levels of
malondialdehyde (MDA) which is a marker of oxidative stress, monocyte
chemoattractant protein-1 (MCP-1) which has an important role in
inflammation, and vitamin C which has antioxidant properties in patients
with wet age-related macular degeneration (wAMD). Methods: Thirty patients with wAMD were included in the study and serum levels of MDA,
MCP-1, and vitamin C were compared with healthy participants
(n = 30). Serum vitamin C and MDA levels were measured
using a spectrophotometric method. Serum MCP-1 levels were determined by the
ELISA method. Results: MCP-1 and MDA levels were higher in patients with wAMD compared with the
control group (p < 0.05). Serum vitamin C levels were
lower in patients with wAMD compared with the control group
(p < 0.05). Conclusions: The increase in the MCP-1 levels in patients with wAMD may be associated with
increased inflammation in wAMD. Decreased serum vitamin C and elevated MDA
levels in patients with wAMD suggest increased oxidative stress in wAMD
patients. These results indicate that the increased oxidative stress and
inflammation can play a role in the pathogenesis of wAMD.
Collapse
Affiliation(s)
- Ramazan Kürşad Zor
- Department of Ophthalmology, School of Medicine, Niğde Ömer Halisdemir University, Bor Yolu, Nigde 51100, Turkey
| | - Serpil Erşan
- Department of Biochemistry, School of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Erkut Küçük
- Department of Ophthalmology, School of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Gamze Yıldırım
- Department of Ophthalmology, Niğde Ömer Halisdemir Education and Research Hospital, Niğde, Turkey
| | - İsmail Sarı
- Department of Biochemistry, School of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| |
Collapse
|
29
|
Xie L, Ji X, Tu Y, Wang K, Zhu L, Zeng X, Wang X, Zhang J, Zhu M. MLN4924 inhibits hedgehog signaling pathway and activates autophagy to alleviate mouse laser-induced choroidal neovascularization lesion. Biomed Pharmacother 2020; 130:110654. [PMID: 34321162 DOI: 10.1016/j.biopha.2020.110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022] Open
Abstract
Neovascular age-related macular degeneration (nAMD), featured as choroidal neovascularization (CNV), can cause blindness in the elderly population. MLN4924, a highly selective small-molecule inhibitor of NEDD8 (neuronal precursor cell-expressed developmentally down-regulated protein 8)-activating enzyme (NAE), inhibits the proliferation, angiogenesis and inflammation of multiple cancers via up-regulating hedgehog pathway-regulated autophagy. MLN4924 intraperitoneal injection mitigated the leakage, area and volume of mouse laser-induced CNV lesion. Additionally, compared to CNV 7 d group, MLN4924 treated mouse retina-retinal pigment epithelium (RPE)-choroid complex showed decreased expression of hedgehog pathway-associated molecules patched 1 (PTCH1), smoothened (SMO), GLI family zinc finger 1 (GLI1) and GLI family zinc finger 2 (GLI2) with increased expression of autophagy-associated molecules sequestosome 1 (p62) and LC microtubule-associated protein 1 light chain 3 (LC3). Meanwhile, human choroidal endothelial cells (HCECs) exposed to hypoxia condition also showed decreased expression of hedgehog pathway-associated molecules and increased expression of autophagy-associated molecules. Compared to hypoxia + MLN4924 group, SMO agonist SAG up-regulated hedgehog pathway and down-regulated autophagy, whereas autophagy inhibitor PIK-III inhibited autophagy with no effect on hedgehog pathway, indicating that MLN4924 facilitated autophagy of HCECs via hindering hedgehog pathway under hypoxia condition. Finally, MLN4924 inhibited proliferation, migration and tube formation of HCECs via boosting hedgehog pathway-regulated autophagy. In summary, MLN4924 relieved the formation of mouse laser-induced CNV lesion might via up-regulating hedgehog pathway-regulated autophagy. The results provide a potential interfering strategy for nAMD targeting the autophagy of choroidal endothelial cells.
