1
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
Chen G, Zhang C, Li H, Liu X. Sepsis-induced inflammatory demyelination in medullary visceral zone and cholinergic anti-inflammatory pathway: Insights from a Rat's model study. Heliyon 2024; 10:e33840. [PMID: 39027552 PMCID: PMC11255576 DOI: 10.1016/j.heliyon.2024.e33840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Background Our previous studies have demonstrated that the activated Cholinergic Anti-inflammatory Pathway (CAP) effectively suppresses systemic inflammation and immunity in early sepsis. Some parameters of Heart Rate Variability (HRV) could be used to reflect the regulatory activity of CAP. However, in the early stages of severe sepsis of some patients, the inflammatory storm can still result in multiple organs dysfunction and even death, suggesting they lose CAP's modulation ability. Since CAP is part of the vagus nerve and is directly innervated by the Medullary Visceral Zone (MVZ), we can reasonably concluded that pathological changes induced by MVZ's neuroinflammation should be responsible for CAP's dysfunction in modulating systemic inflammation in early sepsis. Methods We conducted two independent septic experiments, the sepsis model rats were prepared by cecum ligation and puncture (CLP) method. In the first experiment, A total of 64 adult male Sprague-Dawley rats were included. Under the condition of sepsis and CAP's pharmacological activation or blockade, we investigated the MVZ's pathological changes, the functional state of key neurons including catecholaminergic and cholinergic neurons, key genes' expression such as Oligodendrocyte Transcription Factor 2 (Olig-2) mRNA, glial fibrillary acidic protein (GFAP) mRNA, and matrix metalloprotein (MMP) -9 mRNA, and CAP's activities reflected by HRV. The second experiment involved in 56 rats, through central anti-inflammation by feeding with 10 mg/ml minocycline sucrose solution as the only water source, or right vagus transection excepting for central anti-inflammation as a mean of the CAP's functional cancel, we confirmed that the neuroinflammation in MVZ affected systemic inflammation through CAP in sepsis. Results In the first experiment, cholinergic and catecholaminergic neurons showed significant apoptosis with reduced expressions of TH, but the expression of CHAT remained relatively unaffected in MVZ in sepsis. HRV parameters representing the tone of the vagus nerve, such as SDNN, RMSSD, HF, SD1, and SD2, did not show significant differences among the three Septic Groups, although they all decreased significantly compared to the Control Group. The expressions of GFAP mRNA and MMP-9 mRNA were up-regulated, while the expression of Olig-2 mRNA was down-regulated in the Septic Groups. Intervention of CAP had a significant effect on cholinergic and catecholaminergic neurons' apoptosis, as well as the expressions of TH/CHAT and these key genes, but had little effect on HRV in sepsis. In the second experiment, the levels of TNF-α, IL-6, in serum and MVZ were significantly increased in sepsis. Central anti-inflammatory treatment reversed these changes. However, right vagotomy abolished the central anti-inflammatory effect. Conclusions Our study uncovered that MVZ's neuroinflammation may play a crucial role in the uncontrolled systemic inflammation through inflammatory demyelination in MVZ, which disrupts CAP's modulation on the systemic inflammation in early sepsis.
Collapse
Affiliation(s)
- Gao Chen
- The Intensive Care Unite of Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430079, China
| | - Cheng Zhang
- Emergency Department of the First People's Hospital of Guiyang of Guizhou Province, 550002, China
| | - Hongbing Li
- Emergency Department of the First People's Hospital of Guiyang of Guizhou Province, 550002, China
| | - Xian Liu
- Geriatrics Department of the First People's Hospital of Guiyang of Guizhou Province, 550002, China
| |
Collapse
|
3
|
Jia XY, Yang Y, Jia XT, Jiang DL, Fu LY, Tian H, Yang XY, Zhao XY, Liu KL, Kang YM, Yu XJ. Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus. Front Neurosci 2024; 18:1416522. [PMID: 38872941 PMCID: PMC11169651 DOI: 10.3389/fnins.2024.1416522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Background Long term hypertension seriously promotes target organ damage in the brain and heart, and has increasingly become serious public health problem worldwide. The anti-hypertensive effects of capsaicin has been reported, however, the role and mechanism of capsaicin within the brain on salt-induced hypertension have yet to be elucidated. This study aimed to verify the hypothesis that capsaicin attenuates salt-induced hypertension via the AMPK/Akt/Nrf2 pathway in hypothalamic paraventricular nucleus (PVN). Methods Dahl salt-sensitive (Dahl S) rats were used as animal model for the present study. Rats were randomly divided into four groups based on their dietary regimen (0.3% normal salt diet and 8% high salt diet) and treatment methods (infusion of vehicle or capsaicin in the PVN). Capsaicin was chronically administered in the PVN throughout the animal experiment phase of the study that lasted 6 weeks. Results Our results demonstrated that PVN pretreatment with capsaicin can slow down raise of the blood pressure elevation and heart rate (HR) of Dahl S hypertensive rats given high salt diet. Interestingly, the cardiac hypertrophy was significantly improved. Furthermore, PVN pretreatment with capsaicin induced decrease in the expression of mRNA expression of NADPH oxidase-2 (NOX2), inducible nitric oxide synthase (iNOS), NOX4, p-IKKβ and proinflammatory cytokines and increase in number of positive cell level for Nrf2 and HO-1 in the PVN of Dahl S hypertensive rats. Additionally, the protein expressions of phosphatidylinositol 3-kinase (p-PI3K) and phosphorylated protein kinase-B (p-AKT) were decreased, phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) were increased after the PVN pretreatment with capsaicin. Conclusion Capsaicin pretreatment attenuates salt-sensitive hypertension by alleviating AMPK/Akt/iNOS pathway in the PVN.
Collapse
Affiliation(s)
- Xiu-Yue Jia
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yu Yang
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xiao-Tao Jia
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
- Department of Neurology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Da-Li Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li-Yan Fu
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Hua Tian
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xin-Yan Yang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xin-Yue Zhao
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Kai-Li Liu
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Ming Kang
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jing Yu
- Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Wu KLH, Wu CW, Chen LW, Chang HH, Cheng CL, Wu CY, Lee YC, Chen IC, Hung CY, Liu WC. Dysregulation of mitochondrial dynamics mediated aortic perivascular adipose tissue-associated vascular reactivity impairment under excessive fructose intake. Nutr Metab (Lond) 2024; 21:4. [PMID: 38167066 PMCID: PMC10763079 DOI: 10.1186/s12986-023-00776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Excessive fructose intake presents the major risk factor for metabolic cardiovascular disease. Perivascular adipose tissue (PVAT) is a metabolic tissue and possesses a paracrine function in regulating aortic reactivity. However, whether and how PVAT alters vascular function under fructose overconsumption remains largely unknown. In this study, male Sprague-Dawley rats (8 weeks old) were fed a 60% high fructose diet (HFD) for 12 weeks. Fasting blood sugar, insulin, and triglycerides were significantly increased by HFD intake. Plasma adiponectin was significantly enhanced in the HFD group. The expression of uncoupling protein 1 (UCP1) and mitochondrial mass were reduced in the aortic PVAT of the HFD group. Concurrently, the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and mitochondrial transcription factor A (TFAM) were suppressed. Furthermore, decreased fusion proteins (OPA1, MFN1, and MFN2) were accompanied by increased fission proteins (FIS1 and phospho-DRP1). Notably, the upregulated α-smooth muscle actin (α-SMA) and osteocalcin in the PVAT were concurrent with the impaired reactivity of aortic contraction and relaxation. Coenzyme Q10 (Q, 10 mg/100 mL, 4 weeks) effectively reversed the aforementioned events induced by HFD. Together, these results suggested that the dysregulation of mitochondrial dynamics mediated HFD-triggered PVAT whitening to impair aortic reactivity. Fortunately, coenzyme Q10 treatment reversed HFD-induced PVAT whitening and aortic reactivity.
Collapse
Affiliation(s)
- Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan, ROC
| | - Chih-Wei Wu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Department of Counseling, National ChiaYi University, Chiayi, Taiwan, ROC
| | - Lee-Wei Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Institute of Emergency and Critical Care Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC
| | - Hsiao-Huang Chang
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Ching-Li Cheng
- Department of Nursing, National Tainan Institute of Nursing, Tainan, Taiwan, ROC
| | - Cai-Yi Wu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
| | - Yu-Chi Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, ROC
| | - Wen-Chung Liu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC.
- Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC.
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
5
|
Ranasinghe N, Chen WZ, Hu YC, Gamage L, Lee TH, Ho CW. Regulation of PGC-1α of the Mitochondrial Energy Metabolism Pathway in the Gills of Indian Medaka ( Oryzias dancena) under Hypothermal Stress. Int J Mol Sci 2023; 24:16187. [PMID: 38003377 PMCID: PMC10671116 DOI: 10.3390/ijms242216187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Ectothermic fish exposure to hypothermal stress requires adjusting their metabolic molecular machinery, which was investigated using Indian medaka (Oryzias dancena; 10 weeks old, 2.5 ± 0.5 cm) cultured in fresh water (FW) and seawater (SW; 35‱) at room temperature (28 ± 1 °C). The fish were fed twice a day, once in the morning and once in the evening, and the photoperiod was 12 h:12 h light: dark. In this study, we applied two hypothermal treatments to reveal the mechanisms of energy metabolism via pgc-1α regulation in the gills of Indian medaka; cold-stress (18 °C) and cold-tolerance (extreme cold; 15 °C). The branchial ATP content was significantly higher in the cold-stress group, but not in the cold-tolerance group. In FW- and SW-acclimated medaka, the expression of genes related to mitochondrial energy metabolism, including pgc-1α, prc, Nrf2, tfam, and nd5, was analyzed to illustrate differential responses of mitochondrial energy metabolism to cold-stress and cold-tolerance environments. When exposed to cold-stress, the relative mRNA expression of pgc-1α, prc, and Nrf2 increased from 2 h, whereas that of tfam and nd5 increased significantly from 168 h. When exposed to a cold-tolerant environment, prc was significantly upregulated at 2 h post-cooling in the FW and SW groups, and pgc-1α was significantly upregulated at 2 and 12 h post-cooling in the FW group, while tfam and nd5 were downregulated in both FW and SW fish. Hierarchical clustering revealed gene interactions in the cold-stress group, which promoted diverse mitochondrial energy adaptations, causing an increase in ATP production. However, the cold-tolerant group demonstrated limitations in enhancing ATP levels through mitochondrial regulation via the PGC-1α energy metabolism pathway. These findings suggest that ectothermic fish may develop varying degrees of thermal tolerance over time in response to climate change. This study provides insights into the complex ways in which fish adjust their metabolism when exposed to cold stress, contributing to our knowledge of how they adapt.
Collapse
Affiliation(s)
- Naveen Ranasinghe
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Zhu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yau-Chung Hu
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Lahiru Gamage
- International Master’s Program of Biomedical Sciences, College of Medicine, China Medical University, Taichung 402, Taiwan
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chuan-Wen Ho
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; (N.R.)
| |
Collapse
|
6
|
Wafi AM. Nrf2 and autonomic dysregulation in chronic heart failure and hypertension. Front Physiol 2023; 14:1206527. [PMID: 37719456 PMCID: PMC10500196 DOI: 10.3389/fphys.2023.1206527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Redox imbalance plays essential role in the pathogenesis of cardiovascular diseases. Chronic heart failure (CHF) and hypertension are associated with central oxidative stress, which is partly mediated by the downregulation of antioxidant enzymes in the central autonomic neurons that regulate sympathetic outflow, resulting in sympathoexcitation. Antioxidant proteins are partially regulated by the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2). Downregulation of Nrf2 is key to disrupting central redox homeostasis and mediating sympathetic nerve activity in the setting of Chronic heart failure and hypertension. Nrf2, in turn, is regulated by various mechanisms, such as extracellular vesicle-enriched microRNAs derived from several cell types, including heart and skeletal muscle. In this review, we discuss the role of Nrf2 in regulating oxidative stress in the brain and its impact on sympathoexcitation in Chronic heart failure and hypertension. Importantly, we also discuss interorgan communication via extracellular vesicle pathways that mediate central redox imbalance through Nrf2 signaling.