Collapse
Affiliation(s)
- Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyan Ji
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kun Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linling Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xinwei Zeng
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
30
|
Zheng RH, Zhang WW, Ji YN, Bai XJ, Yan CP, Wang J, Bai F, Zhao ZQ. Exogenous supplement of glucagon like peptide-1 protects the heart against aortic banding induced myocardial fibrosis and dysfunction through inhibiting mTOR/p70S6K signaling and promoting autophagy. Eur J Pharmacol 2020; 883:173318. [PMID: 32621911 DOI: 10.1016/j.ejphar.2020.173318] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Mammalian target of rapamycin (mTOR) and a ribosomal protein S6 kinase (p70S6K) mediate tissue fibrosis and negatively regulate autophagy. This study aims to investigate whether glucagon-like peptide-1 (GLP-1) analog liraglutide protects the heart against aortic banding-induced cardiac fibrosis and dysfunction through inhibiting mTOR/p70S6K signaling and promoting autophagy activity. Male SD rats were randomly divided into four groups (n = 6/each group): sham operated control; abdominal aortic constriction (AAC); liraglutide treatment during AAC (0.3 mg/kg, injected subcutaneously twice daily); rapamycin treatment during AAC (0.2 mg/kg/day, administered by gastric gavage). Relative to the animals with AAC on week 16, liraglutide treatment significantly reduced heart/body weight ratio, inhibited cardiomyocyte hypertrophy, and augmented plasma GLP-1 level and tissue GLP-1 receptor expression. Phosphorylation of mTOR/p70S6K, populations of myofibroblasts and synthesis of collagen I/III in the myocardium were simultaneously inhibited. Furthermore, autophagy regulating proteins: LC3-II/LC3-I ratio and Beclin-1 were upregulated, and p62 was downregulated by liraglutide. Compared with liraglutide group, treatment with rapamycin, a specific inhibitor of mTOR, compatibly augmented GLP-1 receptor level, inhibited phosphorylation of mTOR/p70S6K and expression of p62 as well as increased level of LC3-II/LC3-I ratio and Beclin-1, suggesting that there is an interaction between GLP-1 and mTOR/p70S6K signaling in the regulation of autophagy. In line with these modifications, treatment with liraglutide and rapamycin significantly reduced perivascular/interstitial fibrosis, and preserved systolic/diastolic function. These results suggest that the inhibitory effects of liraglutide on cardiac fibrosis and dysfunction are potentially mediated by inhibiting mTOR/p70S6K signaling and enhancing autophagy activity.
Collapse
Affiliation(s)
- Rong-Hua Zheng
- Key Laboratory of Cellular Physiology of Ministry of Education and Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Medicine, Linfen Vocational and Technical College, Linfen, Shanxi, China
| | - Wei-Wei Zhang
- Key Laboratory of Cellular Physiology of Ministry of Education and Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ye-Nan Ji
- Key Laboratory of Cellular Physiology of Ministry of Education and Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Jie Bai
- Key Laboratory of Cellular Physiology of Ministry of Education and Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cai-Ping Yan
- Key Laboratory of Cellular Physiology of Ministry of Education and Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jin Wang
- Key Laboratory of Cellular Physiology of Ministry of Education and Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feng Bai
- Key Laboratory of Cellular Physiology of Ministry of Education and Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhi-Qing Zhao
- Key Laboratory of Cellular Physiology of Ministry of Education and Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China; Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA.
| |
Collapse
|
31
|
Xie Y, Li J, Kang R, Tang D. Interplay Between Lipid Metabolism and Autophagy. Front Cell Dev Biol 2020; 8:431. [PMID: 32582708 PMCID: PMC7283384 DOI: 10.3389/fcell.2020.00431] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a self-eating process of using lysosomes to degrade macromolecular substances (e.g., proteins and organelles) that are damaged, degenerated, or aging. Lipid metabolism is the synthesis and degradation of lipids (e.g., triglycerides, steroids, and phospholipids) to generate energy or produce the structural components of cell membranes. There is a complex interplay between lipid metabolism (e.g., digestion, absorption, catabolism, biosynthesis, and peroxidation) and autophagy machinery, leading to the modulation of cell homeostasis, including cell survival and death. In particular, lipid metabolism is involved in the formation of autophagic membrane structures (e.g., phagophores and autophagosomes) during stress. Moreover, autophagy, especially selective autophagy (e.g., lipophagy, ferritinophagy, clockophagy, and mitophagy), promotes lipid catabolism or lipid peroxidation-induced ferroptosis through the degradation of various substances within the cell. A better understanding of the mechanisms of autophagy and possible links to lipid metabolism will undoubtedly promote potential treatments for a variety of diseases.
Collapse
Affiliation(s)
- Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingbo Li
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
32
|
Matsuura T, Kaneko H, Takayama K, Shibata R, Kataoka K, Ito S, Tsunekawa T, Shimizu H, Suzumura A, Namba R, Ito Y, Murohara T, Terasaki H. Diacron reactive oxygen metabolites and biological antioxidant potential tests for patients with age-related macular degeneration. BMC Ophthalmol 2020; 20:56. [PMID: 32070305 PMCID: PMC7027115 DOI: 10.1186/s12886-020-01334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previously, we showed that serum malondialdehyde (MDA) was significantly higher in patients with neovascular age-related macular degeneration (nAMD) than in those without AMD. The Diacron reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) tests are known markers of oxidative stress. The aim of this study was to use d-ROMs and BAP tests to evaluate changes in systemic oxidative stress in patients with nAMD. METHODS Blood serum samples were collected from 34 patients with nAMD (mean age: 76.5 ± 7.7 years; 22 men) and 20 control subjects (mean age: 62.9 ± 14.0 years; 10 men), and d-ROMs and BAP tests were examined. RESULTS In men, the mean level of d-ROMs for the nAMD patients was significantly higher than that for the controls (312.0 ± 52.4 vs. 275.1 ± 45.5 U.CARR, respectively; P < .05). There was a significant correlation between d-ROM level and CNV lesion area in the male nAMD group (r = .42, P = .05). There were no significant differences in mean BAP test results between the nAMD patients and controls for either sex (men: 2241 ± 549 vs. 2136 ± 246 μmol/L; women: 2263 ± 292 vs. 2335 ± 161 μmol/L). CONCLUSION The d-ROMs test may provide a useful indicator of nAMD in men but not in women.
Collapse
Affiliation(s)
- Toshiyuki Matsuura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kei Takayama
- Department of Ophthalmology, National Defense Medical College, Saitama, Japan
| | - Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Kataoka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Seina Ito
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Taichi Tsunekawa
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Rina Namba
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuki Ito
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
33
|
Lipid Reshaping and Lipophagy Are Induced in a Modeled Ischemia-Reperfusion Injury of Blood Brain Barrier. Int J Mol Sci 2019; 20:ijms20153752. [PMID: 31370282 PMCID: PMC6696511 DOI: 10.3390/ijms20153752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Ischemic-reperfusion (I/R) injury induced a remodeling of protein and lipid homeostasis, under oxidative stress and inflammatory status. Starvation occurring during I/R is a condition leading to autophagy activation, which allows abnormal material clearance or amino acid, or both, and fatty acid (FA) recycling essential for survival. This study investigated the lipid reshaping, peroxidation, and related-signaling pathways, in rat brain endothelial cells (RBE4) subjected to 3 h of oxygen and glucose deprivation (OGD) and restoration of standard condition (I/R in vitro model). Lipids and proteins were analyzed after 1 or 24 h of oxygen and nutrient restoration. Together with the oxidative stress and inflammatory status, I/R injury induced a reshaping of neutral lipids and biogenesis of lipid droplets (LD) with excessive lipid storage. The increase of LC3-II/LC3-I ratio, an autophagy marker, and LC3 co-localization with LD suggest the activation of lipophagy machinery to counteract the cell engulfment. Lipophagy leads to cholesterol ester (CE) hydrolysis, increasing free cholesterol (FC) secretion, which occurred by specific transporters or unconventional exocytosis pathways, or both. Here, we propose that an unconventional spreading of FC and other lipid metabolites may influence the neurovascular unit (NVU) cells, contributing to Blood brain barrier (BBB) alteration or adaptation, or both, to the cumulative effects of several transient ischemia.
Collapse
|
34
|
Ye Q, Lin YN, Xie MS, Yao YH, Tang SM, Huang Y, Wang XH, Zhu YH. Effects of etanercept on the apoptosis of ganglion cells and expression of Fas, TNF-α, caspase-8 in the retina of diabetic rats. Int J Ophthalmol 2019; 12:1083-1088. [PMID: 31341796 DOI: 10.18240/ijo.2019.07.05] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
AIM To evaluate the effects of etanercept on the expression of Fas, tumor necrosis factor-alpha (TNF-α) and caspase-8 in the early stage of the apoptotic pathway in diabetic rats, and to explore the therapeutic effect of etanercept on diabetic retinopathy. METHODS A total of 60 Sprague-Dawley (SD) rats were randomly and evenly divided into 3 groups with 20 rats each, including control group, and diabetic groups with or without treatment. Streptozotocin (STZ)-induced diabetic rats were established for diabetic groups. Blood glucose and body weight were measured weekly. All the rats were sacrificed at the 12wk after treatment. The expressions of Fas, TNF-α and caspase-8 in rat retina were quantitatively detected by PCR and Western blot. The leakage of Evan blue was adopted to measure the retinal vascular leakage quantitatively, and to compare it among different groups. TUNEL method was used to compare the amount of apoptotic bodies quantitatively in rat retina ganglion cells under electron microscope. RESULTS The expressions of Fas, TNF-α and caspase-8 in each group were compared via PCR and Western blot, in which the diabetic group with treatment was lower than those without treatment (P<0.01), but all the diabetic groups were higher than the control group (P<0.01). Evans blue leakage in the diabetic treatment group was lower than those without treatment (P<0.01), but those in the control group was the lowest compared with the other two groups (P<0.01). TUNEL method showed that the apoptotic bodies of retina in the diabetic treatment group was lower than those without treatment (P<0.01), while those in the control group was the lowest compared with the other two groups (P<0.01). CONCLUSION Etanercept can effectively reduce the expression of Fas, TNF-α and caspase-8, as well as the retinal leakage and retinal cell apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Qin Ye
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Yu-Ni Lin
- XiaMen Haicang Hospital, Xiamen 361026, Fujian Province, China
| | - Mao-Song Xie
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Yi-Hua Yao
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Shu-Min Tang
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Yan Huang
- Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Xiao-Hui Wang
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Yi-Hua Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
35
|