Collapse
Affiliation(s)
- Ahmed M. Wafi
- Physiology Department, Faculty of Medicine, Jazan University, Jizan, Saudi Arabia
| |
Collapse
|
7
|
Wang L, Liu T, Wang X, Tong L, Chen G, Zhou S, Zhang H, Liu H, Lu W, Wang G, Zhang S, Du D. Microglia-derived TNF-α contributes to RVLM neuronal mitochondrial dysfunction via blocking the AMPK-Sirt3 pathway in stress-induced hypertension. J Neuroinflammation 2023; 20:137. [PMID: 37264405 DOI: 10.1186/s12974-023-02818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Neuroinflammation in the rostral ventrolateral medulla (RVLM) has been associated with the pathogenesis of stress-induced hypertension (SIH). Neuronal mitochondrial dysfunction is involved in many pathological and physiological processes. However, the impact of neuroinflammation on neuronal mitochondrial homeostasis and the involved signaling pathway in the RVLM during SIH are largely unknown. METHODS The morphology and phenotype of microglia and the neuronal mitochondrial injury in vivo were analyzed by immunofluorescence, Western blot, RT-qPCR, transmission electron microscopy, and kit detection. The underlying mechanisms of microglia-derived tumor necrosis factor-α (TNF-α) on neuronal mitochondrial function were investigated through in vitro and in vivo experiments such as immunofluorescence and Western blot. The effect of TNF-α on blood pressure (BP) regulation was determined in vivo via intra-RVLM microinjection of TNF-α receptor antagonist R7050. RESULTS The results demonstrated that BP, heart rate (HR), renal sympathetic nerve activity (RSNA), plasma norepinephrine (NE), and electroencephalogram (EEG) power increased in SIH rats. Furthermore, the branching complexity of microglia in the RVLM of SIH rats decreased and polarized into M1 phenotype, accompanied by upregulation of TNF-α. Increased neuronal mitochondria injury was observed in the RVLM of SIH rats. Mechanistically, Sirtuin 3 (Sirt3) and p-AMPK expression were markedly downregulated in both SIH rats and TNF-α-treated N2a cells. AMPK activator A769662 upregulated AMPK-Sirt3 signaling pathway and consequently reversed TNF-α-induced mitochondrial dysfunction. Microinjection of TNF-α receptor antagonist R7050 into the RVLM of SIH rats significantly inhibited the biological activities of TNF-α, increased p-AMPK and Sirt3 levels, and alleviated neuronal mitochondrial injury, thereby reducing c-FOS expression, RSNA, plasma NE, and BP. CONCLUSIONS This study revealed that microglia-derived TNF-α in the RVLM impairs neuronal mitochondrial function in SIH possibly through inhibiting the AMPK-Sirt3 pathway. Therefore, microglia-derived TNF-α in the RVLM may be a possible therapeutic target for the intervention of SIH.
Collapse
Affiliation(s)
- Linping Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Tianfeng Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Xueping Wang
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Tong
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Gaojun Chen
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Shumin Zhou
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Haisheng Liu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Wen Lu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Guohua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, Jiangsu, China
| | - Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Dongshu Du
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
- College of Life Sciences, Shanghai University, Shanghai, China.
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China.
- Shaoxing Institute of Shanghai University, Shaoxing, Zhejiang, China.
| |
Collapse
|
8
|
Boran T, Zengin OS, Seker Z, Akyildiz AG, Oztas E, Özhan G. Ripretinib induced skeletal muscle toxicity through mitochondrial impairment in C2C12 myotubes. Toxicology 2023; 489:153489. [PMID: 36933644 DOI: 10.1016/j.tox.2023.153489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Ripretinib is a multikinase inhibitor drug approved in 2020 by the FDA and in 2021 by EMA for use in the treatment of advanced gastrointestinal stromal tumors (GIST) which have not adequately responded to previous treatments with kinase inhibitors. The most common side effects of the drug are myalgia and fatigue, which likely causes interruption of the treatment or reduction of the dose. Skeletal muscle cells highly depend on ATP to perform their functions and mitochondrial damage may play a role in skeletal muscle toxicity induced by kinase inhibitors. However, the molecular mechanism has not been clearly identified in the literature yet. In this study, it has been aimed to elucidate the role of mitochondria in the toxic effect of ripretinib on skeletal muscle using the mouse C2C12 myoblast-derived myotubes. The myotubes were exposed to ripretinib at the range of 1-20 μM concentrations for 24 h. To determine the potential role of mitochondrial impairment in ripretinib-induced skeletal muscle toxicity, intracellular ATP level, mitochondrial membrane potential (MMP), mitochondrial ROS production (mtROS), mitochondrial DNA (mtDNA) copy number, and mitochondrial mass were examined after ripretinib treatment. Furthermore, changes in PGC 1α/NRF 1/NRF 2 expression levels that play a role in mitochondrial biogenesis and mitophagy were investigated. Additionally, the mitochondrial electron transport chain (ETC) enzyme activities were evaluated. Lastly, a molecular docking study was done to see ripretinib's possible interaction with DNA polymerase gamma (POLG) which is important for DNA replication in the mitochondria. According to the findings, ripretinib decreases the ATP level and mtDNA copy number, induces loss of MMP, and reduces mitochondrial mass. The activities of the ETC complexes were inhibited with ripretinib exposure which is in line with the observed ATP depletion and MMP loss. The molecular docking study revealed that ripretinib has inhibitory potential against POLG which supports the observed inhibition of mtDNA. The expression of PGC 1α was reduced in the nuclear fraction indicating that PGC-1α was not activated since the NRF 1 expression was reduced and NRF 2 level did not show significant change. Consequently, mtROS production increased in all treatment groups and mitophagy-related gene expressions and Parkin protein expression level were up-regulated at high doses. In conclusion, mitochondrial damage/loss can be one of the underlying causes of ripretinib-induced skeletal muscle toxicity. However, further studies are needed to confirm the results in vivo.
Collapse
Affiliation(s)
- Tugce Boran
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Istanbul University-Cerrahpaşa, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34500 Istanbul, Turkey
| | - Ozge Sultan Zengin
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey
| | - Zehra Seker
- Institute of Graduate Studies in Health Sciences, Istanbul University, 34116 Istanbul, Turkey; Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34093 Istanbul, Turkey
| | - Ezgi Oztas
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey
| | - Gül Özhan
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, 34116 Istanbul, Turkey.
| |
Collapse
|
9
|
Ji R, Jia F, Chen X, Gao Y, Yang J. Carnosol inhibits KGN cells oxidative stress and apoptosis and attenuates polycystic ovary syndrome phenotypes in mice through Keap1-mediated Nrf2/HO-1 activation. Phytother Res 2023; 37:1405-1421. [PMID: 36786429 DOI: 10.1002/ptr.7749] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/15/2023]
Abstract
Excessive oxidative stress and apoptosis of ovarian granulosa cells lead to abnormal follicular development and ovulation disorders in polycystic ovary syndrome (PCOS). Carnosol is a plant-derived polyphenol that has been proven to exhibit several cell protective effects. In this study, we established hyperandrogenic PCOS models both in vitro and in vivo. In the human ovarian granulosa cell line, KGN cells, decreased viability and mitochondrial membrane potential, and upregulated reactive oxygen species (ROS) level and apoptosis induced by DHT were partly reversed by carnosol. Western blotting results showed that carnosol treatment inhibited the DHT-activated mitochondrial apoptotic pathway by activating nuclear factor-erythroid 2-related factor (Nrf2)/heme oxygenase 1 (HO-1). Knockdown of Nrf2 by transfecting with siRNA or inhibiting HO-1 by zinc protoporphyrin (ZnPP) blocked the protective effects of carnosol. Computational modeling and pull-down assay results confirmed the direct binding of carnosol to kelch-like ECH-associated protein 1 (Keap1). In vivo results showed that the intraperitoneal administration of carnosol (50 and 100 mg/kg) improved estrous cycle disorders, polycystic ovary, and decreased elevated androgen in the PCOS mice. In summary, Carnosol has an effective role in inhibiting oxidative stress and apoptosis in DHT-treated KGN cells and protecting against mouse PCOS phenotypes through the Keap1-mediated activation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Rui Ji
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Fangyuan Jia
- Department of Vascular and Endovascular Surgery, Henan Provincial People's Hospital, Zhengzhou City, Henan, China.,Department of Aortic Surgery, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yue Gao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.,Ascientific Research Platform, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
10
|
Zheng M, Hu Z, Wang Y, Wang C, Zhong C, Cui W, You J, Gao B, Sun X, La L. Zhen Wu decoction represses renal fibrosis by invigorating tubular NRF2 and TFAM to fuel mitochondrial bioenergetics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154495. [PMID: 36257219 DOI: 10.1016/j.phymed.2022.154495] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Zhen Wu Decoction (ZWD) is a prescription from the classical text "Treatise on Exogenous Febrile Disease" and has been extensively used to control kidney diseases since the time of the Eastern Han Dynasty. HYPOTHESIS We hypothesized that ZWD limits tubular fibrogenesis by reinvigorating tubular bio-energetic capacity. STUDY DESIGN / METHODS A mouse model of chronic kidney disease (CKD) was established using unilateral ureteral obstruction (UUO). Three concentrations of ZWD, namely 25.2 g/kg (high dosage), 12.6 g/kg (middle dosage), and 6.3 g/kg (low dosage), were included to study the dose-effect relationship. Real-time qPCR was used to observe gene transcription in blood samples from patients with CKD. Different siRNAs were designed to study the role of mitochondrial transcription factor A (TFAM) and nuclear factor (erythroid-derived 2)-related factor 2 (NRF2) in transforming growth factor (TGF)-β1 induced fibrogenesis and mitochondrial damage. RESULTS We showed that ZWD efficiently attenuates renal function impairment and reduces renal interstitial fibrosis. TFAM and NRF2 were repressed, and the stimulator of interferon genes (STING) was activated in CKD patient blood sample. We further confirmed that ZWD activated TFAM depended on NRF2 as an important negative regulator of STING in mouse kidneys. Treatment with ZWD significantly reduced oxidative stress and inflammation by regulating the levels of oxidative phosphorylation (OXPHOS) and pro-inflammatory factors, such as interleukin-6, interleukin-1β, tumor necrosis factor receptor 1, and mitochondrial respiratory chain subunits. NRF2 inhibitors can weaken the ability of ZWD to increase TFAM expression and heal injured mitochondria, playing a similar role to that of STING inhibitors. Our study showed that ZWD elevates the expression of TFAM and mitochondrial respiratory chain subunits by promoting NRF2 activation, after suppressing mitochondrial membrane damage and cristae breakdown and restricting mitochondrial DNA (mtDNA) leakage into the cytoplasm to reduce STING activation. CONCLUSION ZWD maintains mitochondrial integrity and improves OXPHOS which represents an innovative insight into "strengthening Yang-Qi" theory. ZWD limits tubular fibrogenesis by reinvigorating tubular bioenergetic capacity.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengyang Hu
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yibin Wang
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Zhong
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Cui
- Department of Imaging, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junxiong You
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Baogui Gao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Lei La
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
NRF2/PGC-1α-mediated mitochondrial biogenesis contributes to T-2 toxin-induced toxicity in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 2022; 451:116167. [PMID: 35842139 DOI: 10.1016/j.taap.2022.116167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
The T-2 toxin is a highly toxic trichothecene mycotoxin that would cause serious toxicity in humans and animals. Recent studies suggest that the central nervous system (CNS) is susceptible to T-2 toxin, which can easily cross the blood-brain barrier, accumulate in brain tissues, and cause neurotoxicity. The growing evidence indicates that oxidative damage and mitochondrial dysfunction play a critical role in T-2 toxin-induced neurotoxicity, but the mechanisms are still poorly understood. Our present study showed that T-2 toxin decreased cell viability and increased lactate dehydrogenase leakage in human neuroblastoma SH-SY5Y cells in a concentration- and time-dependent manner. T-2 toxin elicited prominent oxidative stress and mitochondrial dysfunction, as evidenced by the promotion of cellular reactive oxygen species generation, disruption of the mitochondrial membrane potential, depletion of glutathione and reduction of the cellular ATP content. T-2 toxin impaired mitochondrial biogenesis, including decreased mitochondrial DNA copy number and affected the nuclear factor erythroid 2 related factor 2 (NRF2) / peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) pathway by upregulating NRF2 mRNA and protein expression while inhibiting the expression of PGC-1α, nuclear respiratory factor (NRF1) and mitochondrial transcription factor A (TFAM). NRF2 knockdown was found to significantly exacerbate T-2 toxin-induced cytotoxicity, oxidative stress, and mitochondrial dysfunction, as well as aggravate mitochondrial biogenesis impairment. NRF2 knockdown compromised T-2 toxin-induced upregulation of NRF2, but augmented the inhibition of PGC-1α, NRF1, and TFAM by T-2 toxin. Taken together, these findings suggest that T-2 toxin-induced oxidative stress and mitochondrial dysfunction in SH-SY5Y cells, at least in part by, NRF2/PGC-1α pathway-mediated mitochondrial biogenesis.