Namba R, Kaneko H, Suzumura A, Shimizu H, Kataoka K, Takayama K, Yamada K, Funahashi Y, Ito S, Nonobe N, Terasaki H. In Vitro Epiretinal Membrane Model and Antibody Permeability: Relationship With Anti-VEGF Resistance in Diabetic Macular Edema. ACTA ACUST UNITED AC 2019; 60:2942-2949. [DOI: 10.1167/iovs.19-26788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Rina Namba
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Kataoka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kei Takayama
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Japan
| | - Kazuhisa Yamada
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhito Funahashi
- Department of Urology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seina Ito
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norie Nonobe
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
36
|
Takayama K, Kaneko H, Ito Y, Kataoka K, Iwase T, Yasuma T, Matsuura T, Tsunekawa T, Shimizu H, Suzumura A, Ra E, Akahori T, Terasaki H. Novel Classification of Early-stage Systemic Hypertensive Changes in Human Retina Based on OCTA Measurement of Choriocapillaris. Sci Rep 2018; 8:15163. [PMID: 30310137 PMCID: PMC6181956 DOI: 10.1038/s41598-018-33580-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/24/2018] [Indexed: 11/09/2022] Open
Abstract
The traditional classification of hypertensive retinopathy was based on the Keith-Wagener-Barker (KWB) grading, which is a subjective scaling system, and it is difficult to distinguish between the first and second grades. Retinal and choroidal vasculatures are affected by systemic hypertension, although retinal vasculature changes with age, axial length, intraocular pressure, and retinal diseases. It is necessary to establish a new objective method to assess hypertensive vascular changes. In the present study, we have examined the vasculature of the macular choriocapillaris in order to establish a new objective method to assess hypertensive vascular changes using optical coherence tomography angiography (OCTA). Choriocapillaris vessel density (VD), vessel length, and vessel diameter index in a 3 × 3 mm macular area were measured by OTCA in a total of 567 volunteers (361 healthy subjects and 206 subjects with systemic hypertension) who attended a basic health check-up. Ocular factors, systemic factors, and medications were evaluated. We detected significant differences in normative choriocapillaris vasculature between the left and right eyes in 53 healthy subjects and revealed correlations between age, intraocular pressure, axial length, and choriocapillaris vasculature in 308 healthy subjects. Normative foveal VD was correlated with age only and the efficiency was weak. The analysis of 206 right eyes (KWB grade 0, 159 eyes; grade 1, 35 eyes; and grade 2, 12 eyes) revealed that foveal VD was strongly correlated with KWB grade only (P < 0.001). This is the first report suggesting that OCTA for foveal choriocapillaris measurement by OCTA would might provide the advantage of evaluating be objective method for evaluating the progression of systemic hypertension.
Collapse
Affiliation(s)
- Kei Takayama
- Department of Ophthalmology, National Defense Medical College, 3-2 Namiki, Tokorozawa, 359-8513, Japan. .,Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan.
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Yasuki Ito
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Keiko Kataoka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Takeshi Iwase
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Tetsuhiro Yasuma
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Toshiyuki Matsuura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Taichi Tsunekawa
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Hideyuki Shimizu
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Ayana Suzumura
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Eimei Ra
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Tomohiko Akahori
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 54 Tsurumai-cho, Showa-ku, 466-8550, Japan
| |
Collapse
|
37
|
Ding D, Zhu M, Liu X, Jiang L, Xu J, Chen L, Liang J, Li L, Zhou T, Wang Y, Shi H, Yuan Y, Song E. Inhibition of TRAF6 alleviates choroidal neovascularization in vivo. Biochem Biophys Res Commun 2018; 503:2742-2748. [PMID: 30103950 DOI: 10.1016/j.bbrc.2018.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/04/2018] [Indexed: 12/14/2022]
Abstract
Choroidal neovascularization (CNV) is a type of wet age-related macular degeneration (AMD) which is a major cause of blindness in elder patients. Tumor necrosis factor receptor-associated factor 6 (TRAF6) promotes tumor angiogenesis via upregulating the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF). Additionally, TRAF6 facilitates the inflammatory response in macrophages and microglia. Here, using mouse laser-induced CNV model and TRAF6 siRNA, the study shows that TRAF6 is a critical player in CNV. The expression of TRAF6, HIF-1α, and VEGF increased in the model. TFAF6 siRNA intravitreal (IVT) injection inhibited CNV formation, as well as expression of HIF-1α and VEGF, activation of macrophages and microglia. Together, our data suggest that TFAF6 inhibition reduces CNV formation via down-regulating expression of HIF-1α and VEGF and activation of macrophages and microglia, demonstrating the unique advantages of TRAF6 inhibition in the alleviation of AMD.
Collapse
Affiliation(s)
- Dongmei Ding
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Li Jiang
- Department of Ophthalmology, Laizhou City People's Hospital, Yantai, Shandong, China
| | - Jiaowen Xu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lili Chen
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Juan Liang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lele Li
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Taohu Zhou
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Department of Ophthalmology, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Hao Shi
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - You Yuan
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
38
|
Evaluation of serum sphingolipids and the influence of genetic risk factors in age-related macular degeneration. PLoS One 2018; 13:e0200739. [PMID: 30071029 PMCID: PMC6071970 DOI: 10.1371/journal.pone.0200739] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids are bioactive molecules associated with oxidative stress, inflammation, and neurodegenerative diseases, but poorly studied in the context of age-related macular degeneration (AMD), a prevalent sight-threatening disease of the ageing retina. Here, we found higher serum levels of hexosylceramide (HexCer) d18:1/16:0 in patients with choroidal neovascularization (CNV) and geographic atrophy (GA), two manifestations of late stage AMD, and higher ceramide (Cer) d18:1/16:0 levels in GA patients. A sensitivity analysis of genetic variants known to be associated with late stage AMD showed that rs1061170 (p.Y402H) in the complement factor H (CFH) gene influences the association of Cer d18:1/16:0 with GA. To understand the possible influence of this genetic variant on ceramide levels, we established a cell-based assay to test the modulation of genes in the ceramide metabolism by factor H-like protein 1 (FHL-1), an alternative splicing variant of CFH that also harbors the 402 residue. We first showed that malondialdehyde-acetaldehyde adducts, an oxidation product commonly found in AMD retinas, induces an increase in ceramide levels in WERI-Rb1 cells in accordance with an increased expression of ceramide synthesis genes. Then, we observed that cells exposed to the non-risk FHL-1:Y402, but not the risk associated variant FHL-1:H402 or full-length CFH, downregulated ceramide synthase 2 and ceramide glucosyltransferase gene expression. Together, our findings show that serum ceramide and hexosylceramide species are altered in AMD patients and that ceramide levels may be influenced by AMD associated risk variants.
Collapse
|
39
|
Sun Y, Zheng Y, Wang C, Liu Y. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis 2018; 9:753. [PMID: 29988039 PMCID: PMC6037763 DOI: 10.1038/s41419-018-0794-4] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/09/2018] [Accepted: 06/14/2018] [Indexed: 12/28/2022]
Abstract
Glutathione (GSH) protects against oxidative damage in many tissues, including retinal pigment epithelium (RPE). Oxidative stress-mediated senescence and death of RPE and subsequent death of photoreceptors have been observed in age-related macular degeneration (AMD). Although the consequences of GSH depletion have been described previously, questions remain regarding the molecular mechanisms. We herein examined the downstream effects of GSH depletion on stress-induced premature senescence (SIPS) and cell death in human RPE cells. Briefly, cultured ARPE-19 cells were depleted of GSH using: (1) incubation in cystine (Cys2)-free culture medium; (2) treatment with buthionine sulphoximine (BSO, 1000 µM) to block de novo GSH synthesis for 24-48 h; or (3) treatment with erastin (10 µM for 12-24 h) to inhibit Cys2/glutamate antiporter (system xc-). These treatments decreased cell viability and increased both soluble and lipid reactive oxygen species (ROS) generation but did not affect mitochondrial ROS or mitochondrial mass. Western blot analysis revealed decreased expression of ferroptotic modulator glutathione peroxidase 4 (GPX4). Increased autophagy was apparent, as reflected by increased LC3 expression, autophagic vacuoles, and autophagic flux. In addition, GSH depletion induced SIPS, as evidenced by increased percentage of the senescence-associated β-galactosidase-positive cells, increased senescence-associated heterochromatin foci (SAHF), as well as cell cycle arrest at the G1 phase. GSH depletion-dependent cell death was prevented by selective ferroptosis inhibitors (8 μM Fer-1 and 600 nM Lip-1), iron chelator DFO (80 μM), as well as autophagic inhibitors Baf-A1 (75 nM) and 3-MA (10 mM). Inhibiting autophagy with Baf-A1 (75 nM) or 3-MA (10 mM) promoted SIPS. In contrast, inducing autophagy with rapamycin (100 nM) attenuated SIPS. Our findings suggest that GSH depletion induces ferroptosis, autophagy, and SIPS. In addition, we found that autophagy is activated in the process of ferroptosis and reduces SIPS, suggesting an essential role of autophagy in ferroptosis and SIPS.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chunxiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
40
|
Zhu XR, Du JH. Autophagy: a potential target for the treatment of intraocular neovascularization. Int J Ophthalmol 2018; 11:695-698. [PMID: 29675393 DOI: 10.18240/ijo.2018.04.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
The formation of neovascularization is a common pathological feature of many ocular vascular diseases, and is an important cause of vision loss in patients. Neovascularization can cause retinal hemorrhage, vitreous hemorrhage, and other serious complications, leading to loss of vision. The treatment of intraocular neovascularization is the focus of ophthalmology research. In recent years, some studies have found that autophagy is closely related to vascular endothelial growth factor and the formation of neovascularization. Autophagy is expected to become a new target for the treatment of intraocular neovascularization. Therefore, this article reviews the research on autophagy and the formation of intraocular neovascularization.