Collapse
|
12
|
Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J, Scholze A. Nrf2 Activation in Chronic Kidney Disease: Promises and Pitfalls. Antioxidants (Basel) 2022; 11:antiox11061112. [PMID: 35740009 PMCID: PMC9220138 DOI: 10.3390/antiox11061112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) protects the cell against oxidative damage. The Nrf2 system comprises a complex network that functions to ensure adequate responses to redox perturbations, but also metabolic demands and cellular stresses. It must be kept within a physiologic activity range. Oxidative stress and alterations in Nrf2-system activity are central for chronic-kidney-disease (CKD) progression and CKD-related morbidity. Activation of the Nrf2 system in CKD is in multiple ways related to inflammation, kidney fibrosis, and mitochondrial and metabolic effects. In human CKD, both endogenous Nrf2 activation and repression exist. The state of the Nrf2 system varies with the cause of kidney disease, comorbidities, stage of CKD, and severity of uremic toxin accumulation and inflammation. An earlier CKD stage, rapid progression of kidney disease, and inflammatory processes are associated with more robust Nrf2-system activation. Advanced CKD is associated with stronger Nrf2-system repression. Nrf2 activation is related to oxidative stress and moderate uremic toxin and nuclear factor kappa B (NF-κB) elevations. Nrf2 repression relates to high uremic toxin and NF-κB concentrations, and may be related to Kelch-like ECH-associated protein 1 (Keap1)-independent Nrf2 degradation. Furthermore, we review the effects of pharmacological Nrf2 activation by bardoxolone methyl, curcumin, and resveratrol in human CKD and outline strategies for how to adapt future Nrf2-targeted therapies to the requirements of patients with CKD.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|
13
|
Age-Related Mitochondrial Impairment and Renal Injury Is Ameliorated by Sulforaphane via Activation of Transcription Factor NRF2. Antioxidants (Basel) 2022; 11:antiox11010156. [PMID: 35052660 PMCID: PMC8772968 DOI: 10.3390/antiox11010156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Age is one of the major risk factors for the development of chronic pathologies, including kidney diseases. Oxidative stress and mitochondrial dysfunction play a pathogenic role in aging kidney disease. Transcription factor NRF2, a master regulator of redox homeostasis, is altered during aging, but the exact implications of altered NRF2 signaling on age-related renal mitochondrial impairment are not yet clear. Herein, we investigated the role of sulforaphane, a well-known NRF2 activator, on age-related mitochondrial and kidney dysfunction. Young (2–4 month) and aged (20–24 month) male Fischer 344 rats were treated with sulforaphane (15 mg/kg body wt/day) in drinking water for four weeks. We observed significant impairment in renal cortical mitochondrial function along with perturbed redox homeostasis, decreased kidney function and marked impairment in NRF2 signaling in aged Fischer 344 rats. Sulforaphane significantly improved mitochondrial function and ameliorated kidney injury by increasing cortical NRF2 expression and activity and decreasing protein expression of KEAP1, an NRF2 repressor. Sulforaphane treatment did not affect the renal NRF2 expression or activity and mitochondrial function in young rats. Taken together, our results provide novel insights into the protective role of the NRF2 pathway in kidneys during aging and highlight the therapeutic potential of sulforaphane in mitigating kidney dysfunction in elders.
Collapse
|
14
|
Zhang S, Hu L, Han C, Huang R, Ooi K, Qian X, Ren X, Chu D, Zhang H, Du D, Xia C. PLIN2 Mediates Neuroinflammation and Oxidative/Nitrosative Stress via Downregulating Phosphatidylethanolamine in the Rostral Ventrolateral Medulla of Stressed Hypertensive Rats. J Inflamm Res 2021; 14:6331-6348. [PMID: 34880641 PMCID: PMC8646230 DOI: 10.2147/jir.s329230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Oxidative/nitrosative stress, neuroinflammation and their intimate interactions mediate sympathetic overactivation in hypertension. An immoderate inflammatory response is characterized not only by elevated proinflammatory cytokines (PICs) but by increases in mitochondrial dysfunction, reactive oxygen species (ROS), and nitric oxide (NO). Recent data pinpoint that both the phospholipid and lipid droplets (LDs) are potent modulators of microglia physiology. Methods Stress rats underwent compound stressors for 15 days with PLIN2-siRNA or scrambled-siRNA (SC-siRNA) administrated into the rostral ventrolateral medulla (RVLM). Lipids were analyzed by mass spectroscopy-based quantitative lipidomics. The phenotypes and proliferation of microglia, LDs, in the RVLM of rats were detected; blood pressure (BP) and myocardial injury in rats were evaluated. The anti-oxidative/nitrosative stress effect of phosphatidylethanolamine (PE) was explored in cultured primary microglia. Results Lipidomics analysis showed that 75 individual lipids in RVLM were significantly dysregulated by stress [PE was the most one], demonstrating that lipid composition changed with stress. In vitro, prorenin stress induced the accumulation of LDs, increased PICs, which could be blocked by siRNA-PLIN2 in microglia. PLIN2 knockdown upregulated the PE synthesis in microglia. Anti-oxidative/nitrosative stress effect of PE delivery was confirmed by the decrease of ROS and decrease in 3-NT and MDA in prorenin-treated microglia. PLIN2 knockdown in the RVLM blocked the number of iNOS+ and PCNA+ microglia, decreased BP, alleviated cardiac fibrosis and hypertrophy in stressed rats. Conclusion PLIN2 mediates microglial polarization/proliferation via downregulating PE in the RVLM of stressed rats. Delivery of PE is a promising strategy for combating neuroinflammation and oxidative/nitrosative stress in stress-induced hypertension.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Hu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Chengzhi Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Renhui Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Kokwin Ooi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xinyi Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaorong Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dechang Chu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, People's Republic of China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, People's Republic of China
| | - Dongshu Du
- School of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
15
|
D'Errico M, Parlanti E, Pascucci B, Filomeni G, Mastroberardino PG, Dogliotti E. The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Arch Biochem Biophys 2021; 710:108977. [PMID: 34174223 DOI: 10.1016/j.abb.2021.108977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.
Collapse
Affiliation(s)
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Copenhagen University, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Pier Giorgio Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; IFOM- FIRC Institute of Molecular Oncology, Milan, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
16
|
Yu X, Xu M, Meng X, Li S, Liu Q, Bai M, You R, Huang S, Yang L, Zhang Y, Jia Z, Zhang A. Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI. Sci Transl Med 2021; 12:12/543/eaay7591. [PMID: 32404507 DOI: 10.1126/scitranslmed.aay7591] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) is a worldwide public health problem with no specific and satisfactory therapies in clinic. The nuclear pregnane X receptor (PXR) is involved in the progression of multiple diseases, including metabolic diseases, atherosclerosis, hypertension, liver injury, etc. However, its role in kidney injury remains to be understood. In this study, we have investigated the role of PXR in AKI and underlying mechanism(s) involved in its function. PXR was robustly down-regulated and negatively correlated with renal dysfunction in human and animal kidneys with AKI. Silencing PXR in rats enhanced cisplatin-induced AKI and induced severe mitochondrial abnormalities, whereas activating PXR protected against AKI. Using luciferase reporter assays, genomic manipulation, and proteomics data analysis on the kidneys of PXR-/- rats, we determined that PXR targeted Aldo-keto reductase family 1, member B7 (AKR1B7) to improve mitochondrial function, thereby ameliorating AKI. We confirmed the protective role of PXR against kidney injury using genomic and pharmacologic approaches in an ischemia/reperfusion model of AKI. These findings demonstrate that disabling the PXR/AKR1B7/mitochondrial metabolism axis is an important factor that can contribute to AKI, whereas reestablishing this axis can be useful for treating AKI.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Man Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Xia Meng
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Shumin Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Qianqi Liu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Ran You
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Li Yang
- Department of Nephrology, Peking University First Hospital, Beijing 100034, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
17
|
Pentoxifylline Enhances Antioxidative Capability and Promotes Mitochondrial Biogenesis in D-Galactose-Induced Aging Mice by Increasing Nrf2 and PGC-1 α through the cAMP-CREB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6695613. [PMID: 34257818 PMCID: PMC8245236 DOI: 10.1155/2021/6695613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Aging is a complex phenomenon associated with oxidative stress and mitochondrial dysfunction. The objective of this study was to investigate the potential ameliorative effects of the phosphodiesterase inhibitor pentoxifylline (PTX) on the aging process and its underlying mechanisms. We treated D-galactose- (D-gal-) induced aging mice with PTX and measured the changes in behavior, degree of oxidative damage, and mitochondrial ultrastructure and content as well as the expression of nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated antioxidant genes and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha- (PGC-1α-) dependent mitochondrial biogenesis genes. The results demonstrated that PTX improved cognitive deficits, reduced oxidative damage, ameliorated abnormal mitochondrial ultrastructure, increased mitochondrial content and Nrf2 activation, and upregulated antioxidant and mitochondrial biogenesis gene expression in the hippocampus of wild-type aging mice. However, the above antiaging effects of PTX were obviously decreased in the brains of Nrf2-deficient D-gal-induced aging mice. Moreover, in hydrogen peroxide-treated SH-SY5Y cells, we found that cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) and Nrf2/PGC-1α act in a linear way by CREB siRNA transfection. Thus, PTX administration improved the aging-related decline in brain function by enhancing antioxidative capability and promoting mitochondrial biogenesis, which might depend on increasing Nrf2 and PGC-1α by activating the cAMP-CREB pathway.
Collapse
|
18
|
Atia MM, Alghriany AA. Adipose-derived mesenchymal stem cells rescue rat hippocampal cells from aluminum oxide nanoparticle-induced apoptosis via regulation of P53, Aβ, SOX2, OCT4, and CYP2E1. Toxicol Rep 2021; 8:1156-1168. [PMID: 34150525 PMCID: PMC8190131 DOI: 10.1016/j.toxrep.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess a preventive capacity against free radical toxicity in various tissues. The present study aimed to demonstrate the reformative and treatment roles of adipose-derived MSCs (AD-MSCs) against severe toxicity in the hippocampal cells of the brain caused by aluminum oxide nanoparticles (Al2O3-NPs). Rats were divided into five experimental groups: an untreated control group, a control group receiving NaCl, a group receiving Al2O3-NPs (6 mg/kg) for 20 days, a group that was allowed to recover (R) for 20 days following treatment with Al2O3-NPs, and a Al2O3-NPs + AD-MSCs group, where each rat was injected with 0.8 × 106 AD-MSCs via the caudal vein. Oral administration of Al2O3-NPs increased the protein levels of P53, cleaved caspase-3, CYP2E1, and beta-amyloid (Aβ); contrarily, AD-MSCs transplantation downregulated the levels of these proteins. In addition, the AD-MSCs-treated hippocampal cells were protected from Al2O3-NPs-induced toxicity, as detected by the expression levels of Sox2 and Oct4 that are essential for the maintenance of self-renewal. It was also found that AD-MSCs injection significantly altered the levels of brain total peroxide and monoamine oxidase (MAO)-A and MAO-B activities. Histologically, our results indicated that AD-MSCs alleviated the severe damage in the hippocampal cells induced by Al2O3-NPs. Moreover, the role of AD-MSCs in reducing hippocampal cell death was reinforced by the regulation of P53, cleaved caspase-3, Aβ, and CYP2E1 proteins, as well as by the regulation of SOX2 and OCT4 levels and MAO-A and MAO-B activities.