Collapse
Affiliation(s)
- Xia-Ru Zhu
- Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Jun-Hui Du
- Department of Ophthalmology, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| |
Collapse
|
41
|
Li J, Zhang R, Wang C, Wang X, Xu M, Ma J, Shang Q. Activation of the Small GTPase Rap1 Inhibits Choroidal Neovascularization by Regulating Cell Junctions and ROS Generation in Rats. Curr Eye Res 2018; 43:934-940. [PMID: 29601231 DOI: 10.1080/02713683.2018.1454477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Choroidal neovascularization (CNV) is a common vision-threatening complication associated with many fundus diseases. The retinal pigment epithelial (RPE) cell junction barrier has critical functions in preventing CNV, and oxidative stress can cause compromise of barrier integrity and induce angiogenesis. Rap1, a small guanosine triphosphatase (GTPase), is involved in regulating endothelial and epithelial cell junctions. In this work, we explored the function and mechanism of Rap1 in CNV in vivo. METHODS A laser-induced rat CNV model was developed. Rap1 was activated through intravitreal injection of the Rap1 activator 8CPT-2'-O-Me-cAMP (8CPT). At 14 days after laser treatment, CNV size in RPE/choroid flat mounts was measured by fluorescein isothiocyanate-dextran staining. Expression of vascular endothelial growth factor (VEGF) and cell junction proteins in RPE/choroid tissues were analyzed by western blots and quantitative real-time PCR assays. Reactive oxygen species (ROS) in RPE cells were detectedbydichloro-dihydro-fluorescein diacetate assays. The antioxidant apocynin was intraperitoneally injected into rats. RESULTS Activating Rap1 by 8CPT significantly reduced CNV size and VEGF expression in the rat CNV model. Rap1 activation enhanced protein and mRNA levels of ZO-1 and occludin, two tight junction proteins in the RPE barrier. In addition, reducing ROS generation by injection of apocynin, a NADPH oxidase inhibitor, inhibited CNV formation. Rap1 activation reduced ROS generation and expression of NADPH oxidase 4. CONCLUSIONS Rap1 activation inhibits CNV through regulating barrier integrity and ROS generation of RPE in vivo, and selectively activating Rap1 may be a way to reduce vision loss from CNV.
Collapse
Affiliation(s)
- Jiajia Li
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Rong Zhang
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Caixia Wang
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Xin Wang
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Man Xu
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Jingxue Ma
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Qingli Shang
- a Department of Ophthalmology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| |
Collapse
|
42
|
Zheng Y, Rao YQ, Li JK, Huang Y, Zhao P, Li J. Age-related pro-inflammatory and pro-angiogenic changes in human aqueous humor. Int J Ophthalmol 2018; 11:196-200. [PMID: 29487806 DOI: 10.18240/ijo.2018.02.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
AIM To reveal age-related aqueous cytokine changes in human aqueous humor. METHODS Aqueous humor was collected from 12 young children (3-6.5 years old) and 71 healthy adults (22-106 years old) with cataract but without other systemic or ocular disorders. Levels of 22 cytokines, chemokines and vascular endothelial growth factor (VEGF) were measured and analyzed. RESULTS The following proteins showed significant increase from childhood to adult: interferon-gamma (IFN-γ), interleukin (IL)-13, IL-6, IL-12(p70), IL-10, CCL2, CCL3, CCL4, CXCL8, CXCL9, CXCL10, IFN-α2 and VEGF (all P<0.05). IFN-γ, IL-13, IL-12(p70), IL-10, CCL3, CXCL9 and VEGF also showed moderate strength age-related increase in the adult group (r>0.5). The strength of correlation between aging and CCL4 were fair (r=0.398). The concentrations of IL-2, IL-4, IL-5, IL-1β and TNF-α were low in both groups. CONCLUSION From childhood to adult, the immunological milieu of the anterior chamber become more pro-inflammatory and pro-angiogenic. Such changes may represent the parainflammation state of the human eye.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Ophthalmology, Xinhua Hospital, Chong Ming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yu-Qing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jia-Kai Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yue Huang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.,Department of Ophthalmology, Xinhua Hospital, Chong Ming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
43
|
Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion. Cell Death Dis 2018; 9:58. [PMID: 29352190 PMCID: PMC5833357 DOI: 10.1038/s41419-017-0082-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
Vascularization deficiency caused a lot of diseases, such as diabetes ulcer and myocardial infarction. Mesenchymal stem cells (MSCs), with the self-renewal and multipotent differentiation capacities, have been used for many diseases treatment through regulation microenvironment. Numerous studies reported that MSCs transplantation could largely improve cutaneous wound healing via paracrine secretion of growth factors. However, whether MSCs take part in the angiogenesis process directly remains elusive. Previous study proved that autophagy inhibited immunosuppressive function of MSCs and prevented the degradation of MSCs function in inflammatory and senescent microenvironment. Here, we proved that autophagy determines the therapeutic effect of MSCs in cutaneous wound healing through promoting endothelial cells angiogenesis and demonstrated that the paracrine of vascular endothelial growth factor (VEGF) in MSCs was required in wound site. We further revealed that autophagy enhanced the VEGF secretion from MSCs through ERK phosphorylation directly. Collectively, we put forward that autophagy mediated paracrine of VEGF plays a central role in MSCs cured cutaneous wound healing and may provide a new therapeutic method for angiogenesis-related diseases.