Collapse
Key Words
- AD-MSCs, adipose-derived mesenchymal stem cells
- Adipose-Derived mesenchymal stem cells
- Al2O3-NPs, Aluminum oxide nanoparticles
- Aluminum oxide nanoparticles
- Apoptosis
- Aβ, amyloid beta
- EGTA, ethylene glycol tetraacetic acid
- Hippocampal cells
- MAO-A and B, monoamine oxidase A, B
- Oct4, octamer-binding transcription factor 4
- ROS, reactive oxygen species
- Sox2, sex-determining region Y-box 2
- TEM, transmission electron microscopy
Collapse
Affiliation(s)
- Mona M. Atia
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Egypt
| | - Alshaimaa A.I. Alghriany
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Egypt
| |
Collapse
|
19
|
Huang HM, Wu CW, Chen IC, Lee YC, Huang YS, Hung CY, Wu KLH. Maternal high-fructose diet induced early-onset retinopathy via the suppression of synaptic plasticity mediated by mitochondrial dysfunction. Am J Physiol Endocrinol Metab 2021; 320:E1173-E1182. [PMID: 33969706 DOI: 10.1152/ajpendo.00001.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retinopathy is a leading cause of blindness, and there is currently no cure. Earlier identification of the progression of retinopathy could provide a better chance for intervention. Diet has profound effects on retinal function. A maternal high-fructose diet (HFD) triggers diseases in multiple organs. However, whether maternal HFD impairs retinal function in adult offspring is currently unknown. By using the rodent model of maternal HFD during pregnancy and lactation, our data indicated a reduced b-wave of electroretinography (ERG) in HFD female offspring at 3 mo of age compared with age-matched offspring of dams fed regular chow (ND). Immunofluorescence and Western blot analyses indicated that the distributions and expressions of synaptophysin, postsynaptic density protein 95 (PSD95), and phospho(p)-Ca2+/calmodulin-stimulated protein kinase IIα (CaMKIIα) were significantly suppressed in the HFD group. Furthermore, the ATP content and the mitochondrial respiratory protein, Mt CPX 4-2, were decreased. Moreover, the expressions of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and mitochondrial transcription factor A (TFAM) in the retina of the HFD group were downregulated. Treatment with coenzyme Q10 (Q10), a key mediator of the electron transport chain, effectively reversed these abovementioned dysfunctions. Together, these results suggested that maternal HFD impaired retinal function in adult female offspring. The mechanism underlying early-onset retinopathy may involve the reduction in the capacity of mitochondrial energy production and the suppression of synaptic plasticity. Most importantly, mitochondria could be a feasible target to reprogram maternal HFD-damaged retinal function.NEW & NOTEWORTHY In this study, we provide novel evidence that maternal high-fructose diet during gestation and lactation could induce early-onset retinopathy in adult female offspring. Of note, the insufficient energy content, downregulated mitochondrial respiratory complex 4-2, and impaired mitochondrial biogenesis might contribute to the decrease of synaptic plasticity resulting in retinal function suppression. Oral application with coenzyme Q10 for 4 wk could at least partially reverse the aforementioned molecular events and retinal function.
Collapse
Affiliation(s)
- Hsiu-Mei Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Republic of China
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Republic of China
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Republic of China
| | - Yu-Chi Lee
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Republic of China
| | - Yao-Sheng Huang
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City, Republic of China
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Republic of China
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Republic of China
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Republic of China
| |
Collapse
|
20
|
Ke L, Li Q, Song J, Jiao W, Ji A, Chen T, Pan H, Song Y. The mitochondrial biogenesis signaling pathway is a potential therapeutic target for myasthenia gravis via energy metabolism (Review). Exp Ther Med 2021; 22:702. [PMID: 34007311 PMCID: PMC8120506 DOI: 10.3892/etm.2021.10134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Myasthenia gravis (MG) is an autoantibody-mediated autoimmune disease that is characterized by muscle weakness and fatigue. Traditional treatments for MG target the neuromuscular junction (NMJ) or the immune system. However, the efficacy of such treatments is limited, and novel therapeutic options for MG are urgently required. In the current review, a new therapeutic strategy is proposed based on the mitochondrial biogenesis and energy metabolism pathway, as stimulating mitochondrial biogenesis and the energy metabolism might alleviate myasthenia gravis. A number of cellular sensors of the energy metabolism were investigated, including AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). AMPK and SIRT1 are sensors that regulate cellular energy homeostasis and maintain energy metabolism by balancing anabolism and catabolism. Peroxisome proliferator-activated receptor γ coactivator 1α and its downstream transcription factors nuclear respiratory factors 1, nuclear respiratory factors 2, and transcription factor A are key sensors of mitochondrial biogenesis, which can restore mitochondrial DNA and produce new mitochondria. These processes help to control muscle contraction and relieve the symptoms of MG, including muscle weakness caused by dysfunctional NMJ transmission. Therefore, the present review provides evidence for the therapeutic potential of targeting mitochondrial biogenesis for the treatment of MG.
Collapse
Affiliation(s)
- Lingling Ke
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qing Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Jingwei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wei Jiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Aidong Ji
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yafang Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China.,Institute of Pi-Wei, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
21
|
Zhou YQ, Mei W, Tian XB, Tian YK, Liu DQ, Ye DW. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol Ther 2021; 225:107846. [PMID: 33819559 DOI: 10.1016/j.pharmthera.2021.107846] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Chronic pain remains an enormous health problem affecting approximatively 30% of the world's population. Opioids as the first line analgesics often leads to undesirable side effects when used long term. Therefore, novel therapeutic targets are urgently needed to the development of more efficacious analgesics. Substantial evidence indicates that excessive reactive oxygen species (ROS) are extremely important to the development of chronic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidant defense. Emerging evidence suggests that Nrf2 and its downstream effectors are implicated in chronic inflammatory and neuropathic pain. Notably, controversial results have been reported regarding the expression of Nrf2 and its downstream targets in peripheral and central regions involved in pain transmission. However, our recent studies and results from other laboratories demonstrate that Nrf2 inducers exert potent analgesic effects in various murine models of chronic pain. In this review, we summarized and discussed the preclinical evidence demonstrating the therapeutic potential of Nrf2 inducers in chronic pain. These evidence indicates that Nrf2 activation are beneficial in chronic pain mostly by alleviating ROS-associated pathological processes. Overall, Nrf2-based therapy for chronic pain is an area with great promise, but more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Da-Wei Ye
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Gu X, Liu Y, Wang N, Zhen J, Zhang B, Hou S, Cui Z, Wan Q, Feng H. Transcription of MRPL12 regulated by Nrf2 contributes to the mitochondrial dysfunction in diabetic kidney disease. Free Radic Biol Med 2021; 164:329-340. [PMID: 33444714 DOI: 10.1016/j.freeradbiomed.2021.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) and end-stage renal disease (ESRD). Increasing evidences suggested that DKD correlates more closely to mitochondrial dysfunction than to hyperglycemia. Our previous study has reported that mitochondrial ribosomal protein L7/L12 (MRPL12) could positively control the mitochondrial oxidative phosphorylation (OXPHOS) and mtDNA copy number. The present study further investigated the role of MRPL12 in mitochondrial dysfunction of DKD. Using a mass spectrometry-based proteomics and immunohistochemistry, we found that MRPL12 underwent significant decreases in diabetic kidneys. Moreover, decreased expression of MRPL12 was associated with reduced mitochondrial OXPHOS in proximal tubular epithelial cells (PTECs) and overexpression of MRPL12 could alleviated the impairment of OXPHOS induced by long term high glucose. We further explored the upstream mechanism and identified nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential transcription factor for MRPL12. Nrf2 changes consistently with MRPL12 in DKD and correlates with alterations of mitochondrial function, fibrosis and apoptosis of PTECs treated with high glucose challenge. Thus, the role of MRPL12 in the maintenance of mitochondrial function in DKD may be regulated by Nrf2, and provides new potential therapeutic targets for DKD.
Collapse
Affiliation(s)
- Xia Gu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Na Wang
- Medical Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Junhui Zhen
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shaoshuai Hou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhengguo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Qiang Wan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
23
|
Tan X, Jiao PL, Sun JC, Wang W, Ye P, Wang YK, Leng YQ, Wang WZ. β-Arrestin1 Reduces Oxidative Stress via Nrf2 Activation in the Rostral Ventrolateral Medulla in Hypertension. Front Neurosci 2021; 15:657825. [PMID: 33897365 PMCID: PMC8059792 DOI: 10.3389/fnins.2021.657825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress in the rostral ventrolateral medulla (RVLM), a key region for blood pressure (BP) regulation, has been demonstrated to be responsible for the overactivity of the sympathetic nervous system in hypertension and heart failure. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is a key transcription factor that maintains redox homeostasis by governing a broad array of antioxidant genes in response to oxidative stress. β-Arrestin1 is a multifunctional scaffold protein with the ability to interact with diverse signaling molecules independent of G protein-coupled receptors (GPCRs), and its overexpression in the RVLM could reduce BP and renal sympathetic nerve activity (RSNA) in spontaneously hypertensive rats (SHR). The goal of this study was to investigate whether Nrf2-mediated antioxidative stress is involved in the antihypertensive effect of β-arrestin1 in the RVLM. It was found that the activation level of Nrf2 in the RVLM of SHR was significantly reduced, compared with normotensive Wistar-Kyoko (WKY) rats. Overexpression of β-arrestin1 in the RVLM significantly decreased ROS production and facilitated the Nrf2 activation in the RVLM of SHR, accompanied by upregulating the expression of HO-1 and NQO-1. However, Nrf2 knockdown attenuated the antioxidant effect of β-arrestin1 overexpression in the RVLM by downregulating HO-1 and NQO-1 expression levels. In conclusion, the current results suggested that the antihypertensive effect of β-arrestin1 overexpression in the RVLM is mediated by decreased ROS production, which is associated with Nrf2 activation.
Collapse
Affiliation(s)
- Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Pei-Lei Jiao
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Orthopedics, The 962th Hospital of People’s Liberation Army, Harbin, China
| | - Jia-Cen Sun
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yue-Qi Leng
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Wei-Zhong Wang,
| |
Collapse
|
24
|
Wang Y, Kang Y, Qi C, Zhang T, Zhao H, Ji X, Yan W, Huang Y, Cui R, Zhang G, Shi G. Pentoxifylline enhances antioxidative capability and promotes mitochondrial biogenesis for improving age-related behavioral deficits. Aging (Albany NY) 2020; 12:25487-25504. [PMID: 33231568 PMCID: PMC7803534 DOI: 10.18632/aging.104155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
Pentoxifylline (PTX) is a non-specific phosphodiesterase inhibitor with pleiotropic effects that is routinely used to treat peripheral vascular disease. In this study, we tested whether PTX could also counteract the detrimental effects of aging in the brain. To accomplish that, we treated aged rats with PTX and measured resulting behavioral alterations as well as changes in dopaminergic neurochemical levels, oxidative balance markers, mitochondrial function, nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator activated receptor-gamma coactivator 1-alpha (PGC-1α) and downstream gene expression, and cyclic adenosine monophosphate (cAMP) content in the brain. The results demonstrated that PTX improved motor and cognitive deficits and restored levels of dopamine and its metabolites in the brains of aged rats. PTX also reduced malondialdehyde levels and increased the GSH/GSSG ratio, mitochondrial ATP, nuclear Nrf2, and cAMP levels, and upregulated PGC-1α, nuclear respiratory factor 1, and mitochondrial transcription factor A expression in the substantia nigra and hippocampus of aged rats. Thus, increased nuclear Nrf2 levels and upregulation of PGC-1α, which enhance antioxidative capability and promote mitochondrial biogenesis, may be responsible for PTX-induced amelioration of behavioral deficits in aged rats.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunxiao Qi
- Department of Anatomy, Hebei Medical University, Shijiazhuang 050017, China
| | - Tianyun Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Hui Zhao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoming Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Wensheng Yan
- Department of Sports Medicine, Hebei Sport University, Shijiazhuang 050017, China
| | - Yuanxiang Huang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang 050017, China
| | - Guoliang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China.,Department of Anatomy, Hebei Medical University, Shijiazhuang 050017, China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang 050017, China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang 050017, China.,Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
25
|
Farooqui Z, Mohammad RS, Lokhandwala MF, Banday AA. Nrf2 inhibition induces oxidative stress, renal inflammation and hypertension in mice. Clin Exp Hypertens 2020; 43:175-180. [PMID: 33070655 DOI: 10.1080/10641963.2020.1836191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress and renal inflammation play a pivotal role in the pathogenesis of hypertension. The redox-sensitive transcription factor, nuclear factor E2-related factor 2 (Nrf2) is the master regulator of phase II antioxidant enzymes that protects against oxidative stress and inflammation. This study aimed to investigate the effect of Nrf2 inhibition on oxidative stress-associated hypertension and renal dopamine 1 receptor (D1R) dysfunction in mice. Male C57BL/6 J mice were treated with a pro-oxidant, L-buthionine sulfoximine (BSO) (10 mmol/L in drinking water), and ML385 (10 kg body weight/kg body weight/day, intraperitoneally), a novel Nrf2 inhibitor that blocks Nrf2 regulated downstream target genes expression. Mice treated with BSO exhibited oxidative stress, renal functional impairment, inflammation, and elevated blood pressure. Also, BSO treatment increased the activity of phase II antioxidant enzyme, NAD(P)H: quinone oxidoreductase-1 (NQO-1). BSO and ML385 co-treatment exhibited a robust increase in blood pressure, oxidative stress and intensified the renal function deterioration as indicated by a significant increase in serum creatinine, urinary albumin excretion rate, and albumin to creatinine ratio and decreased glomerular filtration rate (GFR). Also, BSO and ML385 co-treatment downregulated NQO-1 and significantly altered the inflammatory cytokines, IL-1β and IL-10 levels. A D1R agonist SKF38393 failed to promote urinary sodium excretion indicating functional impairment in renal D1R. ML385 per se did not affect mean arterial pressure, GFR, and renal D1R function. Taken together, we concluded that the Nrf2 inhibition aggravated oxidative stress and inflammation by diminishing phase II antioxidant defense that deteriorates renal function and contributes to the development of hypertension in mice.
Collapse
Affiliation(s)
- Zeba Farooqui
- Heart and Kidney Institute, College of Pharmacy, University of Houston , Houston, Texas, USA
| | - Razia Sultana Mohammad
- Heart and Kidney Institute, College of Pharmacy, University of Houston , Houston, Texas, USA
| | - Mustafa F Lokhandwala
- Heart and Kidney Institute, College of Pharmacy, University of Houston , Houston, Texas, USA
| | - Anees Ahmad Banday
- Heart and Kidney Institute, College of Pharmacy, University of Houston , Houston, Texas, USA
| |
Collapse
|
26
|
Pathogenic Mechanisms of Myeloma Bone Disease and Possible Roles for NRF2. Int J Mol Sci 2020; 21:ijms21186723. [PMID: 32937821 PMCID: PMC7555756 DOI: 10.3390/ijms21186723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
Osteolytic bone lesions are one of the central features of multiple myeloma (MM) and lead to bone pain, fractures, decreased quality of life, and decreased survival. Dysfunction of the osteoclast (OC)/osteoblast (OB) axis plays a key role in the development of myeloma-associated osteolytic lesions. Many signaling pathways and factors are associated with myeloma bone diseases (MBDs), including the RANKL/OPG and NF-κB pathways. NRF2, a master regulator of inflammatory signaling, might play a role in the regulation of bone metabolism via anti-inflammatory signaling and decreased reactive oxygen species (ROS) levels. The loss of NRF2 expression in OCs reduced bone mass via the RANK/RANKL pathway and other downstream signaling pathways that affect osteoclastogenesis. The NRF2 level in OBs could interfere with interleukin (IL)-6 expression, which is associated with bone metabolism and myeloma cells. In addition to direct impact on OCs and OBs, the activity of NRF2 on myeloma cells and mesenchymal stromal cells influences the inflammatory stress/ROS level in these cells, which has an impact on OCs, OBs, and osteocytes. The interaction between these cells and OCs affects the osteoclastogenesis of myeloma bone lesions associated with NRF2. Therefore, we have reviewed the effects of NRF2 on OCs and OBs in MBDs.
Collapse
|
27
|
Quiles JM, Gustafsson ÅB. Mitochondrial Quality Control and Cellular Proteostasis: Two Sides of the Same Coin. Front Physiol 2020; 11:515. [PMID: 32528313 PMCID: PMC7263099 DOI: 10.3389/fphys.2020.00515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a hallmark of cardiac pathophysiology. Defects in mitochondrial performance disrupt contractile function, overwhelm myocytes with reactive oxygen species (ROS), and transform these cellular powerhouses into pro-death organelles. Thus, quality control (QC) pathways aimed at identifying and removing damaged mitochondrial proteins, components, or entire mitochondria are crucial processes in post-mitotic cells such as cardiac myocytes. Almost all of the mitochondrial proteins are encoded by the nuclear genome and the trafficking of these nuclear-encoded proteins necessitates significant cross-talk with the cytosolic protein QC machinery to ensure that only functional proteins are delivered to the mitochondria. Within the organelle, mitochondria contain their own protein QC system consisting of chaperones and proteases. This system represents another level of QC to promote mitochondrial protein folding and prevent aggregation. If this system is overwhelmed, a conserved transcriptional response known as the mitochondrial unfolded protein response is activated to increase the expression of proteins involved in restoring mitochondrial proteostasis. If the mitochondrion is beyond repair, the entire organelle must be removed before it becomes cytotoxic and causes cellular damage. Recent evidence has also uncovered mitochondria as participants in cytosolic protein QC where misfolded cytosolic proteins can be imported and degraded inside mitochondria. However, this process also places increased pressure on mitochondrial QC pathways to ensure that the imported proteins do not cause mitochondrial dysfunction. This review is focused on discussing the pathways involved in regulating mitochondrial QC and their relationship to cellular proteostasis and mitochondrial health in the heart.
Collapse
Affiliation(s)
- Justin M Quiles
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Åsa B Gustafsson
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Chao YM, Wu KLH, Tsai PC, Tain YL, Leu S, Lee WC, Chan JYH. Anomalous AMPK-regulated angiotensin AT 1R expression and SIRT1-mediated mitochondrial biogenesis at RVLM in hypertension programming of offspring to maternal high fructose exposure. J Biomed Sci 2020; 27:68. [PMID: 32446297 PMCID: PMC7245869 DOI: 10.1186/s12929-020-00660-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tissue oxidative stress, sympathetic activation and nutrient sensing signals are closely related to adult hypertension of fetal origin, although their interactions in hypertension programming remain unclear. Based on a maternal high-fructose diet (HFD) model of programmed hypertension, we tested the hypothesis that dysfunction of AMP-activated protein kinase (AMPK)-regulated angiotensin type 1 receptor (AT1R) expression and sirtuin1 (SIRT1)-dependent mitochondrial biogenesis contribute to tissue oxidative stress and sympathoexcitation in programmed hypertension of young offspring. METHODS Pregnant female rats were randomly assigned to receive normal diet (ND) or HFD (60% fructose) chow during pregnancy and lactation. Both ND and HFD offspring returned to ND chow after weaning, and blood pressure (BP) was monitored from age 6 to 12 weeks. At age of 8 weeks, ND and HFD offspring received oral administration of simvastatin or metformin; or brain microinfusion of losartan. BP was monitored under conscious condition by the tail-cuff method. Nutrient sensing molecules, AT1R, subunits of NADPH oxidase, mitochondrial biogenesis markers in rostral ventrolateral medulla (RVLM) were measured by Western blot analyses. RVLM oxidative stress was measured by fluorescent probe dihydroethidium and lipid peroxidation by malondialdehyde assay. Mitochondrial DNA copy number was determined by quantitative real-time polymerase chain reaction. RESULTS Increased systolic BP, plasma norepinephrine level and sympathetic vasomotor activity were exhibited by young HFD offspring. Reactive oxygen species (ROS) level was also elevated in RVLM where sympathetic premotor neurons reside, alongside augmented protein expressions of AT1R and pg91phox subunit of NADPH oxidase, decrease in superoxide dismutase 2; and suppression of transcription factors for mitochondrial biogenesis, peroxisome proliferator-activated receptor γ co-activator α (PGC-1α) and mitochondrial transcription factor A (TFAM). Maternal HFD also attenuated AMPK phosphorylation and protein expression of SIRT1 in RVLM of young offspring. Oral administration of a HMG-CoA reductase inhibitor, simvastatin, or an AMPK activator, metformin, to young HFD offspring reversed maternal HFD-programmed increase in AT1R and decreases in SIRT1, PGC-1α and TFAM; alleviated ROS production in RVLM, and attenuated sympathoexcitation and hypertension. CONCLUSION Dysfunction of AMPK-regulated AT1R expression and SIRT1-mediated mitochondrial biogenesis may contribute to tissue oxidative stress in RVLM, which in turn primes increases of sympathetic vasomotor activity and BP in young offspring programmed by excessive maternal fructose consumption.
Collapse
Affiliation(s)
- Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Pei-Chia Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung Univeristy College of Medicine, Kaohsiung, 83301, Taiwan
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
29
|
Angeloni C, Gatti M, Prata C, Hrelia S, Maraldi T. Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress-Related Neurodegeneration. Int J Mol Sci 2020; 21:ijms21093299. [PMID: 32392722 PMCID: PMC7246730 DOI: 10.3390/ijms21093299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases include a variety of pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer’s and Parkinson’s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Martina Gatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| | - Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| |
Collapse
|
30
|
Arefin S, Buchanan S, Hobson S, Steinmetz J, Alsalhi S, Shiels PG, Kublickiene K, Stenvinkel P. Nrf2 in early vascular ageing: Calcification, senescence and therapy. Clin Chim Acta 2020; 505:108-118. [PMID: 32097628 DOI: 10.1016/j.cca.2020.02.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022]
Abstract
Under normal physiological conditions, free radical generation and antioxidant defences are balanced, and reactive oxygen species (ROS) usually act as secondary messengers in a plethora of biological processes. However, when this balance is impaired, oxidative stress develops due to imbalanced redox homeostasis resulting in cellular damage. Oxidative stress is now recognized as a trigger of cellular senescence, which is associated with multiple chronic 'burden of lifestyle' diseases, including atherosclerosis, type-2 diabetes, chronic kidney disease and vascular calcification; all of which possess signs of early vascular ageing. Nuclear factor erythroid 2-related factor 2 (Nrf2), termed the master regulator of antioxidant responses, is a transcription factor found to be frequently dysregulated in conditions characterized by oxidative stress and inflammation. Recent evidence suggests that activation of Nrf2 may be beneficial in protecting against vascular senescence and calcification. Both natural and synthetic Nrf2 agonists have been introduced as promising drug classes in different phases of clinical trials. However, overexpression of the Nrf2 pathway has also been linked to tumorigenesis, which highlights the requirement for further understanding of pathways involving Nrf2 activity, especially in the context of cellular senescence and vascular calcification. Therefore, comprehensive translational pre-clinical and clinical studies addressing the targeting capabilities of Nrf2 agonists are urgently required. The present review discusses the impact of Nrf2 in senescence and calcification in early vascular ageing, with focus on the potential clinical implications of Nrf2 agonists and non-pharmacological Nrf2 therapeutics.