Collapse
|
44
|
Zhang XY, Ng TK, Brelén ME, Chan KP, Wu D, Yung JSY, Cao D, Wang Y, Zhang S, Chan SO, Pang CP. Disruption of retinal pigment epithelial cell properties under the exposure of cotinine. Sci Rep 2017; 7:3139. [PMID: 28600524 PMCID: PMC5466671 DOI: 10.1038/s41598-017-03283-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/25/2017] [Indexed: 11/09/2022] Open
Abstract
Cigarette smoking is a major risk factor for age-related macular degeneration (AMD), in which progressive retinal pigment epithelial (RPE) cell degeneration is a major pathological change. Nicotine is a major biologically active component in cigarette smoke. It is continuously catabolized into cotinine, which has longer half-life and higher concentration in tissue cells and fluids. Here we hypothesized that continuous exposure of cotinine has more potent effects on human RPE cell properties than nicotine. Human RPE cell line (ARPE-19) was treated continuously with 1-2 µM of nicotine and/or cotinine for 7 days. RPE cells treated with 2 μM cotinine and nicotine-cotinine mixture has lower MTT signals without significant changes in cell apoptosis or integrity. Moreover, RPE cell migration was retarded under cotinine treatments, but not nicotine. Both nicotine and cotinine treatments attenuated the phagocytotic activity of RPE cells. In addition, cotinine and nicotine-cotinine mixture suppressed VEGF and IL-8 expression and upregulated TIMP-2 expression. Expressions of autophagy genes were upregulated by the cotinine treatment, whereas expressions of epithelial-to-mesenchymal transition markers were downregulated. In conclusion, our study, for the first time, demonstrated that cotinine, rather than nicotine, affects the properties of RPE cells in vitro, which could explain the smoking-induced RPE pathology.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, China.,Shenyang Key Laboratory of Ophthalmology, Shenyang, China
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Mårten Erik Brelén
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Wu
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, China.,Shenyang Key Laboratory of Ophthalmology, Shenyang, China
| | - Jasmine Sum Yee Yung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Cao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yumeng Wang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shaodan Zhang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, China.,Shenyang Key Laboratory of Ophthalmology, Shenyang, China
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Nutritional Supplementation Inhibits the Increase in Serum Malondialdehyde in Patients with Wet Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9548767. [PMID: 28243361 PMCID: PMC5294377 DOI: 10.1155/2017/9548767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/04/2016] [Accepted: 12/21/2016] [Indexed: 12/18/2022]
Abstract
Purpose. To compare serum levels of malondialdehyde (MDA) in patients with wet age-related macular degeneration (wAMD), patients with dry AMD (dAMD), and patients without AMD and to evaluate the efficacy of nutritional supplementation for treating elevated serum MDA in patients with wAMD. Methods. MDA levels were measured in sera from 20 patients with wAMD, 20 with dAMD, and 24 without AMD. Patients with wAMD were randomized to receive or not receive nutritional supplementation (10 patients in each group), and MDA levels were measured after 3 months of treatment. Results. MDA levels in patients with wAMD were significantly greater compared with patients without AMD. In eyes with wAMD, there was a significant correlation between MDA levels and choroidal neovascularization lesion area. Serum MDA levels decreased in most patients that received supplementation and significantly increased in those who did not. Conclusion. Baseline serum MDA levels were elevated in patients with wAMD, and MDA levels were directly correlated with choroidal neovascularization lesion area. In addition, nutritional supplementation appeared to exert a protective effect against oxidative stress in patients with wAMD.
Collapse
|
46
|
Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biol Toxicol 2016; 33:113-128. [PMID: 27900566 PMCID: PMC5325845 DOI: 10.1007/s10565-016-9371-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 12/15/2022]
Abstract
Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.