Collapse
Affiliation(s)
- Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Sarah Buchanan
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Julia Steinmetz
- Rheumatology Unit, Dep. of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Shno Alsalhi
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden; Research Center, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region, Iraq
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl CRC, ICS, MVLS, University of Glasgow, Glasgow, UK
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Karolinska University Hospital, 14186 Stockholm, Sweden.
| |
Collapse
|
31
|
Channakkar AS, Singh T, Pattnaik B, Gupta K, Seth P, Adlakha YK. MiRNA-137-mediated modulation of mitochondrial dynamics regulates human neural stem cell fate. Stem Cells 2020; 38:683-697. [PMID: 32012382 PMCID: PMC7217206 DOI: 10.1002/stem.3155] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The role of miRNAs in determining human neural stem cell (NSC) fate remains elusive despite their high expression in the developing nervous system. In this study, we investigate the role of miR‐137, a brain‐enriched miRNA, in determining the fate of human induced pluripotent stem cells‐derived NSCs (hiNSCs). We show that ectopic expression of miR‐137 in hiNSCs reduces proliferation and accelerates neuronal differentiation and migration. TargetScan and MicroT‐CDS predict myocyte enhancer factor‐2A (MEF2A), a transcription factor that regulates peroxisome proliferator‐activated receptor‐gamma coactivator (PGC1α) transcription, as a target of miR‐137. Using a reporter assay, we validate MEF2A as a downstream target of miR‐137. Our results indicate that reduced levels of MEF2A reduce the transcription of PGC1α, which in turn impacts mitochondrial dynamics. Notably, miR‐137 accelerates mitochondrial biogenesis in a PGC1α independent manner by upregulating nuclear factor erythroid 2 (NFE2)‐related factor 2 (NRF2) and transcription factor A of mitochondria (TFAM). In addition, miR‐137 modulates mitochondrial dynamics by inducing mitochondrial fusion and fission events, resulting in increased mitochondrial content and activation of oxidative phosphorylation (OXPHOS) and oxygen consumption rate. Pluripotency transcription factors OCT4 and SOX2 are known to have binding sites in the promoter region of miR‐137 gene. Ectopic expression of miR‐137 elevates the expression levels of OCT4 and SOX2 in hiNSCs which establishes a feed‐forward self‐regulatory loop between miR‐137 and OCT4/SOX2. Our study provides novel molecular insights into NSC fate determination by miR‐137.
Collapse
Affiliation(s)
- Asha S Channakkar
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Tanya Singh
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Bijay Pattnaik
- Centre of Excellence in Asthma & Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Karnika Gupta
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| | - Yogita K Adlakha
- Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, India
| |
Collapse
|
32
|
Fu MH, Chen IC, Lee CH, Wu CW, Lee YC, Kung YC, Hung CY, Wu KLH. Anti-neuroinflammation ameliorates systemic inflammation-induced mitochondrial DNA impairment in the nucleus of the solitary tract and cardiovascular reflex dysfunction. J Neuroinflammation 2019; 16:224. [PMID: 31729994 PMCID: PMC6858639 DOI: 10.1186/s12974-019-1623-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Decreased heart rate variability (HRV) leads to cardiovascular diseases and increased mortality in clinical studies. However, the underlying mechanisms are still inconclusive. Systemic inflammation-induced neuroinflammation is known to impair the autonomic center of cardiovascular regulation. The dynamic stability of blood pressure and heart rate (HR) is regulated by modulation of the reciprocal responses of sympathetic and parasympathetic tone by the baroreflex, which is controlled by the nucleus of the solitary tract (NTS). METHODS Systemic inflammation was induced by E. coli lipopolysaccharide (LPS, 1.2 mg/kg/day, 7 days) peritoneal infusion via an osmotic minipump in normotensive Sprague-Dawley rats. Systolic blood pressure (SBP) and HR were measured by femoral artery cannulation and recorded on a polygraph under anesthesia. The low-frequency (LF; 0.25-0.8 Hz) and high-frequency (HF; 0.8-2.4 Hz) components of SBP were adopted as the indices for sympathetic vasomotor tone and parasympathetic vasomotor tone, while the baroreflex effectiveness index (BEI) was adopted from the analysis of SBP and pulse interval (PI). The plasma levels of proinflammatory cytokines and mitochondrial DNA (mtDNA) oxidative damage were analyzed by ELISA. Protein expression was evaluated by Western blot. The distribution of oxidative mtDNA was probed by immunofluorescence. Pharmacological agents were delivered via infusion into the cisterna magna with an osmotic minipump. RESULTS The suppression of baroreflex sensitivity was concurrent with increased SBP and decreased HR. Neuroinflammatory factors, including TNF-α, CD11b, and Iba-1, were detected in the NTS of the LPS group. Moreover, indices of mtDNA damage, including 8-OHdG and γ-H2AX, were significantly increased in neuronal mitochondria. Pentoxifylline or minocycline intracisternal (IC) infusion effectively prevented mtDNA damage, suggesting that cytokine and microglial activation contributed to mtDNA damage. Synchronically, baroreflex sensitivity was effectively protected, and the elevated blood pressure was significantly relieved. In addition, the mtDNA repair mechanism was significantly enhanced by pentoxifylline or minocycline. CONCLUSION These results suggest that neuronal mtDNA damage in the NTS induced by neuroinflammation could be the core factor in deteriorating baroreflex desensitization and subsequent cardiovascular dysfunction. Therefore, the enhancement of base excision repair (BER) signaling in mitochondria could be a potential therapeutic strategy for cardiovascular reflex dysregulation.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan Republic of China
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Chou-Hwei Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Yu-Chi Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Yu Chih Kung
- Master of Science Program in Health Care, Department of Nursing, Meiho University, Neipu Township, Republic of China
- Department of Nursing, Meiho University, Neipu Township, Taiwan, Republic of China
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
| | - Kay L. H. Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301 Taiwan Republic of China
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, 700 Taiwan Republic of China
| |
Collapse
|
33
|
Ma A, Hong J, Shanks J, Rudebush T, Yu L, Hackfort BT, Wang H, Zucker IH, Gao L. Upregulating Nrf2 in the RVLM ameliorates sympatho-excitation in mice with chronic heart failure. Free Radic Biol Med 2019; 141:84-92. [PMID: 31181253 PMCID: PMC6718296 DOI: 10.1016/j.freeradbiomed.2019.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a key transcription factor that maintains redox homeostasis by governing a broad array of antioxidant genes in response to oxidant stress. We hypothesized that overexpression of Nrf2 in the rostral ventrolateral medulla (RVLM) ameliorates sympatho-excitation in mice with coronary artery ligation-induced chronic heart failure (CHF). To address this, we overexpressed Nrf2 in the RVLM using an HIV-CamKIIa-Nrf2 lenti virus in C57BL/6 mice. In addition, we used a Lenti-Cre virus in Keap1flox/flox mice to upregulate Nrf2 non-selectively in the RVLM. Arterial blood pressure (AP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded under conscious and anesthetized conditions, respectively. Protein expression was assayed using western blotting and immunofluorescence staining. We found that (1) Nrf2 and two target proteins, NQO1 and HO-1 in the RVLM were significantly lower in CHF compared to Sham mice. Nrf2 viral transfection of the RVLM upregulated Nrf2 protein. (2) Urinary NE excretion in CHF mice was markedly attenuated following Nrf2 upregulation (812 ± 133 vs 1120 ± 271 ng/24hr mean. ±SE, *p < 0.05, n = 8/group). (3) In the conscious state, CHF mice overexpressing Nrf2 exhibited an enhancement in spontaneous baroreflex gain and in phenylephrine-induced baroreflex control of HR. (4) Acute experiments under anesthetisa revealed a significant decrease in basal RSNA (44.0 ± 6.5 vs 64.7 ± 8.3% of Max. *P < 0.05 n = 8/group) and enhancement in baroreflex sensitivity (Maximal gain -1.8 ± 0.3 vs 1.1 ± 0.2 of mmHg. **p < 0.01. n = 6/group) in CHF mice that were virally transfected with Nrf2 compared with CHF mice transfected with Lenti-GFP. Finally, Lenti-Cre viral overexpression of Nrf2 in Keap1flox/flox mice reduced Keap1 protein and increased Nrf2, NQO1, and HO-1 in the RVLM of Sham and CHF mice. CHF-Cre mice exhibited a significant decrease in baseline RSNA and plasma NE concentration (8.9 ± 1.1 vs 12.7 ± 0.9 ng/mL *P < 0.05 n = 6/group) as compared with CHF-GFP mice. Based on the above data, we conclude that upregulating Nrf2 selectively in the RVLM attenuates sympatho-excitation in CHF mice. Nrf2 may be an important central target for autonomic modulation in cardiovascular disease and during stress.
Collapse
Affiliation(s)
- Anyun Ma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Juan Hong
- Department of Anesthesiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Tara Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
34
|
Pardo M, Xu F, Shemesh M, Qiu X, Barak Y, Zhu T, Rudich Y. Nrf2 protects against diverse PM 2.5 components-induced mitochondrial oxidative damage in lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:303-313. [PMID: 30878937 DOI: 10.1016/j.scitotenv.2019.01.436] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Nrf2 is an important transcription factor implicated in the oxidative stress response, which has been reported to play an important role in the way by which air pollution particulate matter (PM2.5) induces adverse health effects. This study investigates the mechanism by which Nrf2 exerts its protective effect in PM2.5 induced toxicity in lung cells. Lung cells silenced for Nrf2 (shNrf2) demonstrated diverse susceptibility to various PM extracts; water extracts containing high levels of dissolved metals exhibited higher capacity to generate mitochondrial reactive oxygen species (ROS) and hence increased oxidative stress levels. Organic extracts containing high levels of polycyclic aromatic hydrocarbons (PAHs) increased mortality and reduced ROS production in the silenced cells. shNrf2 cells exhibited a higher basal mitochondrial respiration rate compared to the control cells. Following exposure to water extracts, the mitochondrial respiration increased, which was not observed with the organic extracts. shNrf2 cells exposed to the organic extracts showed lower mitochondrial membrane potential and lower mtDNA copy number. Nrf2 may act as a signaling mediator for the mitochondria function following PM2.5 exposure.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Michal Shemesh
- Cell Observatory of the MICC Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yoav Barak
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
35
|
Ouzren N, Delcambre S, Ghelfi J, Seibler P, Farrer MJ, König IR, Aasly JO, Trinh J, Klein C, Grünewald A. Mitochondrial DNA Deletions Discriminate Affected from Unaffected LRRK2 Mutation Carriers. Ann Neurol 2019; 86:324-326. [PMID: 31148195 PMCID: PMC6900150 DOI: 10.1002/ana.25510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Nassima Ouzren
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Matthew J Farrer
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Jan O Aasly
- Department of Neuromedicine and Movement Science and Department of Neurology, St Olav's Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
36
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
37
|
Gureev AP, Shaforostova EA, Popov VN. Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction Between the Nrf2 and PGC-1α Signaling Pathways. Front Genet 2019; 10:435. [PMID: 31139208 PMCID: PMC6527603 DOI: 10.3389/fgene.2019.00435] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is a general degenerative process related to deterioration of cell functions in the entire organism. Mitochondria, which play a key role in energy homeostasis and metabolism of reactive oxygen species (ROS), require lifetime control and constant renewal. This explains recently peaked interest in the processes of mitochondrial biogenesis and mitophagy. The principal event of mitochondrial metabolism is regulation of mitochondrial DNA (mtDNA) transcription and translation, which is a complex coordinated process that involves at least two systems of transcription factors. It is commonly believed that its major regulatory proteins are PGC-1α and PGC-1β, which act as key factors connecting several regulator cascades involved in the control of mitochondrial metabolism. In recent years, the number of publications on the essential role of Nrf2/ARE signaling in the regulation of mitochondrial biogenesis has grown exponentially. Nrf2 is induced by various xenobiotics and oxidants that oxidize some Nrf2 negative regulators. Thus, ROS, in particular H2O2, were found to be strong Nrf2 activators. At present, there are two major concepts of mitochondrial biogenesis. Some authors suggest direct involvement of Nrf2 in the regulation of this process. Others believe that Nrf2 regulates expression of the antioxidant genes, while the major and only regulator of mitochondrial biogenesis is PGC-1α. Several studies have demonstrated the existence of the regulatory loop involving both PGC-1α and Nrf2. In this review, we summarized recent data on the Nrf2 role in mitochondrial biogenesis and its interaction with PGC-1α in the context of extending longevity.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Vasily N Popov
- Voronezh State University of Engineering Technologies, Voronezh, Russia
| |
Collapse
|
38
|
Mowry FE, Biancardi VC. Neuroinflammation in hypertension: the renin-angiotensin system versus pro-resolution pathways. Pharmacol Res 2019; 144:279-291. [PMID: 31039397 DOI: 10.1016/j.phrs.2019.04.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
Overstimulation of the pro-inflammatory pathways within brain areas responsible for sympathetic outflow is well evidenced as a primary contributing factor to the establishment and maintenance of neurogenic hypertension. However, the precise mechanisms and stimuli responsible for promoting a pro-inflammatory state are not fully elucidated. Recent work has unveiled novel compounds derived from omega-3 polyunsaturated fatty acids (ω-3 PUFAs), termed specialized pro-resolving mediators (SPMs), which actively regulate the resolution of inflammation. Failure or dysregulation of the resolution process has been linked to a variety of chronic inflammatory and neurodegenerative diseases. Given the pathologic role of neuroinflammation in the hypertensive state, SPMs and their associated pathways may provide a link between hypertension and the long-standing association of dietary ω-3 PUFAs with cardioprotection. Herein, we review recent progress in understanding the RAS-driven pathophysiology of neurogenic hypertension, particularly in regards to the chronic low-grade neuroinflammatory response. In addition, we examine the potential for an impaired resolution of inflammation process in the context of hypertension.
Collapse
Affiliation(s)
- Francesca Elisabeth Mowry
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Alabama, USA; Center for Neurosciences Research Initiative, Auburn University, Alabama, USA.
| |
Collapse
|
39
|
Potential Applications of NRF2 Inhibitors in Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8592348. [PMID: 31097977 PMCID: PMC6487091 DOI: 10.1155/2019/8592348] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/10/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
The NRF2/KEAP1 pathway represents one of the most important cell defense mechanisms against exogenous or endogenous stressors. Indeed, by increasing the expression of several cytoprotective genes, the transcription factor NRF2 can shelter cells and tissues from multiple sources of damage including xenobiotic, electrophilic, metabolic, and oxidative stress. Importantly, the aberrant activation or accumulation of NRF2, a common event in many tumors, confers a selective advantage to cancer cells and is associated to malignant progression, therapy resistance, and poor prognosis. Hence, in the last years, NRF2 has emerged as a promising target in cancer treatment and many efforts have been made to identify therapeutic strategies aimed at disrupting its prooncogenic role. By summarizing the results from past and recent studies, in this review, we provide an overview concerning the NRF2/KEAP1 pathway, its biological impact in solid and hematologic malignancies, and the molecular mechanisms causing NRF2 hyperactivation in cancer cells. Finally, we also describe some of the most promising therapeutic approaches that have been successfully employed to counteract NRF2 activity in tumors, with a particular emphasis on the development of natural compounds and the adoption of drug repurposing strategies.
Collapse
|
40
|
Wu CW, Hung CY, Hirase H, Tain YL, Lee WC, Chan JYH, Fu MH, Chen LW, Liu WC, Liang CK, Ho YH, Kung YC, Leu S, Wu KLH. Pioglitazone reversed the fructose-programmed astrocytic glycolysis and oxidative phosphorylation of female rat offspring. Am J Physiol Endocrinol Metab 2019; 316:E622-E634. [PMID: 30668149 DOI: 10.1152/ajpendo.00408.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Excessive maternal high-fructose diet (HFD) during pregnancy and lactation has been reported to cause metabolic disorders in the offspring. Whether the infant's brain metabolism is disturbed by maternal HFD is largely unknown. Brain energy metabolism is elevated dramatically during fetal and postnatal development, whereby maternal nutrition is a key factor that determines cellular metabolism. Astrocytes, a nonneuronal cell type in the brain, are considered to support the high-energy demands of neurons by supplying lactate. In this study, the effects of maternal HFD on astrocytic glucose metabolism were investigated using hippocampal primary cultures of female infants. We found that glycolytic capacity and mitochondrial respiration and electron transport chain were suppressed by maternal HFD. Mitochondrial DNA copy number and mitochondrial transcription factor A expression were suppressed by maternal HFD. Western blots and immunofluorescent images further indicated that the glucose transporter 1 was downregulated whereas the insulin receptor-α, phospho-insulin receptor substrate-1 (Y612) and the p85 subunit of phosphatidylinositide 3-kinase were upregulated in the HFD group. Pioglitazone, which is known to increase astrocytic glucose metabolism, effectively reversed the suppressed glycolysis, and lactate release was restored. Moreover, pioglitazone also normalized oxidative phosphorylation with an increase of cytosolic ATP. Together, these results suggest that maternal HFD impairs astrocytic energy metabolic pathways that were reversed by pioglitazone.
Collapse
Affiliation(s)
- Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Hajime Hirase
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science , Wako, Saitama , Japan
- Saitama University Brain Science Institute , Saitama , Japan
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Republic of China
| | - Wei-Chia Lee
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Republic of China
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Republic of China
| | - Lee-Wei Chen
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Wen-Chung Liu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chih-Kuang Liang
- Division of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Ying-Hao Ho
- Division of Neurology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Yu Chih Kung
- Master of Science Program in Health Care, Department of Nursing, Meiho University, Republic of China
- Department of Nursing, Meiho University, Taiwan, Republic of China
| | - Steve Leu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
- Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan, Republic of China
| |
Collapse
|
41
|
Gao J, An L, Xu Y, Huang Y. Catalpol Exerts an Anti-Epilepticus Effect, Possibly by Regulating the Nrf2-Keap1-ARE Signaling Pathway. Med Sci Monit 2018; 24:9436-9441. [PMID: 30592708 PMCID: PMC6322367 DOI: 10.12659/msm.911902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Status epilepticus (SE) is a refractory neurological disease with high mortality and morbidity rates. SE can be induced by numerous factors, including oxidative stress. Catalpol has several biological activities, including regulating the oxidative stress response. However, the role of catapol in SE has not been fully elucidated. Material/Methods Thirty Wistar rats were randomly and equally divided into 3 groups: a control group, an SE group established by LiCl-pilocarpine intraperitoneal injection, and an SE+catalpol group established administering catalpol to SE rats. Epileptic seizure level and after-discharge duration (ADD) were analyzed. Cognitive function was assessed by Morris water maze. Myeloperoxidase (MPO) and superoxide dismutase (SOD) activities were tested. Keap1 and ARE mRNA expressions were detected by real-time PCR. Nrf2 protein expression was determined by Western blot. Results Catalpol significantly decreased epileptic seizure level, extended ADD, and improved cognitive function compared with the SE group (P<0.05). MPO was increased, SOD was reduced, Keap1 mRNA was upregulated, and Nrf2 protein and ARE mRNA were reduced in the SE group compared with the control group (P<0.05). Catalpol markedly decreased MPO, enhanced SOD activity, decreased Keap1 mRNA level, and elevated Nrf2 protein and ARE mRNA expressions compared with the SE group (P<0.05). Conclusions Catalpol plays an anti-epileptic role and improves cognitive function by regulating the Nrf2-Keap1-ARE signaling pathway to inhibit oxidative stress response.
Collapse
Affiliation(s)
- Jing Gao
- Department of Emergency, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China (mainland)
| | - Li An
- Department of Neurology, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China (mainland)
| | - Yueyue Xu
- Department of Nursing, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China (mainland)
| | - Yudiao Huang
- Department of Neurology, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, China (mainland)
| |
Collapse
|
42
|
Ryoo IG, Kwak MK. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol Appl Pharmacol 2018; 359:24-33. [PMID: 30236989 DOI: 10.1016/j.taap.2018.09.014] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria play essential roles in cellular bioenergetics, biosynthesis, and apoptosis. During the process of respiration and oxidative phosphorylation, mitochondria utilize oxygen to generate ATP, and at the same time, there is an inevitable generation of reactive oxygen species (ROS). As excess ROS create oxidative stress and damage cells, the proper function of the antioxidant defense system is critical for eukaryotic cell survival under aerobic conditions. Nuclear factor, erythroid 2-like 2 (Nfe2l2/Nrf2) is a master transcription factor for regulating basal as well as inducible expression of multiple antioxidant proteins. Nrf2 has been involved in maintaining mitochondrial redox homeostasis by providing reduced forms of glutathione (GSH); the reducing cofactor NADPH; and mitochondrial antioxidant enzymes such as GSH peroxidase 1, superoxide dismutase 2, and peroxiredoxin 3/5. In addition, recent research advances suggest that Nrf2 contributes to mitochondrial regulation through more divergent intermolecular linkages. Nrf2 has been positively associated with mitochondrial biogenesis through the direct upregulation of mitochondrial transcription factors and is involved in the mitochondrial quality control system through mitophagy activation. Moreover, several mitochondrial proteins participate in regulating Nrf2 to form a reciprocal regulatory loop between mitochondria and Nrf2. Additionally, Nrf2 modulation in cancer cells leads to changes in the mitochondrial respiration system and cancer bioenergetics that overall affect cancer metabolism. In this review, we describe recent experimental observations on the relationship between Nrf2 and mitochondria, and further discuss the effects of Nrf2 on cancer mitochondria and metabolism.
Collapse
Affiliation(s)
- In-Geun Ryoo
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea
| | - Mi-Kyoung Kwak
- Integrated Research Institute for Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Bucheon 14662, Gyeonggi-do, Republic of Korea; College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
43
|
Kasai S, Yamazaki H, Tanji K, Engler MJ, Matsumiya T, Itoh K. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J Clin Biochem Nutr 2018; 64:1-12. [PMID: 30705506 PMCID: PMC6348405 DOI: 10.3164/jcbn.18-37] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Recent investigations have clarified the importance of mitochondria in various age-related degenerative diseases, including late-onset Alzheimer’s disease and Parkinson’s disease. Although mitochondrial disturbances can be involved in every step of disease progression, several observations have demonstrated that a subtle mitochondrial functional disturbance is observed preceding the actual appearance of pathophysiological alterations and can be the target of early therapeutic intervention. The signals from damaged mitochondria are transferred to the nucleus, leading to the altered expression of nuclear-encoded genes, which includes mitochondrial proteins (i.e., mitochondrial retrograde signaling). Mitochondrial retrograde signaling improves mitochondrial perturbation (i.e., mitohormesis) and is considered a homeostatic stress response against intrinsic (ex. aging or pathological mutations) and extrinsic (ex. chemicals and pathogens) stimuli. There are several branches of the mitochondrial retrograde signaling, including mitochondrial unfolded protein response (UPRMT), but recent observations increasingly show the importance of the ISR-ATF4 pathway in mitochondrial retrograde signaling. Furthermore, Nrf2, a master regulator of the oxidative stress response, interacts with ATF4 and cooperatively upregulates a battery of antioxidant and antiapoptotic genes while repressing the ATF4-mediated proapoptotic gene, CHOP. In this review article, we summarized the upstream and downstream mechanisms of ATF4 activation during mitochondrial stresses and disturbances and discuss therapeutic intervention against degenerative diseases by using Nrf2 activators.
Collapse
Affiliation(s)
- Shuya Kasai
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hiromi Yamazaki
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kunikazu Tanji
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Máté János Engler
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
44
|
Chan SHH, Chan JYH. Mitochondria and Reactive Oxygen Species Contribute to Neurogenic Hypertension. Physiology (Bethesda) 2018; 32:308-321. [PMID: 28615314 DOI: 10.1152/physiol.00006.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Beyond its primary role as fuel generators, mitochondria are engaged in a variety of cellular processes, including redox homeostasis. Mitochondrial dysfunction, therefore, may have a profound impact on high-energy-demanding organs such as the brain. Here, we review the roles of mitochondrial biogenesis and bioenergetics, and their associated signaling in cellular redox homeostasis, and illustrate their contributions to the oxidative stress-related neural mechanism of hypertension, focusing on specific brain areas that are involved in the generation or modulation of sympathetic outflows to the cardiovascular system. We also highlight future challenges of research on mitochondrial physiology and pathophysiology.