Collapse
|
47
|
Zhang XY, Ng TK, Brelén ME, Wu D, Wang JX, Chan KP, Yung JSY, Cao D, Wang Y, Zhang S, Chan SO, Pang CP. Continuous exposure to non-lethal doses of sodium iodate induces retinal pigment epithelial cell dysfunction. Sci Rep 2016; 6:37279. [PMID: 27849035 PMCID: PMC5110957 DOI: 10.1038/srep37279] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD), characterized by progressive degeneration of retinal pigment epithelium (RPE), is the major cause of irreversible blindness and visual impairment in elderly population. We previously established a RPE degeneration model using an acute high dose sodium iodate to induce oxidative stress. Here we report findings on a prolonged treatment of low doses of sodium iodate on human RPE cells (ARPE-19). RPE cells were treated continuously with low doses (2-10 mM) of sodium iodate for 5 days. Low doses (2-5 mM) of sodium iodate did not reduce RPE cell viability, which is contrasting to cell apoptosis in 10 mM treatment. These low doses are sufficient to retard RPE cell migration and reduced expression of cell junction protein ZO-1. Phagocytotic activity of RPE cells was attenuated by sodium iodate dose-dependently. Sodium iodate also increased expression of FGF-2, but suppressed expression of IL-8, PDGF, TIMP-2 and VEGF. Furthermore, HTRA1 and epithelial-to-mesenchymal transition marker proteins were downregulated, whereas PERK and LC3B-II proteins were upregulated after sodium iodate treatment. These results suggested that prolonged exposure to non-lethal doses of oxidative stress induces RPE cell dysfunctions that resemble conditions in AMD. This model can be used for future drug/treatment investigation on AMD.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Department of Ophthalmology and Visual Sciences, and The Chinese University of Hong Kong, Hong Kong
- Department of Ophthalmology, The Fourth People’s Hospital of Shenyang, Shenyang, China
- Shenyang Key Laboratory of Ophthalmology, Shenyang, China
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, and The Chinese University of Hong Kong, Hong Kong
| | - Mårten Erik Brelén
- Department of Ophthalmology and Visual Sciences, and The Chinese University of Hong Kong, Hong Kong
| | - Di Wu
- Department of Ophthalmology, The Fourth People’s Hospital of Shenyang, Shenyang, China
- Shenyang Key Laboratory of Ophthalmology, Shenyang, China
| | - Jian Xiong Wang
- Department of Ophthalmology and Visual Sciences, and The Chinese University of Hong Kong, Hong Kong
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, and The Chinese University of Hong Kong, Hong Kong
| | - Jasmine Sum Yee Yung
- Department of Ophthalmology and Visual Sciences, and The Chinese University of Hong Kong, Hong Kong
| | - Di Cao
- Department of Ophthalmology and Visual Sciences, and The Chinese University of Hong Kong, Hong Kong
| | - Yumeng Wang
- Department of Ophthalmology and Visual Sciences, and The Chinese University of Hong Kong, Hong Kong
| | - Shaodan Zhang
- Department of Ophthalmology, The Fourth People’s Hospital of Shenyang, Shenyang, China
- Shenyang Key Laboratory of Ophthalmology, Shenyang, China
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, and The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
48
|
Nuclear Factor (Erythroid-Derived)-Related Factor 2-Associated Retinal Pigment Epithelial Cell Protection under Blue Light-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8694641. [PMID: 27774118 PMCID: PMC5059614 DOI: 10.1155/2016/8694641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/29/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
Purpose. It is a matter of increasing concern that exposure to light-emitting diodes (LED), particularly blue light (BL), damages retinal cells. This study aimed to investigate the retinal pigment epithelium (RPE) damage caused by BL and to elucidate the role of nuclear factor (erythroid-derived)-related factor 2 (Nrf2) in the pathogenesis of BL-induced RPE damage. Methods. ARPE-19, a human RPE cell line, and mouse primary RPE cells from wild-type and Nrf2 knockout (Nrf2-/-) mice were cultured under blue LED exposure (intermediate wavelength, 450 nm). Cell death rate and reactive oxygen species (ROS) generation were measured. TUNEL staining was performed to detect apoptosis. Real-time polymerase chain reaction was performed on NRF2 mRNA, and western blotting was performed to detect Nrf2 proteins in the nucleus or cytoplasm of RPE cells. Results. BL exposure increased cell death rate and ROS generation in ARPE-19 cells in a time-dependent manner; cell death was caused by apoptosis. Moreover, BL exposure induced NRF2 mRNA upregulation and Nrf2 nuclear translocation in RPE. Cell death rate was significantly higher in RPE cells from Nrf2-/- mice than from wild-type mice. Conclusions. The Nrf2 pathway plays an important role in protecting RPE cells against BL-induced oxidative stress.
Collapse
|
49
|
Boya P, Esteban-Martínez L, Serrano-Puebla A, Gómez-Sintes R, Villarejo-Zori B. Autophagy in the eye: Development, degeneration, and aging. Prog Retin Eye Res 2016; 55:206-245. [PMID: 27566190 DOI: 10.1016/j.preteyeres.2016.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023]
Abstract
Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it plays an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Research has only begun to examine the role of autophagy in the visual system. The retina, a light-sensitive tissue, detects and transmits electrical impulses through the optic nerve to the visual cortex in the brain. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review the main studies that have sought to explain autophagy's importance in visual function. We describe the role of autophagy in retinal development and cell differentiation, and discuss the implications of autophagy dysregulation both in physiological aging and in important diseases such as age-associated macular degeneration and glaucoma. We also address the putative role of autophagy in promoting photoreceptor survival and discuss how selective autophagy could provide alternative means of protecting retinal cells. The findings reviewed here underscore the important role of autophagy in maintaining proper retinal function and highlight novel therapeutic approaches for blindness and other diseases of the eye.
Collapse
Affiliation(s)
- Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Lorena Esteban-Martínez
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Serrano-Puebla
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|