Collapse
Affiliation(s)
- Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Fu MH, Wu CW, Lee YC, Hung CY, Chen IC, Wu KLH. Nrf2 activation attenuates the early suppression of mitochondrial respiration due to the α-synuclein overexpression. Biomed J 2018; 41:169-183. [PMID: 30080657 PMCID: PMC6138761 DOI: 10.1016/j.bj.2018.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND α-synuclein (SNCA) accumulation in the substantia nigra is one of the characteristic pathologies of Parkinson's disease (PD). A53T missense mutations in the SNCA gene has been proved to enhance the expression of SNCA and accelerate the onset of PD. Mitochondrial dysfunction in SNCA aggregation has been under debate for decades but the causal relationship remains uncertain. At a later stage of PD, the cellular dysfunctions are complicated and multiple factors are tangled. Our aim here is to investigate the mitochondrial functional changes and clarify the main causal mechanism at earlier-stage of PD. METHODS We used the mutant A53T SNCA-expressed neuro 2a (N2a) cells without detectable cell death to investigate: 1) whether SNCA overexpression impairs the mitochondrial respiration and biogenesis. 2) The role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signal in SNCA-induced mitochondria dysfunction. RESULTS Accompanying with the increment of SNCA, reactive oxygen species (ROS) accumulation was increased. The maximal respiratory capacity was suppressed. Meanwhile, mitochondrial complex 1 activity and the activity of nicotinamide adenine dinucleotide (NADH) cytochrome C reductase (NCCR) were decreased. Moreover, the mitochondrial DNA (mtDNA) copy number was decreased. On the other hand, the nuclear peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), Nrf2, and the cytosolic mitochondrial transcription factor A (TFAM) were increased at an early stage and declined thereafter. Above factors triggered by SNCA were reversed by tBHQ, a Nrf2 activator. CONCLUSION These results suggested that at an early stage, SNCA-overexpressed increase mtROS accumulation, mitochondrial dysfunction and mtDNA decrement. Nrf2, PGC-1α and TFAM were upregulated to compromise mitochondrial dysfunction. tBHQ effectively reversed the SNCA-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Chi Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - I-Chun Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan.
| |
Collapse
|
46
|
Xu Y, Kabba JA, Ruan W, Wang Y, Zhao S, Song X, Zhang L, Li J, Pang T. The PGC-1α Activator ZLN005 Ameliorates Ischemia-Induced Neuronal Injury In Vitro and In Vivo. Cell Mol Neurobiol 2018; 38:929-939. [PMID: 29159732 DOI: 10.1007/s10571-017-0567-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/14/2017] [Indexed: 01/02/2023]
Abstract
Oxidative stress is a great challenge to neurons following cerebral ischemia. PGC-1α has been shown to act as a potent modulator of oxidative metabolism. In this study, the effects of ZLN005, a small molecule that activate PGC-1α, against oxygen-glucose deprivation (OGD)- or ischemia-induced neuronal injury in vitro and in vivo were investigated. Transient middle cerebral artery occlusion (tMCAO) was performed in rats and ZLN005 was administered intravenously at 2 h, 4 h, or 6 h after ischemia onset. Infarct volume and neurological deficit score were detected to evaluate the neuroprotective effects of ZLN005. Well-differentiated PC12 cells, which were subjected to OGD for 2 h followed by reoxygenation for 22 h, were used as an in vitro ischemic model. Changes in expression of PGC-1α, its related genes, and antioxidant genes were determined by real-time quantitative PCR. The results showed that ZLN005 reduced cerebral infarct volume and improved the neurological deficit in rat with tMCAO, and significantly protected OGD-induced neuronal injury in PC12 cells. Furthermore, ZLN005 enhanced expression of PGC-1α in PC12 cells and in the ipsilateral hemisphere of rats with tMCAO. Additionally, ZLN005 increased antioxidant genes, including SOD1 and HO-1, and significantly prevented the ischemia-induced decrease in SOD activity. Taking together, the PGC-1α activator ZLN005 exhibits neuroprotective effects under ischemic conditions and molecular mechanisms possibly involve activation of PGC-1α signaling pathway and cellular antioxidant systems.
Collapse
Affiliation(s)
- Yazhou Xu
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - John Alimamy Kabba
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Wenchen Ruan
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yunjie Wang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Shunyi Zhao
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Xiaoyue Song
- School of Biological Sciences, University of Liverpool, Brownlow Hill, Liverpool, L69 3BX, UK
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jia Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
47
|
Gureev AP, Shaforostova EA, Starkov AA, Popov VN. β-Guanidinopropionic Acid Stimulates Brain Mitochondria Biogenesis and Alters Cognitive Behavior in Nondiseased Mid-Age Mice. J Exp Neurosci 2018; 12:1179069518766524. [PMID: 29636631 PMCID: PMC5888816 DOI: 10.1177/1179069518766524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/27/2018] [Indexed: 01/29/2023] Open
Abstract
β-guanidinopropionic acid (β-GPA) has been used as a nutritional supplement for increasing physical strength and endurance with positive and predictable results. In muscles, it works as a nonadaptive stimulator of mitochondria biogenesis; it also increases lipid metabolism. There are data indicating that β-GPA can be also neuroprotective, but its mechanisms of action in the brain are less understood. We studied the effects of β-GPA on animal behavior and mitochondrial biogenesis in the cortex and midbrain of mid-age healthy mice. We found that even short-term 3-week-long β-GPA treatment increased the mitochondrial DNA (mtDNA) copy number in the cortex and ventral midbrain, as well as the expression of several key antioxidant and metabolic enzymes—indicators of mitochondria proliferation and the activation of Nrf2/ARE signaling cascade. At the same time, β-GPA downregulated the expression of the β-oxidation genes. Administration of β-GPA in mice for 3 weeks improved the animals’ physical strength and endurance health, ie, increased their physical strength and endurance and alleviated anxiety. Thus, β-GPA might be considered an adaptogene affecting both the muscle and brain metabolism in mammals.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Anatoly A Starkov
- Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
48
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Antioxidants and HNE in redox homeostasis. Free Radic Biol Med 2017; 111:87-101. [PMID: 27888001 DOI: 10.1016/j.freeradbiomed.2016.11.033] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Abstract
Under physiological conditions, cells are in a stable state known as redox homeostasis, which is maintained by the balance between continuous ROS/RNS generation and several mechanisms involved in antioxidant activity. ROS overproduction results in alterations in the redox homeostasis that promote oxidative damage to major components of the cell, including the biomembrane phospholipids. Lipid peroxidation subsequently generates a diverse set of products, including α,β-unsaturated aldehydes. Of these products, 4-hydroxy-2-nonenal (HNE) is the most studied aldehyde on the basis of its involvement in cellular physiology and pathology. This review summarizes the current knowledge in the field of HNE generation, metabolism, and detoxification, as well as its interactions with various cellular macromolecules (protein, phospholipid, and nucleic acid). The formation of HNE-protein adducts enables HNE to participate in multi-step regulation of cellular metabolic pathways that include signaling and transcription of antioxidant enzymes, pro-inflammatory factors, and anti-apoptotic proteins. The most widely described roles for HNE in the signaling pathways are associated with its activation of kinases, as well as transcription factors that are responsible for redox homeostasis (Ref-1, Nrf2, p53, NFκB, and Hsf1). Depending on its level, HNE exerts harmful or protective effects associated with the induction of antioxidant defense mechanisms. These effects make HNE a key player in maintaining redox homeostasis, as well as producing imbalances in this system that participate in aging and the development of pathological conditions.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland.
| |
Collapse
|
49
|
Bai J, Yu XJ, Liu KL, Wang FF, Jing GX, Li HB, Zhang Y, Huo CJ, Li X, Gao HL, Qi J, Kang YM. Central administration of tert-butylhydroquinone attenuates hypertension via regulating Nrf2 signaling in the hypothalamic paraventricular nucleus of hypertensive rats. Toxicol Appl Pharmacol 2017; 333:100-109. [PMID: 28842207 DOI: 10.1016/j.taap.2017.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/15/2017] [Accepted: 08/21/2017] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS) in the paraventricular nucleus (PVN) play a pivotal role in the pathogenesis of hypertension. Nuclear factor E2-related factor-2 (Nrf2) is an important transcription factor that modulates cell antioxidant defense response against oxidative stress. The present study aimed to explore the efficacy of PVN administration of tert-butylhydroquinone (tBHQ), a selective Nrf2 activator, in hypertensive rats. 16-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were used in this study. These rats were chronic bilateral PVN infusion of tBHQ (0.8μg/day), or oxygen free radical scavenger tempol (20μg/h), or vehicle for 2weeks. SHR rats had higher mean arterial pressure (MAP), plasma norepinephrine (NE) levels, and sympathetic nerve activity (RSNA) and lower PVN levels of Nrf2, hemeoxygenase-1 (HO-1), superoxide dismutase-1 (SOD1) and catalase (CAT) as compared with those in the WKY group. Bilateral PVN infusion of tBHQ or tempol significantly reduced MAP, RSNA, plasma NE levels in SHR rats. In addition, tBHQ treatment enhanced the nuclear accumulation of Nrf2 and increased the expression of HO-1, CAT and SOD1 in SHR rats. Furthermore, tBHQ attenuated PVN levels of ROS, the expression of proinflammatory cytokines and restored the imbalance of neurotransmitters in PVN. Knockdown of Nrf2 in the PVN by adeno-associated virus mediated small interfering RNA abrogated the protective effects of tBHQ on hypertension. These findings suggest that PVN administration of tBHQ can attenuate hypertension by activation of the Nrf2-mediated signaling pathway.
Collapse
Affiliation(s)
- Juan Bai
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China.
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Fang-Fang Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Gui-Xia Jing
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Chan-Juan Huo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Xiang Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
50
|
de Oliveira MR, Brasil FB, Andrade CMB. Naringenin Attenuates H 2O 2-Induced Mitochondrial Dysfunction by an Nrf2-Dependent Mechanism in SH-SY5Y Cells. Neurochem Res 2017; 42:3341-3350. [PMID: 28786049 DOI: 10.1007/s11064-017-2376-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/19/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023]
Abstract
Mitochondria are the major site of ATP production in mammalian cells. Furthermore, these organelles are a source and a target of reactive oxygen species (ROS), such as radical anion superoxide (O2-·) and hydrogen peroxide (H2O2). The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is the master regulator of the mammalian redox biology and controls the expression of antioxidant and phase II detoxifying enzymes in several cell types. Naringenin (NGN, 5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one), a flavanone, exhibits cytoprotective effects by acting as an antioxidant and anti-inflammatory agent. NGN is a potent activator of Nrf2. Nonetheless, it was not examine yet whether NGN would induce mitochondrial protection in cells under redox stress. Therefore, we investigate here whether Nrf2 would be involved in the mitochondrial protection elicited by NGN in SH-SY5Y cells exposed to H2O2. We observed that a pretreatment with NGN at 80 µM for 2 h reduced the levels of lipid peroxidation, protein carbonylation, and protein nitration in the membranes of mitochondria obtained from H2O2-treated SH-SY5Y cells. Additionally, NGN prevented the H2O2-induced impairment in the function of the enzymes aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase. The activites of the complexes I and V, as well as the production of ATP, were restored by NGN. NGN also suppressed the H2O2-induced mitochondria-related apoptosis. Interestingly, NGN promoted an increase in the levels of both total and mitochondrial glutathione (GSH). Silencing of Nrf2 abolished the protective effects induced by NGN. Overall, NGN induced mitochondrial protection by an Nrf2-dependent mechanism in H2O2-treated SH-SY5Y cells.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT,, CEP 78060-900, Brazil.
| | | | - Cláudia Marlise Balbinotti Andrade
- Department of Chemistry/ICET, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT,, CEP 78060-900, Brazil
| |
Collapse
|